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Abstract
The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incor-
porating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from his-
torical data of both traffic and implemented signals timing. The effectiveness of traffic incident management is often limited by
the late response time and excessive workload of traffic operators. This paper proposes a novel decision-making framework
that learns from both data and domain knowledge to real-time recommend contingency signal plans that accommodate non-
recurrent traffic, with the outputs from real-time traffic prediction at least 30min in advance. Specifically, considering the rare
occurrences of engagement of contingency signal plans for incidents, it is proposed to decompose the end-to-end recom-
mendation task into two hierarchical models—real-time traffic prediction and plan association. The connections between the
two models are learnt through metric learning, which reinforces partial-order preferences observed from historical signal
engagement records. The effectiveness of this approach is demonstrated by testing this framework on the traffic network in
Cranberry Township, Pennsylvania, U.S., in 2019. Results show that the recommendation system has a precision score of
96.75% and recall of 87.5% on the testing plan, and makes recommendations an average of 22.5min lead time ahead of Waze
alerts. The results suggest that this framework is capable of giving traffic operators a significant time window to access the
conditions and respond appropriately.

Most traffic management centers (TMC) operate a coor-
dinated signal system that relies on historically generated
signal timings, coupled with real-time technology, to
manage day-to-day operations on the local network.
Unfortunately, any planned or unplanned incidents (e.g.,
hazardous weather conditions, accidents, local events,
etc.) on the network can cause catastrophic traffic grid-
locks. According to the Federal Highway Administration
(FHWA) in 2019, about half of congestion is nonrecur-
ring, among which 25% is caused by accidents, 15% by
weather, and 10% by work zones (1). To keep traffic
flowing during these occurrences, local TMCs develop
incident timing plans, or contingency traffic plans, for
their owned signalized intersections to manage incident-
induced congestion. However, the effectiveness of exist-
ing incident management is often limited by late response
time and excessive workload of traffic operators, and the
main causes are two-fold: (i) the lack of real-time and
advance awareness of road conditions: traffic operators
often react after receiving complaints, when gridlocks
have affected local arteries for quite a long time; and
(ii) the workload from verification of incidents and

determination of signal plans: traffic operators need to
gather and analyze incident information (e.g., location,
lane closure types, etc.) from multiple directives, such as
cameras and travel information platforms. In other
words, incident plans are determined with considerable
manual efforts of integration and analysis on the multi-
source traffic data.

This paper proposes to improve incident management
efficiency by introducing a decision-making framework
that automates the data analysis process and learns to
recommend signal plans even before official report of
incidents. Specifically, instead of learning end-to-end
mappings from road traffic states to action plans, the
recommendation task is decomposed into two subtask
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models in hierarchy—traffic predictor and signal plan
associator. For traffic prediction, real-time data inputs
monitored from crowdsourced Waze alerts and traffic
sensors are incorporated to trigger predictions of traffic
delays in the network. A novel neural sequential learning
model using encoder-decoder architecture with attention
mechanism is developed for this task (2). For plan asso-
ciator, to incorporate domain knowledge from developed
incident timing plans, every incident plan is encoded into
a matrix of plan keys characterized by its incident-
triggering conditions, which are derived by transporta-
tion experts, and a normalizer converts traffic predictor
outputs to queries. By defining various metric features
for measuring the closeness between traffic query and
plan keys, it is proposed to learn a linear kernel of
metrics, which gives a higher ranking score for every his-
torically engaged query key pair than the irrelevant ones.
L1 -regularized rank logistic regression model (RankLR)
is used for this task. It is found that the recommendation
system shows a precision score of 96.75% and recall of
87.5% on the testing plan, and an average of 22.5min
lead time ahead of Waze alerts for making plan recom-
mendations. The results suggest that this decision-
making framework is capable of giving traffic operators
significant time to access the conditions and reacting
appropriately.

Related Work

Traffic Signal Timings for Incident Management

Most TMCs respond to traffic incidents by placing vari-
able message signs, closing lanes, or forcing turnings.
Recently, studies have examined the optimization of traf-
fic signal timings as an active management tool for non-
recurring congestion (3–6). Traffic assignment models,
equipped with behavior models that characterize trave-
lers’ behavior changes after incidents, and prediction–
correction models are often built to simulate the time-
dependent diverted traffic flow under pre-defined inci-
dent scenarios (7–13). The signal timings, optimized for
a given incident scenario, then favor specified directional
movements to minimize the induced congestion (14).
This study, which is built upon developed incident timing
plans, refines the decision-making process or transition
logic of signal patterns, by recommending optimal inci-
dent signal plans to traffic operators ahead of time. The
closest work to this is the work of Ban et al., which simi-
larly considers real-time incidents, traffic volumes, and
weather data for activation of signal control (15).
However, they aim to determine if adaptive traffic con-
trol systems (ATCS) should be activated—while detailed
signal timing plans were recommended to traffic opera-
tors. Their model learns to classify level-of-service (LOS)
outcomes of signal control activation with equal amount

of before–after experiment data. Instead, the model is
trained to replicate TMCs’ manual operation, of which
records are readily available even in small townships.
Most importantly, they do not consider ahead-of-time
recommendation with traffic prediction, which is one of
the central contributions of this work.

Traffic Prediction

Data-driven models have become popular approaches
for real-time traffic prediction. Recent models are built
with spatiotemporal traffic flows, traffic events and inci-
dents, and weather data to trigger traffic volume or speed
prediction 5 to 30min ahead (16–20). Historical average,
linear models such as autoregression or LASSO, local
regression and nearest neighborhood methods, graphical
models, and deep neural networks are common modeling
choices (16, 18–26). Encoder-decoder recurrent neural
network is a popular deep learning architecture initially
proposed for machine translation (27). Researchers have
applied it for predicting traffic sequences (28, 29).
Attention mechanisms are often embedded between
encoder-decoder stacks to reduce the burden of compres-
sing all observed information at each time step (2, 30).
This study applies encoder-decoder Gated Recurrent
Unit (GRU) with bilinear attention mechanism for pre-
dicting spatial traffic time-series in target traffic network
(27, 30).

Metric Learning

Metric learning, whose goal is to find appropriate simi-
larity measurements of data points, was initially pro-
posed for recommendation system, such as search
engines, to customize rankings with user clickthrough
logs (31–33). It has been adapted to zero-shot learning to
classify instances of unseen classes during training (34–
39). Their approach is to project inputs and class attri-
butes into the same feature space and associate them
with a compatibility function with learned parameters.
Metric learning is employed to tackle the cold-start prob-
lem of signal plan recommendation. The lack of expert
records is expected to exist during initial enabling of tim-
ing plans, or when new plans are added for expansion of
signalized intersections.

The Contribution of this Study

This study can be differentiated from prior work in three
ways:

1. The incident response time of traffic operators is
shortened by combining approaches from both traf-
fic prediction and recommendation systems. Other
work either predicts traffic without prescribing
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actions, or determines signal timings with cur-
rent road conditions.

2. A novel hierarchical model is proposed which
learns to recommend incident signal timings to
traffic operators with domain knowledge and very
few historical demonstrations.

3. Our model processes crowdsourced data in real-
time for traffic prediction and incident manage-
ment. Few existing works present data processing
and feature engineering methods for Waze data
feeds.

Dataset and Preprocessing

This section describes the data sources used in this work,
which includes INRIX probe traffic speed data (http://
inrix.com/products/ai-traffic/), PennDOT Road
Condition Reporting System (RCRS) incident report

(https://www.penndot.gov/Doing-Business/OnlineServices/
Pages/Developer-Resources.aspx), Waze alerts (https://
www.waze.com/), and Weather Underground (https://
www.wunderground.com/). Figure 1 illustrates the data
sources and collection area for Cranberry Township,
Pennsylvania, U.S.

INRIX Traffic Speed

The INRIX traffic data were reported every 5min for
road segments georeferenced by INRIX XD code. Each
data record includes the XD segment code, time stamp,
observed speed (mph), average speed (mph), reference
speed (mph), and two parameters for the confidence of
the speed, namely confidence score and confidence value.
INRIX data was downloaded between January 1, 2017
and July 21, 2019. All XD segments in Cranberry
Township, and Interstate freeways XDs within 30min

Cranberry   
Township

Figure 1. Data sources used in this paper.
Note: RCRS = Road Condition Reporting System.
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driving were selected in this study. The selected XD seg-
ments are shown in Figure 1. Missing values are imputed
with the last speed observations of this segment.

Traffic Incident

Pennsylvania DOT (PennDOT) RCRS Incident Report. RCRS
data feeds, shown as red dots in Figure 1, provide real-
time information for traffic incidents, roadwork, winter
road conditions, and other events which cover all state-
owned roads in 511PA road network. An incident record
includes the incident location, road closure types, causes,
and close and open time stamps. RCRS reports between
2017 and 2019 were provided by PennDOT. The incident
records without location coordinates, and those lasting
for more than 24h, are removed from the dataset.

Waze Alerts. Waze is a mobile navigation application that
enables editing of the map with crowdsourced user
reports. Users can report traffic crashes, congestion,
hazards, or police traps on the road (40). Waze data (blue
dots) from February 9, 2019 to July 23, 2019 were col-
lected from Waze GeoRSS API. Only incidents reported
under accident or jam categories were considered, to
remove most of the false alarms. However, Waze is not
screened regarding the reliability score to lower depen-
dency on the external system.

Weather Underground

Weather Underground reports hourly weather measure-
ments. Each entry contains temperature, pressure, dew
point, humidity, wind speed, precipitation, pavement
condition, and visibility, and so on. The position of the
chosen weather sensor is shown in Figure 1. The weather
time series are resampled every hour and missing values
are imputed with linear interpolation.

Method

This section first describes the data processing steps.
Then the model architecture is presented that learns to
recommend incident timing plans by two decomposed
learnable models, namely, traffic predictor and signal
plan associator.

Data Processing

The proposed data processing pipeline integrates and
transforms multi-source traffic speed, incident, weather,
and temporal data into representative features for sub-
task models. One-hot encoding for categorical variables
is applied. All processed features are scaled by min–max
normalization.

Speed Processing. Two segment-level features, travel time
index (TTIitd) and slowdown speed (SDitd), are extracted
from raw traffic speed data to describe road conditions.
vitd is used to denote the observed speed on XD i at time
t on day d. To measure congestion on this segment,
travel time index (TTI) is used, which is defined as real-
time travel time divided by free-flow travel time, and can
be computed by Equation 1. To determine the reference
(free-flow) speed vrefi of an XD i, the 85 percentile of
observed speed on that segment for all time periods
(Equation 2) is used, which is the recommended
approach for computing reference speed from probe-
based speed data (41). A large value of TTIitd indicates
the segment is congested.

TTIdit = max (vrefi =vitd, 1) ð1Þ

vrefi =P0:85ðvitdÞ ð2Þ

To encode flow spillbacks in the network, slowdown
speed (SDitd) is proposed. Slowdown speed, defined in
Equation 3, is computed by subtracting speed vi from the
mean speeds of Ni upstream XDs of i, denoted as G�1(i).
A large value of SDitd indicates that back-of-queue slow-
downs exist on segment i and may infer the occurrence of
traffic incident.

SDitd =max½
P

j2G�1(i)vjtd

Ni

� vitd, 0� ð3Þ

Incident Processing. An integration and processing method
is proposed for multi-source incident data. It deserves
notice that Waze differs from RCRS in that (i) Waze
alerts are reported by road users, and often appear imme-
diately after the occurrence of incidents, while RCRS
documents TMCs’ road closures in response to incidents,
which are inputted after actions are taken; (ii) Waze con-
tains geographical point features indicating the position
of road users, while RCRS is usually line feature for the
begin/end locations of road closure events; (iii) Waze has
duplicate records for one incident, while RCRS is usually
unique. Naturally, it is assumed that Waze and RCRS
represent different status of a traffic incident: (i) road
users first report incident occurrence on Waze; (ii) if the
induced congestion calls for road closure, TMC then
takes actions, such as placing barricades on the affected
road, and documents it on RCRS; (iii) traffic goes back
to normal (incident clear), and Waze and RCRS are
removed from the feed.

The workflow in Figure 2 is thus developed to inte-
grate multi-source incident information by their location
and status. For incident location, incidents are first
mapped to their affected road segments. A vector
xinctd = ½xinc1td, : : : , xincntd�, where n is the number of seg-
ments in the network, is used to describe the spatial
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incident location at t. Note that for processing Waze
point features, an interpolation step is performed at each
time step to fill spatial gaps between affected segments.
The middle segment along the route is added to the
incident-affected area if the shortest graph distance
between both ends of two Waze alerts is just one neigh-
bor. For incident status, each element xincitd 2 xinctd is
encoded as a three-category variable, where 0 is normal
traffic, 1 means the incident is reported by Waze, and 2
denotes the road closures reported by RCRS. A max-gate
operator then integrates multi-source incidents status on
segments at each time step, that is, the final value of xincitd

is the largest status value mapped to segment i by multi-
source data. The proposed incident processing workflow
is expected to represent a major incident as 1-2-0 or 1-2-
1-0 along the time dimension, as shown in Figure 2.

Weather and Time Features. Weather features used in this
paper include six continuous variables—temperature,
humidity, wind speed, pressure, visibility, and hourly pre-
cipitation, and a binary variable—pavement condition.
Time features include five categorical variables: time-of-day,
week-of-year, month-of-year, day-of-week, and holiday.
For the cyclic month, week-of-year and time-of-day catego-
rical variables, sine and cosine functions are used to trans-
form them into a two-dimension vector ½t(sin)i , t(cos)i �:

t
(sin)
i = sin (2pi=T ) ð4Þ

t
(cos)
i = cos (2pi=T ) ð5Þ

where i denotes the week/month/time index and T

denotes the total weeks/months/time steps in a cycle. An
advantage of this ‘‘clockwise’’ encoding is that each vari-
able is mapped onto a circle such that the lowest value
for that variable appears right next to the largest value
(e.g., January is right next to December). For day-of-
week and holiday variables, one-hot encoding is applied
after combining similar time features. Specifically, while
Monday and Friday are encoded separately, Tuesday to
Thursday are merged into one variable, so are Saturday,
Sunday, and official holidays.

Model Architecture

The proposed incident plan recommender consists of
two interconnected learnable models: traffic predictor
and plan associator. The traffic predictor is an encoder-
decoder recurrent neural network with attention
mechanism, which takes the speed (and slowdowns),
traffic incidents, weather, and time features and trig-
gers predictions of traffic speed time-series on target
segments for the future 30min (27). To incorporate
domain knowledge of the developed incident plans, the

Figure 2. Workflow for integration of multi-source incidents.
Note: RCRS = Road Condition Reporting System.
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signal timing manual is obtained from Cranberry
Township Traffic Management Center and the plan
triggering conditions are translated into a matrix of
plan attributes (keys). The plan associator then gener-
ates traffic queries from current and 30-min predicted
future speed series and their closeness with plan keys
are evaluated with self-defined metrics. The plan asso-
ciator learns to rank incident plans by fitting a linear
kernel of the proposed metrics from historical engage-
ment records. The module is named as ‘‘metric kernel’’
in the remainder of this paper.

Traffic Predictor. Predicting traffic beyond 5–10min ahead
is hard for traditional autoregressive time-series meth-
ods. Traffic on a road segment can change drastically
because of traffic incidents, weather hazards, or atypical
traffic patterns in its proximity. In these cases, past traf-
fic dynamics on the target road segments may have little
useful information implying their future traffic states. A
widely used solution found in literature is to take into
account spatiotemporal correlations between target road
segments and nearby segments (19, 20, 42). As it takes
time for traffic to propagate, abnormal traffic nearby
can work as longer-term predictors. This paper models
the traffic prediction problem as a sequence-to-sequence
task, and the state-of-the-art architecture, encoder-decoder
neural network with attention mechanism is built to pre-
dict the future traffic flow sequence up to 30min, with a
resolution of 5min (2, 30).

As shown in Figure 3, the architecture is comprised of
an encoder model, a decoder model, and an attention
model which queries the encoder dynamically via a con-
text vector. Both encoder and decoder models use GRU,
which processes the feature input Xt sequentially into
encoder hidden states Henc

t and predicts the speed time-
series ~Yt+ h on all target segments (27). Denote h as the
forecasting horizon, which ranges from 5 to 30min. The
definition of hidden state Henc

t is consistent with Cho et
al. (27). The encoder hidden states at the last time step
Henc

t is set as the initialized hidden states of decoder
model. For decoding, the current speed on target seg-
ments Yt is used as initial inputs to the model, and the
predicted speed ~Yt+ 1 are fed as inputs for next step pre-
dictions in an autoregressive way.

In the standard encoder-decoder models, the encoder
model attempts to compress all the observed information
at each time step into an intermediate representation of
fixed size. One way to address this issue is via an atten-
tion mechanism, where references to the hidden states of
the topmost encoder are kept and queried dynamically
for decoding. There are also some physical intuitions for
applying attention mechanism. For short-term traffic
prediction, it is expected that traffic conditions on down-
stream segments close to the target segment are good

indicators. However, for longer-term prediction, traffic
conditions on downstream segments of variable distances
(usually far away from target segments), which depend
on current and predicted network traffic conditions,
should be dynamically attended to, as congestion takes
time to propagate backwards. Therefore, a bi-linear
attention mechanism proposed by Bahdanau et al. is used
in this paper (30). At each time step, the decoder com-
putes the attention weights for each encoder output Henc

t

by a bi-linear correlation kernel with learned weights.
The context vector ct in Figure 3 is the average of enco-
der output at each time step weighted by attention
weights and is integrated with decoder hidden states to
trigger the speed predictions.

Plan Associator. The plan associator learns to select from
pre-defined decision-making rules, and combine them to
recommend signal timing plans based on current and
predicted traffic conditions on the target network. This
paper proposes to learn similarity metric kernel between
network traffic queries, which are transformed from current
and predicted speed time-series on target segments, and
keys, which are the triggering conditions of each inci-
dent plan. As shown in Figure 4, the plan associator
architecture comprises of the encoding schemes of inci-
dent plan keys, the normalizer for network traffic pre-
diction queries, and the learned metric kernel.

Incident Signal Timing Plan. The signal timing manual
was obtained from TMC in Cranberry Township.
Cranberry Township is located at the junction of
Interstates 79 and 76 (PA Turnpike). The township owns
18 active and six proposed signalized intersections on
local arterial roads US 19, Freedom Road (3020), and
Route 228. Six coordinated signal timing plans for differ-
ent incident scenarios, which involves the control of the
18 active signals, have been developed by the TMC and
used in this study. These incident signal timing plans are
prepared by (1) simulating the diverted traffic flow under
pre-defined incidents using PTV Visum (http://vision-
traffic.ptvgroup.com/en-us/products/ptv-visum/), and (2)
optimizing signal timing function and coordination by
Synchro Studio (https://www.trafficware.com/synchro.html),
with the diverted travel demand as inputs. The devel-
oped plans are as follows:

� Plan A is an incident plan for managing incidents
on I-79 southbound south of Exit 83 (Zelienople/
Jackson Township SR 528) and north of Route
228. Traffic signal timings were developed to favor
US 19 southbound, from Old Route 19/Victory
Church Dr to Thorn Hill Rd. One entire network
coordination zone with 175 s cycle lengths for both
a.m. and p.m. peaks is activated;
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� Plan B manages incidents on I-79 northbound and
north of Route 228. One entire network coordina-
tion zone, with half-cycling where possible, is acti-
vated to favor US 19 northbound, from Emeryville
Rd/Freeport Rd to Old Route 19/Victory Church
Dr. a.m. Peak cycle length is 180 s (90 s) and p.m.
Peak cycle length is 210 s (105 s);

� Plan C is for incidents on I-79 southbound and
south of Route 228. One entire network coordina-
tion zone half-cycling is activated to favor US 19
southbound. Cycle lengths are 200 s (100 s) for
both peaks;

� Plan D is for incidents on I-79 northbound and
south of Route 228. One entire network coordina-
tion zone with 180 s cycle length is activated to
favor movement on US 19 northbound;

� Plan E is for incidents on I-76 (PA Turnpike) east-
bound and east of Cranberry Township. The
majority of the traffic was assumed to be heading
east on SR 228 towards SR 8 back towards I-76
(PA Turnpike). One entire network coordination
zone with half-cycling (180/90 s) at the Turnpike
Ramps and I-79 Ramps intersections is activated
for p.m. peaks to favor this movement;

Figure 3. Traffic predictor architecture.
Note: GRU = gated recurrent unit.
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� Plan F is for incidents on I-76 westbound and west
of Cranberry Township. The majority of the traffic
was assumed to be heading west on Freedom Rd
towards SR 65. One entire network coordination
zone with half-cycling (180/90 s) at the Turnpike
Ramps and I-79 Ramps intersections is activated
to favor this movement during p.m. peaks.

Incident Plan Keys. The incident plan triggering condi-
tions presented above were processed into plan key
matrix. Traffic incidents (e.g., significant congestion or
road closures) occurring on I-79 and I-76 are likely to
spill back to the local network and causes catastrophic
traffic gridlocks. For example, if a major incident occurs
on I-79 SB north of Rt 228 causing severe congestion

Figure 4. Plan associator architecture.

Figure 5. Encoding scheme of incident plan attributes and keys.
Note: SB = southbound.
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(Plan A), as shown in Figure 5, traffic is expected to enter
southbound US 19 at Zelienople and back up at Rt 228.
A developed coordinated signal pattern A, which favors
US 19 southbound movement, will be engaged. To incor-
porate the domain knowledge from developed incident
plans, a plan key matrix P is built to characterize the
plan attributes and triggering conditions. As illustrated
in Figure 5, the entries of incident segment columns in P

is set as 1 and affected arterial segment columns set as 2.
A null plan is added to the matrix, with all columns set
to 0, to represent that no plan is to implement.

Normalizer for Network Traffic Queries. The speed outputs
of traffic predictor are transformed to TTI by Equation
1. This intermediate step transforms traffic predictor out-
puts into a same scale for every segment.

Metric Learning. To learn a metric kernel that associ-
ates network traffic queries to plan key matrix, several
metrics are defined beforehand to characterize the close-
ness between traffic queries and plan keys, and a linear
function of these metrics is fit, which reinforces partial-
order preference observed in engagement records. The
metric kernel learns to select from pre-defined metrics,
or decision rules, and combine them to determine signal
timing plans. Three groups of metrics are defined to eval-
uate the relevance between network traffic queries at
each time step and plan keys, which include:

1. Triggering precision: A threshold set fTTIthresg is
pre-defined to detect if the query items exceed the
threshold. The incident key matrix is also binar-
ized to 0–1. For incident plans A–F, if any item
of incident segments in queries is 1, the metric
outputs 1 and otherwise 0. For null plan, the pre-
cision score between binarized key matrix and
thresholded query vector are evaluated (0 is posi-
tive label), because the triggering segments of null
plan are the whole target network. TTI thresh-
olds, including 1.6, 2, 2.5, 5, and 10 are used.

2. Rule: After thresholding and binarizing the query,
if the overlapped terms between query and binar-
ized key vector contain both incident and affected
arterial segments, then their relevance is 1 and oth-

erwise 0. The same set of thresholds are used.
3. Similarity: The query vector is first upper-clipped

by the threshold and scaled to 0–1 by min-max
normalization. The inverse of euclidian distance
between binarized key matrix and normalized
query matrix is evaluated. The same set of thresh-
olds are used.

The derived 15 metrics between a network traffic
query qk and plan key pk are evaluated for 7 (6 predicted

and 1 current) time stamps in traffic queries and concate-
nated into xðqk ; piÞ 2 R

105. RankLR proposed in
Bahdanau et al. is applied to fit a linear kernel of the
developed metrics (33). A dataset D is built containing
all network traffic query and plan pairs in the records,
with the engaged pairs in D

(k)
+ and irrelevant ones in D(k)

� .
A pairwise dataset is created by drawing any pair i from
D

(k)
+ and one j from D(k)

� , evaluating their respective
metric vector x(qk , pi) and x(qk , pj), and computing the
difference x

p
ij = x(qk , pi)� x(qk , pj). These x

p
ij are set as

positive samples for pairwise learning. A reverse opera-
tion is also conducted by choosing one pair from D(k)

�
and one from D

(k)
+ , and these are set as negative samples.

L1 -regularized logistic regression is applied on the pair-
wise dataset to fit a linear kernel of the developed metrics
so that the log loss in Equation 6 is minimized. The algo-
rithm finds w that gives a higher ranking score for every
relevant query–key pair than the irrelevant ones.

min
w

1
P

PP

i= 1

½yp log (wTx
p
ij)+ (1� yp) log (1� wTx

p
ij)�

+C k wk1
ð6Þ

Determination of Incident Signal Plan. Recommendation
score sij of a query–key pair is defined in Equation 7 as
the linear combination of the defined metric evaluations,
weighted by the learned w. The incident signal plan with
the highest recommendation score is activated or transi-
tioned to. For transition between signal timing plans, a
trigger of at least 20min has been added between pattern
changes as the system takes time to react, and traffic con-
trol can be significantly less efficient during the transi-
tion. Note that the incident signal timings are turned off
if null plan is activated.

sij =wT 3 (qk , pj) ð7Þ

Hyperparameters and Training. The encoder-decoder neural
network is implemented in PyTorch. The following are
used for all GRUs: Tanh activation, 256 hidden dimen-
sions, 2 layers, and recurrent dropout of 0.2. The embed-
ding layer for incidents has 3 dimensions. Attention has
256 hidden states. The network is trained using Adam
optimizer for a maximum of 200 epochs and early-stops
if validation error does not decrease for 5 epochs.
Learning rate of 0.0005, teacher-forcing ratio of 0.5 and
mini-batch size of 32 are used. For RankLR, an L1 pen-
alty of C= 1 is used for all models.

Baselines. Four traffic prediction baselines are experimen-
ted with.
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Historical-Average. A baseline which uses day-of-week
speed profiles averaged over the past 1-month window as
speed predictions for the future 30min.

Latest-Observation. A baseline which uses the latest
observed speed on the segment as speed predictions for
the future 30min.

LASSO. Linear regression models with L1 regulariza-
tion, that is, LASSO, which use the same feature set as
the neural network model, are built for each segment i
and prediction horizon h independently (19, 43). The
model learns the weights w

(i)
h such that the loss in

Equation 8 is minimized. L1 regularization helps the
model select the most critical features that are linearly
related to the response. L1 penalty hyperparameter aih

controls the number of selected features, and is tuned by
cross validation on the training set.

min
w
(i)
h

k y
(i)
t+ h � ½Xt�p, :::,Xt�w(i)

h k22 +a
(i)
h k w

(i)
h k1 ð8Þ

GRU-No-Attention. A non-linear GRU model baseline.
This baseline removes the attention mechanism in the
model. The same hyper-parameters of the model are
used.

Experiments

The experiments were run on a Linux workstation with a
P4000 GPU. Traffic and multi-source data from 5:30 a.m.
to 8:55p.m. are selected, which have in total 29,520 data
samples. Four signal engagement demonstrations, one for
each incident plan (A,C,D,F), are available for training
and evaluation. It deserves notice that the whole four
days’ data, during which incident signal timings were
engaged, was removed for training the traffic predictor.
The experiment setting ensures that ground-truth traffic
conditions are not abused for prescribing incident plans.
However, drawbacks are that traffic predictor only learns
traffic dynamics when no human impact, that is, manual
changes of signal plans, is involved. In this study, it is
assumed that delayed actions of traffic operators do not
impact traffic dynamics much during catastrophic traffic
gridlocks. Therefore, the proposed models are suitable in
initial enabling phase of the decision-making framework,
when late response of traffic operators still exists.
However, when traffic operator’s response time is largely
reduced, new traffic predictor considering manual change
of signal plans should be built.

For testing traffic prediction and incident plan recom-
mendation performances, different evaluation methods
are adopted:

� For traffic predictor, 80% of the data samples are
used for training and 20% for testing. Hyper-
parameters of LASSO are tuned by 5-fold cross-
validation on the training samples. Other baselines
do not require tuning. root-mean-square error
(RMSE) and mean absolute percentage error
(MAPE) of speed predictions on the test set is
computed for model comparison. Note that when
computing MAPE, the absolute error is deliber-
ately divided by the predicted values, so that nega-
tive errors (e.g., unable to predict congestion
growth) are with a heavier penalty. The MAPE is
defined in Equation 9:

MAPEt =
1

n

Xn

i= 1

jAt � Ftj
Ft

ð9Þ

where At is the actual value and Ft is the forecast value.

� For the recommender model, first it is fit with all
engagement records to examine the model weights.
Then, leave-one-out evaluation is applied, that is,
every three engagement records are used for train-
ing plan associator and the recommendation is
evaluated on the remaining record. Macro preci-
sion is computed and scores of the recommended
plans for all time stamps during signal engagement
periods are recalled, and the whole recommender
scoring behaviors are visualized for each testing
plan.

Traffic Prediction

Results of this model against other methods are pre-
sented in Tables 1 and 2 and visualized by segment in
Figure 6. It is found that the encoder-decoder-attention
model outperforms speed prediction baselines for all pre-
diction horizons within 30min, and the performance
improvement is more obvious for longer-term prediction
and for predicting growth of traffic. When comparing the
RMSE, as shown in Table 1, for 5-min ahead prediction,
very less usage of incorporating multi-source data and
applying complex model architecture is found, since lat-
est-observation method is almost of the same perfor-
mance as the best model. However, for longer-term
prediction, such as those larger than 10min, latest-obser-
vation performs even worse than historical-average which
does not use any real-time data. GRU-no-attention shows
similar performances to LASSO on this dataset, but the
model with attention mechanism added presents much
better results for longer-term predictions. However, when
compared with MAPE in Table 2, the proposed model
outperforms other methods significantly. The results
show that the model gains performance improvement
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mostly from reducing negative errors, that is, better at
predicting congestion growth.

To further locate the sources of performance improve-
ment, the percentage RMSE improvement of the

Table 1. RMSE Prediction Error (mph) of the Encoder-Decoder-Attention Model against Other Baselines for Different Prediction
Horizons on the Test Samples

Model 5min 10min 15min 20min 25min 30min

Encoder-decoder-attention (our model) 3.187 3.579 3.461 3.388 3.417 3.623
Historical-average 5.306 5.306 5.306 5.306 5.306 5.306
Latest-observation 3.546 5.008 5.609 5.848 5.987 6.092
LASSO 3.297 4.207 4.460 4.557 4.606 4.647
GRU-no-attention 3.343 4.129 4.318 4.404 4.470 4.541

Note: Bolded values indicate the best performance among all models. RMSE = root mean square error; GRU = gated recurrent unit.

Table 2. MAPE Prediction Error of the Encoder-Decoder-Attention Model against Other Baselines for Different Prediction Horizons on
the Test Samples

Model 5min 10min 15min 20min 25min 30min

Encoder-decoder-attention (our model) 8.39% 8.43% 9.24% 9.48% 9.66% 9.78%
Historical-average 11.73% 11.73% 11.73% 11.73% 11.73% 11.73%
Latest-observation 9.05% 15.80% 18.92% 20.35% 21.22% 21.94%
LASSO 8.05% 13.43% 15.63% 16.02% 17.46% 17.52%
GRU-no-attention 8.13% 11.05% 11.48% 12.30% 13.09% 12.05%

Note: Bolded values indicate the best performance among all models. MAPE = mean absolute percentage error; GRU = gated recurrent unit.

Figure 6. Visualization of traffic speed prediction model performances: (a) speed prediction performance of encoder–decoder-attention with
5–30min prediction horizon, and (b) percentage improvement of the model against other baselines for 30-min ahead speed prediction.
Note: RMSE = root mean square error; GRU = gated recurrent unit; NB = northbound; SB = southbound.
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proposed method is visualized against other baselines by
road segment in Figure 6. It is found that most improve-
ment comes from better predictions of traffic on I-79 NB/
SB, Wexford Rd and US-19 NB, and Cranberry
Connector. I-79 SB/NB south of Rt 228 are two main
sources of traffic incidents in Cranberry Township. A com-
mon incident-induced congestion pattern in Cranberry
Township is that an incident on I-79 SB/NB closes part of
the road, and traffic flows into US-19 as an alternative,
therefore routing to/from it via Wexford Rd. The pro-
posed model learns to capture this pattern better than
other methods. Note that this property is very useful for
recommending proper incident plan ahead of time.
However, if compared with GRU-no-attention, most
improvement comes from better predictions on Cranberry
Connector Ramp. This might suggest that GRU-no-atten-
tion captures the easier I-79 incident-induced traffic pattern
well, but is hard to compress the traffic flow states in the
complex Cranberry Connector without attention.

Incident Plan Recommendation

The metric kernel is fit using all engagement records to
examine the power of pre-defined metrics. The signal
engagement periods, in total, span across 85 time stamps
(425min) and 41,334 (85 3 425) combinations of query–
key evaluation pairs can thus be generated. The model
selects 48 features from the 105 pre-defined evaluation
metrics. Clearly, as shown in Table 3, the selected fea-
tures are reasonable. They are across all three types of
metrics, different TTI thresholds, and prediction hori-
zons, as these features together are expected to stably
determine the occurrences and clearance of congestion
on plan triggering segments. In addition, all of the

selected features have positive weights, indicating that
the selected metrics alone are effective for measuring the
association between network traffic queries and incident
plan keys. Interestingly, it is found that instead of using
current observations, most powerful metrics with larger
weights are evaluated on the predicted traffic series
across multiple horizons. This also meets expectations, as
a trend of traffic conditions are usually easier for deci-
sion making.

The generalization performances of plan recommen-
der is then evaluated using leave-one-out strategy. Since
each incident plan has only one engagement record, by
using this evaluation method, the training and testing set
becomes disjointed so that unseen class labels during
training appear in the testing set. This issue is known as
the zero-shot learning problem. Although end-to-end
classification methods cannot generalize to unseen
classes, the proposed method is expected to do it by
learning an intermediate association between class attri-
butes (incident plan keys) and features (network traffic
queries) instead. In other words, the metric kernel learns
to project network traffic queries into the space of plan
keys. As shown in Figure 7, the recommender triggers
appropriate plans for all of the four test cases, and also
for switching between null plan and incident plans. The
recommendation precision and recall during signal
engagement periods, if averaged over four test cases and
all time stamps, are 96.75% and 87.5%. The inconsis-
tency between the stopping period of engagement causes
the relatively low recall, where the recommender often
stops the plan earlier than traffic operators. In addition,
it is also found that, if compared with the earliest inci-
dent report time from Waze in Figure 7, the proposed
model can trigger recommendations 10min ahead for

Table 3. Plan Associator Kernel Weights (Feature Name: Horizon-Thres-Metric)

Feature Weight Feature Weight Feature Weight

5min-2-similarity 2.098 0min-1.6-rule 0.321 0min-2.5-rule 0.073
10min-2-similarity 2.07 5min-2.5-rule 0.318 20min-2-rule 0.071
5min-2-precision 1.459 15min-5-rule 0.293 30min-2-similarity 0.059
25min-1.6-rule 1.318 0min-2-rule 0.29 25min-1.6-precision 0.052
10min-5-similarity 1.062 10min-1.6-rule 0.239 0min-10-similarity 0.044
25min-10-similarity 0.746 5min-1.6-precision 0.202 15min-2.5-rule 0.04
20min-10-similarity 0.593 15min-2-rule 0.197 20min-2-precision 0.038
25min-2.5-precision 0.577 20min-5-rule 0.177 15min-1.6-precision 0.037
15min-2-precision 0.539 5min-1.6-rule 0.17 20min-2.5-similarity 0.036
20min-1.6-rule 0.535 30min-1.6-rule 0.138 25min-2-rule 0.033
30min-2.5-rule 0.425 5min-10-similarity 0.124 25min-2.5-rule 0.029
25min-5-rule 0.421 20min-2.5-precision 0.118 30min-1.6-precision 0.028
30min-5-precision 0.403 25min-5-similarity 0.092 30min-2.5-precision 0.015
30min-2-rule 0.375 5min-5-similarity 0.083 0min-1.6-precision 0.015
15min-1.6-rule 0.36 10min-2.5-rule 0.081 10min-2-rule 0.012
10min-10-similarity 0.339 15min-2.5-precision 0.078
0min-5-rule 0.338 30min-10-distance 0.078
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plan C, 35min ahead for plan F, 30min for plan A, and
15min for plan D. An average of 22.5min advance rec-
ommendation performance can be achieved by the pro-
posed method.

Conclusion

This paper proposes a novel decision-making framework
which incorporates real-time data inputs monitored from
crowdsourced Waze alerts and traffic sensors for traffic
prediction, and constructs a learnable recommendation
system for triggering incident signal plans ahead of time
with the outputs from traffic predictor. The novelty of
this work comes from decomposition of the end-to-end
incident plan classification problem into two subtask
models, that is, a traffic predictor that outputs network
traffic time-series for the future 30-min horizon, and a
plan associator, which transforms incident plan trigger-
ing conditions and predicted network traffic series into
keys and queries with domain knowledge, and learns to
associate them from historical signal plan engagement
records.

The traffic prediction task is formulated as a sequen-
tial learning problem in this paper, and lagged spatio-
temporal traffic speed, traffic incidents, weather, and
time features are embedded as source inputs for predict-
ing traffic speed series on target segments. A new data
processing pipeline is developed for incorporating multi-
source incident feeds from crowdsourced Waze alerts
and PennDOT incident reports by their location and

status, and they are encoded into representative data fea-
tures. A GRU neural network model using encoder-
decoder architecture with bilinear attention mechanism
is proposed for this task. Results show that the proposed
traffic prediction model outperforms other baselines, espe-
cially for longer-term traffic prediction and for predicting
incident-induced congestion. The sources of prediction
improvement are tracked and the model is found to be
capable of capturing typical traffic patterns on the dataset.
Domain knowledge from developed incident timing plans
is incorporated to constrain the model learning. An encod-
ing scheme for transforming triggering conditions of each
incident plan into the plan attribute keys is proposed, and
a normalizer for converting traffic predictor output to traf-
fic queries is applied. By defining various metric features
for measuring the closeness between traffic query and
plans, it is proposed to learn a linear kernel of the pro-
posed metrics, which gives a higher ranking score for every
relevant query–key pair than the irrelevant ones from
engagement records. RankLR model with L1 penalty is
used for this task. It is found that the selected metric fea-
tures are reasonable and are across all metric types, travel
time index thresholds, and prediction horizons. The rec-
ommendation system shows a precision score of 96.75%
and recall of 87.5% on unseen testing plans. This model
can trigger an average of 22.5min advance recommenda-
tion, in particular, 10min ahead for plan C, 35min ahead
for plan F, 30min for plan A, and 15min for plan D. The
proposed framework is expected to give traffic operators
significant time to access the conditions and react

WAZE

WAZE

WAZE

WAZE

Figure 7. Visualization of plan recommender model performances.

Yao and Qian 57



appropriately. In addition, the recommender has been
shown to effectively recommend unseen plans in training.
This generalization property makes this method an appro-
priate initializer for cold-start recommendation of new
incident plans without engagement records, which may be
created recently for expansion of signalized intersections.
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