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Abstract— We study a linear quadratic Gaussian (LQG)
control problem, in which a noisy observation of the system
state is available to the controller. To lower the achievable
LQG cost, we introduce an extra communication link from the
system to the controller. We investigate the trade-off between
the improved LQG cost and the consumed communication
(information) resources that are measured with the conditional
directed information. The objective is to minimize the directed
information over all encoding-decoding policies subject to a
constraint on the LQG cost. The main result is a semidefinite
programming formulation for the optimization problem in the
finite-horizion scenario where the dynamical system may have
time-varying parameters. This result extends the seminal work
by Tanaka et al., where the direct noisy measurement of the
system state at the controller is assumed to be absent. As part
of our derivation to show the optimality of an encoder that
transmits a Gaussian measurement of the state, we show that
the presence of the noisy measurements at the encoder can
not reduce the minimal directed information, extending a prior
result of Kostina and Hassibi to the vector case. Finally, we
show that the results in the finite-horizon case can be extended
to the infinite-horizon scenario when assuming a time-invariant
system, but possibly a time-varying policy. We show that the
solution for this optimization problem can be realized by a time-
invariant policy whose parameters can be computed explicitly
from a finite-dimensional semidefinite program.

I. INTRODUCTION

Networked control systems share an inherent tension be-

tween the control performance and the resources that are

allocated to communicate by different nodes of the system.

Despite the great advances on many interesting questions on

this theme, for instance, data rate theorems for stabilizability

of dynamical systems [1]–[7], there are still fundamental

questions that remain open. One such question is the benefit

of communication resources to the control cost [8]–[12].

In this paper, we study this fundamental question on a

simple topology consisting of the classical Linear Quadratic

Gaussian (LQG) setting with a single communication link.

The networked control setting investigated in this paper

(Fig. 1) aims to reduce the control cost below some value at

the expense of communication resources. The communica-

tion link introduced between an encoder and a decoder (co-

located with the controller) serves as an information pipeline

to the controller that also has an access to the noisy mea-

surements of the system state. Based on its (full) observation

of the the state, the encoder transmits information to reduce

the LQG cost below some desired target cost. One may also
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Fig. 1. The LQG setting with noisy measurement y
t
. The control

performance (the quadratic cost) is improved using the dashed line which
denotes a communication link from a fully observer to the controller.

view this setting as the standard rate-constrained LQG setting

[13], but with an additional side information that is available

to the controller (the measurement yt) [14]. The objective

of this paper is to characterize the minimal communication

resources subject to a constraint on the control performance.

The communication (information) resources are measured

with the conditional directed information. The directed infor-

mation is suitable for scenarios where the operations of the

involved units are sequential, e.g., channels with feedback in

communication [15] and the causal rate distortion function

in the context of control problems [8], [11], [14]. Also,

both the encoder and the controller are sequential mappings

and the directed information serves as a lower bound to

the operational variable-length (prefix) coding problem [8],

[16] (See also Section V). The control performance in our

setting is measured as the quadratic cost function on the state

and control signals. The optimization problem is formulated

for two scenarios corresponding to the finite-horizon and

infinite-horizon regimes.

For the finite-horizon problem, the general case of time-

varying dynamical systems is investigated and solved by

formulating the optimization problem as a convex optimiza-

tion problem. The optimization problem has a semidefinite

programming (SDP) form (more precisely, max log-det

form) and can be implemented using standard solvers even

for large horizons. We also show that the solution to the

optimization problem can be realized by three design steps:

determining the controller gains and finding the solution for

the convex optimization problem that can be done offline,

and a standard Kalman filter based on the observations. For

the infinite-horizon problem where the dynamical system

matrices are time-invariant, we show that the optimization

problem can be also formulated as an SDP with the op-
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timization variables being only two positive semidefinite

matrices of finite dimensions. Additionally, we show that the

optimal encoding policy is a simple, time-invariant Gaussian

measurement of the state.

Our results generalize the work by Tanaka et al. [13],

which introduced the SDP approach for solving control-

communication problems [17]. Specifically, we investigate

the setting in Fig. 1 with two kind of input signals received

by the controller, while [13] assumed that the noisy mea-

surement of the system state is absent (yt = 0 in Fig.

1). Thus, the controller in our setting combines both the

communication link information and the noisy measurement

of the state. Our results also extend the explicit solution

in [14] for the scalar case of Fig. 1 in the infinite-horizon

regime.

Two key changes in the SDP formulation compared to

[13] are the objective function that includes a new term due

to the study of conditional directed information rather than

the directed information in [13], and a new linear matrix

inequality (LMI) constraint which represents the reduction

in the error covariance due to the quality of the noisy

measurements. Additionally, the structure of the optimal

policy cannot be shown directly and therefore, we study a

relaxed optimization problem where the noisy measurements

(that are available to the controller) are also available to the

encoder. We then show that even in this relaxed scenario,

the optimal encoder signaling is a memoryless Gaussian

measurement of the state. Thus, the knowledge of the noisy

measurements at the encoder can not further reduce the

minimal communication resources.

The remainder of this paper is organized as follows.

Section II introduces the setting and problem definition.

Section III presents our main contributions. In Section IV,

we present our numerical examples. Proofs are omitted from

this paper due to space constraints.

II. THE SETTING AND PROBLEM DEFINITION

A linear dynamical system is given by

xt+1 = At xt +Bt ut +wt t ≥ 1,

where wt ∼ N (0,Wt) are mutually independent. The initial

state x1 is distributed according to P1|0 and is independent

of wt. A noisy measurement of the state is available to the

controller,

yt = Ct xt +vt,

with vt ∼ N (0, Vt). For a fixed time-horizon T , the LQG

quadratic cost is defined as

J(xT+1,uT ) =
T
∑

t=1

x∗
t+1 Qt xt+1 +u∗

t Rt ut

,

T
∑

t=1

E[‖xt+1‖
2
Qt

+ ‖ut‖
2
Rt
], (1)

with Qt � 0 and Rt ≻ 0.

The objective is to design a system such that the LQG

cost does not exceed a cost target denoted by Γ. Obviously,

if the measurements yt are sufficient to attain an LQG cost

below Γ, then the classical solution for the LQG problem is

satisfactory. However, our interest is in scenarios where the

optimal LQG cost exceeds Γ. To reduce the LQG cost below

Γ, we introduce a communication/information link between

an encoder that has access to the state xt and a decoder that

is co-located with the controller (See Fig. 1).

We use the causal conditioning notation to represent the

encoder as a set of random mappings

P (fT ||xT ,ut−1) ,
T
∏

t=1

P (f t | f
t−1 xt), (2)

where f t is the encoding variable. Similarly, the decoder

(controller) is a collection of random mappings:

P (uT || fT ,yT ) ,

T
∏

t=1

P (ut |u
t−1, f t,yt). (3)

From the construction, the encoder-decoder pair satisfies

at all times

P (ut, ft|f
t−1,ut−1,xt,yt)

= P (ut |u
t−1, f t,yt)P (ft|x

t, f t−1). (4)

The overall joint distribution can be summarized with:

P (xt,yt,ut, ft|x
t−1,yt−1, f t−1,ut−1)

= P (yt,xt |xt−1,ut−1)P (ut, ft|f
t−1,ut−1,xt, ,yt),

The conditional directed information [18], [19], between

the encoder and the controller conditioned on the noisy

measurements, is given by

I(xT → fT ||yT ) =
T
∑

t=1

I(xt; f t | f
t−1,yt), (5)

where I(X;Y |Z) is the mutual information between X and

Y conditioned on Z.

The objective of this paper is to solve the optimization

problem:

min I(xT → fT ||yT )

s.t. J(xT+1,uT ) ≤ Γ, (6)

where the minimum is over policies of the form (4).

When the measurement yt is absent, the optimiza-

tion problem in (6) simplifies to the directed information

I(xT → fT ) that was investigated in [13]. To see that the

conditional directed information is the correct information

measure, assume that the t-th element in the conditional

directed information satisfies:

I(xt; f t | f
t−1,yt) = I(xt; f t | f

t−1,yt). (7)

Then, the right hand side of (7) extracts the discrepancy

in the state uncertainty at the controller with and with-

out the encoding variable f t, i.e., I(xt; f t | f
t−1,yt) =

h(xt | f
t−1,yt) − h(xt | f

t,yt). The presence of the con-

ditioning on yt in both terms reflects the fact that f t is

costly while yt is already available to the controller and
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thus does not incur a communication cost. In the sequel, we

will formalize these arguments in Theorems 1 and 2. We

will also show in Theorem 2 a relation between the optimal

conditional directed information and Kalman filtering theory

with two independent measurements.

III. MAIN RESULTS

This section presents our main results. First, we provide a

simple structure for the optimal policy in Theorem 1. Then,

we present basic definitions of Kalman filtering theory to

formulate the directed information in such terms. We then

provide a semidefinite programming formulation of the opti-

mization problem and thereafter present the optimal system

design. Finally, Section III-D includes the formulation and

the solution of the infinite-horizon problem.

A. Optimal policy structure

The first result is the optimal structure of the observer

(encoder) and controller (decoder) policies.

Theorem 1 (Optimal policy structure): The optimal pol-

icy that achieves (6) has the following structure

f t = Dt xt +mt,

ut = −Kt E[xt | f
t,yt], (8)

where mt ∼ N (0,Mt) and Dt are optimization variables,

and Kt is a constant (Eq. (16)). The proof appears in

Appendix ??.

The theorem simplifies significantly the maximization do-

main from the general policy in (4) to the set {(Dt,Mt)}t≥1.

The result reveals that f t has the role of reducing the commu-

nication resources by forming a linear Gaussian measurement

of the state, also termed a virtual sensor [13]. Note that in our

problem definition there are no assumptions on the structure

such as linear, Gaussian or memoryless mappings. The

control signal ut is the standard LQG certainty equivalence

controller. Thus, the separation between the control gain and

the estimation is preserved in our setting.

Theorem 1 recovers the optimal structure reported in [13]

for the case when yt is absent. The extension of [13] to

our setting is not straightforward, and involves a study of a

relaxed optimization problem where, at time t, the vector yt

is also available to the encoder. For this relaxed optimization

problem, we show that the optimal policy is of the form (8).

A by product of our analysis is the following claim

Lemma 1: The knowledge of the measurements yt at the

encoder does not reduce the optimal directed information

control problem (Eq. (6)).

Lemma 1 extends the result in [14, Th. 8] applicable to scalar

and time-invariant systems to the case of vector systems with

time-varying system characteristics. As remarked in [14],

the availability of side information at the encoder also does

not change the classical Wyner-Ziv Gaussian rate distortion

function, e.g., [20].

B. Kalman filter with two observers

As is evident from the optimal structure in Theorem 1, the

encoding function f t is a noisy observation of the system

state. Thus, the optimal system has a structure of standard

LQG setting with two observations with independent noises.

However, for the purpose of optimizing the communication

resources, f t has a cost, while yt is a natural occurrence in

our control scenario. In this section, we provide short prelim-

inaries on Kalman filtering and then present the conditional

directed information in terms of Kalman filtering.

By standard convention, we denote the error covariance

matrices with respect to both measurements yt and f t as

follows

Pt|t−1 , Cov(xt −E[xt | f
t−1,yt−1,ut−1])

Pt|t , Cov(xt −E[xt | f
t,yt,ut−1]) (9)

Since yt and f t have different roles, we also define an

intermediate error covariance matrix corresponding to the

prediction error after observing yt only:

P t|t−1 , Cov(xt −E[xt | f
t−1,yt,ut−1]). (10)

The following technical lemma formalizes several rela-

tions between the error covariances.

Lemma 2 (Error covariances): Let P1|0 be the covariance

matrix of X0. Then, for fixed (Dt,Mt), the error covariance

matrices satisfy the recursions

(P t|t−1)
−1 = P−1

t|t−1 + SNRY
t

Pt|t = (I − LF
t Dt)P t|t−1

Pt|t−1 = At−1Pt−1|t−1A
T
t−1 +Wt−1

P−1
t|t = (P+

t|t−1)
−1 + SNRF

t , (11)

where LF
t = P t|t−1D

T
t (DtP t|t−1D

T
t + Mt)

−1, SNRF
t =

DT
t M

−1
t Dt and SNRY

t = CT
t V

−1
t Ct.

The identities are standard in Kalman filtering theory and

their proofs are omitted. In the following, we present an

alternative characterization of the conditional directed infor-

mation.

Theorem 2: Given a policy with the optimal structure (Th.

1), the conditional directed information can be written as

I(xT → fT ||yT ) =

T
∑

t=1

log det(I − LF
t Dt). (12)

By Lemma 2, (I − LF
t Dt) is the multiplicative term of the

error reduction when computing the error covariance matrix

Pt|t from P t|t−1 by adding the encoding variable f t. There-

fore, Theorem 2 reveals that the conditional directed informa-

tion measures the reduction in error covatiance with respect

to f t only. Despite the simple representation of the objective

function in (12), it is not clear whether it can be formulated

as a convex problem as its inverse includes a product of two

optimization variables (I − LF
t Dt)

−1 = I + P t|t−1 SNRF
t .

Therefore, we proceed to show our main result on the convex

formulation of the optimization problem in (6).
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Theorem 3 (SDP formulation): For a fixed P1|0, the opti-

mization problem (6) can be formulated as

inf
{Pt|t,Πt}T

t=1

Λ−
1

2

T−1
∑

t=1

log det(I + (AtPt|tA
T
t +Wt)SNRY

t )

−
1

2

T
∑

t=1

log detΠt

s.t. Tr(Φ1P1|0) +

T
∑

t=1

Tr
(

ΘtPt|t

)

+Tr(StWt) ≤ Γ,

[

Pt|t −Πt Pt|tA
T
t

AtPt|t AtPt|tA
T
t +Wt

]

� 0,Πt ≻ 0, t < T

PT |T = ΠT � 0,

Ωt � 0, t = 1, . . . , T (Eq. (13) below), (14)

where the constant matrices Φ1 = S0 − Q0 and Θt are

obtained from (16), and the constant Λ is given by

Λ = −
1

2
log det(P−1

1|0 + SNRY
1 ) +

1

2

T−1
∑

t=1

log detWt. (15)

The optimization problem in Theorem 3 is a convex opti-

mization problem with respect to the set of (Pt|t,Πt), and

can be solved using standard solvers [21], [22]. With some

abuse of terminology, we refer to the formulation in Theorem

3 as an SDP but, indeed, it is the log-barrier function of

the standard SDP formulation. The auxiliary optimization

variable Πt is introduced to convert the objective function

into a standard form. In the special case Ct = SNRY
t =

0, Theorem 3 recovers the formulation in [13, Th. 1].

Note that in this case the constraints on Ωt boil down to

(At−1Pt−1|t−1A
T
t−1+Wt−1)−Pt|t � 0 and P1|0 � P1|1 and

the objective terms log det(I+(AtPt|tA
T
t +Wt)SNRY

t ) = 0.

The proof of Theorem 3 appears in Appendix ??.

C. System design

In this section, we construct a three-steps realizable policy

using the results from the previous section.

1) The controller gain: The controller is independent of

the observations characteristics. Using the backward Riccati

recursion, we compute the control gains

St =

{

AT
t St+1At −AT

t St+1BtKt +Qt if t < T,

QT if t = T.

Kt = (BT
t St+1Bt +Rt)

−1BT
t St+1At

Θt = KT
t (B

T
t St+1Bt +Rt)Kt. (16)

2) Covariance matrices: Given Θt for t = 1, . . . , T , one

obtains the set {Pt|t}t≥1 by solving the convex optimization

problem in Theorem 3. By Lemma 2, one computes

SNRF
t = P−1

t|t − (AtPt|t−1A
T
t +Wt)

−1 − SNRY
t .

Using the SVD decomposition, SNRF
t is written as

DT
t M

−1
t Dt.

3) Kalman filter: Define the Kalman gain:

Lt = Pt|t−1H
T
t (HtPt|tH

T
t +Nt)

−1,

where Ht ,

[

Ct

Dt

]

, Nt ,

[

Vt 0
0 Mt

]

.

The Kalman filter update is done in two steps:

x̂t+1|t = Atx̂t +Bt ut

x̂t = x̂t|t−1 + Lt

[

yt −Ctx̂t|t−1

f t −Dtx̂t|t−1

]

, (17)

where the control signal is ut = −Ktx̂t.

D. The infinite-horizon setting

For the infinite-horizon problem, we study time-invariant

systems, i.e., At = A, Bt = B, Wt = W , Ct = C, Vt = V .

It is also assumed that the pair (A,B) is stabilizable.

The optimization problem is defined as:

inf lim sup
T→∞

1

T
(xT → fT ||yT )

s.t. lim sup
T→∞

1

T
J(xT+1,uT ) ≤ Γ. (18)

The structure of the solution is similar to the one in Theorem

3.

1) Controller gain: Let S̄ be the unique stabilizing solu-

tion for the Riccati equation

ATSA− S −ATSB(BTSB +R)−1BTSA+Q = 0.

The controller gain is computed as

K = (BTS̄B +R)−1BTS̄A

Θ = KT(BTS̄B +R)K.

Ω1 ,

[

P1|0 − P1|1 P1|0C
T
1

C1P1|0 C1P1|0C
T
1 + V1

]

Ωt ,

[

(At−1Pt−1|t−1A
T
t−1 +Wt−1)− Pt|t (At−1Pt−1|t−1A

T
t−1 +Wt−1)C

T
t

Ct(At−1Pt−1|t−1A
T
t−1 +Wt−1) Ct(At−1Pt−1|t−1A

T
t−1 +Wt−1)C

T
t + Vt

]

for t = 2, . . . , T. (13)
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2) The optimization problem: Given Θ and S̄, the follow-

ing SDP is solved.

inf
P,Π

1

2
log detW −

1

2
log det(I + SNRY (APAT +W ))

−
1

2
log detΠ

s.t. Tr (ΘP ) + Tr
(

WS̄
)

≤ Γ,
[

P −Π PAT

AP APAT +W

]

� 0, Π ≻ 0.

[

APAT +W − P (APAT +W )CT

C(APAT +W ) C(APAT +W )CT + V

]

� 0.

(19)

3) Time-invariant policy: From the optimization problem,

the optimal P is used to compute

SNRF = P−1 − (APAT +W )−1 − SNRY , (20)

and by the singular value decomposition, we obtain SNRF =
DTM−1D.

Theorem 4: If (A,B) is stabilizable and (A,Θ) is de-

tectable, the optimal value of the infinite-horizon optimiza-

tion problem (18) is equal to the optimal value of the SDP

in (19). Moreover, the time-invariant policy in (20) achieves

the optimal value.

The proof of Theorem 4 follows by studying the limiting

optimization problem for the finite-horizon in Theorem 3.

The proof is omitted from this paper.

IV. NUMERICAL EXAMPLES

A. Side information reduces the minimal directed informa-

tion

In this section, we present a numerical example to show

that side information reduces the minimal directed informa-

tion. We set the matrices A,B,W,Q,R to be the same as

those in [13, Sec. V]. In addition, we choose C = I and

V = 1
ρ
I with ρ > 0, then SNRY = ρI . For each ρ = 0.1,

ρ = 1 and ρ = 10, we solve (19) for each LQG cost

constraint Γ in the range Γ ∈ [30, 90] and we plot the optimal

value of (19) as a function of Γ in Fig. 2. The case without

side information studied in [13] can be equivalently viewed

as the case with ρ = 0. As one can see, for any fixed Γ, the

minimal conditional directed information decreases as ρ (the

signal-to-noise ratio of the side information) increases.

As expected, for any fixed Γ, the minimal conditional

directed information decreases as ρ (the signal-to-noise ratio

of the side information) increases. The red vertical line

corresponds to the minimal cost that can be attained with

clean observation available at the controller. In the high-

cost regime, one can note that the curve ρ = 0 does not

converge to zero since the system is not stabilizable without

the communication resources. On the other hand, even for

low SNR values, the minimal directed information converges

to zero since the system is stabilizable by having yt alone.

It is also interesting to note the information gain due to the

presence of yt varies with cost.
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LQG cost constraint
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Fig. 2. The trade-offs between the conditional directed information and
the LQG cost when the SNR of the side information varies.

B. Scalar systems

For scalar systems, the solution to (19) without the noisy

measurement at the controller (C = V = 0) is

1

2
log

(

A2 +
WΘ

Γ−WS̄

)

, ∀ Γ > WS̄, (21)

where S̄ is the unique solution to the Riccati equation and

can be solved in closed-form as

S̄ =
(A2 +B2 − 1) +

√

(A2 +B2 − 1)2 + 4B2

2B2
. (22)

In the following result, we provide a closed-form for the

scalar problem.

Corollary 1: When A,B,W,C, V are scalars, Q = R =
1 and |A| > 1, the optimal value of the optimization (19) is

1

2
log

(

A2 +
WΘ

Γ−WS̄

)

−
1

2
log

(

1 + SNRY

(

W +
A2(Γ−WS̄)

Θ

))

, (23)

when WS̄ < Γ ≤ WS̄ + ΘP ⋆; and is 0 when Γ >

WS̄ + ΘP ⋆, where P ⋆ is the unique positive solution to

the quadratic equation

A2 SNRY P 2 + (1−A2 + SNRY W )P −W = 0 (24)

and S̄ is given in (22) and Θ = (ABS̄)2

1+B2S̄
.

By comparing (21) and (23), the information gain due to the

presence of the noisy measurements at the controller is the

non-negative expression

1

2
log

(

1 + SNRY

(

W +
A2(Γ−WS̄)

Θ

))

.

Note that the gain is an increasing function of SNRY .

Also, the gain is upper bounded by (21) which is achieved

with equality when Γ = WS̄ + ΘP ⋆ since P ⋆ satisfies

1 + SNRY (W +A2P ⋆) = A2 + W
P⋆ (see Eq. (24)).
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V. CONCLUSIONS

In this paper, we formulated and solved an optimization

problem for the LQG setting with an additional communi-

cation link. The main result is that the optimization problem

minimizing the conditional directed information has a stan-

dard convex form.
An interesting research direction is to relate the

information-theoretic framework of the directed information

to the operational problem similar to [9], [16]. Specifically,

while the directed information serves as a lower bound for

the operational problem with variable-length coding, we are

interested in constructing a coding scheme that will achieve

the rate of the directed information up to some additive term

that represents the loss due to the causal operations.
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