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Abstract

The injection of fluids loaded with a precise number of particles, polymers, and other

solutes is common in many areas of chemical engineering. By definition, injection of

these fluids is meant to occur over the shortest possible duration. This raises the

question that is answered in this note: At what concentration should a fluid be loaded

in order to inject that fluid fastest? A similar question has been addressed for flows of

Newtonian fluids in biophysical and physiological studies. We generalize that analy-

sis. We show for Newtonian fluids containing a single suspended component that

the optimal loading is determined from a common tangent construction for the vis-

cosity as a function of concentration. We extend this formulation to describe optimal

injection of a multicomponent Newtonian fluid. Additionally, we study the injection

problem for a simple, model non-Newtonian fluid carrying a single suspended compo-

nent. Finally, we discuss applications for optimally loaded injections.
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1 | INTRODUCTION

The problem of engineering a batch injection can be defined in the

following way: blend a prescribed dose of some solute(s) in some

quantity of solvent(s) such that the time to inject the solution is mini-

mal. There is an equivalent engineering problem for continuous injec-

tion: maximize the steady molar flow rate of some solute(s) in some

solvent(s) down a pipe at a fixed pressure drop by varying the solution

composition. The viscosity of solutions changes and generally

increases with the addition solutes to a solvent. Thus, increasing the

solute concentration will increase the solution viscosity and reduce

the volumetric flow rate for the injection. Depending on the relation-

ship between solute concentration and viscosity, this decrease in vol-

umetric flow rate can accompany either an increase or a reduction in

the molar flow rate of the solute. The solution composition that mini-

mizes the duration of injection resides at the transition between

increasing and decreasing molar solute flow rate. In principle, the

design choices for optimizing batch or continuous injection include

the geometry of the injection apparatus, the pressure drop applied to

drive the injection, and the composition of the solution. In this work,

we focus on how the composition of the solution should be chosen in

order to minimize the duration of the injection. This optimal

composition is determined with minimal assumptions about the flow

geometry, but allowing for some non-trivial forms for the rheological

response of the fluid. Some examples drawn from the literature and

recent research from our own group is used to demonstrate the utility

of the expressions we derive.

The term “injection” obviously connotes pharmaceutical injec-

tions: a batch process in which an active agent is dispersed in a sol-

vent and injected via a syringe into a living host. A problem of recent

interest in this area has been the injection of aqueous solutions of

globular proteins (monoclonal antibodies) at high protein

concentrations—for which the solutions become hundreds of times

more viscous than water.1 The problem of finding the optimal compo-

sition for a pharmaceutical injection is important and has a nontrivial

solution. Injections into living hosts can only occur humanely over a

finite duration, typically about 1 s. Similarly, most injections via

syringe are powered by forces exerted by human thumbs. With these

two practical constraints on the process, a pharmaceutical injection

can be engineered in two steps. First, one finds the composition of

medication that minimizes the injection duration and the volume of

that optimal solution that delivers the desired dose. Then, one sizes

the bore of the syringe needle so that this minimal injection duration

at the maximal possible applied force matches or falls below the
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limiting duration. To our knowledge, such a process is not employed

currently, but in this work, we provide methods for estimating the

optimal composition of such pharmaceutical formulations.

One example of continuous (or semi-batch) injection in which the

composition of the solution is a free design variable while the molar

flow rate of the solute(s) is maximized is the pumping of concrete.2

Concrete consists of a combination of aggregate, cement powder, and

water. The powder and aggregate are mixed in precise ratios to engi-

neer the strength of the final product. Some water is needed for the

hydration reaction that converts minerals in the cement powder into

the cement binder that bridges the aggregates. However, much more

water is used in this process in order make the mixture flow and too

much added water can lead to concrete with reduced compressive

strength. An engineering problem that is addressed partly through the

inclusion of additives that increase flowability of concrete, is deter-

mining the composition of the concrete mixture that delivers the pre-

scribed mass ratio of concrete powder to aggregate at the highest

possible rate. Such an optimal composition must reside within a region

of design space that still meets the final specifications for the poured

concrete. That is, there must be enough water to complete the hydra-

tion reaction and not so much that the concrete is weakened. While

we will not address optimization of injection with constraints of this

sort here, one could easily modify the present calculations to incorpo-

rate this feature.

Adaptations of natural systems to enable efficient transport of

solutes have been studied extensively in the physiology and bio-fluid

mechanics literature. A key question asked in these studies is whether

certain natural systems are operating optimally. For example, the

hematocrit of human blood is about 45%. Past work in physiology has

argued that this loading of blood with red blood cells maximizes the

flux of oxygen delivered to the body and have analyzed empirical

models of blood viscosity to justify these arguments.3-6 Likewise, the

idea that nature optimizes fluxes of a single solute in a Newtonian

fluid under different mechanical constraints has been explored in

other contexts including the delivery of nutrients in plants and the sip-

ping of nectar from flowers by hummingbirds.7-9 While there is some

overlap between the present work and these past efforts, we will

abstract away from the natural context to the artificially engineered

one. We will derive expressions for the optimal composition of single

and multicomponent Newtonian fluids that are independent of any

model for the dependence of viscosity on solution composition, and

even apply those same methods to analyze the optimal injection of

certain non-Newtonian fluids. This model-free approach will be lever-

aged to develop some graphical methods for approximating the opti-

mal composition of solutions from experimental data and to offer

some suggestions for how to prepare solutions optimized for injection

experimentally. As with these past efforts in physiology and bio-fluid

mechanics, we will apply some empirical models for the viscosity as a

function of composition in new contexts in order to suggest how to

improve several different artificially engineered systems.

The article is organized as follows. First, we derive expressions

for the optimal composition of two component fluids (one solvent and

one solute) which have Newtonian and non-Newtonian rheological

responses respectively. Then, we derive the optimal composition for

injection of a multicomponent fluid (many solvents and solutes) with

Newtonian rheology. Finally, we discuss these derivations in the con-

text of several practical examples from the literature and our own

research on nanocrystal synthesis.

2 | MODELING OPTIMAL INJECTION

2.1 | Two-component, Newtonian fluids

Consider a fluid consisting of two components: a solvent and a

suspended solute. On increasing the concentration of the solute in

the solvent, c, the viscosity of the fluid, η(c), is typically expected to

increase. Assume that the resistance to flow of this fluid during injec-

tion is laminar and dominated by a region length L and driven by a

pressure differential jΔPj. Then, to a good approximation the volumet-

ric flow rate of the fluid can be written as:

Q=
V
t
=
N
ct

=
jΔP j
L

A
η cð Þ

! "
, ð1Þ

where N is the amount of the suspended component in the fluid, V is

the volume of the fluid so that c = N/V, t is the duration of the injec-

tion, and A is a purely geometric factor. For steady, unidirectional,

laminar flow in a pipe with a circular cross section of radius R, the

Hagen-Poiseuille formula gives: A = πR4/8. For flow in a rectangular

channel with height H much smaller than its width W, A = H3W/12.

Similar geometric factors can easily be derived for Newtonian fluids in

the same flow conditions but transported by pipes with more compli-

cated cross sections. In the present work, the units of the dose N are

left arbitrary. If number of solutes is chosen for this unit, then c is the

number density. If mass is chosen for this unit, then c is the mass den-

sity. If volume is chosen for this unit, then c is the volume fraction.

For the present purposes, the distinction between these measures is

irrelevant. The injection problem is defined by the shortest duration

to deliver an amount of solute, N.

The relevant optimization problem for injection is a minimization

of the duration t with respect to the concentration c while holding the

amount of solute N fixed. From Equation (1) it is clear that:

dt
dc

=
N
Ac

L
jΔP j

! "
η0 cð Þ− η cð Þ

c

! "
, ð2Þ

with N held constant. A locally minimal duration, t*, occurs at an opti-

mal concentration, c* for which dt/dc = 0 and d2t/dc2 > 0, which

means the optimal concentration satisfies the equality:

η0 c#ð Þ= η c#ð Þ
c#

, ð3Þ

and the inequality: η'
0
(c*) > 0. This equality defining an optimal concen-

tration merely states that the shortest injection duration occurs at a
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concentration for which a line through the origin is tangent to the vis-

cosity on a plot of η(c) versus c (see Figure 1).

Among the set of any local minima, c#i ,t
#
i

# $% &
, Equation 1

requires that

t#i = η
0 c#i
# $ NL

jΔP jA
: ð4Þ

Therefore, the globally minimal duration occurs for the loading

having the smallest possible value in η0 c#i
# $% &

. Many two-component

fluids have a viscosity that is a convex function of c, so this set of min-

ima is likely to contain only a single element. The local minimum is the

global minimum. In practice, the viscosity may not be known as a

smooth function of concentration. Figure 1 suggests a graphical

method for estimating the optimal loading when only experimental

data for η(c) are available.

2.2 | Two component, non-Newtonian fluids

For non-Newtonian fluids, whose viscosity depends on the stress, τ,

during deformation, an application of this same approach incorporat-

ing some mild approximations can be used to define similar conditions

for optimality. For simplicity, assume that the flow dominating the

resistance during injection is steady, unidirectional and in a pipe with

a circular cross-section of radius R. Non-Newtonian fluids are suscep-

tible to instabilities that yield unsteady flow, but those circumstances

are still active areas of research and would make estimating the mini-

mal injection duration difficult. One should check that the optimal

injection conditions determined using these mild assumptions (steady

unidirectional flow) are not unstable via experiment. The steady shear

viscosity of a two-component fluid that exhibits non-Newtonian

behavior will depend on both the concentration of the suspended

component and the magnitude of the shear stress, so that it can be

expressed as η(c, jτj). Integrating the axial momentum balance along

the radial direction in the pipe yields:

τ rð Þ= η c,τ rð Þð Þ _γ rð Þ= 1
2
jΔP j
L

r, ð5Þ

where r is the distance from the pipe center to the pipe wall. When

imposing no-slip boundary conditions at the pipe wall, the volumetric

flow rate can be written as:

Q=2π
ðR

0
v rð Þrdr

((((

((((= π
ðR

0

d
dr

v rð Þr2
# $

− _γ rð Þr2dr
((((

((((=
π
2
jΔP j
L

ðR

0

r3

η c,τ rð Þð Þdr:

ð6Þ

The optimal loading is defined by the concentration and pressure

drop that minimizes the duration of the injection. Setting Q = N/(ct) as

in the previous examples, computing dt/dc and dt/djΔPj with fixed N,

and then setting these quantities equal to zero produces the neces-

sary conditions for optimal injection of a non-Newtonian fluid:

∂t
∂c

=0!
ðR

0

r3

η c#,τ rð Þð Þ2
∂

∂c
ηðc,τ rð ÞjÞ

((((
c= c#

−
η c#,τ rð Þð Þ

c#

! "
dr =0, ð7aÞ

∂t
∂ jΔP j

=0!
ðR

0

r3

η c#,τ rð Þð Þ2
1
2
∂

∂σ
η c#,σð Þ

((((
σ = jτ rð Þj

jΔP# j
L

r−ηðc#,τ rð ÞjÞ
 !

dr =0,

ð7bÞ

j τ rð Þ j = 1
2
jΔP# j

L
r, ð7cÞ

where the variable σ is simply being used as a dummy variable for the

radially dependent shear stress. From these expressions, one can see

right away that the optimally loaded two component Newtonian fluid

will have a concentration that satisfies η'(c*) = η(c*)/c*. For non-

Newtonian fluids, however, the terms in parentheses cannot be made

equal to zero in general (at all values of r simultaneously) and it is the

integrals themselves that must be zero for the optimal loading. With

sufficient knowledge of the rheology, a concentration for which this

equation is satisfied might be identified. However, such detailed

knowledge is difficult to acquire experimentally. With some further

approximations of the rheology, analytical conditions for optimal

injection can be derived.

A common rheology observed in non-Newtonian fluids is a steady

shear viscosity that changes from one value at low stress, η0(c) = η(c,

0) to another value at large stress η∞(c) = η(c, τ ! ∞).
10 Typically this

transition happens near a critical value of the stress τ̂ cð Þ>0. In gen-

eral, this transition happens over a range of stresses in this neighbor-

hood, but for the present purposes we will make a simplifying

assumption that the fluid has only a low and a high stress state char-

acterized by different fluid viscosities. For shear thinning fluids, η0(c)

> η∞(c),
11 while for shear thickening fluids η∞(c) > η0(c).

12 To analyze

this approximation model, the viscosity is represented as the piece-

wise constant function of the stress:

(a) (b)

F IGURE 1 Tangent line construction for finding optimal
composition. (a) For a two component, Newtonian fluid having an
increasing viscosity with respect to the concentration of a solute, the
injection of a fixed dose of solute with minimal duration occurs where
a line through the origin forms a tangent with the viscosity. (b) A
simple graphical method for determining the optimal loading for
injection involves determining where a line through the origin
intersects just once the piece-wise linear approximation of the
viscosity formed from connecting experimental data with lines [Color
figure can be viewed at wileyonlinelibrary.com]
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η c,τð Þ=
η0 cð Þ, j τ j < τ̂ cð Þ
η∞ cð Þ, j τ j ≥ τ̂ cð Þ

)
: ð8Þ

When this model is applied to the present flow problem, there

emerges a critical length scale R̂ c,ΔPj=Lð Þ=2τ̂ cð ÞL= jΔP j that divides

the pipe into two regions with different viscosity. For r < R̂ c,ΔPj=Lð Þ ,
the viscosity is η0(c). For R̂ c,ΔPj=Lð Þ< r <R , the viscosity is η∞(c). In

order to realize this outer annulus of fluid, the pipe radius must

exceed R̂ c,ΔPj=Lð Þ.
With this simple two state model of the viscosity, the volumetric

flow rate can be written as:

Q=
N
ct

=

π
32

jΔP j
L

R4

η0 cð Þ
+ R4− R̂ c,ΔPj=Lð Þ4
* + 1

η∞ cð Þ
−

1
η0 cð Þ

! "
H R− R̂ c,ΔPj=Lð Þ
* +( )

,

ð9Þ

where H(x) is the Heaviside step function. For this model, an optimal

injection is defined by the concentration and the pressure drop that

minimizes the injection time. The necessary conditions defining the

optimal concentration and pressure drop are the equations:

∂t
∂c

=0!
R4

η0 c*ð Þ2
η00 c*
# $

−
η0 c*ð Þ
c*

! "
+ R4− R̂ c* ,ΔP* j=L

# $4* +

×
1

η∞ c*ð Þ2
η0∞ c*

# $
−
η∞ c*ð Þ
c*

! "
−

1

η0 c*ð Þ2
η00 c*
# $

−
η0 c*ð Þ
c*

! ""

+
4R̂ c* ,ΔP* j=Lð Þ4

R4− R̂ c* ,ΔP*j=Lð Þ4
τ̂0 c*ð Þ
τ̂ c*ð Þ

! "
1

η∞ c*ð Þ
−

1
η0 c*ð Þ

! "#

H R− R̂ c*,ΔP*j=Lð Þ
* +

=0,

ð10aÞ

∂t
∂ jΔP j =0!

R4

η0 c*ð Þ + R4 + 3R̂ c* ,ΔP* j=L
# $4* +

1
η∞ c*ð Þ

−
1

η0 c*ð Þ

! "
H R− R̂ c*,ΔP*j=L

# $* +
=0:

ð10bÞ

For a shear thinning fluid, the solution to these equations is the

largest possible pressure drop so that R̂ c#,ΔP#j=Lð Þ$R , and the vis-

cosity across the channel is the lower of the two limiting viscosities:

η∞(c). Then the optimal loading is just given by the same expression as

for a Newtonian fluid with the high stress viscosity: η0∞ c#ð Þ= η∞ c#ð Þ=c# .
For a shear thickening suspension, the optimal conditions are more

complicated. A lower bound on the pressure drop is given by that for

which R= R̂ c#,ΔP#j=Lð Þ , which would make the viscosity across the

channel the low stress viscosity. If the thickening is strong enough

that adding any more pressure would reduce the flow rate, then

locally optimal concentration corresponding to this pressure is defined

by η00 c#ð Þ= η0 c#ð Þ=c# . It may be that the shear thickening is mild

enough that a higher pressure still reduces the flow rate. In which

case, the locally optimal concentation and pressure are given by the

solutions to Equations (10a) and (10b) with unity substituted for the

value of the Heaviside step function.

One peculiarity of this model formulation with a shear thickening

fluid arises because the pressure drop driving the flow is an

unbounded quantity. This means that the global minimum of injection

duration is given by a diverging pressure drop and a concentration sat-

isfying: η0∞ c#ð Þ= η∞ c#ð Þ=c# . That is, the fluid is driven as hard as possi-

ble and the viscosity across the pipe is the high stress viscosity. This is

the same solution as found for the shear thinning fluid. However, in

practice this global minimum may result in stresses that are not physi-

cally realizable. In that case, a fluid driven to flow with

R≈R̂ c#,ΔP#j=Lð Þ, and η0
0
(c*) = η0(c

*)/c* is likely to give the physically

reachable solution to the optimization problem.

2.3 | Multicomponent, Newtonian fluids

The analysis of a two component Newtonian fluid can be easily

extended to a multicomponent fluid, though some more care is

needed to define the optimization problem. Let the fluid be composed

of one set, N , of N different components which are to be delivered in

a precise quantity and another set, S , of S different components

whose quantity can be adjusted to minimize the injection time. In the

previous two component example, the set S included only the solvent

whose amount in the fluid was freely adjustable while the set N
included only the solute for which a prescribed quantity, N was to be

delivered. Now, let N�RN be the quantities of compounds in the set

N and S�RS be the quantity of compounds in the set S. The relevant

optimization problem minimizes the duration of injection by changing

S at a fixed dose N.

Assuming ideal mixing, the volume of the multicomponent fluid is:

V = V̂
T
SS+ V̂

T
NN , where V̂N�RN and V̂S�RS are vectors of the specific

volumes of the compounds in set N and S , respectively. The shear

viscosity η(cN, cS) can only depend explicitly on intensive quantities;

therefore, it is an explicit function of the concentration vectors

cN = N/V and cS = S/V. Following Equation (1), the duration of injec-

tion is:

t=
1
A

L
jΔP j

! "
V̂

T
NN+ V̂

T
SS

* +
η cS,cNð Þ, ð11Þ

and the duration is minimized when: dt/dSi = 0 for i = 1, …, S and the

Hessian of t with respect to S is positive definite. It follows that the

necessary condition defining the optimal amounts, S*, is:

rcSη c#N,c
#
S

# $
= − η c#N,c

#
S

# $
− c#N
# $TrcNηðc#N,c

#
SÞ− c#S

# $TrcSηðc#N,c
#
SÞ

h i
V̂S,

ð12Þ

where c#S = S
#= V̂

T
NN+ V̂

T
SS

#
* +

and c#N =N= V̂
T
NN+ V̂

T
SS

#
* +

. Such a condi-

tion may prove useful for formulating optimal fluids if a smooth and

continuous expression for the viscosity as a function of composition is

known.

Although it may be difficult to measure the viscosity of fluids

across a broad composition space with a typical rheometer, methods

of microrheology and microfluidics have been combined to rapidly for-

mulate and characterize the rheology of complex mixtures.13 The
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result of such experiments would be the viscosity at many discrete

points in an N × S − 1 dimensional space of concentrations. If the vis-

cosity is known at a discrete set of points, then the optimization prob-

lem can be posed differently. A Delaunay triangulation of the

composition space using the points at which the viscosity was mea-

sured can be used to construct a piece-wise linear approximation of

the viscosity as a function of cS and cN, denoted η̂ cS,cNð Þ . With this

approximation, the minimum duration injection is given by the solu-

tion of the optimization problem:

S# = argmin
S

V̂
T
NN+ V̂

T
SS

* +
η̂

S

V̂
T
NN+ V̂

T
SS

,
N

V̂
T
NN+ V̂

T
SS

 !

s:t:Si ≥0
S

V̂
T
NN+ V̂

T
SS

�CS

N

V̂
T
NN+ V̂

T
SS

�CN,

ð13Þ

where CS and CN are the convex hulls of the composition space over

which the piece-wise linear approximation of the viscosity is valid.

Although the optimal formulation design is challenging to describe

analytically, numerical solutions to this problem are feasible. For

example, well-known sub-gradient descent methods are routinely

applied to constrained optimization problems over this sort of non-

smooth objective function.14

3 | DISCUSSION OF APPLICATIONS AND
EXPERIMENTAL EXAMPLES

The simplest two-component fluid was investigated by Einstein.15,16

In the limit that the solute is sufficiently diluted, he proposed that the

viscosity scales linearly with the solute concentration: η(c) = η(0)(1

+ [η]c), where [η] is the so called intrinsic viscosity. For rigid, impene-

trable spherical particles, c describes the volume fraction of spheres

and [η] = 5/2. At higher concentrations strong deviations from this lin-

ear trend appear. For a variety of constitutive models and experiments,

the optimal concentration for injection appears to live near where the

deviation from this linear model become apparent.

For example, many polymer solutions have a viscosity that scales

linearly with concentration in the dilute limit. However, there exists a

so called “overlap concentration” beyond which polymer chains begin

to interact strongly with one another and power law scaling of the vis-

cosity with concentration emerges.17 The particular power law

depends on the topological and chemical details of the polymer, but

this transition is generic.10 Figure 2 plots on logarithmic axes the vis-

cosity as a function of concentration for such polymer solutions. In

this circumstance, it is clear that the viscosity as a function of concen-

tration has a tangent line through the origin right at the overlap con-

centration. Physically, this is the highest polymer concentration

accessible before the viscosity begins to grow rapidly with c. Thus, an

optimal injection of a fixed number of polymers will be formulated at

the overlap concentration.

For particle suspensions, the viscosity is expected to diverge as

the concentration approaches the point of maximum packing. The

Krieger-Dougherty model is commonly used to represent this

behavior18:

η cð Þ= η 0ð Þ 1–1
c

cmax

! "− η½ &cmax

, ð14Þ

where cmax is the maximum concentration below which the fluid has a

finite viscosity. The relationship between the power-law exponent

and the intrinsic viscosity in Equation (14) is purely heuristic, but this

expression has been found to provide an adequate description of

many loaded fluids. In suspensions of hard, nearly spherical particles,

one finds that [η]cmax ≈ 2 describes many experimental data sets quite

well.19 Such power law scaling can even be justified in analytical

models of mono-disperse suspensions of spheres.20 If such a particle-

filled fluid exhibits Newtonian behavior or has Newtonian plateaus at

low and high stress that show similar power law scaling,21 then the

optimal loading predicted by Equation (3) is given by an incredibly

simple expression:

c# =
cmax

1 + η½ &cmax
: ð15Þ

This result suggests an experimental procedure for finding the

optimal formulation of a Krieger-Dougherty-like fluid. First solvent is

added to the prescribed dose of suspended component until the mix-

ture just becomes flowable. This point identifies the concentration

cmax. Then the fluid is further diluted with solvent to a concentration

of approximately cmax/3 at which point the duration of injection

should be nearly minimized.

A simple example involving a two component, Newtonian fluid is

the injection of fixed quantity of glycerol dispersed in a variable

(a) (b)

F IGURE 2 Typical scaling of solution viscosity with
concentration. (a) A schematic of the viscosity of a polymer solution
as a function of polymer concentration. On increasing the
concentration past the overlap concentration a new power law trend
in the viscosity emerges. The optimal loading for injection resides at
this overlap concentration and can be found by shifting a line with
unit slope vertically until it just intersect the viscosity curve on a log–
log plot of viscosity versus concentration. (b) A schematic of the
viscosity dependence described by the Krieger-Dougherty model. The
optimal loading for Krieger-Dougherty models typically resides near
cmax/3 [Color figure can be viewed at wileyonlinelibrary.com]
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quantity of water. Glycerol injections are used as a nerve block to

treat symptoms of chronic pain. The viscosity of pure glycerol at room

temperature is hundreds of times that of water. Figure 3a) depicts

experimental measurements of the viscosity of glycerol-water solu-

tions at 30'C over a broad range of molar concentrations.22 A tangent

line through the origin determines the optimal concentration for injec-

tion, which is the equivalent of (30% glycerol by weight. Of course,

for medical treatment there may be other constraints on the process

including a limit on the maximum injectable volume, but these con-

straints are easily accounted for by altering the formulation of the

optimization problem.

As a related example, consider the problem of formulating solu-

tions of globular proteins for subcutaneous injection. Particularly for

the case of monoclonal antibodies, the problem of injectability poses

a major challenge. Depending on the viscosity of an antibody solution

loaded with a prescribed dose, injection in a fixed amount of time may

require pressure drops so large that forces supplied by human hands

are not sufficient to complete the injection. A potential solution to this

problem is understanding how the minimal injection duration at a human

applicable pressure drop could be shifted by engineering different factors

in the antibody solution. A heuristic model commonly applied to anti-

body solutions is the so-called Mooney equation1:

η cð Þ= η 0ð Þexp η½ &c
1−c=cmax

! "
, ð16Þ

which describes a viscosity that diverges exponentially as the concen-

tration approaches cmax. Figure 3b) depicts the viscosity of two propri-

etary antibodies suspended in identical buffer solutions measured by

scientists at Pfizer as well as fits to the Mooney equation1. For this

model, the optimal loading is given by:

c# = cmax 1−
1
2
η½ &cmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

η½ &cmax
+ 1

s

−1

 !" #
, ð17Þ

and the minimal injection duration, t*, depends on the model parame-

ters through its linear proportionality with the derivative of the

viscosity:

t# ~η0 c#ð Þ= 4η 0ð Þ
η½ &c2max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

η½ &cmax
+ 1

s

−1

 !−2

exp
η½ &cmax

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

η½ &cmax
+ 1

s

−1

 !" #
:

ð18Þ

An intuitive conclusion justified by these calculations is that the

duration of injection at the optimal concentration can be made smaller

by engineering a solution with a larger cmax and fixed [η]. That is, with-

out changing the dilute hydrodynamic characteristics of the protein, a

shorter duration can be achieved when the optimal concentration is

further from maximum packing. Perhaps less intuitive is the correla-

tion for the intrinsic viscosity. A shorter duration for the optimal injec-

tion can also be achieved by decreasing the intrinsic viscosity at fixed

cmax. That is, maintaining the packing limits of the molecule, but reduc-

ing its effective hydrodynamic size in the dilute limit will also speed

up the injection.

The product [η]cmax is approximately the relative viscosity given

by extrapolating the linear model of the viscosity in the dilute region

to the concentration at maximum packing. It appears that this factor

exerts the strongest influence on the optimal duration of injection

both the Mooney and the Krieger-Dougherty models. It is not clear to

what extent this product can be engineered in suspensions of proteins

or particles. For the examples in Figure 3b), [η]cmax ≈ 10, and it is typi-

cally much smaller for hard particles. This at least suggests that engi-

neering the “efficiency” of the solute packing is possible and can be

used to optimize the injection duration via molecular design. Some

recent experiments have shown that adding arginine to solutions of

antibodies results in a viscosity that diverges at higher concentra-

tions.23 From the perspective of the optimal injection duration, one

must ask whether the addition of arginine can change the molecular

interactions in a way that shifts [η]cmax favorably. Certainly, this

detailed analysis of the injection problem signals that [η]cmax is an

interesting target for decreasing the optimal injection duration or

equivalently increasing the optimal molar flow rate of a suspended

component.

Finally, in recent experiments we have scaled up the batch syn-

thesis of PbS nanocrystals via burst nucleation and found this frame-

work for optimizing injection an indispensable tool.24 In this synthetic

procedure, a concentrated solution of sulfur precursor suspended in

oleylamine is injected by hand using a 20 ml syringe into a solution of

lead chloride precursor being stirred at 120'C.25 The nanocrystals

grow in solution before the reaction is quenched. Our original syn-

thetic procedure would yield (75 mg of nanocrystals. In order to per-

form neutron scattering experiments on concentrated solutions of

PbS nanocrystals, the yield of the synthetic procedure would need to

(a) (b)

F IGURE 3 Optimization of medical injections. (a) The viscosity of
glycerol-water mixtures as a function of the molar concentration of
glycerol. Following the procedure in Figure 1b), the line through the
origin just touching an experimental data point determines an
approximation for the concentration of the fluid with minimal
injection duration. The optimal concentration is equivalent to a
glycerol weight fraction of 30%. (b) The viscosity as a function of
concentration for two monoclonal antibody solutions produced by
Pfizer (blue and black circles). The blue and black curves are fits of the
Mooney equation to the data, and the red curves are lines through
the origin that are tangent to the model [Color figure can be viewed
at wileyonlinelibrary.com]
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be scaled up by two orders of magnitude while maintaining low size

dispersity in the batch.26 The size dispersity is strongly influenced by

the duration of injection for the sulfur precursor solution. In order to

successfully scale up the synthesis, it was essential to minimize the

duration of injection. The volume of the sulfur solution needed for the

scaled-up synthesis well exceeds the capacity of a 20 ml syringe. As

such, we used a pressure-driven injection in which the sulfur solution

is held in a pressurized volumetric funnel and injected into the reac-

tion vessel containing the lead chloride solution, which is held under a

mild vacuum.27

The optimization procedure follows the serial dilution methodol-

ogy described for a Krieger-Dougherty fluid. In the experimental

apparatus, a funnel holding the sulfur solution is positioned vertically

above the reaction vessel and held back by a stop cock with a large

orifice. The applied pressure drop driving the fluid into the vessel

vastly exceeds the gravitational load on the fluid so that Equation (1)

is appropriate for describing the fluid flow. We use a mass basis so

that N is the mass of sulfur to be injected, c is the sulfur mass concen-

tration, and η(c) is the viscosity as a function of mass concentration.

We measured the injection duration for 0.65 g sulfur suspended in

different volumes of oleylamine from 15 to 180 ml. Figure 4 shows

these durations. Using the measured durations, we fit for the geomet-

ric prefactor, A and cmax using a Krieger-Doughtery viscosity model

with [η]cmax = 2 and an unloaded viscosity η(0) = 4.93 cP for ole-

ylamine at 25'C.28 We find cmax = 101 mg/ml and A = 2,107 s2/m2.

Figure 4 shows the viscosity profile predicted by the timing measure-

ments and the geometric tangent construction corresponding to the

optimal injection concentration. The optimal concentration for injec-

tion is then found to be 33.7 mg/ml. Using this concentration for the

sulfur precursor solution, we were able to obtain multiple grams of

6.1 nm diameter PbS nanocrystals with a size dispersity of 3.4%, on

par with the lowest size dispersity samples obtainable in the small

scale synthesis.

This procedure is both simple to implement and provides valuable

insight into the shape of the objective function. No rheological mea-

surements were required for this optimization. It is only required to

measure the duration of injection of a few solutions at different con-

centration formulated by serial dilution. Figure 4 plots the injection

duration from these experiments. At low concentration, too much vol-

ume is required to deliver the requisite mass and the injection time is

large. At high concentration, the solution viscosity has climbed large

enough that the injection time increases. The optimal injection con-

centration occurs where the viscosity profile departs from a linear

approximation. Additionally, we note the injection time function is rel-

atively flat near the optimal concentration. That is, the injection time

will not change significantly if there is small error in the sulfur solution

preparation for these experimental parameters. If the geometric pre-

factor were larger, as would be the case for larger pressure differen-

tials, more injected mass, or smaller stopcock radii, then the injection

time profile would be sharper and it would be more important to pre-

cisely prepare a precursor solution to match the optimal

concentration.

4 | CONCLUSIONS

Inspired by past work in modeling biophysical systems with Newto-

nian fluids, we have derived new formulas representing the solution

to an optimization problem describing the optimal formulation for

delivering a solute at the maximal rate in multicomponent fluids. The

framework employed in this work allowed for graphical or numerical

determination of the optimal formulation of single and mul-

ticomponent Newtonian fluids using a limited number of experimental

measurements of the viscosity as a function of composition. Addition-

ally, we showed how model shear thinning and shear thickening fluids

transporting a single solute should be loaded in order to achieve the

maximum delivery rate. For this model fluid, there is a simple transi-

tion between two limiting viscous states at low and high applied

stresses, but the same approach could be applied to fluids with more

complex rheology. We showed that the optimal injection of these

fluids must control both the formulation and the pressure drop

applied. For a shear thinning fluid, the optimally loaded fluid is the

one that maximizes the rate of solute delivery in the high stress

branch of the viscosity while using the highest accessible pressure

drop to drive the flow. For a shear thickening fluid, the situation is

more complicated. A locally optimal solution can be found when the

fluid is loaded to maximize the delivery rate in the low stress branch

of the viscosity with the pressure drop restricted so that the fluid

throughout the flow channel has rheology drawn from this same low

stress branch. A globally optimal delivery rate is always found as the

pressure drop diverges, but such solutions may not be physically

accessible in real world injection scenarios with shear thickening

fluids. We demonstrate how these calculations can be applied to the

delivery of chemical solutes in a burst nucleation experiment for the

F IGURE 4 Optimizing a scaled-up hot-injection synthesis of PbS
nanocrystals. Measured injection times to deliver 0.65 g sulfur in
oleylamine are shown in blue with a fit to Equation (4) using a
Krieger-Doughtery viscosity model. The predicted viscosity profile is
shown in black with the geometric construction of Equation (3) in red.
The optimal concentration for injection is found to be 33.7 mg/ml
with cmax = 101 mg/ml [Color figure can be viewed at
wileyonlinelibrary.com]
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growth of quantum dots, but we expect that there are many more

applications for such optimal flow scenarios beyond this context or

the biophysical systems explored in past works. One area in which

rapid injection is essential is in pharmaceuticals. The derivation of an

optimization problem for multicomponent Newtonian formulations

may find use in this particular area where macromolecular species are

often the target injectable, but various excipients can be added to

solution as viscosity modifiers and solubilizers. This multicomponent

formulation of the injection problem enables a principled way of

designing human injectable solutions that expose patients to a mini-

mal injection duration.
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