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Abstract—Consider the following communication scenario.
An n-dimensional source with memory is observed by K
isolated encoders via parallel channels, who causally compress
their observations to transmit to the decoder via noiseless
rate-constrained links. At each time instant, the decoder
receives K new codewords from the observers, combines them
with the past received codewords, and produces a minimum-
distortion estimate of the latest block of n source symbols.
This scenario extends the classical one-shot CEO problem
to multiple rounds of communication with communicators
maintaining memory of the past.

We prove a coding theorem showing that the minimum
asymptotically (as n — co) achievable sum rate required to
achieve a target distortion is equal to the directed mutual
information from the observers to the decoder minimized
subject to the distortion constraint and the separate encoding
constraint. For the Gauss-Markov source observed via K
parallel AWGN channels, we solve that minimal directed
mutual information problem, thereby establishing the mini-
mum asymptotically achievable sum rate. Finally, we explicitly
bound the rate loss due to a lack of communication among
the observers; that bound is attained with equality in the case
of identical observation channels.

The general coding theorem is proved via a new nonasymp-
totic bound that uses stochastic likelihood coders and whose
asymptotic analysis yields an extension of the Berger-Tung
inner bound to the causal setting. The analysis of the Gaussian
case is facilitated by reversing the channels of the observers.

Index Terms—CEO problem, Berger-Tung bound, dis-
tributed source coding, causal rate-distortion theory, Gauss-
Markov source, LQG control.

I. INTRODUCTION

We set up the causal CEO (chief executive or estimation
officer) problem as follows. An information source {X;}
outputs X; € A" at time ¢; it is observed by K encoders
through K noisy channels; at time 4, kth encoder sees
Y} generated according to Pnk|X17'”7Xi’Ylk7_ YE See
Fig. 1. The encoders (observers) communicate to the decoder
(CEO) via their separate noiseless rate-constrained links.
At each time 4, kth observer forms a codeword based on
the observations it has seen so far, i.e., Ylk7 . ,Yik. The
decoder at time 7 chooses X} € A" based on the codewords
it received thus far. The goal is to minimize the average

distortion .
1 ~
3 ;E [d(Xi, XZ-)} :

where ¢ is the time horizon over which the source is being
tracked, and d: A™ x A" — R, is the distortion measure.
Encoding and decoding operations leverage memory of the
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past but cannot look in the future. In this causal setting no
delay is allowed in producing X;.
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Fig. 1. The causal CEO problem.

In the classical setting with ¢ = 1, the CEO problem was
first introduced by Berger et al. [1] for a finite alphabet
source. In the classical Gaussian CEO problem, a Gaussian
source is observed via Gaussian channels and reproduced
under mean-square error (MSE) distortion. The Gaussian
CEO problem was studied by Viswanathan and Berger [2],
who proved an achievability bound on the rate-distortion
dimension for the case of K identical Gaussian channels,
by Oohama [3], who derived the sum-rate rate-distortion
region for that special case, by Prabharan et al. [4], who
determined the full Gaussian CEO rate region, by Chen et
al. [5], who proved that the minimum sum rate is achieved
via waterfilling, by Behroozi and Soleymani [6] and by
Chen and Berger [7], who showed rate-optimal successive
coding schemes. Wagner et al. [8] found the rate region
of the distributed Gaussian lossy compression problem by
coupling it to the Gaussian CEO problem. Wagner and
Anantharam [9] showed an outer bound to the rate region
of the multiterminal source coding problem that is tighter
than the Berger-Tung outer bound [10], [11]. Wang et al.
[12] showed a simple converse on the sum rate of the vector
Gaussian CEO problem. Concurrently, Ekrem and Ulukus
[13] and Wang and Chen [14] showed an outer bound to the
rate region of the vector Gaussian CEO problem that is tight
in some cases and not tight in others and that particularizes
the outer bound in [9] to the Gaussian case. Courtade
and Weissman [15] determined the distortion region of
the distributed source coding and the CEO problem under
logarithmic loss.

None of the above results directly apply to the causal
tracking problem in Fig. 1 because of the causality constraint
in encoding the observations and in producing Xi in (1).
The most basic scenario of source coding with causality
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constraints is that of a single observer directly seeing
the information source [16]. The causal rate-distortion
function for the Gauss-Markov source was computed by
Gorbunov and Pinsker [17]. The link between the minimum
attainable linear quadratic Gaussian (LQG) control cost and
the causal rate-distortion function is elucidated in [18]-[20].
A semidefinite program to compute the causal rate-distortion
function for vector Gauss-Markov sources is provided in
[21]. The remote Gaussian causal rate-distortion function,
which corresponds to setting K = 1 in Fig. 1, is computed
in [20]. The causal rate-distortion function of the Gauss-
Markov source with Gaussian side observation available at
decoder (the causal counterpart of the Wyner-Ziv setting)
is computed in [22]. That causal Wyner-Ziv setting can
be viewed a special case of our causal CEO problem (2),
(3) with two observers, with the second observer enjoying
an infinite rate. Stability of linear Gaussian systems with
multiple isolated observers is investigated in [23].

The first contribution of this paper is a characterization
the minimum asymptotically achievable (as n — oo0) sum
rate R; + ...+ Rg required to achieve a given average
distortion (1) in the causal distributed tracking setting of
Fig. 1. Provided that the components of each X; € A™ are
i.i.d. (X; can still depend on Xy, ..., X;_1), the channels
act on each of those components independently, and the
distortion measure is separable, that minimum sum rate is
equal to the directed mutual information from the observers
to the decoder minimized subject to the distortion constraint
and the separate encoding constraint.

The second contribution of the paper is an evaluation
of the minimum sum rate for the causal Gaussian CEO
problem. In that scenario, the source is an n-dimensional
Gauss-Markov source,

Xiy1 =aX; +V;, ()

k-th observer sees
Yik:Xi+Wi’“, k=1,....K, 3)

where X and {V;, W}, W2 ... WE}L | are independent
Gaussian vectors of length n; V; ~ N(0,03l); Wf ~
N (0,0, 1). The distortion measure is mean-square error
(MSE)

d (X, %) = 11X - X2 0
We characterize the minimum sum rate as a convex opti-
mization problem over K parameters; an explicit formula
is given in the case of identical observation channels.

The third contribution of the paper is a bound on the rate
loss due to a lack of communication among the different
encoders in the causal Gaussian CEO problem: as long
as the target distortion is not too small, the rate loss is
bounded above by K — 1 times the difference between
the remote and the direct rate-distortion functions. The
bound is attained with equality if the observation channels
are identical, indicating that among all possible observer
channels with the same error in estimation {X;} from
{ij }i<ik=1,... K, the identical channels case is the hardest
to compress.

The rest of the paper is organized as follows. In Section I,
we consider the general (non-Gaussian) causal CEO problem

and present our main coding theorem establishing that
the minimum sum rate is given by the directed mutual
information minimized subject to a distortion constraint
under separate encoding (Theorem 1). In Section III, we
characterize the causal Gaussian CEO sum rate - distortion
function (Theorem 2). In Section IV, we bound the rate
loss due to isolated observers (Theorem 3). Most proofs
are relegated to the extended version [24].

Notation: Logarithms are natural base. For a natural
number M, [M] £ {1,...,M}. Notation X < Y reads

“replace X by Y”. We indicate the temporal index in

Yii
t
is the temporal vector (Y}, ..., V}); VX is the spatial
vector (Y1, ..., VAT, Y[gq = (Y- - ,Y[f]() We use the
following shorthand notation for causally conditional [25]

probability kernels:

the subscript and the spatial index in the superscript:

®)

Py[t] [1Xe)

t
A
- HPYL"YH—IMX[]
=1

For a random vector X with i.i.d. components, X denotes
a random variable distributed the same as each component
of X.

II. SUM RATE DISTORTION FUNCTION
VIA DIRECTED INFORMATION
A. Operational problem setting
A causal CEO code is formally defined as follows.
Definition 1 (Causal CEO code). Consider a discrete-time

random process {X;}._, on X, observed by K causal
observers via the channels

Letd: X x X — R4 be the distortion measure.
A causal CEO code consists of:
a) K causal encoding policies
t
. Y&t k
Py v+ V& H[Mi , kelK], ()
b) a decoding policy
t
p ot
f}( 5% AT (8)
=1
If the encoding and decoding policies satisfy
1
SYEld(x%)] <d ©)
i=1

we say that they form an (M K] ,d) average distortion code.
If the encoding and deco mg policies satisfy

P [O {d (XX) > di}] <e,

(10)

we say that they form an (M[[ff],d[t], €) excess distortion

code.

The probability measure in ® and
10) is generated by the joint distribution
PX[t]PY[EsI]K]HX[t] HB[K Hk 1PBk v



A distortion measure d,,: A" x A" — R, is called
separable if
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where d: A x A — Ry, and z(i), (i) denote the i-th
components of vectors = € A" and & € A", respectively.

Definition 2 (Operational sum rate - distortion function).
Consider a discrete-time random process {X;}i_; on X =
A" equipped with a separable distortion measure, observed
by K causal observers via the channels (6).

The rate-distortion tuple (R d) is asymptotically
achievable at time horizon t if for Yy > 0, Ing € N
such that ¥Yn > ng, an (M [[f](],

causal CEO code exists, where

d+ ’y) average distortion

t

1 .

EE log M} < R*, k€ [K]. (12)
i=1

The sum rate - distortion pair (R,d) is asymptotically
achievable if a rate-distortion tuple (R[K],d) with

K
ZR’“ <R
k=1

is asymptotically achievable.
The causal sum rate - distortion function at time horizon
t is defined as follows:

13)

Ry cro(d) éinf{R; (R.,d) is achievable (14)

at time horizon t in the CEO problem.}

B. Main coding theorem

Given a distribution PX[t] and a causal kernel PymH X
the directed mutual information is defined as [26]

t]?

t
I(Xp—Yig) 2D T(Xp:YilYiioy) . (19)
=1

Theorem 1 (Main coding theorem). Consider a discrete-
time random process {X;}._, on X = A" equipped with
a separable distortion measure, observed by K causal
observers via the channels (6) with Y = B™ and

_ p®n
PXi‘X[i—l] - PXi|X[i,1] (16)
P = p&n . 17
v vy = P v an

Suppose further that for some p > 1, there exists a vector
X[¢) Such that

E

t Py
1 .
<t2d(Xi,xi)> 1 <d, < cc. (18)
i=1
The causal sum rate - distortion function is given by

_ K] _, lK]
Riceo(d) = (vl = uf).
U

inf

K
K], (k1 =I1x=1 Pyr
vy

XU

Vg

o
L5t E[d(X:Xi)]<d
(19)

Proof. The converse follows via standard data processing
and single-letterization arguments. To prove the achievabil-
ity, we show a nonasymptotic bound for causal distributed
lossy source coding that can be viewed as an extension
of the nonasymptotic Berger-Tung bound by Yassaee et al.
[27], [28] to the setting with K > 2 sources and £ > 1 time
instances. We view the horizon-¢ causal coding problem as
a multiterminal coding problem in which at each step coded
side information from past steps is available, and we use a
stochastic likelihood coder (SLC) by Yassaee et al. [27], [28]
to perform encoding operations. The SLC-based encoder
mimics the operation of the joint typicality encoder while
admitting sharp nonasymptotic bounds on its performance.
Unfortunately, the SLC-based decoder of [27], [28] is ill-
suited to the case K > 2. We propose a novel decoder that
falls into the class of generalized likelihood decoders [29]
and uses K different threshold tests depending on the point
of the rate-distortion region the code is operating at. An
asymptotic analysis of our nonasymptotic bound yields an
extension of the Berger-Tung bound [10], [11] to the causal
coding setting. See [24] for details. [

Theorem 1 establishes the operational meaning of the
minimal directed mutual information in (19). Note that
R;cro(d) is a convex function of d. (Convexity can be
proven in the standard way, using time sharing between
kernels achieving different d;’s and the convexity of mutual
information in those kernels.)

III. GAUSSIAN SUM RATE - DISTORTION FUNCTION
A. Problem setup

In this section, we focus on the scenario of the Gauss-
Markov source in (2) observed through the Gaussian
channels in (3) under MSE distortion (4). Given an en-
coding policy in Definition 1, the optimal decoding polic
PX[[? 1Bl that achieves the minimum of E [||X1 - )A(l||2T
is X; =E LXZ-|B[[Z]{]1.

For simplicity we focus on the infinite time-horizon limit.

Rcro(d) £ lim sup Ry oo (d)- (20)
—00

In other words, Rcgo(d) is the infimum of R’s such that

Vy > 0, Ity > 0 such that V¢t > ty, dng € N such that

Vn > ng, an (M [[:]{], d+ *y) average distortion causal CEO

code exists with M[[t[](] satisfying (12) and (13).

Taking the limit ¢ — oo simplifies the solution of many
minimal directed mutual information problems ( [20, Th. 9],
[22, Th. 6, Th. 7], [30, Th. 1], [31, Th. 2]) by eliminating
the transient effects due to the starting location X; of the
process {X;} that is being transmitted. In this steady state
regime, the optimal rate allocation across time is uniform
(i.e., log Mf = ... = log Mtk in (12)). Furthermore,
Ry cro(d) approaches its steady-state value (20) as O (1).

Notation: For a random process {X;} on R, its stationary
variance (can be 4-00) is denoted by

0% £ limsup lIE [X?] .

i—oco T

@



The minimum MSE (MMSE) in the estimation of X; from
Y{] Jis denoted by

fpefocsp)] e
and the steady-state causal MMSE by
O'XHY[K £ limsup o2 (23)

e XYL

B. Gaussian sum rate - distortion function

In Theorem 2, the causal sum rate - distortion function
is expressed as a convex optimization problem over param-
eters {dj }X_, that determine the individual rates of the
transmitters and that correspond to the MSE achievable
at the decoder in estimation of {X;}!_; provided that it
correctly decoded the codewords from k-th transmitter.

Theorem 2. For all UXHYIKJ < d < 0%, the causal sum
rate - distortion function (20) for the Gauss-Markov source
in (2) observed through the Gaussian channels in (3) is
given by

_ K
d 1 dy, x|y~ di
R d —log — + min —lo g
cro(d) = 5087 (i}, i 2 & dp — J)z(Hyk dy,
(24)
where
CZ £ a2d + 0\2/7 (25)
d_k é a2dk + U%/a (26)

and the minimum is over dy, k € [K], that satisfy

K
1 1 1 1
2 < S+ ). @
d = oy <“>2<|Yk d’f)

(28)

2 2
Ux“yk <dp < Ox,

Proof. We break up the minimal directed mutual informa-
tion problem in Theorem 1 into subproblems, and we use
the tools we developed in [22] to evaluate the causal rate-
distortion functions for each subproblem. As it turns out,
the additive white Gaussian kernels

Uk =XF 428 7, ~ N(0,0%,), (29)

where

Xk AR [xgvm (30)
is the MMSE estimate of X; given Yﬁ], attain the minimal
directed mutual information in Theorem 1. To link the
parameters of the subproblems together to obtain the
solution of the original problem, we extend the proof
technique by Wang et al. [12], developed for the case
t =1, to t > 1. Converting the “forward channels” from
X[¢) to observations Y@] into the “backward channels” from
MMSE estimates Xﬁ] to X[y is key to that extension. See
[24] for details. O

If the source is observed directly by one or more of the
encoders, say if O’X”Y1 =0,thend; =d, dy = =dg =
O'X is optimal, and (24) reduces to the causal rate- dlstortlon

function [17, eq. (1.43)] (and e.g. [18], [32, Th. 3], [20,
(64)]), [22, Th. 6]):

R(d) = 3 log 31)

1. d
Sd
The sum over k € [K]| in (24) is thus the penalty due
to the encoders not observing the source directly and not
communicating with each other.
If the observation channels satisfy
(32)

2 _ _ 2
O—XHYI =...= O'x”YK7

we can explicitly write the sum rate - distortion function

K . : .
Ropg " (d) for this symmetrical scenario.

Corollary 1. If in the scenario of Theorem 2 the observation
channels satisfy (32), the causal sum rate - distortion
function (20) is given by

7 2
dy — oy)yr dy

1 d K
RERO™ Slog = + =1 33
ceo (d) = QOgd+2 Ogd1—0>2<Hy1d1 (33)
where di satisfies
1 1 K K
Ixyu Oyt G

Proof. Tt suffices to show that the minimum in (24) is
attained by d; = ... = dk. Since each of the terms in the
sum in (24) is a convex function of dj, applying Jensen’s
inequality concludes the proof. O

Think now of adding identical observers by letting
K — ooin (32). Since O'XHY x; — 0, had the observers com-
municated with each other, they could recover the source
exactly, and they could operate at sum rate (31) in the limit.
As the following result demonstrates, lim g, oo RgE_Sym(d)
is actually strictly greater than (31), thus a nonvanishing
penalty due to separate encoding is present in this regime.
See Section IV for a more thorough discussion on the loss
due to separate encoding.

Corollary 2.

d 1 -3
Iggangggym(d) flog d+5%. (35)
Tavt X
Proof. [24]. O

Corollary 2 extends the result of Oohama [3, Cor. 1] to
causal compression, and recovers it if a = 0.

Considering a scenario where the encoders and the
decoder do not keep any memory of past observations
and codewords, we may invoke the results on the classical
Gaussian CEO problem in [4], [5] to express the minimum
achievable sum rate as

1 o2

no memory X

RCEO (d) = 5 ]Og j
K 2
Ixive di
di — 0)2(\Yk 0%’

2
1 Ox —

+ min 3 log (36)

{dk‘}szl k=1



where the minimum is over
K

1 1 1 1
i<a—2|ma] 6
IX|YIEl k=g \ XY+ k
2 2
leyk S dk} S Ox- (38)
Here U)Q(Wk = limHooinwf and U>2qyu<1 2

lim; oo 0 ; denote the stationary MMSE achievable

2
X Y
in the estimation of X; from Y¥ and YZ[K]
without memory of the past.

If a = 0, the observed process (2) becomes a stationary
memoryless Gaussian process, the predictive MMSEs reduce
to the variance of X;: d = dj, = o2 = ol; similarly,
O'>2<|Yk = ‘7>2(|\Yk and U>2<|Y[K1 = 0)2(\Y[K1’ and the result of
Theorem 2 coincides with the classical Gaussian CEO sum
rate - distortion function (36). This shows that if the source
is memoryless, asymptotically there is no benefit in keeping
the memory of previously encoded estimates as permitted
by Definition 1. Classical codes that forget the past after
encoding the current block of length n perform just as well.

If |a| > 1, the benefit due to memory is infinite: indeed,
since the source is unstable, 0)2( = o0, while d < co. If
|a] < 1, that benefit is finite and is characterized by the
discrepancy betweQen the stationary variance of the process

{Xi}2, 0% = 1247 and the steady-state predictive MMSE

1—a?
2 2 2
d < oy, as well as that between Ty and IS

respectively, i.e.,

IV. LOSS DUE TO ISOLATED OBSERVERS

Unrestricted communication among the encoders is
equivalent to having one encoder that sees all the obser-

vation processes iY-[K]

?
joint encoding policies Pyx) [y ) in lieu of independent
t

ORI
encoding policies Hszl PB[’;]HY[’; in Definition 1.

The lossy compression setup '{n which the encoder has
access only to a noise-corrupted version of the source
has been referred to as “remote”, “indirect”, or “noisy”
rate-distortion problem [33]-[36]. A causal setting was
considered in [20, Th. 5-8, Cor. 1].

We denote the joint encoding counterpart of the opera-
tional fundamental limit Rego (d) (20) by Ry (d) (remote).

The following result is a corollary to Theorem 2.

}. It is also equivalent to allowing

Corollary 3 (Causal remote rate-distortion function). For
all U>2<|\Y[K1 < d < 0%, the sum rate - distortion function
with joint encoding for the Gauss-Markov source in (2)
observed through the Gaussian channels in (3) is given by

1 d- 0)2(\|Y[K]
Rim(d) = zlog —5—— (39)
2 °d- 0'>2<HY[K]
Proof. [24]. O

The loss due to isolated encoders is bounded as follows.

Theorem 3 (Loss due to isolated observers). Consider the
causal Gaussian CEO problem (2), (3). Assume that target
distortion d satisfies

1 S 1 n K . K

- > ———+4+ — — min .

d U>2<\|Y[KJ 0% kelK] U)Q(HY’“

(40)

Then, the rate loss due to isolated observers is bounded as
RCEO(d) - er<d) < (K - 1) (er(d) - R(d)) ) (41)
with equality if and only ifUi”Yk. are all the same.

Proof. We upper-bound Rcro(d) by waterfilling over dj’s.
While for ¢ = 1 waterfilling is optimal [5], it is only
suboptimal if ¢ > 1 due to the memory of the past steps
at the encoders and the decoder. This is unsurprising as
for the same reason waterfilling cannot be applied to solve
the vector Gaussian rate-distortion problem for ¢ > 1 [20,
Remark 2]. See [24] for details. O

Theorem 3 parallels the corresponding result for the
classical Gaussian CEO problem [37, Cor. 1], and recovers
it if @ = 0. It’s interesting that in both cases, the rate loss
is bounded above by K — 1 times the difference between
the remote and the direct rate-distortion functions.

V. CONCLUSION

In this paper, we set up the causal CEO problem
(Definition 1, Definition 2) and we prove that the sum
rate - distortion function is given by the directed mutual
information from the encoders to the decoder minimized
subject to the distortion constraint and the separate encoding
constraint (Theorem 1). The proof of the direct coding
theorem hinges upon an SLC-based nonasymptotic bound
that extends [28, Th. 6] to the case with K > 2 observers
and t > 1 time steps. An asymptotic analysis of that bound
leads to an extension of the Berger-Tung inner bound [10],
[11] to t > 1 time steps.

By solving the minimal directed mutual information
problem in Theorem 1, we characterize the Gaussian sum
rate - distortion function as a convex optimization problem
over K parameters (Theorem 2). We give an explicit formula
in the identical-channels case (Corollary 1) and study its
asymptotic behavior as K — oo (Corollary 2). We derive
the causal Gaussian remote rate-distortion function as a
corollary to Theorem 2 with K = 1 (Corollary 3). Using a
suboptimal waterfilling allocation over the K optimization
parameters in Theorem 2, we upper-bound the rate loss due
to separated observers (Theorem 3).

As future work, it will be interesting to determine the full
rate-distortion region of the causal Gaussian CEO problem
as opposed to the sum rate we found in this paper. Certain
causal multiterminal source coding problems also appear
within reach in view of the result in [8] and the applicability
of our nonasymptotic achievability bound to multiterminal
source coding. Finally, computing the rate-distortion region
for Gaussian processes beyond the Gauss-Markov source
with i.i.d. components would be an important advance.
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