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Abstract—In this paper, a controller for reducing the risk of
cascading line outages in an active distribution network (ADN),
has been developed. The controller is based on adaptive critic
design (ACD), which receives inputs from a distribution
management system regarding the states of the distribution
network. These states are then evaluated by the controller for
critical contingencies in the network. Accordingly, the controller
takes coordinated control actions by giving recommendations for
adjusting the optimal power flow (OPF) set points for voltage and
active power of the distributed energy resources (DERs) in the
network. These control actions avoid considerable deviation from
the optimal set points for generation cost and line losses. The
effectiveness of the developed ACD controller is demonstrated
with a test case of IEEE 30 bus system. The technique for
formulation of this ACD algorithm, so as to attain a faster but
accurate convergence, has been elaborately described in this
work.

Index Terms—Adaptive critic, Active Distribution Management,
Cascading failure, Dual Heuristic Programming.

I.  NOMENCLATURE

Variable Description
X@) State of the plant at time ¢.
A Action output from Actor network at time ¢.
J) Cost-to-go function at time ¢.
u®) Utility function at time ¢.
y Discount factor
t, t Initial time, final time
N Total number of trials

II.  INTRODUCTION

Power system is one of the most critical infrastructures as it
serves as the backbone of other critical infrastructures like
transportation, communication, water purification, and so on.
A fundamental property of such interdependent systems is that
failure of nodes in one network leads to failure of dependent
nodes in the other networks, resulting in a series of
malfunctioning. A real-world example of such cascade of
failures is the electrical blackout that affected much of Italy on
28 September 2003 [1], [2]. Node failures in a power network
are more prevalent during severe weather conditions, which
may result in over loading of lines and their eventual outage.
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This primarily occurs because the assets in a power network
have often been lately operated near their capacity, in order to
attain optimal generation cost and line losses. In this situation,
the system elements have smaller margins of flexibility to
handle minor changes in loading before failure. Hence, these
traditional objectives of optimal line losses and cost may have
to be adjusted to emphasize on the wider requirement of
interdependent networks. An initial step towards preventing
such concurrent failures in modern systems, is to avert one line
outage cascading to the next (V-1) and resulting in node failures
or load shedding.

Prevention of line outage in a distribution network (DN)
during critical conditions is a real time control problem that
requires coordinated control actions for managing load,
generation and energy storage systems. Studies related to real
time control problems in the ADN have primarily focused on
isolation of a bus, which is connected to a microgrid [3]-[6].
These surveys have emphasized on changing protection
strategies in an ADN and ensuring adequacy of reserve power
in the DERs and ESSs when the load gets isolated. However,
there is a dearth of research concerning real time prevention of
node failure in a DN, which is a step ahead of node isolation.

In this paper, we have proposed a control technique that can
adapt the actions to be taken in a ADN, based on its current
states, so as to prevent an N-/ line outage. The controller aims
at better resource management by amending the voltage and
generation set points of the DERs that are estimated by OPF.
Care has to be taken for the controller to account for minimum
adjustments to such traditional parameters, while also
optimizing the power flow in the system, so that major
deviation from optimal cost and line losses is avoided. Hence
the controller has to solve an optimization problem by taking
actions within critical constraints of time and resources.

Adaptive dynamic programming (ADP) based techniques
have been found to be most efficient in taking such online and
forward-in-time optimal control actions [7]. Hence, in this
paper we have adopted an ADP based technique, called
adaptive critic design (ACD), which can cope with a large
number of variables in parallel, real-time and non-linear
environment. Applications of robust ADP controllers in power
system has received particular attention in the area of microgrid
stability [8] — [10]. However, its application in line outage
management has not been investigated, to the best of our
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knowledge. In this paper, we have demonstrated an effective
application of ADP in tackling line outage in a DN. This work
identifies the specific type of ACD algorithm which is best
suited for this application and elaborates on the method of
formulating the algorithm, so that it can converge effectively.
The controller has been tested on a snapshot of the IEEE 30 bus
system.

1.

The adaptive critic family of designs is used for finding a
series of optimal (minimum/maximum) control actions that
must be taken in sequence, where the quality of those actions
is unknown until the end of that sequence [11]-[14].

ADAPTIVE CRITIC DESIGN (ACD)

A. Component Networks of ACD

The fundamental structure of ACD comprises three
networks, whose functionalities have been outlined as follows:

1) Model Network (MN)

The Model network is a deterministic or stochastic
representation of the plant that is to be controlled. The states of
the plant are observable, discrete and deterministic within the
time interval to to tr, and the initial state i.e. X(%y) is available.
This network receives the states of the plant and the actions at
current time step as inputs to provide estimated states of the
plant at the next time-step as output.

2)  Actor Network (AN)

The Actor network consists of a Backpropagation Neural
Network (BpNN) or Recurrent Neural Network (RNN), which
takes X(?) as input and outputs successively improving control
actions, A(#). These control actions when applied to the plant
will minimize/maximize the cost-to-go function, J.

3) Critic Network (CN)

Similar to Actor, the Critic network is also a BpNN or
RNN. It receives input from the model and actor networks and
generates improved value functions or its derivatives based on
the improved control laws from the Actor.

B. Types of ACD
The ACD family is categorized into different types of

be more relevant in defining the problem for analyzing and
mitigating contingencies in power system. The fundamental
structure of DHP is demonstrated here.

1) Dual Heuristic Dynamic Programming (DHP)

The working principle of DHP is shown in Fig. 1. DHP goes
through two-levels of iterations, simultaneously. One level of
iteration (denoted by k) represents the passage of time in the
dynamic process, while the other (denoted by /) represents the
number of trials in the search for the optimal solution. DHP
starts its iteration through / and k£ by randomly initializing the
weights in the AN and CN. AN is provided with the initial state
of the plant, X(k = ty), as input and it generates the action,
A, (k), for the next time step (¢ = k+1). The MN also receives
X(k = to) from the plant and A; (k) from AN to generate X(k+1).
The outputs from plant, MN and AN are supplied to the
derivative block, which estimates the derivatives required for
evaluating the cost sensitivity of the algorithm to state
perturbations on the optimal trajectory. The cost function is
defined in (1) and its derivative with respect to the state
perturbations is provided in (2).

J(X(@®),A®) = U(X(t),fz(t)) + y(/()t + 1), )]
J(x(®), A®)
®) (AEX(t())) ) x© ) ( )
AU(E)  AU(E) A(E aX(t +1 5
x0T aa ax T Y WX @+ D) o) @

0X(t+ 1) 0A(t)

JA(t) 0X(t)
The CN approximates the same derivative based on its random
initial weights and the MN output. The error in this estimation
by the Critic is expressed by (3).

Ec=MX®) -1 (X(®) 3)

The mean square of this error (MSE), ||Ec||?, is positive
definite and is used to train the BpNN or RNN of CN, so as to
obtain an improved value function. Now, the output of CN is
used to update the AN parameters based on (4) and (5). Similar
to CN, the AN BpNN or RNN is trained with the MSE of Actor,
[|€4112. The improved control law obtained from the training of
AN is used to train the CN a second time. Hence, the weights
of the Actor and Critic are not random anymore.

+yA(X(t+ 1)

strategies based on the method of approximating J. In this J(X®)
paper, Dual Heuristic Programming (DHP) has been found to A= a0 % )
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Fig. 1. Dual Heuristic Programing Process
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Progress of the iteration in k& continues in this manner until a
stopping criterion is reached, after which the algorithm starts
similar iterations for /[+n, where n = 1,2,...,N-1.

IV. TEST CASE

In this paper, the IEEE 30 bus system has been used for case
study. This system consists of 6 generator buses (including one
slack bus), 41 branches, and supplies a total load of 217.5
MVA. Five of these generators are considered as DERs and the
slack bus is considered as connection to the transmission
network. The system has been surveyed for critical
contingencies that might induce a cascading failure when the
generators operate at OPF set points. Fig. 2 shows one such
cascading failure that starts with a step change in load at bus
15. The increased load results in critical loading of branches
29, 30 and 35 when OPF is used. Under these circumstances, a
line outage at branch 30 causes ~15% overloading of branches
29 and 31, and 6% overloading of branch 35. This would cause
outage at lines 29 and 31 first. In Fig. 2, only branch 29 has
been disconnected, and this has resulted in 20% overloading of
branch 28. That would cause fast disconnection of branch 28
and the OPF will no longer converge. In power system,
disconnection of branches due to overloading happens within a
span of 5-12 minutes [10], [11].

Cascading failure can be avoided by preventive measures
[15], where the operator is sent warning if the system is
operating near the thresholds. The operator must take prompt
actions to mitigate the failure. A possible set of actions for
mitigating the aforementioned failure could be adjustment of
the optimal set points for active power and voltage of the five
DERs prior to the disconnection of any branch, including
branch 30, which is the most critical branch in this case. The
primary task would be identification of critical branches and
adjusting their line loadings, while avoiding violation of the
line =~ - ’ T ’ “the buses.

—e— Normal Condition
Load step change at bus 15
Line Outage at branch 30

—+— Line Outage at branch 29

Line Loading (%)

Fig. 2. Cascading line outage in IEEE 30 bus system.

Also, the capacity of the resources, in this case DERs, must be
taken in consideration. Thus, modifications to optimal
generator set points within specific limits of generation costs
are primarily control actions, which when applied to the plant
(30-bus system) will minimize a value function (branch
loadings of critical branches). The number of control actions
for each generator is two (active power and voltage set points),
and five generators (excluding the slack) will have to be
controlled in this system. Thus, there are 10 factorial
combinations for each set of actions and there can be as many
such sets as possible in the search for optimal solution. The
dimensionality of the problem makes it difficult to be solved
analytically in real time, where prompt decisions have to be
made. Hence, a reinforcement learning based technique is more
suitable for this situation. In this paper, the DHP algorithm has
been chosen as means of solution for its ability to quickly and
accurately solve the optimization problem, while evaluating the
actions not just at current time step but also at future time steps.
Hence, this algorithm provides a flexibility to analyze a system
at both N-7 and N-2 contingencies.

The flowchart for incorporating preventive actions is shown
in Fig. 3, where Ps: and Qg: are the active and reactive power
flows in the branches, respectively; Vs and 0s are the bus
voltage and angle; Poc and Vog are the generator active power
and voltage set points from OPF; Pc and Vg are the active
power and voltage set points after modification by DHP.

The formulation of DHP for solving any optimization
problem requires specific design of certain parameters that are
critical to the fidelity of the solution. These parameters are:
ratio between learning coefficients of Critic and Actor,
discount factor in J, utility function, scaling factor, and reset
criteria.

1) Design of Model, Critic and Actor Networks

The MN is designed as a Cascaded Feedforward Neural
Network (CFNN) and has been trained offline so that it can
generate accurate apparent power flow in the lines, based on
active power and voltage set points for the five generators as
inputs. This CFNN consists of one hidden layer with twenty
neurons, a hyperbolic-tangent activation function for hidden
layer and a linear activation function for the output layer. The
stochastic design and offline training of the Model eliminates
the requirement of performing load flow multiple times,
thereby saving immense computation time. The state vector,
which consists of apparent power flow in the branches, is
scaled using the maximum allowable apparent power flow in
each branch.

CN and AN are modeled as BpNN with one hidden layer of
~ and 10 neurons, respectively, sigmoid activation function at

¢ hidden layer and linear activation function at the output
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layer. The learning of CN has to be faster than that of AN, as
the training of the latter depends on information from CN.
Accordingly, CN learning rate has been chosen to be 0.01 and
that of AN 0.001. The discount factor, y in (1), which influences
the speed of convergence, changes recursively with the
iteration in k. It starts with 0.1 for lower values of %, and
changes to 1 for higher values of the same.

2) Design of Utility Function

The utility block contains contingency screening
algorithms that are trained offline. It is desirable for the utility
function to be continuous, differentiable and quadratic in shape
[7]. The utility function for this paper has been formulated as
shown in (6), where U;, Uz and Us are the cost functions for
line loadings, bus voltages and generation cost, respectively,
with their corresponding weights W, (1.0), W (1.0) and W;
(0.7). The expressions for Ui, Uz and Us are shown in (7), (8)
and (9). In (7), Xi(?) represents the apparent power flow in

U(X(6), A®)) = WU, (£) + WU, (£) + WaUs(t) (6)
41
D KO- X =6l Xi(©) >0
INORRSve (7)
DO = 81X + 8l Xi(© <0
=t 41
U, @) = Y (Vos, —9) ®)
2 ; oG
Us(t) = (Cog — 6)* )

critical branches. dc: represents a threshold value for Xi(z),
corresponding to a particular contingency, C. The value of dc:
can be estimated from the Line Outage Distribution Factor,
based on the contingency that one wishes to study. The first

term in (7) gives a quadratic shape to the utility function, the
second term consists of a ceiling function for positive state
vector and a floor function for the negative state vector, where
the sign of the state vector is related to the direction of active
power flow in the branches. The ceiling and floor functions are
critical in reducing the computation of the algorithm as they
eliminate branches that are less than the threshold value,
thereby making the algorithm scalable. (8) and (9) are the
constraints on bus voltage and deviation from optimal
generation cost, respectively.

3) Design of Reset Criteria

The reset criterion for iteration over k is based on the
violation of limits for voltage, line loading and generation cost.
During a particular trial in /, the algorithm does not try to
optimize the utility function once any of the aforementioned
limits are violated. Instead, it starts a new trial in /. The stopping
criterion over / has been set to ten iterations, as satisfactory
results were obtained within these number of trials.

V. RESULTS & DISCUSSION

The DHP algorithm, as designed above, has been utilized
for line outage prevention in the IEEE 30 bus system, by
modifying the OPF set points of the DERs. The algorithm has
been provided with a-priori knowledge for these modifications
or ‘actions’, such that APoc and AVog lie between 1.0-5.0 and
0.01-0.06, respectively. The actions are shown in Figs. 4a and
4b for APoc and AVog, respectively. Although the number of
iterations in £ start at a higher value and gradually reduce as the
iteration in / increases, only three iterations in & are shown here
for simplicity. The actions in the three time steps (or iterations
in k) change considerably between k=/ and k=2, for most
cases. However, the actions between k=2 and k=3 are more in
consensus with one another. This is because the AN and CN
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Fig. 4b. Actions for modifying voltage set points of the five DERs fork=1to 3 and /=1 to 10.
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Fig. 6. Line loading and bus voltahe after modifications in set points.

weights for £ = I and /=1 are random and hence, the error
margin is high. This error is used to train the weights for the
next trials in & and /. The convergence of the algorithm is
demonstrated through Fig. 5, which shows that the value of the
error in (4) is approaching zero. The convergence time of the
algorithm is 413.23 seconds that is less than 10 mins. The final
actions from the optimization at &k = 3 and /=/0 have been
applied to the plant and the resulting line loading as well as bus
voltages are shown in Fig. 6. A comparison between Figs. 2
and 6 shows that a failure in branch 30 during a step change in
the load at bus 15, no longer causes overloading of the other
branches. Besides, the bus voltages are within their tolerance
limit. Also, the generation cost has changed from $639.60 to
$642.21 for OPF set points and modified set points,
respectively. Thus, the resources in the network have been
effectively managed without causing significant deviation from
optimal cost or load shedding. However, it should be noted that
other critical scenarios might require load shedding
capabilities. In that case, a load shedding function must be
incorporated in the utility function.
VI.  CONCLUSION

In this paper, a DHP algorithm has been used for taking
real-time control decisions in an ADN consisting of the IEEE

30 bus system. The system has been studied for cascading
failure that results from operating the resources in the network
at their critical limits. The algorithm has successfully optimized
the loadings in the branches with the help of proper resource
management, by modifying the OPF set points for active power
and voltage of the distributed generators. The actions from
DHP are potentially preventive measures so that critical
contingencies do not culminate in a sequential line outage.
Besides, the control decisions have avoided large scale
deviation from optimal generation cost within tolerable limits
for bus voltages.
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