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A B S T R A C T

Droplet jetting behavior largely determines the final drop deposition quality in the inkjet printing process.
Forming such behavior is governed by the fluid flow pattern. Therefore, a measurement of the flow pattern is of
great importance for improving the printing quality of the inkjet printing process. Most of the current works use
static images for the study of the drop evolution process. The problem of the static images is that the images
cannot recognize the motion information (i.e., temporal transformation) of the droplet. Thus the information of
the jetting process in the temporal domain will be lost. Instead of using the images, this paper takes the video
data as the study subject to investigate the droplet evolution behavior in the inkjet printing process. Moreover,
this paper introduces a deep learning method for the study of such video data. Compared to most of the current
learning approaches conducted in a supervised/semi-supervised manner for manufacturing process data, we
propose an unsupervised learning method for studying the flow pattern of the droplet, which does not require
well-defined ground-truth labels. Regarding the spatial and temporal transformation of the droplet in video data,
we apply a deep recurrent neural network (DRNN) to implement the proposed unsupervised learning. To verify
the hypothesis that the proposed method can learn a latent representation for reproducing original data, the
proposed DRNN is trained and tested on both simulation and experimental datasets. Experimental results de-
monstrate that the proposed method can learn latent representations of the droplet jetting process video data,
which is very useful for the prediction of the droplet behavior. Furthermore, through latent space decoding, the
learned representations can infer the droplet forming stimulus parameters such as material properties, which
would be very helpful for further understanding of the process dynamics and achieving real-time in-situ droplet
deposition quality monitoring and control.

1. Introduction

Additive manufacturing (AM) is becoming one of the disruptive
technologies for today's design and manufacturing industry. Among
various AM technologies, inkjet printing has many attractive features
such as non-contact, high resolution, low cost, and scalability to large
area manufacturing [1]. Borrowing the concept from graphic arts and
newspaper industry, inkjet printing allows for the deposition of versa-
tile materials that enable its direct writing attribute. By virtue of such
flexibility for multi-material and multi-functional capabilities, inkjet
printing has been extensively deployed in broad applications within
health, energy, environment, and electronics areas for the fabrication of
multi-material and multi-functional products such as sensors, optic/
electronic devices and biochips [2–6].

Inkjet printing selectively ejects liquid-phase materials to the

substrate to form the final product. The process involves the ejection of
a fixed quantity of liquid material in a chamber, from a nozzle through
a sudden, quasi-adiabatic reduction of the chamber volume via piezo-
electric action [1]. Responding to the external voltage, the liquid in the
chamber is contracted, and the sudden reduction leads to a shockwave
in the liquid, which causes a liquid drop ejecting from the nozzle [7].
The ejected drop falls under the action of gravity and air resistance until
it reaches on the substrate [8]. An illustration of this process is shown in
Fig. 1. Among various inkjet printing processes, the drop-on-demand
(DOD) method can achieve the highest resolution reported so far [9]. A
suitable technology to produce droplets in DOD mode is the piezo-
electric inkjet (PIJ) process. In the PIJ process, the droplet formation is
governed by tuning the driving electrical signal, various ink properties
(e.g., surface tension, viscosity, density, etc.), and the interaction be-
tween the ink, air, and substrate (e.g., wettability of the nozzle)
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[10,11]. Affected by many factors such as fluid properties, jetting
conditions, and ambient properties, the PIJ process usually requires a
careful-designed and subtle controlling system. Therefore, the most
challenging part of inkjet printing is achieving a consistent droplet
deposition quality, i.e., the reliability and repeatability of the jetting
process, especially when the mass-production of inkjet-printed products
is needed.

Many works have been attempted to investigate the governing
mechanism of the droplet formation to address these challenges. These
works mainly include two categories, physical-driven understanding,
and sensing methods. Physical-based methods tend to find the funda-
mental flow of fluid ink and its properties. For example, several works
used the computational fluid dynamics modeling on the measurements
of material properties [12] (e.g., viscosity) and process parameters [13]
(e.g., contact angle), other works studied the effect of pulse voltage on
droplet behaviors [14]. While the sensing-based methods tried to im-
prove the process quality and reliability through collecting and ana-
lyzing the in-situ process data. For instance, one feedback-feedforward
control system was developed to stabilize the operating conditions of
the electrohydrodynamic jet printing process in [15]. Heterogeneous
sensors were used to achieve the online real-time quality monitoring for
the AM process in [16]. However, when considering the droplet for-
mation behavior of the jetting process, these approaches exhibited
several shortcomings. First of all, physical-driven fluid modeling is in-
herently approximate and lack of direct measurements of fluid flow
patterns, which is revealed critical for inkjet printing processes [1].
Furthermore, many other experimental based methods only consider a
limited process or material parameters on the effect of droplet forming.
It is challenging to get a comprehensive understanding of droplet jetting
behavior and achieve optimal printing quality. Secondly, previous
sensing-based methods usually do not offer direct handling of the actual
flow pattern. Direct imaging provides a direct measurement of ink flow
patterns. Hence, several works used the vision-based system for the
study of flow pattern, e.g., a visualization system of drop-on-demand
inkjet to observe the drop formation and deposition is developed in
[17], and [18] proposed an in-process monitoring system for the elec-
trohydrodynamic inkjet printing using machine vision. Imaging system
was used to monitor the droplet formation process and study the pinch-
off locations for inkjet printing [19], and predictive models were de-
veloped to predict droplet velocity and volume using ensemble learning
[20]. These works use the static images as the study subjects, while the
droplet forming process contains the motion of the drop and its tem-
poral evolution, which could not be captured by the images. Therefore,
to avoid this problem, this paper proposes to use the video as the study
subject, i.e., the video of the droplet ejecting process in the PIJ process
is captured for the measurement of the ink flow pattern. Compared to
the static images used by most existing works [18,21,22], the video
data of the printing process could reflect the motion of the flow pattern.
In addition, the temporal information in the video data can significantly

contribute to the motion of the observed drop and its transformation
undergoing [23,24].

Based on the collected vision data, the information embedded in the
process can be extracted and then further utilized for the process
monitoring and control. Usually, the size of the collected vision data is
vast, especially for the video data. With such large data size, many
works have been attempted to solve problems in the process monitoring
and analysis of vision data by using machine learning methods, espe-
cially with impressive advancement of deep learning methods in recent
years. For example, [25] presented the anomaly detection and classi-
fication method by using a trained computer vision algorithm. Simi-
larly, the application of a supervised machine learning method for de-
fect detection using high-resolution imaging was presented in [21].
Despite the superb performance of machine learning methods for vision
data in AM process monitoring, most of the current works mainly ex-
ploit learning in a supervised manner. Supervised learning requires a
large amount of labeled data, which is usually not easy to collect and
define the ground-truth ones. Even the semi-supervised learning mode
[26] still requires extensive labeled training data to improve network
performance. To eliminate such tedious and laborious effort of defining
ground-truth labels, representing the vision data in an unsupervised
way can primarily facilitate the integration of deep learning methods
with the video-based process monitoring in AM field.

The captured liquid droplet video data are used to investigate the
flow pattern of the ink drop. For exploiting the unsupervised learning of
the video data, the critical insight is that the underlying pattern of the
video data, i.e., the morphology of the droplet and its evolution during
the ejecting process, can be learned. Thus, in this paper, we hypothesize
that with a deep recurrent neural network (DRNN), we can extract such
a pattern of the drop, i.e., the droplet morphology and its phase
transformations, from the recorded video data. To test this hypothesis,
the learned representation is used to predict the future image frames of
the observing object. Then the predicted frames are compared with the
ones in the video itself. Accordingly, we can estimate the prediction
error and evaluate the performance of the unsupervised learning
method.

For the DRNN, a specialized network structure named PredNet [27],
inspired by the predictive coding concept from neuroscience [28–30], is
deployed for the unsupervised learning of the droplet jetting in PIJ
process. To demonstrate that the proposed method can learn the flow
pattern of the droplet in the jetting process, we firstly use a simulation
method to generate synthetic videos from several predefined material
parameters including density, viscosity, and surface tension. Then
through the PredNet for synthetic data learning, the extracted latent
representation is used to predict the future frames of the drop evolu-
tion. Experimental results show that the proposed method exhibits
predicting capabilities for the ink flow pattern. This is important for
achieving the consistent droplet deposition quality as the predicted
flow behavior can be used for printing process stabilization, e.g., with
in-situ process compensation and correction based on the predicted
defects of the droplet. Consistent with the hypothesis, through decoding
the latent generative model of the DRNN to investigate what the model
has learned, we found that the proposed method can successfully learn
the internal representations of flow patterns, which is very useful for
the recognition of process governing parameters. This is also significant
since if we can learn the underlying dynamics of the droplet flow pat-
tern, the video-based unsupervised learning method can provide in-
sightful guidance for designing the process and material parameters to
achieve optimized printing quality. Lastly, the proposed method is ex-
tended to the study of the actual inkjet printing process video data.
Experimental results verify the prediction effectiveness of the proposed
method. It is demonstrated that the proposed method can successfully
learn the latent representation of the droplet flow pattern in the inkjet
printing process. Such latent representation is useful for estimating
process parameters such as voltage and air pressure. To this end, the
main contribution of this paper can be summarized as follows:

Fig. 1. Illustration of inkjet printing process.
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1. The video data of the inkjet printing process is used as the study
subject for investigating the flow pattern and droplet evolution. An
unsupervised learning framework is proposed for the study of col-
lected video data to extract the spatial and temporal information
embedded in the data.

2. The DRNN can learn the internal representation of the process
video, such a representation in latent space is useful for the fore-
casting of droplet jetting behavior.

3. The proposed method can successfully predict droplet evolution
behavior. Furthermore, the learned latent representations support
estimating many hard-to-measure parameters (e.g., voltage and air
pressure) in the printing process.

The remaining parts of this paper are organized as follows: Section 2
summarizes the related works on in-process monitoring of AM and
machine learning-based methods. Section 3 presents the designed fra-
mework for PIJ process monitoring. The experimental results and dis-
cussion are demonstrated in Section 4. Finally, Section 5 concludes the
paper.

2. Related work

2.1. In-situ process monitoring devices of additive manufacturing

The in-situ process monitoring for AM processes is under prompt
development in recent years [31]. Various kinds of sensors and devices
are instrumented in the AM processes for in-situ process monitoring
[31–33]. For fused deposition modeling or fused filament fabrication
process, an integrated measurement system including thermocouple, IR
sensor, accelerometer, and camera were developed [16,34]. These
sensors provided coupled information for process defects modeling and
monitoring. For metal AM processes such as laser powder bed fusion
(LPBF) and selective laser melting (SLM), thermal imaging [35], py-
rometer [31], high-speed imaging [36], and acoustic sensing [37] were
widely used. Novel sensing systems such as inline coherent imaging of
depth [38], neutron diffraction measurement of residual strains and
stresses [39], and laser ultrasonics measurement of material dis-
continuities and material thickness [31] were also proposed.

For the inkjet printing process, which is the focus of this paper, a
machine vision system was designed to allow for printheads calibration,
3D scanning, and process control of a multi-material printing platform
[40]. The droplet formation process of low, medium, and high viscosity
inks were investigated in [41] by recording videos with a high-speed
camera. Additionally, a new monitoring system that can show, within
2 s, the jetting status of a piezo-driven inkjet head was proposed in [42].
A low-cost and in-situ computational light beam field based droplet
micro-sensing technique was studied for inkjet 3D printing quality as-
surance in [43]. Furthermore, a dual camera based catadioptric stereo
system was proposed to measure the piezo self-sensing signals [44].
Based on the moinitoring process, a closed-loop control framework was
presented by seamlessly integrating vision-based technique and neural
network to inspect droplet behaviors and accordingly stabilize the
printing process [45]. See [31] for a comprehensive review for mon-
itoring devices in AM.

2.2. Machine learning methods for process monitoring in additive
manufacturing

The instrumentation above enables the machine learning methods
to perform the AM processes monitoring. As summarized in [46], ma-
chine learning facilitates the learning of fundamental knowledge on AM
processes and provides actionable recommendations to optimize pro-
duct quality. Here, we classify the machine learning methods into su-
pervised, semi-supervised, and unsupervised approaches.

Supervised classification models were the most widely used ap-
proach for monitoring and anomaly identification. For instance, [22]

detected six kinds of layer-wise anomalies: recoater hopping, recoater
streaking, debris, super-elevation, part failure, and incomplete
spreading in LPBF via a convolution neural network (CNN) framework
on video data. In [47], layer-wise visual inspection was performed, and
a support vector machine (SVM) classifier was built for in-process part
qualification. Other than the videos, [37] investigated the monitoring
of SLM build quality using an acoustic emission sensor (fiber Bragg
grating sensor) based on spectral CNN. Semi-supervised learning
models were also used in scenarios where class labels are hard or ex-
pensive to be obtained. In [48], singular value decomposition (SVD)
was used to extract features from photodiode measurements of LPBF,
and a Gaussian mixture model was built for defect classification. Si-
milarly, [26] used a semi-supervised CNN to monitor the average width
and continuity in SLM based on process videos. A third category of the
research falls into the unsupervised learning. In [49], powder bed
images were analyzed to extract bag-of-words features and detect the
six kinds of defects defined in [22]. As another example, [50] used self-
organizing maps to identify the defects in the melt pool images of the
directed energy deposition (DED) process. Recently, there is a growing
area of research that uses multiple sensors’ information and data fusion
to perform process monitoring. For instance, [51] combined powder
flow sensors, rake current, and rake positions in electron beam PBF
systems for defect detection using SVM.

It is worth to mention that the machine learning methods have been
applied broadly to monitor other engineering processes. Interested
readers can refer to [52–54]. However, most of the current works
conducted deep learning in a supervised manner, and this requires ty-
pically a well-defined ground-truth label, which is usually challenging
to define clearly distinguishable ones. What is more, most current CNNs
use static images as the study subject. The lack of temporal information
limits its usage in the data, which requires feature understanding in the
time domain. e.g., motion data. Therefore, in this paper, to investigate
the droplet motion and its behavior evolution, the drop jetting video
data are collected and studied using an unsupervised learning method.

3. Designed framework for printing process vision data learning

The proposed methodology for the unsupervised learning of the
printing process video data is presented in Fig. 2. In this framework,
firstly, the video data of the droplet jetting process are collected
through two different methods: theoretical simulation and physical
experiment, which are illustrated in the upper-left part of Fig. 2, the
details will be introduced in Section 3.1. Then an unsupervised learning
method DRNN (middle-left part of Fig. 2) is proposed to study the
collected video data to understand the droplet evolution process, which
will be introduced in Section 3.2. Experimental results and process
dynamics understanding will be discussed in Section 4.

3.1. Simulation and experimental setup mechanism

In this section, two different types of videos of the droplet evolution
process are collected. The first one is from simulation through the
physical modeling method. The main reason to use the synthetic videos
from the simulation is that the physical model is deterministic, and we
have access to the underlying generative stimulus and all latent para-
meters. Thus we could attain a better understanding of the performance
of the unsupervised learning method as well as the underlying knowl-
edge the model learned from the synthetic videos. The second one is
through experimental recording of the actual droplet jetting from a
vision system in the inkjet printing process.

3.1.1. Synthetic data collection
For the synthetic videos, the droplet formation process is modeled

by a computational fluid dynamics (CFD) model. The Navier–Stokes
equations govern the physical model mass and momentum conservation
for the liquid-gas interface, and it is assumed that the fluids are viscous,
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axisymmetric, and incompressible. The mass conservation condition is
established by,

∇ =u· 0 (1)

where u is the fluid velocity vector. Eq. (1) indicates that the amount of
substance (ink) remains the same during the printing process. The
momentum conservation, which is derived from the second Newton's
law, is represented by,

∂
∂

+ ∇ = ∇ +[ ]ρ
t

σ fu u u( · )
(2)

where ρ is the density, + ∇∂
∂ u u[ ( · ) ]t
u is the acceleration component,

and ∇σ+ f is the total force that entails shear stress (∇σ) and other
external forces (f). ∇σ can be divided into pressure related and viscosity
related componets, which are represented as −∇ p and μ∇2 u, re-
spectively. Thus, Eq. (2) can be rewritten as

= − ∇ + ∇ − ∇ +∂
∂ μ p fu u u( · )t
u 2 . For specific circumstances, Eqs. (1)
and (2) can be derived into different coordinate systems. The con-
tinuous equations are usually turned into stepped discrete form, which
is widely applied by commercial tools. Physical properties such as
density and viscosity follow the rule of volume fraction shown in Eqs.
(3) and 4)) [55–57], which is important because the material to be
printed usually has multiple components.

= + −ρ fρ f ρ(1 )1 2 (3)

=
+ −

μ
fρ μ f ρ μ

ρ
(1 )1 1 1 2

(4)

The constitutive model that describes the inkjet droplet formation
process is solved in ANSYS-Fluent. To start, the geometry of the nozzle
is defined, specifically the nozzle diameter (50 μm). The inner part of
the printhead solution/ink undergoes a wave propagation induced by
the piezoelectric actuation that can be modeled using acoustics [58],
which is out of the scope of this work. This piezoelectric actuation will
determine the initial velocity of the droplet (see Fig. 1), which is de-
fined as a trapezoidal signal (see Fig. 3) in ANSYS-Fluent. Fig. 3 shows
the specific rise time (tR), dwell time (tD), and fall time (tF) used to solve
the problem. Particularly, this waveform is read by ANSYS-Fluent to
mimic the piezoelectric actuation, hence giving the droplets’ initial
velocity. For the simulations, a pressure-based solver is used. The mass

conservation of the velocity field is obtained by solving a pressure
equation, which is derived from the mass continuity and momentum
conservation equations [59]. Additionally, the volume-of-fluid (VOF)
approach, which allows to track the shape and position of the droplets,
is utilized in ANSYS-Fluent. In order to solve the pressure-velocity
coupling problem, we use a fractional step scheme, least squares cell-
based gradient evaluation, pressure staggering option scheme, and
QUICK scheme for quadrilateral and hexahedral meshes. Finally,
ANSYS-Fluent permits to create materials with various physical prop-
erties (i.e., density, viscosity, surface tension, etc.), thus several solu-
tion/inks are used for the simulations.

Once the geometry, initial velocity, solver, and material properties
are specified, a journal file is created from ANSYS-Fluent. This file is
utilized to customize the material properties (see Table 1) of the solu-
tion/inks and to automate the commands for recursive simulations. The
simulations are run by setting the number of cores with 4cores, the time
step size with 9e−08s, number of time steps with 1200steps, the contact
angle with 90°, and the nozzle diameter with 50 μm. Additionally,

Fig. 2. The proposed methodology for the study of inkjet printing process vision data.

Fig. 3. User defined input velocity profile in the simulations.

Table 1
Ranges of the solution/ink properties for video generation.

Material properties Low level High level

Density (kg/m3) 800 8000
Viscosity (kg/m.s) 0.0005 0.15
Surface tension (dyn/cm) 50 80

J. Huang, et al. Additive Manufacturing 35 (2020) 101197

4



different solution/ink properties, as shown in Table 1, are utilized for
the design of experiments (DOE), and then simulations are performed
for each case. Therefore, the synthetic videos are generated. In parti-
cular, simulations are performed based on Latin hypercube design using
min-max criterion [60].

As a result, each video in the synthetic dataset has a unique set of
stimulus parameters, as described in Table 1. For each video, the dro-
plet formation process, from the head of the nozzle to the substrate, is
simulated. Since different types of droplet behaviors reflect various
printability modes, the flow pattern of the flying droplet can be used to
infer the printing quality in the PIJ process.

3.1.2. Experimental data collection
The hardware of our video collection system is shown in Fig. 4. In

this system, a piezo-based micro-dispensing nozzle (MicroFab Inc.) is
used as the inkjet print-head with typical Newtonian liquid to generate
droplets, it has a nozzle size of 50 μm, and the jetting rate can vary from
100 to 1000 droplets per second. A CCD camera (Sensor Technologies
Inc.) coupled with magnification lens works as the video capturing
device in this system. The video resolution in use is 640×480 pixels.
To collect videos of droplet generation process, strobing technology is
also known as synchronized illumination is utilized [61], by tuning the
delay time between the jetting signal and lighting signal of the LED for
illumination, the time between every two frames of the collected video

can be set precisely. In the data collection, this time is fixed to 20 μs. In
this paper, 4K experimental videos are collected for the learning fra-
mework.

3.2. Unsupervised learning of the process vision data

Through the aforementioned two data-collection approaches, the
video of drop ejecting from the nozzle head to the substrate can be
collected. Based on these process vision data, we proposed to use an
unsupervised learning method, DRNN, to study such data. Based on the
observation of the successful unsupervised learning methods in the
existing studies [62,63] and the fact that the drop-flow video has a
spatio-temporal structure, we have the following two hypotheses.

Hypothesis 1 (H1). With DRNN, a latent representation of the video
data can be learned, and such representation can be used for
reproducing the original data.

Hypothesis 1 (H2). Through latent space decoding, the learned
representation can be related to the droplet evolution stimulus
parameters and further supports process dynamics understanding.

As illustrated in the middle part of Fig. 2, if the (H1) is valid, then
based on the learned latent representation, a reproduction of original
data can be mapped from this representation, i.e., a prediction can be
made. By estimating the difference between the original data and the
predictions, we could evaluate the performance of the proposed DRNN.
To test this hypothesis, a PredNet is used to implement the DRNN. The
concept of the PredNet is presented in Fig. 5.

In this DRNN framework, the study subject is the video data of the
printing process. Here, for the sake of simplicity, we represent it in an
image sequence format. Each video consists of a serial of image frames
in the time domain, i.e., the input of DRNN is a sequence of image
frames (xt). Then the input frame sequences pass through a recurrent
neural network (RNN), as shown in Fig. 5. The RNN mainly includes
four blocks (four type of neurons in the network) in the architecture, a
recurrent representation layer Rt

l, a prediction neuron Î t
l
, an input

neuron It
l and an error neuron Et

l, where l is the layer of RNN (l=1, …,
L). In each layer at time t, based on the recurrent neuron Rt

l, we could

obtain the predictions Î t
l
, then the predictions are compared with the

input neuron It
l correspondingly, an error neuron can be calculated

through the comparison. For the input neuron, the lowest layer is set as
the actual image frame, i.e., =I xt t

0 . As can be seen from Fig. 5 the
recurrent neuron Rt

l is calculated according to the upper layer recurrent

Fig. 4. Inkjet printing devices and data collection system.

Fig. 5. The deep recurrent neural network structure used for the printing process video learning, the concept is credited to [27].
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neuron +Rt
l 1, last time frame recurrent neuron and the error neuron,

−Rt
l

1 and −Et
l

1. Specifically, a convolutional LSTM operation [27,64] is
used to update the recurrent neuron.

= ⎧
⎨⎩

=
≤ <

− −

− −
+

R
R E l L
R E R l L

ConvLSTM( , ) if
ConvLSTM( , , UpSample( )) 0t

l t
l

t
l

t
l

t
l

t
l

1 1

1 1
1

(5)

where R E,l l
0 0 are initialized as 0. Based on the recurrent neuron, the

prediction one is computed by using the general convolution operation
in deep learning.

=Î RRelu(Conv( ))t
l

t
l (6)

With the prediction neuron, the error can be calculated by comparing it
to the input neuron. Here the error is split into ReLU-activated positive
and negative prediction errors, and then are concatenated to match
with the feature dimension [27].

= − −ˆ ˆE I I I I[Relu( ); Relu(Relu( )]t
l

t
l

t
l

t
l

t
l (7)

The error neuron is then used to compute the input neuron in upper
layer, also using the general convolution and pooling operation in deep
learning.

= ⎧
⎨⎩

< ≤
=

−I E l L
x l
MaxPool(Relu(Conv( ))) 0

0t
l t

l

t

1

(8)

According to the update rules of each blocks in the network archi-
tecture, we train the image sequences with a loss function ℓtrain. Here
the loss function is to minimize the total weighted error neurons (Et

L),
the weight depends on the time step (wt) and the layer (wl).

∑ ∑ ∑= w w
n

Eℓ
t

t
l

l

l n
t
l

train

l (9)

where nl is the number of neurons in the lth layer.
Based on the DRNN discussed above, we can see that a re-

presentation layer is used for the RNN, which can be seen as a latent
representation of each frame in different time standpoints. To verify the
second hypothesis, (H2), such representation layer is decoded, and its
relation with process governing parameters such as material property is
investigated. A detailed discussion on experimental validation will be
presented in the next section.

4. Experimental results and discussion

4.1. Synthetic video prediction results

To investigate the performance of the proposed in-situ video

learning framework and understand what the representations of the
RNN learned, we firstly used the simulation method to generate syn-
thetic videos of the droplet forming process of the inkjet printing pro-
cess. We have access to all of the parameters and the stimulus me-
chanism for the video synthesis. Comparing to the experimental videos,
which usually includes several types of uncertainty such as humidity
and slight vibrations, the pure simulation videos could help us gain a
well understanding of what the proposed method have learned and how
the learned representations related to the printing process stimulus.
Here, the droplet forming video was generated through the CFD model.
By solving the constitutive model that describes the inkjet droplet for-
mation process in ANSYS, a set of image sequences based on finite
element analysis (FEA) can be generated. In each sequence, ten con-
secutive image frames are sampled for each video. The image pixel size
are 128×320. In this experiment, 10 K sequences are used for training
and 800 for both validation and testing. As regards the network para-
meters settings, the RNN has four layers (L=4) in the architecture. In
all of the convolution operation, the filter size is set as 3×3, and the
max-pooling stride is 2. The number of filters (channels) used for Rl and
Il are both set as (3, 48, 96, 192). The loss function is optimized using
the Adam algorithm with learning rate of 0.001 and β1= 0.9,
β2= 0.999 [65].

In the first experiment, we use the one-step-ahead prediction pat-
tern when training the frame sequences, i.e., the network is predicting
the next frame based on the previous and the current frame. The pre-
dicted results are presented in Fig. 6. 1.0,0.0,0.0 In this Figure, the
model is always predicting one step frame ahead from the current
frames. It can be observed that the first frame is uniform, mainly be-
cause the representation neurons are initialized with 0. Without tem-
poral information incurred, the second predicted frames are approx-
imations of the first frames, as can be seen from the second column of
the predicted frames in Fig. 6. Furthermore, with information of more
time steps, the model can learn an approximate representation of the
underlying dynamics and predict accurate frames as shown in the later
columns of predicted results in Fig. 6.

To quantitatively evaluate the performance of the learning method,
here two metrics, mean-squared error (MSE) and structure similarity
index measure (SSIM) [66], are applied to describe the accuracy of the
prediction method. SSIM is a perceptual metric that quantifies image
quality degradation caused by processing such as data compression or
by losses in data transmission, a larger SSIM indicates better similarity,
with the range of [-1,1]. Here we compared the proposed method with a
trivial solution that is directly copying the last frame. For the training
loss function, to investigate the different weights and their prediction
performances, here two settings as suggested in [27] are used. The first

Fig. 6. One-step-ahead prediction results of the frame sequences in droplet forming process videos.
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one uses loss only concentrating on the lowest layer, i.e.,
= =>w w1, 0l0 0 and denoted as ℓ1, while the other one is also con-

centrating on the lowest layer but enforcing moderate weights on upper
layers, = =>w w1, 0.1l0 0 and denote as ℓ2, the time step weights are
set as = =>w w0, 1t0 0 . The comparison result of three methods on the
testing data set is shown as in Table 2, the metrics are calculated
through averaging all of the predictions after the first time step.

It can be seen from Table 2 that the MSE of the proposed method is
much smaller than simply copying the last frame while has a higher
SSIM. Besides, we can observe that the training loss focus on the lowest
layer performs slightly better than the one with weights of training loss
lightly spread on upper layers. All of these experiments reveal that the
proposed method can learn a latent representation of video data, which
can be used for the predictions of the droplet evolution in the inkjet
printing process. To this end, the first hypothesis, (H1), is validated.

4.2. Multi-step prediction of the video data

In Section 4.1, we can see that the proposed unsupervised learning
method can accurately predict the droplet frames in one time-step
ahead. In practice, it is usually expected a prediction method can pre-
dict a ‘long-term’ results since a long-term prediction in the monitoring
can provide us enough buffer for timely process correction if there is
any anomaly. In order to investigate the extrapolation capability of the
proposed method, we conduct a multi-step droplet jetting behavior
prediction experiment in this section.

To conduct the multi-step prediction, a natural way is to feed the
network with predicted frames instead of the actual images under the
one step ahead prediction architecture. Considering the network need
to take the actual image frames as input to learn the underlying dy-
namics. Therefore, for multi-step prediction, the first few image frames
are using the same principle as the one-step-ahead prediction, while in
the following time step, the predicted frames are fed into the network as
actual input. In the experiment, 15 image frames are used for the
training with the first ten actual image input and the last five frames as
recursively predicting (denoted as ℓt+5 ). With the same network setting
as in Section 4.1, we train the network with 15 frames. Regarding the
first ten images, the error between the actual image and predicted one
is calculated through Eq. (7), while the last five are using the mean
absolute error. The reason is we only consider the difference between
the actual frames and predicted ones rather than the positive/negative
divergence as we feed the predictions as the input. The prediction re-
sults are presented as in Fig. 7.

It can be observed from Fig. 7 with one time ahead prediction (ℓt+1 )
method, the model is reasonably accurate at the beginning (t+2),
however, with time increasing, the predictions naturally breakdown
since there is no information to guide the model to learn the underlying
dynamics. Nevertheless, with the ℓt+5 method, we can see the model
still can predict the droplet jetting behavior. For example, in the first
and second sequence, ℓt+5 can predict the same pinching position,
while the ℓt+1 method predicts a result close to the last seen frame.
Similarly, in the last sequence, the ℓt+5 can predict the similar pinching
behavior (pinching position and type) with the actual case, but the ℓt+1

can only predict an extension of the last seen frame. From this experi-
ment, we can see that with the adjustment of the training loss for multi-
step prediction, and the model exhibits better extrapolation capability.
For a quantitative comparison, the MSE of the predictions from

different methods is shown in Fig. 8.
From Fig. 8, we can see that the MSE of ℓt+5 increases almost lin-

early for 2-10 time steps ahead extrapolation, although our model is
only trained with t+5 prediction. While the ℓt+5 increased almost
twice larger than ℓt+1. It reveals that with the fine-tuning of the training
loss function, the proposed method can make multi-step predictions.

4.3. Latent variable decoding

From the prediction experiments, the results show that the DRNN
can adapt to the underlying dynamics of the droplet forming process.
To investigate how the network learns such representations of the dy-
namics, we conduct a decoding experiment. As mentioned in Section
4.1, the synthetic videos are generated through FEA simulation. In the
simulation videos, three governing parameters, material properties,
density (ρ), viscosity (μ), and surface tension (γ), are selected to create
the simulation video. Thus, the latent parameters of the video data
consist of these three parameters. To understand what the trained
model learned from the data, we decode the latent parameters from the
representation neurons (Rl) in different layers by using lasso regression.
In this regression experiment, the representation neurons in the second
and third-time steps, i.e., Rl

2 and Rl
3, are selected. To verify the decoding

performance, a partial data are randomly selected from the whole da-
taset to extract the implicit information embedded in the representation
neurons of these samples. Hence, the regression is conducted on 3K
training sequences, 1K validation, and testing sequences, respectively.
To reveal the effectiveness of the proposed method, an untrained net-
work with random initial weights is also used in the decoding experi-
ment to compare with ℓ1 and ℓ2 networks.

The decoding accuracy comparison results are presented in Fig. 9.
Several interesting patterns can be observed from the decoding ex-
periment. Firstly we can see with randomly initialized weights in the
network, the network still can obtain a good decoding accuracy for the
viscosity and surface tension parameter. This is mainly because of the
central limit theorem, with the large number of randomized weights in
the network, it is expected to have the above chance of decoding per-
formance [67]. Secondly, the proposed network with two different
weights settings, ℓ1 and ℓ2, achieves very close decoding results for all of
the three parameters, the ℓ1 decodes slightly better than ℓ2 on density
and surface tension. The ℓ2 decodes slightly better than ℓ1 on viscosity.
Lastly, the representations of different layers reveals that the proposed
network can obtain a good decoding accuracy of the three parameters
after the first layer. This suggests that the representation neurons can
adapt to the original data very fast from the first layer, as layer in-
creases, the network can learn the pattern more closely to the original
data. From the above experiments, we can see that the proposed
method can relate the learned latent representations to the process
parameters, which verified the second hypothesis (H2).

4.4. In-situ PIJ video prediction and physical parameters decoding

From the previous sections, we can see that the DRNN has an im-
plicit learning capability to understand the motion of the droplet and its
transformation undergoing on the synthetic videos. To test its perfor-
mance on the real data in the actual printing process, we collected 4K
sequences of the droplet forming process for training through the
system in Section 3.1.2. Here we mainly used the water and ethanol as
the testing materials in the experiment system. In this experiment, one
material is used to record the droplet jetting behavior, and two major
physical parameters are controlled in process, i.e., the air pressure, and
driving voltage. The image frames sampled from the video are cropped
and down-sampled to 128×160 pixels. Similarly, for the hyper-para-
meters setting in the network, ten consecutive image frames are sam-
pled for each video in each sequence. In this experiment, 4K sequences
are used for training and 500 for both validation and testing. As regards
the network parameters settings, the DRNN has five layers (L=5) in

Table 2
Performance comparison of the one-step ahead prediction methods.

MSE SSIM

Copy last frame 2.375×10−3 0.642
ℓ1 0.422×10−3 0.967
ℓ2 0.487×10−3 0.951
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the architecture. In all of the convolution operation, the filter sizes are
set as 3× 3, and the max-pooling stride is 2. The number of filters
(channels) used for Rl and Il are both set as (1, 32, 64, 128, 256). The
loss function is again optimized with the Adam algorithm with default
parameters. The learning rate will be decreased to 0.0001 during the
midpoint of the training.

Sample predictions (loss function ℓ2 ) are presented as in Fig. 10. We

can see that the proposed DRNN has an accurate prediction for the
droplet jetting behaviors. It can be observed that as the time progresses,
the network can adapt to the droplet forming dynamics. At the fourth
and fifth steps, the network can only predict a blur representation of the
droplet. This is mainly because the droplet is not pinched from the
nozzle in the first few time steps, but after the fifth step, the network
can predict certain behavior of the droplet jetting. Besides, the network
can predict different pinch behaviors. For example, in the second se-
quence and third sequence, the droplet forms into two different types,
one is becoming satellites, and another one is clearly pinched with one
droplet. Nevertheless the network can perform a good forecasting, al-
though the droplet in this two sequences are very similar in previous
steps. Again, this experiment validated the proposed hypothesis (H1) in
Section 3.2.

To quantitatively compare the prediction methods, the same metrics
mentioned in Section 4.1 are used, the comparison results are shown in
Table 3. From the table, we can see the network with training loss
function ℓ2 achieves the best performance on the real experimental
data. This reveals that for different tasks, the network performs dif-
ferently with different optimal parameters.

To understand the learned representation, we decode the latent
parameters and apply them to estimate the air pressure and voltage in
the actual printing process. Here we use 1K recorded sequences in this
experiment, then fit a linear fully-connected layer on the learned re-
presentation to estimate the air pressure and voltage of the printing
process. The representation neurons (Rl) in 10th time step are used.
Similarly, an untrained network with random initial weights is also
used to compare with two training loss settings. The estimation results

Fig. 7. Muti-step prediction of the droplet jetting behavior of the PIJ process.

Fig. 8. MSE comparison of multi-step prediction methods.

Fig. 9. Decoding accuracy of latent parameters with different weights settings in the networks.
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are shown in Fig. 11. We can see that with 1K training samples, the
learned representation from DRNN with ℓ1 can outperform 65.4% and
69.5% better than the network with randomized weights when ex-
plaining the voltage and pressure parameters respectively. With 4K
training samples, we can see that the ℓ1 can achieve the estimation
variance of 2.1 V2 and 1.05(inH2O)2 for the voltage and pressure (in
inch of water). All of these experiments suggest that the proposed un-
supervised learning framework can learn a meaningful representation
in latent space, which is helpful for the understanding of droplet dy-
namics and physical parameters estimation. This supports the

hypothesis, as described in (H2). It should be noted that our system
could be capable of using any other liquid materials. Here we mainly
used two materials to collect the vision data of the system, and this
paper we primarily focused on the data analytic of the process video. It
can be extended to any similar materials and process vision data.

5. Conclusion

In this paper, an unsupervised learning framework for the vision
data of the inkjet printing process is proposed for the understanding of
the drop flow pattern of the inkjet printing process and the underlying
dynamics. Two hypotheses are proposed in the learning framework. To
verify these hypotheses, two data collecting approaches are used for the
collection of both simulation and experimental data. The proposed
method is trained with the process video data of the droplet evolution
in the inkjet printing process. Experimental results validate the pro-
posed hypotheses, i.e., the DRNN can learn a latent representation of
the video data, which can be used for the droplet behavior prediction.

Fig. 10. Prediction of the droplet jetting behavior in actual printing process.

Table 3
Metrics comparison with different prediction methods.

MSE SSIM

Copy last frame 0.2073 0.678
ℓ1 0.0238 0.845
ℓ2 0.0109 0.862

Fig. 11. Parameters estimation accuracy.
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To understand what the network learned, the latent representation is
decoded and used for correlating to the process governing stimulus. The
experimental results demonstrate that the DRNN can learn the motion
of the droplet and its forming process, which is useful for the jetting
behavior prediction and supports physical parameters estimation. With
such capabilities, the proposed framework can be further used in the
real-time monitoring of the inkjet printing process. 1.0,0.0,0.0 There
are several limitations of this work. First, the explicit relation between
the learned representation and droplet behavior is not investigated.
Second, how to utilize the learned features for process parameter ad-
justment is not studied. Hence, further work is mainly of two folds. The
first one is to integrate the learned latent representation with high
prediction efficiency of droplet behavior in additive manufacturing.
With such a fast prediction method, the anomaly of the droplet and
printability can be predicted in advance. Since the method has such
prognostic capability, the second one is to incorporate it into the in-situ
real-time monitoring and process control to improve the printing
quality of the inkjet process.
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