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The Minimal Directed Information Needed to Improve the LQG Cost
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Abstract— We study a linear quadratic Gaussian (LQG)
control problem, in which a noisy observation of the system
state is available to the controller. To lower the achievable
LQG cost, we introduce an extra communication link from the
system to the controller. We investigate the trade-off between
the improved LQG cost and the consumed communication
(information) resources that are measured with the conditional
directed information. The objective is to minimize the directed
information over all encoding-decoding policies subject to a
constraint on the LQG cost. The main result is a semidefinite
programming formulation for the optimization problem in the
finite-horizion scenario where the dynamical system may have
time-varying parameters. This result extends the seminal work
by Tanaka et al., where the direct noisy measurement of the
system state at the controller is assumed to be absent. As part
of our derivation to show the optimality of an encoder that
transmits a Gaussian measurement of the state, we show that
the presence of the noisy measurements at the encoder can
not reduce the minimal directed information, extending a prior
result of Kostina and Hassibi to the vector case. Finally, we
show that the results in the finite-horizon case can be extended
to the infinite-horizon scenario when assuming a time-invariant
system, but possibly a time-varying policy. We show that the
solution for this optimization problem can be realized by a time-
invariant policy whose parameters can be computed explicitly
from a finite-dimensional semidefinite program.

I. INTRODUCTION

Networked control systems share an inherent tension be-
tween the control performance and the resources that are
allocated to communicate by different nodes of the system.
Despite the great advances on many interesting questions on
this theme, for instance, data rate theorems for stabilizability
of dynamical systems [1]-[7], there are still fundamental
questions that remain open. One such question is the benefit
of communication resources to the control cost [8]-[12].
In this paper, we study this fundamental question on a
simple topology consisting of the classical Linear Quadratic
Gaussian (LQG) setting with a single communication link.

The networked control setting investigated in this paper
(Fig. 1) aims to reduce the control cost below some value at
the expense of communication resources. The communica-
tion link introduced between an encoder and a decoder (co-
located with the controller) serves as an information pipeline
to the controller that also has an access to the noisy mea-
surements of the system state. Based on its (full) observation
of the the state, the encoder transmits information to reduce
the LQG cost below some desired target cost. One may also
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Fig. 1. The LQG setting with noisy measurement y,. The control

performance (the quadratic cost) is improved using the dashed line which
denotes a communication link from a fully observer to the controller.

view this setting as the standard rate-constrained LQG setting
[13], but with an additional side information that is available
to the controller (the measurement y,) [14]. The objective
of this paper is to characterize the minimal communication
resources subject to a constraint on the control performance.

The communication (information) resources are measured
with the conditional directed information. The directed infor-
mation is suitable for scenarios where the operations of the
involved units are sequential, e.g., channels with feedback in
communication [15] and the causal rate distortion function
in the context of control problems [8], [11], [14]. Also,
both the encoder and the controller are sequential mappings
and the directed information serves as a lower bound to
the operational variable-length (prefix) coding problem [8],
[16] (See also Section V). The control performance in our
setting is measured as the quadratic cost function on the state
and control signals. The optimization problem is formulated
for two scenarios corresponding to the finite-horizon and
infinite-horizon regimes.

For the finite-horizon problem, the general case of time-
varying dynamical systems is investigated and solved by
formulating the optimization problem as a convex optimiza-
tion problem. The optimization problem has a semidefinite
programming (SDP) form (more precisely, max log-det
form) and can be implemented using standard solvers even
for large horizons. We also show that the solution to the
optimization problem can be realized by three design steps:
determining the controller gains and finding the solution for
the convex optimization problem that can be done offline,
and a standard Kalman filter based on the observations. For
the infinite-horizon problem where the dynamical system
matrices are time-invariant, we show that the optimization
problem can be also formulated as an SDP with the op-
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timization variables being only two positive semidefinite
matrices of finite dimensions. Additionally, we show that the
optimal encoding policy is a simple, time-invariant Gaussian
measurement of the state.

Our results generalize the work by Tanaka et al. [13],
which introduced the SDP approach for solving control-
communication problems [17]. Specifically, we investigate
the setting in Fig. 1 with two kind of input signals received
by the controller, while [13] assumed that the noisy mea-
surement of the system state is absent (y, = 0 in Fig.
1). Thus, the controller in our setting combines both the
communication link information and the noisy measurement
of the state. Our results also extend the explicit solution
in [14] for the scalar case of Fig. 1 in the infinite-horizon
regime.

Two key changes in the SDP formulation compared to
[13] are the objective function that includes a new term due
to the study of conditional directed information rather than
the directed information in [13], and a new linear matrix
inequality (LMI) constraint which represents the reduction
in the error covariance due to the quality of the noisy
measurements. Additionally, the structure of the optimal
policy cannot be shown directly and therefore, we study a
relaxed optimization problem where the noisy measurements
(that are available to the controller) are also available to the
encoder. We then show that even in this relaxed scenario,
the optimal encoder signaling is a memoryless Gaussian
measurement of the state. Thus, the knowledge of the noisy
measurements at the encoder can not further reduce the
minimal communication resources.

The remainder of this paper is organized as follows.
Section II introduces the setting and problem definition.
Section III presents our main contributions. In Section IV,
we present our numerical examples. Proofs are omitted from
this paper due to space constraints.

II. THE SETTING AND PROBLEM DEFINITION

A linear dynamical system is given by

Xip1 = A xe FBru +wy £ 2> 1,

where wy ~ N(0, W;) are mutually independent. The initial
state x; is distributed according to Pj|o and is independent
of w;. A noisy measurement of the state is available to the
controller,

v = Cix¢ + vy,
with v¢ ~ N(0,V;). For a fixed time-horizon 7', the LQG
quadratic cost is defined as

T

T+1 [T\ _ E
J(X ,u )— xf+1tht+1+uZ‘Rtut
t=1
T

£ Ellxsly, + ), @
t=1
with @; >~ 0 and R; > 0.
The objective is to design a system such that the LQG
cost does not exceed a cost target denoted by I'. Obviously,

if the measurements y, are sufficient to attain an LQG cost
below T', then the classical solution for the LQG problem is
satisfactory. However, our interest is in scenarios where the
optimal LQG cost exceeds I'. To reduce the LQG cost below
I', we introduce a communication/information link between
an encoder that has access to the state x; and a decoder that
is co-located with the controller (See Fig. 1).

We use the causal conditioning notation to represent the
encoder as a set of random mappings

T
P(ET ||x" ut ) & T PCf £ X, )
t=1

where f; is the encoding variable. Similarly, the decoder
(controller) is a collection of random mappings:

P |7, y") & T] Plu [u'=1 £, ). 3)
t=1
From the construction, the encoder-decoder pair satisfies
at all times

= P(u; \ut_l,ft,yt)P(ft\Xt,ft_l). 4

The overall joint distribution can be summarized with:

t—1 _t—1 pet—1 _t—1
P(xtaytaubft‘x Y af ,u )

= P(ytvxt |Xt717utfl)P(ut;ft‘ftilvutilvxtv 7yt),

The conditional directed information [18], [19], between
the encoder and the controller conditioned on the noisy
measurements, is given by

T
I" =7 [y") =Y IS8y, 6)
t=1
where I(X;Y'|Z) is the mutual information between X and
Y conditioned on Z.
The objective of this paper is to solve the optimization
problem:

min I(x? — 7| y7)
sit. J(xTH ul) <T, (6)

where the minimum is over policies of the form (4).

When the measurement y, is absent, the optimiza-
tion problem in (6) simplifies to the directed information
I (XT — fT) that was investigated in [13]. To see that the
conditional directed information is the correct information
measure, assume that the t¢-th element in the conditional
directed information satisfies:

Ix 6 | £yt = Txes £ | €71 y1). (7)

Then, the right hand side of (7) extracts the discrepancy
in the state uncertainty at the controller with and with-
out the encoding variable f;, ie., I(x;f,|f'"! y?)

h(x: | £ yt) — h(x;|f",y"). The presence of the con-
ditioning on y! in both terms reflects the fact that f; is
costly while y, is already available to the controller and
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thus does not incur a communication cost. In the sequel, we
will formalize these arguments in Theorems 1 and 2. We
will also show in Theorem 2 a relation between the optimal
conditional directed information and Kalman filtering theory
with two independent measurements.

III. MAIN RESULTS

This section presents our main results. First, we provide a
simple structure for the optimal policy in Theorem 1. Then,
we present basic definitions of Kalman filtering theory to
formulate the directed information in such terms. We then
provide a semidefinite programming formulation of the opti-
mization problem and thereafter present the optimal system
design. Finally, Section III-D includes the formulation and
the solution of the infinite-horizon problem.

A. Optimal policy structure

The first result is the optimal structure of the observer
(encoder) and controller (decoder) policies.

Theorem 1 (Optimal policy structure): The optimal pol-
icy that achieves (6) has the following structure

f, = Dy x¢ +my,
w = K, Ex | f',y], ¥

where m; ~ AN(0, M;) and D, are optimization variables,
and K, is a constant (Eq. (16)). The proof appears in
Appendix ??.

The theorem simplifies significantly the maximization do-
main from the general policy in (4) to the set {(Dy, M;)}i>1.
The result reveals that f; has the role of reducing the commu-
nication resources by forming a linear Gaussian measurement
of the state, also termed a virtual sensor [13]. Note that in our
problem definition there are no assumptions on the structure
such as linear, Gaussian or memoryless mappings. The
control signal u, is the standard LQG certainty equivalence
controller. Thus, the separation between the control gain and
the estimation is preserved in our setting.

Theorem 1 recovers the optimal structure reported in [13]
for the case when y, is absent. The extension of [13] to
our setting is not straightforward, and involves a study of a
relaxed optimization problem where, at time ¢, the vector y?
is also available to the encoder. For this relaxed optimization
problem, we show that the optimal policy is of the form (8).
A by product of our analysis is the following claim

Lemma 1: The knowledge of the measurements y* at the

encoder does not reduce the optimal directed information
control problem (Eq. (6)).
Lemma 1 extends the result in [14, Th. 8] applicable to scalar
and time-invariant systems to the case of vector systems with
time-varying system characteristics. As remarked in [14],
the availability of side information at the encoder also does
not change the classical Wyner-Ziv Gaussian rate distortion
function, e.g., [20].

B. Kalman filter with two observers

As is evident from the optimal structure in Theorem 1, the
encoding function f; is a noisy observation of the system
state. Thus, the optimal system has a structure of standard
LQG setting with two observations with independent noises.
However, for the purpose of optimizing the communication
resources, f; has a cost, while y, is a natural occurrence in
our control scenario. In this section, we provide short prelim-
inaries on Kalman filtering and then present the conditional
directed information in terms of Kalman filtering.

By standard convention, we denote the error covariance
matrices with respect to both measurements y, and f; as
follows

Pt\t—l £ Cov(x; — E[x | ft_l» ytfl, utfl})

P,y £ Cov(x; — E[x | £yt ut)) 9)

Since y, and f; have different roles, we also define an
intermediate error covariance matrix corresponding to the
prediction error after observing y, only:

Pyp—q 2 Cov(x, —E[x, |71y, u'™1]).  (10)

The following technical lemma formalizes several rela-
tions between the error covariances.

Lemma 2 (Error covariances): Let Py|q be the covariance
matrix of Xg. Then, for fixed (D, M), the error covariance
matrices satisfy the recursions

(Pip—1) ™" = Pl +SNRY
Pt\t = (I - LtFDt)ft\tfl
Py = Atflpt—l\t—lAtTf1 + Wiy
Pt = (Pf,_,)"' +SNR},

t[t tjt—1

(1)

where L' = Py, D} (D; Py, Df + M;)~!, SNR; =
DI M;'D; and SNR} = CFV,'C,.
The identities are standard in Kalman filtering theory and
their proofs are omitted. In the following, we present an
alternative characterization of the conditional directed infor-
mation.

Theorem 2: Given a policy with the optimal structure (Th.
1), the conditional directed information can be written as

T
I(x" = £7]|y") = "logdet(I — L' Dy).
t=1
By Lemma 2, (I — LF D;) is the multiplicative term of the
error reduction when computing the error covariance matrix
Py, from ﬁt‘t_l by adding the encoding variable f;. There-
fore, Theorem 2 reveals that the conditional directed informa-
tion measures the reduction in error covatiance with respect
to f; only. Despite the simple representation of the objective
function in (12), it is not clear whether it can be formulated
as a convex problem as its inverse includes a product of two
optimization variables (I — L{'D;)~* = I+ Py,_; SNR;.
Therefore, we proceed to show our main result on the convex
formulation of the optimization problem in (6).

(12)
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Theorem 3 (SDP formulation): For a fixed Py, the opti-
mization problem (6) can be formulated as

T-1

inf A— % Z log det(I + (A Py, AT + W) SNR))
t=1

{Pye, 1L YT,

1 Z
— 5210gdetﬂt

t=1
T
S.t. Tr(<I>1P1|O) + Z Tr (thtlt) + TI‘(StWt) S F,
t=1
Py — 11, Pt|tAtT
=0,1I; -0, t<T
{ APy AtPt|tAtT + Wy - i
Prip=1r =0,
Qy =0, t=1,...,T (Eq. (13) below), (14)
where the constant matrices &1 = Sy — Qo and ©; are

obtained from (16), and the constant A is given by

T-1
1 . vo 1
A =~ logdet(P; +SNR}) + 5 ; log det W;. (15)

The optimization problem in Theorem 3 is a convex opti-
mization problem with respect to the set of (P, Il;), and
can be solved using standard solvers [21], [22]. With some
abuse of terminology, we refer to the formulation in Theorem
3 as an SDP but, indeed, it is the log-barrier function of
the standard SDP formulation. The auxiliary optimization
variable II; is introduced to convert the objective function
into a standard form. In the special case C; = SNR} =
0, Theorem 3 recovers the formulation in [13, Th. 1].
Note that in this case the constraints on €2; boil down to
(Ai—1Py_qpp—1 AL +Wi_1)—Pyy = 0 and Pyjg = Pyjq and
the objective terms log det(1+(A, Py, Af +W;) SNRY) = 0.
The proof of Theorem 3 appears in Appendix ??.

C. System design

In this section, we construct a three-steps realizable policy
using the results from the previous section.

1) The controller gain: The controller is independent of
the observations characteristics. Using the backward Riccati
recursion, we compute the control gains

g - AL S Ar — ATSi Bl K+ @ if t < T,
T er i =T
K; = (BfS;11B: + R,) " 'Bl'S; 1 Ay

2) Covariance matrices: Given O, for t =1,...,T, one
obtains the set { P;j;}+>1 by solving the convex optimization
problem in Theorem 3. By Lemma 2, one computes

SNR{ = P! — (AP 1 AT + W)~ — SNR} .

Using the SVD decomposition, SNRf is written as
DM ' D,.
3) Kalman filter: Define the Kalman gain:

Ly = Py H (Hi Py H + Ny) ™,

where H; £ [gt] JN, & [‘gf ]&]
¢ t

The Kalman filter update is done in two steps:

Ty = Xy + Brwy

A7)

S —CyXy)—
Ty =Xye—1 + Ly {yt Ll 1} )

i *Dtxt\t—l

where the control signal is u; = —K;X;.

D. The infinite-horizon setting

For the infinite-horizon problem, we study time-invariant
systems, i.e., Ay =A, Bi=B, W, =W, Cy,=C,V,=V.
It is also assumed that the pair (A, B) is stabilizable.

The optimization problem is defined as:

1
inf limsup — (x — 7| yT)
T—ro00 T

1
s.t. limsup —J(x7 1, u’) <T. (18)

T—o0

The structure of the solution is similar to the one in Theorem
3.

1) Controller gain: Let S be the unique stabilizing solu-
tion for the Riccati equation
ATSA -5 - ATSB(BTSB + R)"'BTSA+Q =0.

The controller gain is computed as

K =(B*SB+R)"'B'SA
0 =K"B"SB + R)K.

O: = K; (B St41B: + R K. (16)
Q2 Pyjo — Py Py oCT
CiPijy  CiPoCF + W
Qt L |:(At—1pt1t1AtT_1 + Wt—l) — Pt\t
Ot(At—IPtfl\tflAtT_l + Wt—l)

(A1 Py AL + Wiy)CF
Ci(Ar 1Py AL, + Wi)CF 4+ V,
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2) The optimization problem: Given © and S, the follow-
ing SDP is solved.

1 1
inf = logdet W —  logdet(l + SNRY (APAT +W))

— % log det II
st.  Tr(©P)+Tr (WS) <T,
P11 PAT
{ AP ApAT 4w | =0 =0
APAT +W - P (APAT + W)C™T <0
C(APAT + W) C(APAT +W)CT+V| ="
(19)

3) Time-invariant policy: From the optimization problem,
the optimal P is used to compute

SNRY = P71 — (APAT + W)~! — SNRY, (20)
and by the singular value decomposition, we obtain SNRY =
DYM~1D.

Theorem 4: If (A, B) is stabilizable and (A4, ©) is de-
tectable, the optimal value of the infinite-horizon optimiza-
tion problem (18) is equal to the optimal value of the SDP
in (19). Moreover, the time-invariant policy in (20) achieves
the optimal value.

The proof of Theorem 4 follows by studying the limiting
optimization problem for the finite-horizon in Theorem 3.
The proof is omitted from this paper.

IV. NUMERICAL EXAMPLES

A. Side information reduces the minimal directed informa-
tion

In this section, we present a numerical example to show
that side information reduces the minimal directed informa-
tion. We set the matrices A, B, W, Q, R to be the same as
those in [13, Sec. V]. In addition, we choose C' = I and
V = LI with p > 0, then SNR" = pI. For each p = 0.1,
p = 1 and p = 10, we solve (19) for each LQG cost
constraint I in the range T € [30, 90] and we plot the optimal
value of (19) as a function of I" in Fig. 2. The case without
side information studied in [13] can be equivalently viewed
as the case with p = 0. As one can see, for any fixed I', the
minimal conditional directed information decreases as p (the
signal-to-noise ratio of the side information) increases.

As expected, for any fixed I', the minimal conditional
directed information decreases as p (the signal-to-noise ratio
of the side information) increases. The red vertical line
corresponds to the minimal cost that can be attained with
clean observation available at the controller. In the high-
cost regime, one can note that the curve p = 0 does not
converge to zero since the system is not stabilizable without
the communication resources. On the other hand, even for
low SNR values, the minimal directed information converges
to zero since the system is stabilizable by having y, alone.
It is also interesting to note the information gain due to the
presence of y, varies with cost.

T : :
= p = 0 [Tanaka et al.]

- = p=01

........ p=1

5 ————p =10

—»— minimum LQG cost: Tr(WS)

(Conditional) Directed information
w
T

30 40 50 60 70 80 90
LQG cost constraint

Fig. 2. The trade-offs between the conditional directed information and
the LQG cost when the SNR of the side information varies.

B. Scalar systems

For scalar systems, the solution to (19) without the noisy
measurement at the controller (C'=V = 0) is

we

T—Wws @b

1
—log (A2 +

: ) VT >WS§,

where S is the unique solution to the Riccati equation and
can be solved in closed-form as

~ (A2+B?2—-1)+/(A2+ B2 —1)2 +4B2

. )+ VI P

In the following result, we provide a closed-form for the
scalar problem.

Corollary 1: When A, B,W,C,V are scalars, Q = R =
1 and |A| > 1, the optimal value of the optimization (19) is

1 , We
2o (A +r-w§)

o
;log<1+SNRY(W+A(F@WS))>, (23)

when WS < T' < WS 4+ ©P*; and is 0 when I' >
WS + ©P*, where P* is the unique positive solution to
the quadratic equation

A?2SNRY P2+ (1 - A2+ SNRY W)P - W =0 (24

and S is given in (22) and © = (ﬂ%‘z);.

By comparing (21) and (23), the information gain due to the
presence of the noisy measurements at the controller is the
non-negative expression

O
%log <1+SNRY (W+A(F®WS))>.

Note that the gain is an increasing function of SNRY.
Also, the gain is upper bounded by (21) which is achieved
with equality when I' = WS + ©P* since P* satisfies
1+ SNRY (W + A2P*) = A% + I (see Eq. (24)).
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V. CONCLUSIONS

In this paper, we formulated and solved an optimization
problem for the LQG setting with an additional communi-
cation link. The main result is that the optimization problem
minimizing the conditional directed information has a stan-
dard convex form.

An interesting research direction is to relate the
information-theoretic framework of the directed information
to the operational problem similar to [9], [16]. Specifically,
while the directed information serves as a lower bound for
the operational problem with variable-length coding, we are
interested in constructing a coding scheme that will achieve
the rate of the directed information up to some additive term
that represents the loss due to the causal operations.
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