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Abstract. This paper contributes to study the influence of various NMF algo-
rithms on the classification accuracy of each classifier as well as to compare the
classifiers among themselves. We focus on a fast nonnegative matrix factoriza-
tion (NMF) algorithm based on discrete-time projection neural network
(DTPNN). The NMF algorithm is combined with three classifiers in order to find
out the influence of dimensionality reduction performed by the NMF algorithm
on the accuracy rate of the classifiers. The convergent objective function values
in terms of two popular objective functions, Frobenius norm and Kullback-
Leibler (K-L) divergence for different NMF based algorithms on a wide range of
data sets are demonstrated. The CPU running time in terms of these objective
functions on different combination of NMF algorithms and data sets are also
shown. Moreover, the convergent behaviors of different NMF methods are illus-
trated. In order to test its effectiveness on classification accuracy, a performance
study of three well-known classifiers is carried out and the influence of the NMF
algorithm on the accuracy is evaluated. Furthermore, the confusion matrix mod-
ule has been incorporated into the algorithms to provide additional classification
accuracy comparison.

Keywords: Nonnegative Matrix Factorization, Discrete-time Projection Neural
Network, Dimensional Reduction, Feature Selection, Classification.

1 Introduction

Modern technologies have produced an explosion of massive data. In 2020 an esti-
mated 40 trillion gigabytes of data will be generated, imitated, and consumed (Gantz et
al. 2012). The rapid growth of complex and heterogeneous data has posed great chal-
lenges to data processing and management. Established data processing technologies
are becoming inadequate given the growth of data. Advanced machine learning tech-
nologies are urgently needed to overcome big data challenges. They can help to ascer-
tain valued insights for enhanced decision-making process in critical sectors such as
healthcare, economy, smart energy systems, and natural catastrophe prediction, etc.
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One of the biggest challenges that traditional classification methods face is that
when the dimensionality of data is high but with few data, a large number of class
prototypes existing in a dynamically growing dataset will lead to inaccurate classifica-
tion results. Therefore, selection of effective dimensionality reduction techniques is of
great importance. Feature selection is one of the powerful dimensionality reduction
techniques that selects an optimal subset based on various statistical tests for correlation
with the outcome variable without losing the best predictive accuracy. Although nu-
merous combinations of feature selection algorithms and classification algorithm have
been demonstrated, we explore an emerging and increasingly popular technique in an-
alyzing multivariate data - non-negative matrix factorization (NMF) technique, and
combine it with three state-of-the-art classifier, namely Gaussian process regression,
Support Vector Machine, and Enhanced K-Nearest Neighbor (ENN), in order to inves-
tigate the influence of NMF on the classification accuracy.

NMF is one of the low-rank approximate techniques and is popular for dimension-
ality reduction. However, dimensionality reduction techniques incorporate non-nega-
tive constraints and, thus, obtains part-based representation (Xiao et al. 2014). Never-
theless, since it was first introduced, NMF and its varied forms were primarily studied
in image retrieval and classification (Che and Wang 2018; Wang et al. 2017; Li et al.
2017). The effectiveness of NMF for classifying numerical features other than images
is still under investigation. In this paper, we explore this aspect to find out if NMF can
significantly improve the classification accuracy. Moreover, there is lack of study on
the performance of a combined NMF with classifiers to our best knowledge. Thus, we
extend research concerning integrate NMF with different classifiers with the goal to
determine appropriate ones. A discrete-time projection neural network will be used de-
velop the NMF algorithm due to the power of global convergence and fast convergence
rate (Xu et al. 2018).

As a global optimization approach, neurodynamic optimization approach was pro-
posed for robust pole assignment via both state and output feedback control systems by
minimizing the spectral condition number (Le et al. 2014). A novel neurodynamic op-
timization approach for the synthesis of linear state feedback control systems via robust
pole assignment based on four alternative robust measures was proposed (Le and Wang
2014). A two-time-scale neurodynamic approach to constrained minimax optimization
using two coupled neural networks was presented (Le and Wang 2017). Neurodynamic
systems for constrained biconvex optimization consists of two recurrent neural net-
works (RNNs) operating collaboratively at two timescales. By operating on two time-
scales RNNs can avoid instability and optimize initial states (Gorski et al. 2007).

Because of the superior computing capability of the neurodynamic optimization ap-
proach, this paper will present a neurodynamics-based NMF algorithm based on a dis-
crete time projection neural network. The rest of the paper is organized as follows. In
Section 2, non-negative matrix factorization (NMF) and different classifiers are dis-
cussed. In Section 3, continuous-time projection neural network and discrete-time pro-
jection neural network are introduced. In Section 4, the NMF algorithm based on the
discrete-time projection neural network (DTPNN) are described. In Section 5, the com-
parison of convergent objective function values and CPU running time on different



NMF based algorithms in terms of the two objective functions are presented. The com-
parison of different classifiers is also demonstrated. Finally, the paper is concluded in
Section 5.

2 Related Works

2.1 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF), is an emerging algorithm where a matrix
is factorized into two matrices, W and H, with all three matrices containing no negative
elements in them, as shown in Fig. 1. Part of the reason is because the non-negativity
will make the new matrices easier to investigate (Gong et al. 2018). Let matrix V be the
product of the matrices /# and H,

V=WXxH
By computing the column vectors of V as linear combinations of the column vectors in
W using coefficients supplied by columns of H, each column of V" can be computed as
follows:

v, =W X h;
where v; is the i-th column vector of the product matrix 7 and #; is the i-th column
vector of the matrix H.

The most attractive advantage by adopting NMF is dimensional reduction. When
factorizing matrices, the dimensions of the factor matrices will be significantly lower
than the original matrix. For example, if V' is an m x n matrix, W is an m X p matrix,
and H is a p x n matrix, then p can be significantly smaller than both m and n.
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Fig. 1. Representation of non-negative matrix factorization. The matrix V' is
factorized into two reduced matrices, W and H. When multiplied, they ap-
proximately reconstruct V.

2.2 Gaussian Process Regression (GPR)

One of the most well-known nonparametric kernel-based probabilistic models with in-
finite-dimensional generalization of multivariate normal distributions is Gaussian pro-
cess regression (GPR) models. Gaussian processes have wide applications in statistical



modeling, regression to multiple target values, and analyzing mapping in higher dimen-
sions. There are four varied models with different kernels. The rational quadratic GPR
kernel allows us to model data varying at multiple scales. Square exponential GPR is a
function space expression of a radial basis function regression model with infinitely
many basis functions. A fascinating feature is that inner products are replaced by the
basis functions with kernels. The advantage to this feature is handling large data sets in
higher dimensions will unlikely produce huge errors. Also, it handles discontinuities
well. The matern 5/2 kernel takes spectral densities of the stationary kernel and create
Fourier transforms of RBF kernel. Exponential GPR is identical to the Squared Expo-
nential GPR except that the Euclidean distance is not squared. Exponential GPR re-
places inner products of basis functions with kernels slower than the Squared Exponen-
tial GPR. It handles smooth functions well with minimal errors, but functions with dis-
continuities does not handle well. A comprehensive comparison of classification per-
formance among them is shown in terms of various model statistics. The classification
error rates of these four models are also compared to the extended nearest neighbor
(ENN), classic k-nearest Neighbor (KNN), naive Bayes, linear discriminant analysis
(LDA), and the classic multilayer perceptron (MLP) neural network (Zhang et al.
2018).

2.3  Support Vector Machine (SVM)

Support vector machine (SVM) analysis is identified as one of the most popular super-
vised learning models for classification and regression. SVM regression is well-known
for its nonparametric capability and has various kernel models. Linear SVM is a linearly
scalable routine meaning that it creates an SVM model in a CPU time. If data are not
linearly separable, Quadratic SVM is adopted to decide an interval between two classes.
It is implemented by mapping the original feature space to a higher dimensional feature
space where the training data is separable. The Gaussian kernel depends on the Euclid-
ean distance between two points and is based on the assumption that similar points are
close to each other in terms of Euclidean distance. The comparison of their performance
on the photo-thermal infrared imaging spectroscopy classification is demonstrated in
(Zhang and Leatham 2017).

2.4  Enhanced K-Nearest Neighbor (ENN)

Unlike the conventional k-nearest neighbor (KNN) method, the enhanced KNN method
is devised to find out the k nearest neighbors of each sample in the training dataset, as
well as the unknown test object (Tang and He 2017). A concept of validity rating is
used to measure how similar a pre-determined group of samples resemble their k near-
est neighbors (Zhang et al. 2017). Finally, a classifier will assign the unknown test ob-
ject to a class membership based on the validity ratings.

2.5 Frobenius Norm



Frobenius norm, sometimes called the Hilbert-Schmidt norm is one of the oldest and
simplest matrix norms (Chellabonia et al. 2003). Frobenius norm of a matrix is estab-
lished when only if the matrix A is a rank-one matrix or a zero matrix. The Frobenius
norm, sometimes also called the Euclidean norm (a term used for the vector L2-norm),
is matrix norm of an mxn matrix A defined as the square root of the sum of the absolute
squares of its elements,

Al =

2.6 Biconvex Optimization

Biconvex Optimization is where the objective function and constraint set can be bicon-
vex. Biconvex optimization frequently occurs in numerous scientific and engineering
applications such as spectrum sensing in cognitive radio networks, sparse 3-D recon-
struction of dynamic objects, wireless energy transfers of communication systems, clas-
sification, visual recognition, robust stability analysis of control systems, and among
other applications. Several algorithms are available for biconvex optimization. For ex-
ample, alternate convex search (ACS) is presented to optimize x and y in alternately
until attaining a partial optimum. The block coordinate descent (BCD) method is pro-
posed for multiconvex optimization. Also, biconvex optimization is a parallel solution
for neurodynamic optimization in the development of field-programmable gate arrays
(FPGAS).

3 Background

3.1 Continuous-Time Projection Neural network

We formulate an optimization problem as follows:

Min f(x) st. I<x<h (1)
This problem can be solved by the following one-layer continuous-time projection neu-
ral network solution [17].

€ =X+ g0~ () @

Where € > 0 is a time constant, Vf (x) denotes the gradient of f, and g(*) is a piece-
wise linear activation function.

L, & <l
g&) =3¢, L<&<sh
h;, &> h;

To customize to the NMF algorithms, [; will be 0 and h; will be . Accordingly, g(*)
has become a rectified linear unit (ReLU) activation function.
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3.2  Discrete-Time Projection Neural Network

Considering the needs for global convergence and fast convergence rate, a discrete-
time projection neural network has been used to develop the NMF algorithm. By ap-
plying Euler discretization to the continuous-time projection neural network in (2), it
will be transformed into a discrete-time projection neural network (DTPNN).

X1 = Xi + e[=xp + g (x5 = VF ()] “)
where A, is a step size.

4 Non-Negative Matrix Factorization Method Based on DTPNN

4.1 Dynamic Equation of Discrete-Time Projection Neural Network (DTPNN)

The dynamic equations of DTPNN for two factorization matrices are formulated based
on (4):

Wier1 = Wi + Ae[=wie + g(wie = VFwi))]

s = hye + Ae[=hie + g(hic = Vf ()] (5)
where A, is a step size.

The selection of step size A, is extremely important. The stability of the DTPNN will
be unstable if 4, equals or exceeds a certain bound (Xia and Wang 2000). The proce-
dure of the selection of step size A, can be found in Section 4.2.

4.2  Backtracking Line Search

In order to minimize f (x; + Axpy) in (5), we use the following procedure to find the
step size .

Algorithm 1. Backtracking Line Search Algorithm

Given Ay > 0, i.e. Ay = 1a € (0,2). f € (01), ie. f=1/2
Set /’{0 = Ainit
Repeat 1;.., = [, Until
f e + Aepie) < f () + adi V() pye (6)




4.3 Neurodynamics-Based Non-Negative Matrix Factorization Algorithm

A non-negative matrix factorization algorithm named PN*MF based on biconvex opti-
mization formulation is developed in (Che and Wang 2018).

Algorithm 2. The PN*MF algorithm

Initialization
Setk=0, a, 5, wy, ho, Ay, Aﬁ, error tolerance € and maximum iteration K.
while k <K and |f (Wy 41, hg11) — f(Wg, hy)| > € do
while (6) is not satisfied do
k= B
A1 = M
Wis1 = Wi + Aar [-Wie + G (Wi — Voo f (Wi, i) @)
end while
while (6) is not satisfied do
o= B
Aﬁ+1 = i
Rirr = by + Mg [—hie + 9w (i = Vi f Wi, 1)) (3
end while
k=k+1
end while
return wy, h;,

4.4 Combined NMF and Classification Algorithm

In this paper, we combine the NMF algorithm with different classifier to explore the
efficiency of the PN3*MF algorithm.

Algorithm 3. Combined PN*MF-Classification Algorithm

Input: V: training set
r: cluster numbers
S: p unknown samples without labels
Output: c: predicted class labels of the p unknown samples
Training Procedure:
1. Normalize the training set
2. Solve the NMF optimization problem:
[W,H] = PN3MF(V,7)
Test Procedure:
1. Normalize the test set
2. Solve the NMF optimization problem:
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min f(W, H) = = |V — WHII}

3. Predict the class label, c;
4. Returnc

4.5  On the Complexity of PN°MF

As an additional estimation to our work, in this sub-section, we use analysis of algo-
rithms to determine the time complexity of PN3*MF. In particular, we use Big O notation
as an indicator of the efficiency and scalability of our approach to big data.

First, we analyze time complexity for matrix multiplication using Big O. For NMF,
the running time depends on the size of the matrices. That is mxp and pxn; hence, we
can say the complexity is O(mnp). If we assume that V is quadratic, meaning that m is
equal to n, and we consider the worst case value of p, i.e., when p is also equal to n, the
complexity can be simplified to O(n?).

Second, we analyze complexity for a one-layer neural network. Since, in a dense or
fully-connected layer, each neuron is connected to the previous layer and the activation
function is computed for each neuron, the forward propagation running time of PN?
depends on the on the size of the matrices (mxp and pxn). And since the learning pro-
cedure need multiple calculations of Gradient descent, the backpropagation running
time of PN? depends not only on the size of the matrices (mxp and pxn) but also on the
average number of Gradient’s checks 7 needed to converge. Hence, the complexity of
the test or prediction procedure is O(mnp) and the complexity of the training or learning
procedure is O(mnpt). Assuming that V is quadratic, p is equal to » and that ¢ is equal
to n, we obtain a forward propagation complexity of O(n*) and a backpropagation com-
plexity of O(n*). We can further simplify the total polynomial time complexity of
PN?MF to O(n® + n*).

Finally, three classifiers are used in our experiments. The time complexity of GPR,
SVM, and ENN depends on the cardinality of the training set and the dimensionality of
each sample; well-known implementations of these classifiers result in a cubic com-
plexity O(n?). The table below presents the comparison on the complexity of the algo-
rithms evaluated.

Table 1. Time Complexity Comparison

Algorithm Time Complexity using Big O Notation

MUR O(nmp + mp* + np?)

ALS O(mp?* + mnp) + O(np* + mnp)
PG O(nmp) + k x O(tmp* + tnp?)
AS O(nmp + mp* + np*) + k x O(mp* + np?)

BBP O(nmp + mp* + np?) + k x O(mp* + np* + p*> +

nlogm + mlogon)
NeNMF O(nmp + mp* + np*) + k x O(mp* + np?)

PN*MF O(nmp) + O(tmnp)




5 Experimental Results

In this section, we intend to study various NMF algorithms on the classification accu-
racy of each classifier as well as to compare the classifiers among themselves. NMF
algorithms are used to decompose original data set /" according to the cluster number
r. MUR (Lee and Seung 2001), ALS (Berry et al. 2007), PG (Lin et al. 2007), AS (Kim
et al. 2007), BBP (Kim and Park 2007), NeNMF (Guan et al. 2007), and the proposed
PNMF algorithms are compared. Three classifiers are applied to both the original and
reduced dimensionality. Nine commonly used real-world datasets from UCI Machine
Learning Repository are chosen to conduct the experiments (Lichman 2013).

5.1 Initialization

In the experiments, the error tolerance is set to be 1077 and the maximum iterations is
initialized to 5.000. Let a € (0,2) and § € (0,1). The initial value of 2 for f; (Fro-
benius-norm) and f, (Kullback-Leibler divergence) is set to 2.0 and 1.0.

5.2 Convergent Objective Function Values

Two objective functions, Frobenius-norm and Kullback-Leibler (K-L) divergence are
adopted to evaluate the optimization performance of factorization. Table 2 shows con-
vergent values of Frobenius-norm function. Compared with six NMF algorithms, most
of the time PN3MF reaches the lowest objective function value.

Similarly, Table 4 records convergent values of the Kullback-Leibler (K-L) diver-
gence function. PN3MF gets the best results on most data sets.

5.3 CPU Running Time

Table 3 presents CPU running time of these algorithms when Frobenius-norm function
is used. Although MUR and ALS algorithms consume less time on the breast tissue
data set, they fails to achieve the minimum objective function value.

Table 5 provided the CPU running time of those algorithms when Kullback-Leibler
(K-L) divergence function is used, and show that PN>MF always consumes less CPU
running time than other NMF algorithms.

Table 2. Convergent objective function values of Frobenius-norm function

Verte- Breast Haber- Breast Move ILPD Tono- Vowel Seg-

bral Cancer man Tis- ment sphere men-

sue Libras tation
MUR 1.20 15.84 1.59 1.58 0.98 15.91 2.00 2.00 1.40
ALS 1.20 15.84 1.33 1.58 0.98 15.91 1.58 1.11 1.40
PG 1.20 15.84 1.59 1.00 0.99 15.91 1.11 1.11 1.40
AS 1.20 15.84 1.44 0.99 1.00 15.91 1.11 1.11 1.40
BBP 1.00 15.84 1.33 0.99 1.28 15.91 1.00 1.11 1.40

NeNMF 1.00 15.84 1.33 0.99 1.11 15.91 1.00 1.00 1.40
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PN*MF 1.00 15.84 1.33 0.99 1.11 16.00 1.00 1.00 1.40
Table 3. CPU running time in seconds when Frobenius-norm function is used

Verte- Breast Haber- Breast Move ILPD Tono- Vowel  Seg-

bral Cancer man Tissue ment sphere men-
Libras tation
MUR 0.200 0.0434 0.0250 0.0100 0.099 0.12 0.112 0.111 0.113
ALS 0.200 0.0400 0.0200 0.0100 0.099 0.12 0.112 0.111 0.113
PG 0.100  0.0233 0.0240 0.0150  0.099 0.11 0.112 0111 0.113
AS 0.110 0.0233 0.0200 0.0100 0.099 0.11 0.113 0.111 0.112
BBP 0.100 0.0200 0.0300 0.0340 0.099 0.11 0.112 0.111 0.112
NeNMF 0.100 0.0200 0.0200 0.0240 0.099 0.11 0.112 0.111 0.112
PN>MF 0.100 0.0200 0.0200 0.0100 0.099 0.11 0.112 0.111 0.112

Table 4. Convergent objective function values in terms of Kullback-Leibler (K-L) divergence

Verte- Breast Haber- Breast Move ILPD  Iono- Vowel  Seg-

bral Cancer man Tissue ment sphere menta-
Libras tion
MUR 1.00 1.11 1.40 1.20 0.50 0.32 1.00 1.00 1.12
ALS 1.00 1.11 1.11 1.20 0.50 0.32 1.00 0.50 0.60
PG 0.50 0.99 1.11 1.00 1.00 0.50 0.40 0.50 0.60
AS 0.50 0.99 1.33 1.00 1.00 0.50 0.40 0.50 0.60
BBP 0.50 0.99 0.20 1.00 1.00 1.00 1.11 1.00 0.60
NeNMF 0.50 0.99 0.20 0.20 0.50 0.32 1.11 1.00 1.00
PN°MF 0.50 0.99 0.20 0.20 0.50 0.32 1.11 1.00 1.00

Table 5. CPU running time in seconds when Kullback-Leibler (K-L) divergence is used

Verte- Breast Haber- Breast Move- ILPD Iono- Vowel Seg-

bral Cancer man Tissue ment sphere men-

Libras tation

MUR 0.030 0.0144 0.04 0.030 0.0009 0.02 0.012 0.01 0.03
ALS 0.030 0.0144 0.04 0.030 0.0009 0.02 0.012 0.01 0.03
PG 0.030 0.0155 0.04 0.030 0.0009 0.01 0.012 0.01 0.03
AS 0.030 0.0155 0.04 0.033 0.0009 0.01 0.013 0.01 0.02
BBP 0.020 0.0155 0.04 0.033 0.0009 0.01 0.012 0.01 0.02
NeNMF 0.020 0.0100 0.04 0.030 0.0009 0.01 0.012 0.01 0.02
PN*MF 0.020 0.0100 0.04 0.030 0.0009 0.01 0.012 0.01 0.02
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5.4  Convergent Objective Function Values vs. Iterations

We compare convergent behaviors values on the wine data set among five NMF algo-
rithms in terms of Frobenius-norm function. Fig. 2 shows that PN*MF algorithm takes
the minimum number of iterations to converge on wine data set. Fig. 3 demonstrates
the convergent behaviors of these algorithms on the Haberman data set in terms of Fro-
benius-norm function and shows that PN*MF takes the minimum number of iteration
to reach the convergence.
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Fig. 2. Convergent behaviors of five algorithms on wine data set using Frobenius-norm
function.
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Fig. 3. Convergent behaviors of five algorithms on Haberman data set using Frobenius-norm
function.

5.5 Classification Results

We further investigate the influence of various NMF algorithms on the classification
accuracy as well as the performance among GPR, SVM, and ENN classifiers. In Table
6, the experimental results demonstrate that PN3MF can improve the classification ac-
curacy on most data sets. In addition, the combination of PN°MF+SVM performs better
than other combinations.

Table 6. Classification accuracy comparison (percentage)

Breast Haberman Breast Tis- Movement Vowel Pen Digits
Cancer Survival sue Libras
GPR 96.35 97.45 95.63 98.64 97.45 100
SVM 96.45 97.45 95.45 98.45 97.35 100
ENN 96.35 97.45 95.35 98.45 97.45 97.84
PN3MF+GPR 98.75 100 100 98.56 98.65 100
PN*MF+SVM 100 98.75 98.75 100 100 100
PN*MF+ENN 98.75 98.75 98.75 98.75 98.65 100

5.6 Confusion Matrix

We then conducted the performance evaluation by calculating the evaluation metric,
including the accuracy. The evaluation metric is defined as follows (Zhang et al. 2018):

Accuracy: Accuracy = (TP+TN)/(TP+FP+FN+TN)

Where TP represents true positive (correctly identified), FP represents false positive
(incorrectly identified), TN represents true negative (correctly rejected), and FN repre-
sents false negative (incorrectly rejected).

The confusion matrix module has been incorporated into the algorithms in Table 5.
The classification accuracy of the confusion matrix utilizing different combinations is
shown in Table 7. The way this module works is that matrix is broken down into column
vectors in order to check for the prediction, number of false positives, and true positive
rates. Once the simulations are completed after multiple checks, the confusion matrix
true accuracy is revealed. The advantage of this module is that we get a true sense of
how much the PN3MF is improving performance. We also found that the combination
of PN3MF+SVM performs better than other combinations.

Table 7. Confusion matrix classification accuracy comparison (percentage)

Breast Haberman Breast Tis- Movement Vowel Pen Digits
Cancer Survival sue Libras
GPR 96.45 97.45 98.63 99.64 98.45 100
SVM 96.45 97.45 98.45 99.45 98.35 100

ENN 96.35 97.45 98.35 99.45 98.45 98.84
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PN’MF+GPR  98.75 100 100 100 98.65 100
PN*MF+SVM 100 100 98.75 100 100 100
PN3MF+ENN 100 100 98.75 98.75 100 100

6 Conclusions

In this paper, the NMF algorithm is combined with three classifiers in order to find out
the influence of dimensionality reduction performed by the NMF algorithm on the ac-
curacy rate of the classifiers, as well as to compare the classifiers among themselves.
The results show that the classification accuracy has been improved after applying the
NMF algorithm. In addition, the combination of NMF algorithm with the SVM classi-
fier performs better than other combinations. Furthermore, the confusion matrix has
verified the superior classification accuracy of our NMF algorithm. In future works we
plan to apply the neurodynamic approach to global and combinatorial optimization.
This will open another opportunity to apply the models to more feature selection and
picture restoration.
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