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Abstract—The stabilization of unstable dynamical systems
using rate-limited feedback links is investigated. In the scenario
of a constant-rate link and a noise with unbounded support,
the fundamental limit of communication is known, but no simple
algorithm to achieve it exists. The main challenge in constructing
an optimal scheme is to fully exploit the communication resources
while occasionally signaling the controller that a special operation
needs to be taken due to a large noise observation. In this
work, we present a simple and explicit algorithm that stabilizes
the dynamical system and achieves the fundamental limits of
communication. The new idea is to use a constrained quantizer in
which certain patterns of sequences are avoided throughout the
quantization process. These patterns are preserved to signal the
controller that a zoom-out operation should be initiated due to
large noise observation. We show that the constrained quantizer
has a negligible effect on the rate, so it achieves the fundamental
limit of communication. Specifically, the rate-optimal algorithm
is shown to stabilize any 5-moment of the state if the noise has
a bounded absolute (3 + ¢)-moment for some ¢ > 0 regardless
of the other noise characteristics.

Index Terms—Dynamical systems, fixed-rate communication,
stability.

I. INTRODUCTION

We study a hybrid control-communication system which
consists of a scalar dynamical system whose observer and
controller are separated by a communication link (Fig. 1). The
aim is to stabilize the dynamical system while consuming the
least communication resources. This leads to an inherent trade-
off between the dynamical plant actuation and the communi-
cation resources that are allocated to stabilize the dynamical
system. The setting is motivated by the benefits of a joint
design for the communication and control components rather
than the classical separation between these two themes. The
aforementioned setting was widely investigated in the control
literature and it represents one of the simplest networked
control settings [1]-[11].

For the case of noiseless communication, allocation of com-
munication resources conforms to either an average or a fixed
rate constraint. In [12], sufficient and necessary conditions
for the stabilizability of a dynamical plant with Gaussian
noise were derived for the case of time-varying link rates.
The more practical scenario of fixed-rate communication link
was investigated in [13], where the authors proposed a (non-
optimal) algorithm that uses a special overflow symbol. In [14],
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Fig. 1. A dynamical system with actuation a and fixed-rate communication
of | S| symbols.

the authors improved this construction to be with an optimal
rate, but the choice of the code parameters was not explicitly
detailed or optimized over.

In this paper, we construct a new and simple algorithm
for the case of fixed-rate communication link and noise
with unbounded support (e.g., Gaussian noise) with bounded
absolute moment. Standard approach to construct algorithms
for this setting is an alternation between zoom-in and zoom-
out procedures. The zoom-in mode is used for most of the
time, where the observed noise is small, so that the observer-
controller pair can maintain an interval they believe the system
state lies in. In the rare events of a large noise observation a
zoom-out mode is performed to increase the interval until the
state is contained in it. The main challenge in constructing an
algorithm for the case of unbounded noise support and fixed-
rate communication link stems from signaling the controller
to transit between these two modes of operation. That is, the
communication link should be fully exploited in the zoom-in
mode while reserving sufficient communication resources to
signal that a zoom-out should be initiated. In this paper, we
resolve this challenge by combining the idea of constrained
coding in coding theory [15] and uniform quantizers to stabi-
lize dynamical systems.

Our main contribution is the introduction of constrained
quantizers. We construct a simple quantizer that avoids certain
patterns of symbols. This allows the observer to use these
patterns to signal the controller the zoom-in operation should
be switched to a zoom-out operation. For any dynamical
system, we provide an explicit, rate-optimal that stabilizes
the dynamical system. Thus, reserving (short) patterns of
sequences results in no loss of optimality. As in [7], [12],
[14], the stabilizability of the algorithm relies on the system
actuation and the bounded moments of the noise rather than



its entire density function.

II. THE SETTING AND MAIN RESULT

A scalar dynamical system is given by
Xiy1 = aXy — U + Zy,

where a > 1 is the system actuation, U; is a control action
and Z; is an independent and identically distributed noise
(disturbance). We assume that Z; has an a-bounded absolute
moment, i.e.,

E[|Z4]*] < pa < oc.

At time ¢, a (fully) observer has access to the current state
X, and its past occurrences, i.e., Xi,...X;_1. Based on this
information, the observer transmits a symbol S; € [1 : |S]]
to the controller. The controller observes S; and chooses a
control action U; € R based on all past transmissions, i.e.,
S1,...,8; !. The setting is described in Fig. 1.

A dynamical system is said to be [-stable if there exists a
sequence of observer-controller mappings such that

lim sup E[| X;|?] < oc. (1)
t—o00

The fundamental limit of communication for a dynamical
system is the minimal M such that there exists an observer-
controller pair that stabilize the dynamical system. In [14], it
was established that, if 8 < «, the minimal (optimal) rate is

M* = [a] +1. 2)
The following theorem summarizes our main result.

Theorem 1 (Optimal algorithm). For any dynamical system,
if B < «, there exists a simple and rate-optimal algorithm
(Algorithm 2) such that the dynamical system is (3-stable.

The theorem will be proven by constructing the algorithm
in Section III and analyze the resulted performance in Section
IVv.

III. ALGORITHMS

This section contains the algorithm to stabilize the scalar
dynamical system. We will first present the main idea behind
the algorithm and its main element, the constrained quantizer.
Then, we will present our main algorithm.

A. Zoom-in/Zoom-out

The algorithm is composed of a repeating procedure to
successively refine the controller’s knowledge on the dynam-
ical system state. Each procedure begins with an interval that
is known to all parties, and corresponds to the controller’s
belief on the state. The observer quantizes the state on the
belief interval and transmits the result to the controller. The
controller then takes an action to minimize the next state, and
the belief interval is updated at both parties according to a
pre-determined rule.

'The observer and the controller mappings can be interpreted as a pair of
encoder-decoder mappings with causal operation and with stability objective
instead of the objective of minimizing the probability of error.

Ideally, if the state always lies in the belief interval that
has a contraction property, the system is stable. The following
simple claim provides a relation between the system actuation
and the number of quantization points.

Lemma 1 (Maximal quantization error). Assume that |x| < c
and Q(x) is a uniform quantizer over [—c,c| with | S| levels.
Then, there exists a controller action U : S — R such that
a

max |ax — U(Q(z))| £ —=c.

ma jaz — U(Q(@)| < 1
Sketch of proof. Choose U = aZ, where & is the center of the
quantization cell. O

Lemma 1 verifies that a zoom-in is possible when there
is no noise. The lemma shows that if a < |S|, then the
quantization error can have a contraction property. That is, if
|z| < ¢, a proper choice of the control action will shift the new
state to lie in [—c/, ¢/] where ¢/ < c¢. Even if the noise has a
bounded effect, the belief interval can still have a contraction
property by adding a constant term that corresponds to the
noise support.

However, for noise with unbounded support, there are cases
where the additive noise will deviate the state from the belief
interval drastically. In such cases, the belief interval must be
increased in order to catch the system state, known as the
zooming-out mode.

The crucial point in constructing an optimal algorithm is
to maintain an optimal-rate zooming-in regime, while occa-
sionally signaling the controller that a zooming-out operation
should be initiated. The idea behind our algorithm is to
compromise between these two regimes by operating in (small)
blocks. In particular, every [ times, the system state will be
quantized into a sequence of [ symbols from [1 : M*] that will
be transmitted consecutively in the next [ transmissions. The
controller takes a non-zero control every [ transmissions. When
working in blocks, in order to have a contraction property, by
Lemma 1, one should choose

al < |Sl\,

where | S ! | represents the number of quantization levels every
[ times. In the next section, we show that a proper choice of
|Sl | enables one to combine the zoom-out signaling without
losing the optimal-rate policy during the zooming-in mode.

B. Constrained quantization

The idea behind the constrained quantizer comes from
constrained coding in information theory [15]. Constrained
coding generally refers to scenarios where certain patterns of
sequences are not transmitted since they are prone to fatal
errors in communication and storage models. A well-known
family of constraints that are used in practice are the run-length
limited (RLL) constraints. The (d, k)-RLL constraint implies
that the minimal and maximal number of zeros (between two
’1’s) are d and k, respectively.

In the context of quantization, we use the constrained
quantizer as a uniform quantizer on a specified interval into
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Fig. 2. An (0,1 — 1)-RLL constrained quantizer with M = 2 and | = 2, 3.

a sequence of [ symbols (from [1 : M?*]) such that cer-
tain patterns are avoided. These avoided sequences will be
preserved for the case where the state falls outside of the
quantization range to signal the controller that zoom-out is
needed. A simple instance of a constrained sequence is the (-
zeros sequence, corresponds to the (0,! — 1)-RLL constraint,
and is described in Fig. 2.

Definition 1 (Constrained quantizer). For fixed [ and | S' | =
(la] + 1)! — 1, the constrained quantizer is defined as

(z+c)| S| J) :
e | if x € [—c,c
Qc(z,cl) = ({ Ze la]+1 [ )
o otherwise

3)
where (n),, is the representation of n with radix m and 0'
is the zeros sequence of length [. If the output sequence is
shorter than [, then it is concatenated with zeros.

2
In other words, the effective number of quantization levels is

|SY = (la] + 1)! — 1, and the function Q¢ (-) is surjective.

Note that if « € [—c¢, c), then V”L)C‘Sl‘ + 1J el:]8).

C. Coding scheme for bounded noise support

For the purpose of studying the relation between the actu-
ation parameter a and the length of the constrained quantizer
outputs, we first present a simpler algorithm for the case of
bounded noise, i.e., |Z;] < A (w.p. 1). The optimal algorithm
appears below as Algorithm 1, and its optimality is shown in
the following proposition. Note that due to the definition of

Algorithm 1 Algorithm for dynamical systems with bounded
noise
Inputs: state |z| < ¢, 1, A

procedure
st Qc(z,¢,) > Quantization
S;+s; fori=1,...,1 > Transmission
U+ Ofori=1,...,1—1
Uy + U(sh > Control action
c 4 %C +A Zi;é at > Interval update

end procedure

Qc(+), Algorithm 1 uses the symbols [1 : M*] and transmits
at the optimal rate. The following proposition reveals the
connection between the constrained patterns length and the
system actuation.

Proposition 1. For any dynamical system with bounded noise,
Algorithm 1 stabilizes the dynamical system if

a<i/(la) +1) —1. )

Note that for any a, there exists [ such that (4) holds. The
value of [ is typically small; for instance, if a < 2, constrained
quantizers with lengths | = 3,4, 5 stabilize dynamical systems
with @ < 1.91,1.97,1.99, respectively.

Remark 1 (Effective parameters). The condition in (4) can be
written as a' < (|a] + 1)! — 1. The operational interpretation
of a is the I-times actuation, while (|a)+1)' —1 is the number
of quantization levels every | times.

Proof of Proposition 1. The [-steps dynamical system can be
written as

X, =d'Xyo-U + 2, (5)

where 7, = Zi;é a'~%Z;. From Lemma 1, since a' <
IS = (la] + 1)! — 1, we have that z € [—c,c] by the
end of ee%ch procedure. Moreover, the belief interval satisfies
Azl;é a®
ol

c— < 00, so the dynamical system is stable. [

It
D. Main algorithm

In this section, we present our main algorithm for the case

of unbounded noise.

Main elements:

1) The quantizer: a constrained quantizer with | S’ | levels.
The input to the quantizer is a state x and a constant ¢
that corresponds to an interval [—c, ¢]. The constrained
quantizer then outputs a sequence s' = Q¢ (z,c,1) (Eq.
).

2) The controller: Given s' # 0!, it chooses a control action
U(s!), as in Lemma 1.

3) Zoom-out function: When |x| > ¢, both the observer and
the controller increase ¢ gradually by multiplying ¢ with
P > 1 untl |z] < c.

4) Interval update: By the end of each procedure, the belief
interval is updated with design parameters r, A that will
be specified later.

Algorithm 2 Optimal algorithm using constrained quantizers

Input: ¢o, 1,7, A
[z, ¢] = Zoom-Out(z, g, P)

procedure
st <« Qc(z,c,l) > Quantization
S; s, fori=1,...,1 > Transmission
U+ 0, fori=1,...,01—1
if s' # 0! then
Uy« U(sh > Control action
c+r-c+A > Interval update
else
[z, ¢] + Zoom-Out(z, ¢, P)
end if

end procedure




The following theorem provides the conditions for which the
stability is guaranteed with Algorithm 2.

Theorem 2. Any dynamical system with E[|Xo|*] < po is
[B-stable using Algorithm 2 if

b <«
P> a7,

Al s ( In(P%) _a!pa ) Q-1
1— pa=s (1 —a)®

(6)

Remark 2 (Non-optimal code). A (non-optimal) code with
rate M = |a] + 1+ N can be directly constructed for
any integer N. The motivation may be to limit the states
deviation during the block, i.e., to decrease the value of
l. The corresponding equation to be solved is then a <

V(la] + 1+ N) -1

Remark 3 (The role of each parameter:). We provide the
reasoning for the restriction on each of design parameter in
(6).

1) The block length | should be large enough so that the
loss caused by the constrained quantizer is negligible.

2) The contraction rate parameter, r, cannot be smaller
than ﬁ due to Lemma 1.

3) The additive update parameter A is made to compensate
on the additive noise Z.

4) The zoom-out parameter P should, intuitively, be greater
than a since the intervals increase must be greater than
the system actuation. However, it turns out from our
analysis that P is also controlled by the noise moments
and the stability criteria.

IV. PROOF OF THEOREM 2

In this section, we prove Theorem 2.

A. Technical result

The following lemma is stated independently of our setting
and will be utilized throughout the proof of our main result.

Lemma 2 (Bounded sums-moment). Let Z; be random vari-
ables with E[|Z;|*] < po and a > 1. Then, for any § < q,

i —i\ B
. 1—a™"
E |§ a jZJ|ﬁ Spa (1-@1) '
j=0

Note that the upper bound is an increasing function of .
The proof appears in Section IV-C.

B. Proof of main result

The algorithm is composed of varying-lengths procedures,
where the procedure ends at a random stopping time 7 when
|X-| < C;. The main idea of the proof is to analyze the
stability of the state at the procedure ends. Then, it will be
easy to conclude the stability of the state within a procedure.

Technically, the proof is comprised of three lemmas; the
first corresponds to the first procedure where the encoder and
the controller cannot assume |X| < Cy. The second lemma

is an inductive step to show that if |Xo| < Cp, then the
state moment by the end of the procedure has a contraction
property. The third lemma is to show that the stability within
a procedure.

We first analyze the stability by the end of the first proce-
dure.

Lemma 3 (Initial zoom- out). Let ¢g be a constant and X
be a random variable with a-bounded moment. Let T be the
stopping time when |X.| < Pco. If P > a=-7, then

E[|X,|?] < oc.
The proof of Lemma 3 appears in Section IV-C.

Remark 4. The zooming-out phase can be improved by signal-
ing one of the varying exponents {PY, P!, ... , pla] Y. In this
case, the condition in Lemma 3 is weaken to P > aqTeI(«=5),

Since we showed that E[|X,|?] < oo, we assume without
loss of generality that |Xo| < Cp, and analyze the repetitive
procedure of our algorithm.

Lemma 4 (Inductive stability). Assume that | Xo| < Cy. Then,
there exist v < 1 and K > 0 such that

E(|Ci4-1°] < vE[|Co|’] + K, (7)
if
P> qF
o a
" el + -1
In(P?)  a®p, > _

A® > 2 281, 8
<1PZB (1_a)a ()

By definition, we know that |X;. .| < Cji,. Therefore,
Lemma 4 shows that the moment of the states by the end of
the has a bounded 5-moment.

The last lemma is a simple consequence of the stability at
the procedures ends.

Lemma 5 (Intermediate stability). Let E[| X, ,|°] < oo. Then,

E[|X,1,1% < E[| X0, |? __Pa
H I+ | ] = H I+ | ] (1 a)aa )
foralli=1,...,T.

Proof of Lemma 5. The states evolution can be written as

T—1—1

. i1
XH—T =a" ZXZ_H' + Z a’ Tt Zl+i+j~
Jj=0

Then, noting that a7 < 1, applying Jensen’s inequality and
Lemma 2 gives

E[| X, %] < 287 YE[| X, |P] + 28—
[l l+1,‘ }— H I+ | ]+ (1_(1_1)5

O

We are now ready to show the proof of the main result.



Proof of Theorem 1. The proof is a combination of the lem-
mas above. First, by lemma 3, the moment by the end
of the first procedure the state is bounded. By Lemma 4,
the limiting moments by the end of the procedures satisfy
limy oo B[| X145, ] < {5, where 7 = S0, (1+ 7).
Finally, Lemma 5 gives that stability by the procedure ends
implies a stability within a procedure. O

C. Proof of Lemmas 2 — 4

Proof of Lemma 2. We use the Minkowski’s inequality re-
peatedly along with E[|Z;|°] < pq:

1

=

i & i—1
1> a2z <Ella”zP)P +E 1Y a7z,
=0 j=1

=

aipl +E \Za iz;|P

=0
O

Proof of Lemma 3 - Initial zoom-out. We use Holder’s in-
equality with % + % =1 to bound

Ela’"|Xo + > a7 Z;|"]
j=0

\XoJrZa YA
J=0

E[|X,|°] =

< E[(a®7)97 (10)

We will show that each of the expected values is bounded.
From Lemma 2, the expected value over the sum converges if
Bp < a. Thus, we choose p = % and ¢ = %5.

For the first expectation in (10), we use the tail-sum formula
and Markov inequality on Pr[r > i]. First, note for the
following inclusion,

i
{r>i} € epP! < |a"(Xo + Zaiij)|
=0

By this inclusion, Markov inequality and Lemma 2,
B[ Xo + 32720 a7 25|

Co(%)w

The first expectation in (10) can now be bounded as

Pr[r >

i] <

E[(a)7] = In(a®") Y (a*0)' Prlr > i
<) s 3 (5)

i=1
— (o3

Recall that ¢ = a-p S

convergence is P > aq-5. O

so a necessary condition for the sum

Proof of Lemma 4 - Inductive step. Recall that we need to
show that if the initial state lies in Xy € [—Cp, Cp| almost
surely, then the expected moment by the end of the procedure
is bounded. Denote the stopping time of the procedure as T,
and consider

]EHXHT‘ } E[Cﬁ-q—]
E[(rCo + A)BPTﬂ]
=E[(rCo + AP E[PP|Cy)]. an
Let us show that E[P7#|Cy] has a uniform upper bound that
decays with growing A:

E[P™P|Cy] = In(PP) i
O_O ia E a i a
Sln(Pﬁ)Z(Pﬁ) (P) %

P?)

- (1IH(PQ gl faa) )Ala

where the inequality follows from the Markov’s inequality and
the inclusion

{r >}
C{(rCo+ AP < | X144}

) Pr[r > i

12)

I+

C S (rCo+ AP <d'(|a'Xo — Uil +a' Y a™7|Z;))
j=0
I+
C —) <d Iz, ¢,
oty g
where the last inclusion follows from r > ‘ZM’
Finally, we combine (11) and (12),
In(P?) p 1
E[|X;4-%] < a a — E[(rCo 4+ A)?
1) < (P2 257 ) 2 B Co+ )
(13)
By Jensen’s inequality, we can conclude that
E[|XZ+T|B]
In(P?)  a%p 1
< & = E[2°7(rCy)P] + 2°71AP),
< (TSl ) 2 BRG]+ 25A%)
(14

It is now easy to see that the coefficient of ]E[Cg ] is controlled
by A® and can be made less than 1. O

V. CONCLUSIONS AND FUTURE WORK

We presented a rate-optimal and explicit algorithm for
stabilizing dynamical systems with fixed-rate feedback and
noise with unbounded support. The proposed algorithm can
be (optimally) extended to vector dynamical systems using
time-sharing arguments (e.g., [14]) and to the case of noisy
observations by employing a Kalman filter prior to the pro-
posed algorithm (e.g., [12]). An interesting question under
investigation is whether the constrained quantizer can be
utilized in the case of multiple (noisy) observers.
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