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Abstract—Wind power ramps are the abrupt yet significant
change in wind power productions. The information on the
ordinal levels of impending wind power ramp could help power
system operator to arm operation or ramping reserves in a
timely manner. This paper presents novel approaches for regional
wind power ramp level forecasting using real-time meso-scale
wind speed measurements. Motivated by the correlation of the
meso-scale wind speed measurements with the regional wind
power data, the proposed approach utilizes multinomial logistic
regression for wind power ramp forecasting. An approach that
combines the probabilistic output of individual regressive models
in a weighted manner is proposed, with the weights calculated
by minimizing the Brier skill score of the combined model.
The proposed methods are tested by using real-world data, and
is compared with benchmark methods. The results reveal the
effectiveness of the proposed approaches.

Index Terms—Multinomial logistic regression, sparse primary
component analysis, wind power ramp forecasting.

I. INTRODUCTION

Wind power ramps, which is referred to as the significant

changes in the wind power production in a relatively short time

period, is a result of the volatility in the wind or meteorological

conditions at different geographical scales. Wind power ramps

could refer to the abrupt power production change from a

single-turbine level or a wind farm level, to regional level

or system level. Combining with the uncertain nature of

wind power, which makes wind power forecasting can attain

a certain level of accuracy, large-scale wind power ramps

have posed technical challenges for power system operations.

Particulary, the electric reliability council of Texas (ERCOT)

has adopted an approach that incorporates wind power ramp

risks into the requirements of non-spinning reserves [1], [2].

Further, the ERCOT large ramp alert system (ELRAS) [3]

utilizes numerical weather predictions to provide information

(including timing, magnitude, direction, and likelihood) on

potential large wind power ramps. The information on wind

power ramps (magnitude and timing) could alert control room

operators of future wind power conditions and energy forecasts

so they can make well-informed scheduling decisions.

In spite of such an overall forecasting accuracy of nu-

merical weather prediction models in practice [4], [5], these

approaches and systems could fail on providing pertinent and

timely information on large wind power ramp events [6].

One key reason is that it is an extremely computationally

intensive procedure for global or regional numerical weather

prediction models to produce forecasting data, which consists

of the processing for synoptic data assimilation, solutions for

complex mathematical and physical models (multiple sets of

models in the case of ensemble forecasting) of atmospherical

variables, and necessary post-processing. Therefore, the output

data of numerical weather prediction models may not be

generated in a timely manner for determining the timing

of wind power ramps. In this context, the approaches and

apparatus that utilize real-time measurement data (e.g., wind

speed measurement from meteorological station) for wind

power ramp forecasting and detection would be very useful.

Proven methods and cost-effective techniques for online

wind power ramp forecasting that utilize real-time measure-

ments and apply models trained offline could be found in

the survey [7], [8]. More recently, advanced statistical models

and data-mining models have also been applied. Sacrificially,

an improved short-term wind power forecasting approach is

proposed in reference [9] at different temporal and spatial

scales, which applies an optimized swinging door algorithm

to extract ramp events from actual and forecasted wind power

time series. Reference [10] applies supervised learning ap-

proaches to predict wind power ramps, and particularly focuses

on addressing the class imbalance issues (as large wind power

ramps are low-probability events [11]). An empirical mode

decomposition based ensemble learning technique that incor-

porates kernel ridge regression and a random vector functional

link network is developed in reference [12] for short-term wind

power ramp forecasting. Reference [13] utilizes an elaborate

model that feeds input data to a support vector machine for

wind power ramp classification. An innovative wavelet-based

ramp characteristic function for wind power ramp detection

from time series is proposed in reference [14], which is

obtained by considering large power gradients evaluated for

different time scales. A variety of machine learning techniques

(support vector regression, multi-layer perceptrons, extreme

learning machines) and Gaussian processes are explored by

reference [15] that incorporates hybrid numerical-physical

weather models for wind power ramp prediction in real-time

systems. Reference [16] presents a data-driven method for

probabilistic wind power ramp forecasting based on a large

number of simulated scenarios generated from generalized

Gaussian mixture models. Other approaches include orthogo-

nal test [17], least-square support vector machines [18], hidden

Markov model [19], autoregressive logistic model [20], and the

reservoir computing technique [21].

In existing work, as presented in the aforementioned lit-



Fig. 1. ERCOT hourly data in 2018: (a) hourly wind power, (b) hourly wind
power ramp, and (c) ordinal levels of wind power ramp.

erature, the key predictors for wind power ramp forecasting

or classification is mainly a univariate time-series of wind

speed or wind power corresponding to real-time measurements

collected from one location, meteorological state, or wind

farm. For regional wind power ramps that cover an extended

geographical region, there could be multiple sources of real-

time measurements, which poses a new problem of wind

power ramp forecasting with multi-variate measurements.

Then, a challenging issue would be the effective fusion and

combination of these multi-variate measurements. This paper

studies this new problem for regional wind power data based

on logistic classification models, by developing a weighted

voting model to combine the decision of individual logistic

classifiers. Further, the logistic classification models utilized

are all multinomial, in the sense that they will predict the

ordinal levels of wind power ramps.

The rest of the paper is organized as follows. Description

and discussion of ERCOT regional wind power data and the

Mesonet wind speed measurements are presented in Section II.

Section III presents the proposed approaches to regional wind

power ramp forecasting. The results of numerical experiments

using real-world data are presented in Section IV. Finally,

conclusions are given in Section V.

II. DATA AND KEY OBSERVATIONS

A. Ordinal levels of wind power ramp

As mentioned above, numerical weather predictions models

is capable of producing accurate forecasting of the magni-

tude of wind power ramps; however, the high computational

complexity and low data refreshing rate of these models may

compromise the timely delivery of these forecasts. Instead,

predictive or classification models that utilizes real-time mea-

surements can provide unrefined yet timely information on

impending wind power ramps. One kind of this information

Fig. 2. West Texas Mesonet stations and ERCOT wind farms.

would be the ordinal levels [21] of wind power ramps. More

specifically, categorical or numerical labels could be assigned

to the wind power ramps with magnitude falling into specific

ranges. For example, a wind power ramp within the range

(2.5GW, 2GW] could be labeled as ’2’ or ’Large Up Ramp’,

and one in the range [−3GW,∞) could be labeled as ’-

3’ or ’Extreme Down Ramp. By using the numerical labels

for the hourly wind power ramps of ERCOT, the ordinal

information is plotted in Fig. 1. It can be seen that the ordinal

levels (represented by the numerical labels) could capture of

the levels of wind power ramp with sufficient fidelity for

the purpose of power system operations and ramping reserve

acquisition. Therefore, this study aims at predicting the ordinal

levels of hourly wind power ramp.

B. Real-time Mesonet measurements

The predictors used for wind power ramp forecasting are the

wind speed measurements from West Texas Mesonet [22]. The

West Texas Mesonet is comprised of 120 stations that monitor

key meteorological attributes, including wind (speed, direction,

and gust speed), temperature, solar radiation, humidity, air

pressure, etc. The measurement devices take measurements

every 3 second, and report 1-minute (or 5-minute for old

stations) and 15-minute average values to data center. The

coverage of West Texas Mesonet in the West Texas and

Panhandle regions, as well as on the ERCOT’s grid-connected

wind farms in these regions, could be seen from Fig. 2.

To reveal the relevance of the Mesonet wind speed mea-

surements to the hourly wind power ramp in the West Texas

and Panhandle region, the hourly average wind speed data of

Mesonet is calculated and the regional wind ramp data for

West Texas and Panhandle regions is obtained from ERCOT’s

hourly averaged wind power data by geographical region [23].

Then, correlation analysis is carried out between the hourly



Fig. 3. Correlation between wind speed measurements and wind power data.

wind data from each of the Mesonet site and the regional

wind power data for different values of lead time. The results

for a few representative sites are shown in Fig. 3. Two key

observations could be drawn from Fig. 3: 1) the wind speed

measurements at the Mesonet sites are highly correlated with

the regional wind power data, with correlation coefficients

ranging from 0.6 to 0.8; 2) the correlation coefficients for

different Mesonet sites could peak at different lead time. For

example, for the Mesonet site ’FLOY’ in Fig. 3, the regional

wind power data has the highest correlation (with a coefficient

of 0.76) with the wind speed measurements of 4 hours ago at

Mesonet site ’FLOY’. This is because the Mesonet sites are

dispersed in this extended geographical region, and thus the

variations in the aggregate regional wind power could lag that

of the wind speed measurements at a single Mesonet site. This

also explains that different sites may have different lead time

for maximal correlation to the regional wind power, depending

on their relative location to the wind farms of the region.

C. Logistic regression for wind power ramp forecasting

From the observation on the high correlation as illustrated

in Fig. 3, it would be effective to apply a linear regressive

model [24] to the log-odds of wind power ramp, by using the

Mesonet wind speed measurements within a lead time window

of up to N hours as the predictors, which is given by

log

(
Pr(Ỹt = 1)

Pr(Ỹt = 0)

)
= β1wm,t−1 + · · · + βQwm,t−Q, (1)

in which Pr(Ỹt=1) is the forecast probability that wind

power ramp occurs at time slot t, the predictors (i.e.,

wm,t−1,wm,t−2,· · · , wm,t−Q) are the wind speed measure-

ment at the m-th Mesonet site within a time window of Q
hours (Q could be chosen to be 6 based on the observation

from Fig. 3) immediately ahead of the time slot t, and β are

the corresponding regressive coefficients of the predictors. It

is worth mentioning that logistic regression has been applied

Fig. 4. Power curves of wind farms (a) ‘CHAMPION’, and (b) ‘CSEC’.

to wind power ramp forecasting (e.g., in literature [20] and the

references therein). However, the prior studies apply regression

to the same wind power time-series for wind power ramp

forecasting in an autoregressive manner, and the predictors

are univariate (in the sense that they are from the same time-

series). In sharp contrast, this paper is focused on utilizing

multi-variate predictors which are wind speed measurements

from dispersed locations in an extended geographical region. It

is noted that by using multiple sources of data as multi-variate

predictors, the regressive models have significant potentials for

improving the performance of wind power ramp forecasting.

However, due to the complex nature and the distinct lead time

for the Mesonet measurements from different sites, there is no

existing approaches for efficient fusion or combination of the

multi-variate predictors for regional wind power forecasting.

This work will fill this gap by developing a combination of

individual logistic regressive models.

D. Hourly average of wind speed measurements

In (1), the regressive variables are the hourly wind speed

measurements at a Mesonet site. The raw wind speed mea-

surements reported by Mesonet sites are 5-minute or 1-minute

data, and thus, averaging of the measured wind speed data is

needed. Note that similar to the manufacture’s power curve of

wind turbines, the fitted power curve of wind farms could

also be comprised of a cubic region followed by a rated-

power region, as can be seen from the two examples in Fig. 4.

Therefore, for ramp events where the wind speed is typically

in the cubic region, the wind power is fundamentally related to

the cube of wind speed. Further, preliminary statistical analysis

of historical wind speed measurements of Mesonet sites reveal

that the wind speed measurements very well follow Weibull

distributions, as illustrated by the two example on the site

‘AMAN’ (1-minute data, a scale parameter of λ=4.9 m/s and

a scale parameter of k=1.7) and the site ‘SASU’ (5-minute

data, a scale parameter of λ=3.6 m/s and a scale parameter



Fig. 5. Weifull distribution of wind speed (a)‘AMAN’ and (b) ‘SASU’.

of k=1.8) using the year 2015 data. With these observations,

let w̄n,t denote the hourly mean of the 1-minute or 5-minute

wind speed measurements. Then, the hourly mean of the cube

of 1-minute or 5-minute wind speed measurements is given

by:

w̄3
n,t = w̄3

n,t

Γ(1 + 3k−1)

Γ3(1 + k−1)
, (2)

where Γ(·) is the gamma function. Therefore, in the Logistic

regressive model of (1), it is more appropriate to use the

hourly mean of the cube of 1-minute or 5-minute wind

speed measurements w̄3
n,t−1,· · · ,w̄3

n,t−Q as the regressive

variables. To this end, all the 1-minute or 5-minute wind speed

measurements of Mesonet are pre-precessed according to (2).

III. PROPOSED APPROACH

In what follows, multinomial logistic regression for predict-

ing the ordinal levels of wind power ramps is first introduced.

A scheme for combining multiple logistic regressive models

through weighted voting is developed, and the weights are

obtained by minimizing a probabilistic forecast skill score.

A. Multinomial logistic regression for ordinal forecasting

Let K be the number of wind power ramp levels. For exam-

ple, Fig.1.(c) illustrates 10 levels of wind power ramp. Then,

the objective of the ordinal wind power forecasting model is

to assign a label Ỹt=k to indicate that the forecast ramp level

for time slot t is k (k∈{1,· · · ,K}). By applying multinomial

logistic regression [25] to the wind speed measurement at the

m-th Mesonet site, the forecast probability of an ordinal level

k is given by

Pr(Ỹmt = k) =
1

z
eβT

mk
wmt , (3)

in which wmt=(wm,t−1,· · · ,wm,t−Q)T is a vector of the

wind speed measurements at the m-th Mesonet site in the

forecasting time window with a window size of Q, βmk is

a vector of corresponding regressive coefficients for the k-th

ordinal level, and z is partition function [26] that normalizes

the forecast provability which is given by z=
∑K

k=1
eβT

mk
wmt .

The set of regressive coefficients in each vector βmk are

obtained by fitting the above models to the training data

through maximum a posteriori (MAP) estimation [27].

B. Combination of multiple regressive models

With the multinomial logistic regressive models built for

the wind speed measurements from each Mesonet site, the

forecast decision could be combined to produce an aggregate

forecasting model that is more accurate than any individual

ones. By adopting a weighted voting scheme, the forecast

probability of the aggregate forecasting model is given by:

Pr(Ỹt = k) =

M∑
m=1

amPr(Ỹmt = k) =

M∑
m=1

am

zm

eβT

mk
wmt , (4)

where am is the voting weight of the regressive model built

by using wind speed measurements from the m-th Mesonet

site, and
∑M

m=1
am=1 is chosen to normalize the forecast

probabilities. Then, a natural question would be how to find

the voting weights am so that the aggregate forecasting model

has optimal performance. To this end, the multi-class Brier

skill score [28] for probabilistic forecast is utilized to quantify

the performance of the aggregate model:

S(Y, Ỹ;a) =
∑

t

K∑
k=1

(1{Yt=k} − Pr(Ỹt = k))2, (5)

where t is the index of training data, 1{·} is the indicator

function, and Yt is the actual ordinal level of the wind ramp

occurring at time slot t. Therefore, it holds that 1{Yt=k}=1
only when a level-k wind ramp occurred at time slot t.
Therefore, the the vector of voting weights a could be obtained

by minimizing the probabilistic forecast skill score:

a∗ = argmin
a

S(Y, Ỹ;a) (6)

subject to the constraint that
∑M

m=1
am=1. For brevity, let

ykt denote 1{Yt=k}, pmkt denote Pr(Ỹmt = k) (note that the

values of ykt and pmkt are already known). Further, let pkt

be the vector of pmkt (m = 1, · · · ,M ). Then,

Pr(Ỹt = k) =
M∑

m=1

amPr(Ỹmt = k) = aT pkt. (7)

Then, the Lagrangian for the problem in (6) is given by:

L(a, λ) =
1

2

∑
kt

(ykt − aT pkt)
2 + λ(1 − eT a), (8)

where e is an M -by-1 all-one vector. The gradient of the

Lagrangian has the following components:

∂L(a, λ)

∂a
=

∑
kt

(aT pktp
T
kt − yktp

T
kt) − λeT , (9)

∂L(a, λ)

∂λ
= 1 − eT a. (10)



Fig. 6. regressive models: (a) regressive coefficients, and (b) p-values.

Solving for a and λ such that the gradient is zero, yielding:

λ∗ =
(
1 − eT P−1

∑
kt

yktpkt

)
/eT P−1e, (11)

a∗ = P−1(λ∗e +
∑

kt
yktpkt), (12)

where P=
∑

ktpktp
T
kt is non-singular when a sufficient

amount of training data is used.

IV. CASE STUDY

A. Training and Testing Data

The year 2015 hourly wind power data for the region

of West Texas and Panhandle, together with the year 2015

Mesonet wind speed measurement data, is used for training.

The trained logistic regressive models are then tested using

corresponding 2016 data. The number of forecasting ordinal

levels is set to 6, among which two level corresponds to

extreme ramps (>3GW and <-3GW), and four levels for

evenly distributed between [-3GW, 3GW]. To account for the

seasonality and diurnal non-stationary, as revealed in prior

work [29], [30], the logistic regressive models are built for

data corresponding to each month and each of the four 6-hour

intervals of a day.

B. Regressive analysis

For each model, the hourly wind speed measurements within

a 6-hr time window is used as the predictors. By following the

proposed approach, individual regressive models are built by

using the measurement from a single site only. The parameters

of the trained regressive models (for ordinal level k=2, i.e.,

up ramp within (1.5GW, 3GW]) for 7 representative sites are

shown in Fig. 6. In Fig. 6(a), a higher positive regressive co-

efficient indicates that the probability of a level-k wind power

ramp could increase more significantly w.r.t. that wind speed

measurement. In Fig. 6(b), a higher p-value indicates that the

wind speed measurement is statistically less significant, and

thus could be excluded from the regression model. Note that

the p-value for the intercept term is not plotted in Fig. 6(b).

One key observation from Fig. 6 is that not all wind speed

measurements within the same 6-hour window are significantly

relevant to wind power ramp forecasting. This also raises the

needs for feature extraction of the wind speed measurements

from multiple Mesonet sites through sparse PCA. Based on

the observations from Fig. 6(b) for the seven models built by

using the data from seven sites, a threshold of 0.05 is adopted

for the p-values, and it turns out that 112 of the 516 (6×86)

regressive variables are statistically significant.

C. Performance Evaluation

The proposed approach is tested and compared with a

benchmark approach. For the benchmark approach, multino-

mial logistic regressive models are built by using wind speed

measurements from a single site (which is consistent with

the practice in state-of-the-art work, e.g., [21]). The perfor-

mance metric for ordinal wind power ramp forecasting is the

multi-class Brier skill score defined in (5). Two performance

measures are produced for the benchmark approach: 1) the

lowest Brier skill score of all models, and 2) the average of

the lowest Brier skill score per each test data point. Note that

the latter is unattainable in practice, since which individual

model produces the best forecast is not known a priori.

The results are shown in Table. I. It can be seen that the

proposed approach has the minimum score, indicating that it

outperforms the existing approach (Benchmark 1 and 2). The

Brier skill scores for the training data is also shown in Table. I,

wherein the lower score basically indicates that the model

fits the training data better (yet unnecessarily generalizes

better though). Further, the impact of the ordinal level K
on the forecasting performance is illustrated in Table. II. The

proposed method have performance degradation as the number

of forecast ordinal levels increases, which shows the tradeoff

between forecasting accuracy and refined ordinal levels.

TABLE I
PERFORMANCE EVALUATION

Benchmark 1 Benchmark 2 Proposed 1

Brier score
0.016 0.015 0.017

(training)

Brier score
0.089 0.065 0.071

(testing)

TABLE II
IMPACT OF LEVEL NUMBER k

K 2 4 6 10 16

Proposed 0.056 0.062 0.071 0.083 0.122

V. CONCLUSION

A new approach for predicting the ordinal levels of regional

wind power ramp in ERCOT by using real-time wind speed

measurements from multiple Mesonet sites are proposed in

this paper. The proposed approach builds multinomial logis-

tic regressive models by using separate Mesonet data, and

combines only the forecast output of individual models. The



work presented in this paper provides examples and insights of

using dispersed measurement data as multi-variate predictors

for regional wind power forecasting.
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