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Abstract—The stabilization of unstable dynamical systems
using rate-limited feedback links is investigated. In the scenario
of a constant-rate link and a noise with unbounded support,
the fundamental limit of communication is known, but no simple
algorithm to achieve it exists. The main challenge in constructing
an optimal scheme is to fully exploit the communication resources
while occasionally signaling the controller that a special operation
needs to be taken due to a large noise observation. In this
work, we present a simple and explicit algorithm that stabilizes
the dynamical system and achieves the fundamental limits of
communication. The new idea is to use a constrained quantizer in
which certain patterns of sequences are avoided throughout the
quantization process. These patterns are preserved to signal the
controller that a zoom-out operation should be initiated due to
large noise observation. We show that the constrained quantizer
has a negligible effect on the rate, so it achieves the fundamental
limit of communication. Specifically, the rate-optimal algorithm
is shown to stabilize any β-moment of the state if the noise has
a bounded absolute (β + ǫ)-moment for some ǫ > 0 regardless
of the other noise characteristics.

Index Terms—Dynamical systems, fixed-rate communication,
stability.

I. INTRODUCTION

We study a hybrid control-communication system which

consists of a scalar dynamical system whose observer and

controller are separated by a communication link (Fig. 1). The

aim is to stabilize the dynamical system while consuming the

least communication resources. This leads to an inherent trade-

off between the dynamical plant actuation and the communi-

cation resources that are allocated to stabilize the dynamical

system. The setting is motivated by the benefits of a joint

design for the communication and control components rather

than the classical separation between these two themes. The

aforementioned setting was widely investigated in the control

literature and it represents one of the simplest networked

control settings [1]–[11].

For the case of noiseless communication, allocation of com-

munication resources conforms to either an average or a fixed

rate constraint. In [12], sufficient and necessary conditions

for the stabilizability of a dynamical plant with Gaussian

noise were derived for the case of time-varying link rates.

The more practical scenario of fixed-rate communication link

was investigated in [13], where the authors proposed a (non-

optimal) algorithm that uses a special overflow symbol. In [14],
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Fig. 1. A dynamical system with actuation a and fixed-rate communication
of | S | symbols.

the authors improved this construction to be with an optimal

rate, but the choice of the code parameters was not explicitly

detailed or optimized over.

In this paper, we construct a new and simple algorithm

for the case of fixed-rate communication link and noise

with unbounded support (e.g., Gaussian noise) with bounded

absolute moment. Standard approach to construct algorithms

for this setting is an alternation between zoom-in and zoom-

out procedures. The zoom-in mode is used for most of the

time, where the observed noise is small, so that the observer-

controller pair can maintain an interval they believe the system

state lies in. In the rare events of a large noise observation a

zoom-out mode is performed to increase the interval until the

state is contained in it. The main challenge in constructing an

algorithm for the case of unbounded noise support and fixed-

rate communication link stems from signaling the controller

to transit between these two modes of operation. That is, the

communication link should be fully exploited in the zoom-in

mode while reserving sufficient communication resources to

signal that a zoom-out should be initiated. In this paper, we

resolve this challenge by combining the idea of constrained

coding in coding theory [15] and uniform quantizers to stabi-

lize dynamical systems.

Our main contribution is the introduction of constrained

quantizers. We construct a simple quantizer that avoids certain

patterns of symbols. This allows the observer to use these

patterns to signal the controller the zoom-in operation should

be switched to a zoom-out operation. For any dynamical

system, we provide an explicit, rate-optimal that stabilizes

the dynamical system. Thus, reserving (short) patterns of

sequences results in no loss of optimality. As in [7], [12],

[14], the stabilizability of the algorithm relies on the system

actuation and the bounded moments of the noise rather than



its entire density function.

II. THE SETTING AND MAIN RESULT

A scalar dynamical system is given by

Xt+1 = aXt − Ut + Zt,

where a ≥ 1 is the system actuation, Ut is a control action

and Zt is an independent and identically distributed noise

(disturbance). We assume that Zt has an α-bounded absolute

moment, i.e.,

E[|Zt|
α] ≤ ρα < ∞.

At time t, a (fully) observer has access to the current state

Xt and its past occurrences, i.e., X1, . . . Xt−1. Based on this

information, the observer transmits a symbol St ∈ [1 : | S |]
to the controller. The controller observes St and chooses a

control action Ut ∈ R based on all past transmissions, i.e.,

S1, . . . , St
1. The setting is described in Fig. 1.

A dynamical system is said to be β-stable if there exists a

sequence of observer-controller mappings such that

lim sup
t→∞

E[|Xt|
β ] < ∞. (1)

The fundamental limit of communication for a dynamical

system is the minimal M such that there exists an observer-

controller pair that stabilize the dynamical system. In [14], it

was established that, if β < α, the minimal (optimal) rate is

M∗ = ⌊a⌋+ 1. (2)

The following theorem summarizes our main result.

Theorem 1 (Optimal algorithm). For any dynamical system,

if β < α, there exists a simple and rate-optimal algorithm

(Algorithm 2) such that the dynamical system is β-stable.

The theorem will be proven by constructing the algorithm

in Section III and analyze the resulted performance in Section

IV.

III. ALGORITHMS

This section contains the algorithm to stabilize the scalar

dynamical system. We will first present the main idea behind

the algorithm and its main element, the constrained quantizer.

Then, we will present our main algorithm.

A. Zoom-in/Zoom-out

The algorithm is composed of a repeating procedure to

successively refine the controller’s knowledge on the dynam-

ical system state. Each procedure begins with an interval that

is known to all parties, and corresponds to the controller’s

belief on the state. The observer quantizes the state on the

belief interval and transmits the result to the controller. The

controller then takes an action to minimize the next state, and

the belief interval is updated at both parties according to a

pre-determined rule.

1The observer and the controller mappings can be interpreted as a pair of
encoder-decoder mappings with causal operation and with stability objective
instead of the objective of minimizing the probability of error.

Ideally, if the state always lies in the belief interval that

has a contraction property, the system is stable. The following

simple claim provides a relation between the system actuation

and the number of quantization points.

Lemma 1 (Maximal quantization error). Assume that |x| ≤ c

and Q(x) is a uniform quantizer over [−c, c] with | S | levels.

Then, there exists a controller action U : S → R such that

max
|x|≤c

|ax− U(Q(x))| ≤
a

| S |
c.

Sketch of proof. Choose U = ax̂, where x̂ is the center of the

quantization cell.

Lemma 1 verifies that a zoom-in is possible when there

is no noise. The lemma shows that if a < | S |, then the

quantization error can have a contraction property. That is, if

|x| ≤ c, a proper choice of the control action will shift the new

state to lie in [−c′, c′] where c′ < c. Even if the noise has a

bounded effect, the belief interval can still have a contraction

property by adding a constant term that corresponds to the

noise support.

However, for noise with unbounded support, there are cases

where the additive noise will deviate the state from the belief

interval drastically. In such cases, the belief interval must be

increased in order to catch the system state, known as the

zooming-out mode.

The crucial point in constructing an optimal algorithm is

to maintain an optimal-rate zooming-in regime, while occa-

sionally signaling the controller that a zooming-out operation

should be initiated. The idea behind our algorithm is to

compromise between these two regimes by operating in (small)

blocks. In particular, every l times, the system state will be

quantized into a sequence of l symbols from [1 : M∗] that will

be transmitted consecutively in the next l transmissions. The

controller takes a non-zero control every l transmissions. When

working in blocks, in order to have a contraction property, by

Lemma 1, one should choose

al < | S l |,

where | S l | represents the number of quantization levels every

l times. In the next section, we show that a proper choice of

| S l | enables one to combine the zoom-out signaling without

losing the optimal-rate policy during the zooming-in mode.

B. Constrained quantization

The idea behind the constrained quantizer comes from

constrained coding in information theory [15]. Constrained

coding generally refers to scenarios where certain patterns of

sequences are not transmitted since they are prone to fatal

errors in communication and storage models. A well-known

family of constraints that are used in practice are the run-length

limited (RLL) constraints. The (d, k)-RLL constraint implies

that the minimal and maximal number of zeros (between two
′1′s) are d and k, respectively.

In the context of quantization, we use the constrained

quantizer as a uniform quantizer on a specified interval into
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Fig. 2. An (0, l − 1)-RLL constrained quantizer with M = 2 and l = 2, 3.

a sequence of l symbols (from [1 : M∗]) such that cer-

tain patterns are avoided. These avoided sequences will be

preserved for the case where the state falls outside of the

quantization range to signal the controller that zoom-out is

needed. A simple instance of a constrained sequence is the l-

zeros sequence, corresponds to the (0, l − 1)-RLL constraint,

and is described in Fig. 2.

Definition 1 (Constrained quantizer). For fixed l and | S l | =
(⌊a⌋+ 1)l − 1, the constrained quantizer is defined as

QC(x, c, l) =







(⌊

(x+c)| Sl |
2c + 1

⌋)

⌊a⌋+1
if x ∈ [−c, c)

0l otherwise

(3)

where (n)m is the representation of n with radix m and 0l

is the zeros sequence of length l. If the output sequence is

shorter than l, then it is concatenated with zeros.

Note that if x ∈ [−c, c), then
⌊

(x+c)| Sl |
2c + 1

⌋

∈ [1 : | S l |].

In other words, the effective number of quantization levels is

|Sl| = (⌊a⌋+ 1)l − 1, and the function QC(·) is surjective.

C. Coding scheme for bounded noise support

For the purpose of studying the relation between the actu-

ation parameter a and the length of the constrained quantizer

outputs, we first present a simpler algorithm for the case of

bounded noise, i.e., |Zt| ≤ ∆ (w.p. 1). The optimal algorithm

appears below as Algorithm 1, and its optimality is shown in

the following proposition. Note that due to the definition of

Algorithm 1 Algorithm for dynamical systems with bounded

noise

Inputs: state |x| < c, l,∆
procedure

sl ← QC(x, c, l) ⊲ Quantization

Si ← si for i = 1, . . . , l ⊲ Transmission

Ui ← 0 for i = 1, . . . , l − 1
Ul ← U(sl) ⊲ Control action

c ← al

|Sl|
c+∆

∑l−1
i=0 a

i ⊲ Interval update

end procedure

QC(·), Algorithm 1 uses the symbols [1 : M∗] and transmits

at the optimal rate. The following proposition reveals the

connection between the constrained patterns length and the

system actuation.

Proposition 1. For any dynamical system with bounded noise,

Algorithm 1 stabilizes the dynamical system if

a < l

√

(⌊a⌋+ 1)l − 1. (4)

Note that for any a, there exists l such that (4) holds. The

value of l is typically small; for instance, if a < 2, constrained

quantizers with lengths l = 3, 4, 5 stabilize dynamical systems

with a < 1.91, 1.97, 1.99, respectively.

Remark 1 (Effective parameters). The condition in (4) can be

written as al < (⌊a⌋+1)l − 1. The operational interpretation

of al is the l-times actuation, while (⌊a⌋+1)l−1 is the number

of quantization levels every l times.

Proof of Proposition 1. The l-steps dynamical system can be

written as

Xl = alX0 − Ul + Z̃l, (5)

where Z̃l =
∑l−1

i=0 a
l−iZi. From Lemma 1, since al <

|Sl| = (⌊a⌋ + 1)l − 1, we have that x ∈ [−c, c] by the

end of each procedure. Moreover, the belief interval satisfies

c →
∆

∑l−1
i=0 ai

1− al

|Sl|

< ∞, so the dynamical system is stable.

D. Main algorithm

In this section, we present our main algorithm for the case

of unbounded noise.

Main elements:

1) The quantizer: a constrained quantizer with | S l | levels.

The input to the quantizer is a state x and a constant c

that corresponds to an interval [−c, c]. The constrained

quantizer then outputs a sequence sl = QC(x, c, l) (Eq.

(3)).

2) The controller: Given sl 6= 0l, it chooses a control action

U(sl), as in Lemma 1.

3) Zoom-out function: When |x| > c, both the observer and

the controller increase c gradually by multiplying c with

P > 1 until |x| < c.

4) Interval update: By the end of each procedure, the belief

interval is updated with design parameters r,∆ that will

be specified later.

Algorithm 2 Optimal algorithm using constrained quantizers

Input: c0, l, r,∆
[x, c] ← Zoom-Out(x, c0, P )
procedure

sl ← QC(x, c, l) ⊲ Quantization

Si ← si, for i = 1, . . . , l ⊲ Transmission

Ui ← 0, for i = 1, . . . , l − 1
if sl 6= 0l then

Ul ← U(sl) ⊲ Control action

c ← r · c+∆ ⊲ Interval update

else

[x, c] ← Zoom-Out(x, c, P )
end if

end procedure



The following theorem provides the conditions for which the

stability is guaranteed with Algorithm 2.

Theorem 2. Any dynamical system with E[|X0|
α] ≤ ρα is

β-stable using Algorithm 2 if

β < α

P > a
α

α−β ,

∆α >

(

ln(P β)

1− aα

Pα−β

aαlρα

(1− a)α

)

2β−1. (6)

Remark 2 (Non-optimal code). A (non-optimal) code with

rate M = ⌊a⌋ + 1 + N can be directly constructed for

any integer N . The motivation may be to limit the states

deviation during the block, i.e., to decrease the value of

l. The corresponding equation to be solved is then a <
l
√

(⌊a⌋+ 1 +N)l − 1.

Remark 3 (The role of each parameter:). We provide the

reasoning for the restriction on each of design parameter in

(6).

1) The block length l should be large enough so that the

loss caused by the constrained quantizer is negligible.

2) The contraction rate parameter, r, cannot be smaller

than al

|Sl|
due to Lemma 1.

3) The additive update parameter ∆ is made to compensate

on the additive noise Z.

4) The zoom-out parameter P should, intuitively, be greater

than a since the intervals increase must be greater than

the system actuation. However, it turns out from our

analysis that P is also controlled by the noise moments

and the stability criteria.

IV. PROOF OF THEOREM 2

In this section, we prove Theorem 2.

A. Technical result

The following lemma is stated independently of our setting

and will be utilized throughout the proof of our main result.

Lemma 2 (Bounded sums-moment). Let Zi be random vari-

ables with E[|Zi|
α] ≤ ρα and a > 1. Then, for any β ≤ α,

E



|

i
∑

j=0

a−jZj |
β



 ≤ ρα

(

1− a−i

1− a−1

)β

.

Note that the upper bound is an increasing function of i.

The proof appears in Section IV-C.

B. Proof of main result

The algorithm is composed of varying-lengths procedures,

where the procedure ends at a random stopping time τ when

|Xτ | < Cτ . The main idea of the proof is to analyze the

stability of the state at the procedure ends. Then, it will be

easy to conclude the stability of the state within a procedure.

Technically, the proof is comprised of three lemmas; the

first corresponds to the first procedure where the encoder and

the controller cannot assume |X0| < C0. The second lemma

is an inductive step to show that if |X0| < C0, then the

state moment by the end of the procedure has a contraction

property. The third lemma is to show that the stability within

a procedure.

We first analyze the stability by the end of the first proce-

dure.

Lemma 3 (Initial zoom- out). Let c0 be a constant and X0

be a random variable with α-bounded moment. Let τ be the

stopping time when |Xτ | < P τ c0. If P > a
α

α−β , then

E[|Xτ |
β ] < ∞.

The proof of Lemma 3 appears in Section IV-C.

Remark 4. The zooming-out phase can be improved by signal-

ing one of the varying exponents {P 0, P 1, . . . , P ⌊a⌋}. In this

case, the condition in Lemma 3 is weaken to P > a
α

⌊a⌋(α−β) .

Since we showed that E[|Xτ |
β ] < ∞, we assume without

loss of generality that |X0| ≤ C0, and analyze the repetitive

procedure of our algorithm.

Lemma 4 (Inductive stability). Assume that |X0| < C0. Then,

there exist γ < 1 and K > 0 such that

E[|Cl+τ |
β ] ≤ γ E[|C0|

β ] +K, (7)

if

P > a
α

α−β

r ≥
al

(⌊a⌋+ 1)l − 1

∆α >

(

ln(P β)

1− aα

Pα−β

aαlρα

(1− a)α

)

2β−1. (8)

By definition, we know that |Xl+τ | < Cl+τ . Therefore,

Lemma 4 shows that the moment of the states by the end of

the has a bounded β-moment.

The last lemma is a simple consequence of the stability at

the procedures ends.

Lemma 5 (Intermediate stability). Let E[|Xl+τ |
β ] < ∞. Then,

E[|Xl+i|
β ] ≤ E[|Xl+τ |

β ] +
ρα

(1− a)α
, (9)

for all i = 1, . . . , τ .

Proof of Lemma 5. The states evolution can be written as

Xl+τ = aτ−iXl+i +

τ−i−1
∑

j=0

aτ−i−j−1Zl+i+j .

Then, noting that ai−τ < 1, applying Jensen’s inequality and

Lemma 2 gives

E[|Xl+i|
β ] ≤ 2β−1

E[|Xl+τ |
β ] + 2β−1 ρα

(1− a−1)β
.

We are now ready to show the proof of the main result.



Proof of Theorem 1. The proof is a combination of the lem-

mas above. First, by lemma 3, the moment by the end

of the first procedure the state is bounded. By Lemma 4,

the limiting moments by the end of the procedures satisfy

limk→∞ E[|Xl+τ̄k |
β ] ≤ K

1−γ
, where τ̄k =

∑k
i=1(l + τk).

Finally, Lemma 5 gives that stability by the procedure ends

implies a stability within a procedure.

C. Proof of Lemmas 2− 4

Proof of Lemma 2. We use the Minkowski’s inequality re-

peatedly along with E[|Zj |
β ] ≤ ρα:

E



|
i

∑

j=0

a−jZj |
β





1
β

≤ E[|a−iZi|
β ]

1
β + E



|
i−1
∑

j=1

a−jZj |
β





1
β

≤ a−iρ
1
β
α + E



|

i−1
∑

j=1

a−jZj |
β





1
β

≤ ρ
1
β
α





i
∑

j=0

a−j



 .

Proof of Lemma 3 - Initial zoom-out. We use Holder’s in-

equality with 1
p
+ 1

q
= 1 to bound

E[|Xτ |
β ] = E[aβτ |X0 +

τ
∑

j=0

a−jZj |
β ]

≤ E[(aβτ )q]
1
q E[|X0 +

τ
∑

j=0

a−jZj |
βp]

1
p . (10)

We will show that each of the expected values is bounded.

From Lemma 2, the expected value over the sum converges if

βp ≤ α. Thus, we choose p = α
β

and q = α
α−β

.

For the first expectation in (10), we use the tail-sum formula

and Markov inequality on Pr[τ ≥ i]. First, note for the

following inclusion,

{τ ≥ i} ⊆







c0P
i < |ai(X0 +

i
∑

j=0

a−jZj)|







.

By this inclusion, Markov inequality and Lemma 2,

Pr[τ ≥ i] ≤
E[|X0 +

∑∞
j=0 a

−jZj |
α]

cα0
(

P
a

)iα
.

The first expectation in (10) can now be bounded as

E[(aβq)τ ] = ln(aβq)

∞
∑

i=1

(aβq)i Pr[τ ≥ i]

≤ ln(aβq)
ρα

cα0 (1− a)α

∞
∑

i=1

(aβq)i
( a

P

)iα

.

Recall that q = α
α−β

, so a necessary condition for the sum

convergence is P > a
α

α−β .

Proof of Lemma 4 - Inductive step. Recall that we need to

show that if the initial state lies in X0 ∈ [−C0, C0] almost

surely, then the expected moment by the end of the procedure

is bounded. Denote the stopping time of the procedure as τ ,

and consider

E[|Xl+τ |
β ] ≤ E[Cβ

l+τ ]

= E[(rC0 +∆)βP τβ ]

= E[(rC0 +∆)β E[P τβ |C0]]. (11)

Let us show that E[P τβ |C0] has a uniform upper bound that

decays with growing ∆:

E[P τβ |C0] = ln(P β)

∞
∑

i=1

(P β)i Pr[τ ≥ i]

≤ ln(P β)
∞
∑

i=1

(P β)i
( a

P

)iα E[|
∑

j a
−jZj |

α]

∆α

=

(

ln(P β)

1− aα

Pα−β

ρα

(1− a)α

)

1

∆α
, (12)

where the inequality follows from the Markov’s inequality and

the inclusion

{τ ≥ i}

⊆ {(rC0 +∆)P i < |Xl+i|}

⊆







(rC0 +∆)P i < ai(|alX0 − Ul|+ al
l+i
∑

j=0

a−j |Zj |)







⊆







∆

(

P

a

)i

< al
l+i
∑

j=0

a−j |Zj |







,

where the last inclusion follows from r ≥ al

M
.

Finally, we combine (11) and (12),

E[|Xl+τ |
β ] ≤

(

ln(P β)

1− aα

Pα−β

ρα

(1− a)α

)

1

∆α
E[(rC0 +∆)β ].

(13)

By Jensen’s inequality, we can conclude that

E[|Xl+τ |
β ]

≤

(

ln(P β)

1− aα

Pα−β

aαlρα

(1− a)α

)

1

∆α
(E[2β−1(rC0)

β ] + 2β−1∆β).

(14)

It is now easy to see that the coefficient of E[Cβ
0 ] is controlled

by ∆α and can be made less than 1.

V. CONCLUSIONS AND FUTURE WORK

We presented a rate-optimal and explicit algorithm for

stabilizing dynamical systems with fixed-rate feedback and

noise with unbounded support. The proposed algorithm can

be (optimally) extended to vector dynamical systems using

time-sharing arguments (e.g., [14]) and to the case of noisy

observations by employing a Kalman filter prior to the pro-

posed algorithm (e.g., [12]). An interesting question under

investigation is whether the constrained quantizer can be

utilized in the case of multiple (noisy) observers.
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