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Inkjet printing (IJP) has demonstrated its capabilities to produce high-quality and high-resolution parts, such as
sensors, bio-chips, etc., with outstanding functionality. However, the quality of the printed parts can be en-
dangered by the abnormal droplet jetting behaviors, which are substantially governed by the process dynamics
and ambient conditions. Additionally, the droplet behaviors extensively define the final drop deposition quality
in IJP. Timely capturing and identifying abrupt anomalies that the ejected droplets may suffer from are pri-
mordial for the quality assurance of the printed parts. Machine vision systems are able to record the droplet
videos during IJP. Nevertheless, it is challenging to timely detect the anomalies from the collected droplet videos.
The objective of this work is to build an analytical framework that allows for online droplet anomaly detection
from droplet videos. There are several challenges that have not been addressed before: (1) the features of the
droplet videos need to be extracted in an online fashion; and (2) there is no well-defined baseline to support the
droplet anomalies detection, due to the complex process dynamics. Here, we propose a novel online framework
to efficiently detect the anomalies from process streaming videos. In particular, we extend the multivariate
Bayesian online change detection (BOCD) framework to high-dimensional data (i.e., tensor data of droplet
videos) by leveraging online tensor factorization (OTF). OTF decomposes the streaming data into non-temporal
and temporal low-dimensional factorization matrices. The non-temporal factorization matrices are deployed to
extract the frame-specific temporal factorization matrix within a user-defined sliding window. Subsequently, the
temporal factorization matrix for each frame is monitored with BOCD, which accurately detects anomalies in the
streaming data. The proposed framework is demonstrated by detecting droplet anomalies from streaming data in
1JP, showing excellent accuracy and efficiency.

1. Introduction

Additive manufacturing (AM) is a novel technology that will trans-
form the way products are created and consumed [1]. Inkjet printing
(IJP) is an AM process that is capable of producing parts with
high-quality and high-resolution at micro-scale levels. Particularly, IJP
is realized by the direct deposition of liquid-phase materials (e.g.,
ink/solution droplets at different concentrations) onto a substrate to
form a finished part, as shown in Fig. 1 (a). Due to its noticeable char-
acteristics (e.g., non-contact, high-resolution, low-cost, and scalability
to large manufacturing area [2]), IJP has been able to produce func-
tional parts, such as sensors, optic/electronic devices, biochips, and
scaffolds [3], that have a wide range of applications in the electronics,
energy, environment, and health areas. Among different IJP processes,
the drop-on-demand (DOD) approach can deliver the highest resolution
reported so far [4]. A suitable technology to supply droplets in DOD
mode is the piezoelectric inkjet (P1J) printing process (see Fig. 1), in
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which the droplet behaviors (i.e., ejection, formation, and stability) play
a crucial role towards the quality and repeatability of the printed parts.
The dynamic droplet behaviors are governed by the driving electrical
signal, process back-pressure, ink/solution properties (e.g., surface
tension, viscosity, etc.), and the interaction among ink/solution, air, and
substrate (e.g., wettability of the nozzle) [5]. For instance, different
regimes of back-pressure directly affect the droplet sizes and velocities
[6]. Additionally, external factors, such as air flow, vibration, ambient
temperature, and humidity, can also induce severe droplet changes.
Thus, it is paramount to have a system that is able to timely detect
sudden droplet changes (e.g., droplet size, clogs, etc.) that may derive
into product defects, such as dimension and shape off specifications (see
Fig. 1(b)).

To preserve the quality of the IJP process, several statistical ap-
proaches, such as analysis of variance (ANOVA) and response surface
methodology (RSM) have been used [7]. However, these studies have
restricted their analysis in offline fashion, and online analysis still
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remains a critical challenge. The online droplet behavior can be recor-
ded by computer vision systems, such as charged-couple device (CCD)
camera and high-speed camera. For instance, Lies et al. [8] developed a
vision assisted micro-filament detection method to monitor IJP. This
analysis was limited to detecting whether a micro-filament is present or
not. In addition, Wang et al. [9] developed a catadioptric stereo system
to record droplet location but did not detect its shape changes. Actually,
videos are represented by complex data structure, high-dimensionality
and correlation characteristics, and are non-trivial to analyze [10]. For
example, an image-based process monitoring using low-rank tensor
decomposition was developed to monitor the steel tube manufacturing
[10]. This and other monitoring approaches [11] need a set of baseline
data (i.e., video of the process under control) to build the control charts
offline, which cannot be used in the dynamic IJP processes since it is
extremely hard to obtain the baseline data in IJP.

The objective of this paper is to build a framework that allows for
online droplet anomaly detection from streaming tensor data (i.e.,
droplet videos). In particular, a CCD camera coupled with a magnifying
lens was used to record the videos. Based on these videos, we achieve the
online anomaly detection via extending the Bayesian online change
detection (BOCD) [12] framework to tensor data. Specifically, tensors,
multi-way  generalizations of matrices, can represent a
multi-dimensional complex structure such as frames in a video
recording. Here, the tensor dimensions increase considerably over time,
and extracting features from dynamic tensors is challenging [13]. The
merits of the proposed framework are three-fold: (a) we leverage the
online Candecomp/Parafac (CP) tensor factorization (OnlineCP) [13] to
analyze the IJP videos in real-time, which does not require baseline data
to extract the features of videos. Hence, once the process is initialized,
recurrent batch updates are not required even if the process baseline
changes. (b) The OnlineCP incrementally tracks the CP decomposition of
dynamic tensors, namely IJP video frames, while keeping a relatively
constant computational time to process new incoming frames, and (c)
the BOCD detects the IJP process anomalies in real-time without needing
to know the baseline data.

As will be demonstrated in the Case Study section, the proposed
framework is able to accurately detect the droplet anomalies in the
incoming streaming data. Even though there are several methods dedi-
cated to modeling high-dimensional data and monitoring the extracted
features [10,14], to the best of our knowledge, this is the first study
dedicated to the online detection of sudden changes from videos in IJP.
The accuracy of the proposed framework is evaluated by comparing the
actual versus detected anomalies in the recorded droplet videos under
various conditions. The results showed that the proposed framework has
high accuracy and efficiency. Such a framework is applicable to other
processes, e.g., electrospinning and electrohydrodynamics LJP.

The organization of the paper is as follows. Section 2 will briefly
review related studies on AM monitoring approaches. The proposed
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framework will be described in Section 3. Section 4 will show the
experimental results. Finally, Section 5 will conclude the paper and
discuss the future work.

2. Literature review
2.1. Process improvements in IJP

1JP process has shown capabilities to produce parts with high accu-
racy at macro-scale and micro-scale levels. However, the printed parts’
quality extensively relies on the stability and repeatability of the ejected
droplets, which is not always the case and is intricate to achieve. Thus,
several empirical and analytical studies have been realized in order to
ensure 1JP process performance [15-17].

Empirical models have been most widely explored. On one hand,
several studies have been dedicated to tailoring ink/solutions to assure
product consistency. For example, a high-throughput characterization
methodology of fluid properties to predict droplet ejection for three-
dimensional IJP process was presented in [16]. Wang et al. [18] opti-
mized the IJP process via surface engineering of the substrate, and
printing parameters selection. Lee et al. [19] studied the suppression of
clogging in IJP by optimizing the experimental ink/solution parameters
(e.g., surface tension, viscosity). The Ohnesorge number was deployed
to determine the jettability and non-jettability regimes in the printing of
Zinc Oxide (ZnO). Similar studies can be seen in [20,21]. On the other
hand, solution and process parameters have also been studied by
empirical statistical methods, such as ANOVA and RSM [7], to improve
the IJP process. Abu-Khalaf et al. [15] presented an approach for the
optimization of geometry parameters of inkjet printed silver
nano-particle traces on polydimethylsiloxane (PDMS) substrates using
RSM. Rahul et al. [22] established a Taguchi and ANOVA optimization
approach to improve the fabrication of thick ceramic coatings in the IJP
process. Mueller et al. [23] studied the optimal parameters to improve
the mechanical properties in 3D IJP process. A full factorial design was
used and the improvements in mechanical properties (e.g., elastic
modulus, ultimate tensile strength, etc.) were significant. Other similar
studies can be seen in [24,25].

Analytical models have also been used to predict and control the
droplet dynamics and quality of the printed parts in the IJP process. For
instance, Morrison et al. [26] investigated the effects of viscoelasticity
on drop generation in IJP since ink/solution’s concentration and mo-
lecular weight must be carefully chosen for optimal printing. Van der
Bos et al. [27] realized a comparison of a numerical simulation based on
the slender jet approximation of the Navier-Stokes equations and an
experimental approach, which showed accurate agreement and was
beneficial for the printing process. More examples can be seen in [28,
29].

Although the aforementioned methods have shown to be beneficial
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Fig. 1. A Scheme of the inkjet printing process (IJP): (a) Piezoelectric inkjet (P1J) printing process, and (b) Representative P1J droplet anomalies: (b.1) Normal, (b.2),

Off-trajectory, (b.3) Attached to the nozzle, and (b.4) Blockage.
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to improving the LJP process, they are performed offline, therefore
preventing them from their applicability in real-time monitoring and
control.

2.2. Process monitoring approaches

Image sensors, such as borescope, CCD cameras, etc., are able to
provide a great amount of process information. However, this infor-
mation has not been adequately exploited. In particular, image sensor
information is usually of high frequency and high dimension, and pro-
cessing this information is challenging. To address this, dimensional
reduction techniques, such as principal component analysis (PCA) and
unfolded PCA, are utilized to extract features that will be used for later
analysis. For instance, Khanzadeh et al. [30] presented a process
monitoring of metal-based AM using a multilinear PCA (MPCA) feature
extraction approach, which was applied to thermal image streams. See
other related works in [31-33]. However, these techniques break the
original structure of the data, and this might affect the anomalies
detection accuracy.

Alternatively, tensor decomposition methods preserve the structure
of the original data and have been recently explored in image-based
process monitoring [10,14,33]. Most proposed methods used alter-
nating least squares (ALS) to solve the formulation of the tensor
decomposition, which can be time consuming if continuous updates are
needed due to complex process dynamics, as in the case of IJP. In
addition, the available frameworks require a baseline to determine the
monitoring statistics and control limits for subsequent anomalies
detection, which is a complex task to achieve. To avoid the baseline data
requirement, online feature extraction is paramount. Hawkins et al. [34]
developed a streaming tensor factorization approach via variational
Bayesian inference, which enjoys high accuracy but lacks computational
efficiency. See other methods in [35,36]. Conversely, a faster approach,
namely OnlineCP, is shown by Zhou et al. [13] and will be deployed
here. In particular, this approach is capable to incrementally track the
CP decompositions of dynamic tensors, e.g., [JP droplet video, with an
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arbitrary number of dimensions and has shown good stability, effi-
ciency, and scalability.

Once the online features are available, change point (i.e., anomaly)
detection methods are able to detect anomalies without needing the
baseline data [37,38]. To achieve the online change detection, Adams
et al. [39] developed a BOCD method, where priors for the segment’s
parameters and for the length of the segment are needed for the Bayesian
inference. Kawahara et al. [40] presented an online method for change
point detection in sequential data by deploying direct density-ratio
estimation. Other examples can be seen in [41,42]. Nonetheless, most
of these methods can only be applied to univariate sequential data and
are not feasible to leverage the features extracted from online tensor
factorization. Thus, multivariate change point detection methods are
imperative to identify abrupt anomalies in streaming data. The BOCD
presented in [39] has shown sufficient robustness and has been
expanded to detecting abrupt anomalies in multivariate streaming data
[12]. We will integrate the BOCD and OnlineCP in this paper to effi-
ciently and accurately detect abrupt anomalies from droplet videos in
the IJP process.

3. Proposed framework
3.1. Overview of the proposed framework

A schematic illustration of the proposed framework is presented in
Fig. 2. Fig. 2 (a) shows the IJP setup. The variations of ink/solution,
process, and ambient parameters may induce droplet anomalies (see
examples in Fig. 2 (b)), hence affecting the quality of the printed parts.
As illustrated in Fig. 2 (c), we record droplet videos with a CCD camera
to capture the droplet behaviors. The high-dimensional videos are used
as input data to detecting anomalies. In particular, the videos are firstly
pre-processed as shown in Fig. 2 (d.1) for later analysis. After that, on-
line tensor factorization (OTF), namely OnlineCP [13], is deployed for
feature extraction (see Fig. 2 (d.2)) in a sliding window (sw). The
OnlineCP can efficiently process streaming data (e.g., new video

| T - Tensor Slice of a Tensor Stream {7} |
| 7, - Low-rank Tensor Approximation of a Tensor Slice 7', |
| AD, ..., A™ - Non-temporal Updated Factorization Matrices :
|
|

| of T,
- Temporal Factorization Matrix of 7,

Printed L

Fig. 2. A Schematic illustration of the proposed framework: (a) Inkjet printing (IJP) setup, (b) Droplet changes in IJP, (c) Data acquisition by video recording with a

CCD camera, and (d) Online change detection via OTF and BOCD.
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frames). After OnlineCP, we extract the non-temporal factorization
matrices, speciﬁcallyAm, e AMin Fig. 2 (d.2), and use them to update
the temporal factorization matrix, namely a1, in the specified sw. We
then use BOCD to detect anomalies in each frame based on the updated
temporal factorization matrix. The aforementioned OnlineCP and BOCD
are recursively performed until the end of the streaming data, as shown
in Algorithm 1.

In the proposed method, image pre-processing, streaming data
feature extraction, and anomalies detection are performed online. Thus,
real-time process control could be feasible, which is out of the scope of
this paper and will be investigated in the future. The following section is
dedicated to explaining the details of the proposed framework.

3.2. Setup for video data acquisition

The hardware of our video collection system is shown in Fig. 2 (a).
The droplets are generated by a piezo-based micro-dispensing nozzle
(MicroFab Inc.). This print-head system is suitable for typical Newtonian
ink/solutions, such as water and glycerol. The nozzle’s diameters are
50 ym and 100 ym, as presented in Table 1. The droplet videos are
captured by a CCD camera (Sensor Technologies Inc.) coupled with a
magnification lens. The video resolution is 480 x 640 pixels. Finally,
strobing technology is utilized to capture the droplet at a specific
instance after the droplet is ejected, as shown in Fig. 2 (d.1). The strobe
delay time, time between the jetting signal and lighting signal of the LED
for illumination, was set as shown in Table 1.

3.3. OnlineCP decomposition

The online droplet behaviors are crucial for IJP, and it is challenging
to extract the behavior information from real-time videos. OTF is a
powerful tool to address this issue by exploring and extracting the un-
derlying structure of the multi-way data [13]. The objective of OTF is to
approximate high-dimensional tensors with the tensor product of

low-dimensional non-temporal factorization matrices (e.g., A(l), -

A™) and temporal factorization matrix (e.g., aENH)) in an online

manner, as shown in Fig. 2 (d.2). OTF has been studied under several
low-rank tensor models, such as Tucker [43] and CP [13] decomposi-
tion. We apply the CP decomposition in this study due to its sparse core
tensor structure.

Let {7} be a temporal sequence (i.e., droplet video frames in our
case) of N-way tensors, where t € N is the time index and 7, of
dimension I; x Iy x ... x Iy is a slice (i.e., frame) of the multi-way
stream, see Fig. 3 for an illustration of the data structure. Specifically,
a new incoming slice 7,,, can be approximated by the CP decomposi-

tion: 7,,, = [AY, ...,A(N);ag:l)], where [[e]] is the tensor product,
AM ¢ RVR are the non-temporal factorization matrices, a{* " €

R >R denotes the frame-specific temporal factorization matrix (e.g.,
thew = 1 for a new single incoming video frame), and R is the tensor rank.
The CP decomposition problem can be solved via ALS. However, the
computation time of ALS is intractable for high-dimensional streaming
data. We use the OnlineCP decomposition [13] to tackle this problem.
Without loss of generality, the OnlineCP is illustrated with a third-order
online tensor {7} € R*/*(uttew) where t = tyq + thew, as shown in
Fig. 4. {T,} is expanded from {7,,} € R*/*% by appending new

Table 1
Experimental Settings for the IJP Video Collection.
Video Nozzle Back-pressure Length Delay
(um) (in H,0) (seconds) (us)
(6D] 100 [-6,3] 121 200
2) 50 [- 3.5, 0] 40 250
3) 100 [- 10, 2] 40 250

(€] 100 4 100 250
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incoming data {7,,} € R*/"  which can be a tensor or a set of

multiple tensors. It is assumed that t;,, < t,;q. The CP decomposition of

{T,,} is approximately {7,,} = [Aﬁlld) , Agd), Agj], and the ultimate

objective is to find the CP decomposition [[A(D, A(Z), A(B)]] of {T.}.
The temporal factorization matrix A®) can be computed by:

1
A(”«—arg T(lx?z H {Tt}(3) —A® (A(Z) @A(l))TH;

2
{de}m -AY) (Aa) GA(I))T M

Told
= arg min- ,

40 3) (40 T
{T,.. }(3) —A® (A( ) oAl ))

Inew

F

where | o/ is the Frobenius norm, ® is the Khatri-Rao product. AV

and A® are fixed asA{") and A?) from the previous time. The first row in

Eq. (1) is minimized by Aﬁi , and the optimal solution to minimize the

@ 54D

Lold Loud

;
T
second row is Ag« ={T b} 3) ( (A ) ) , here } represents the

Moore-Penrose pseudoinverse, and finally A® (see line 5 in Algorithm
1) is updated as:
(3)
G _ told
A®

Tnew

A ®))

Told

T\
(o (a2 04)")

Subsequently, the non-temporal factorization matrices A and A®
need to be updated. For instance, A is updated by fixing A® and A®
(see line 3 in Algorithm 1):

1 T
AD arg T}nni I {7} —A“)(A(z) @Am)‘ 112 3)

Define two auxiliary matrices PV =P{")) +P) and Q" = Q! +

thew
1 : N 1 3 2 1
QEM)W n R )’ Pgol; = {Tfﬂld}(l) <A£nln: QA'EM;)’ LA

trew
Tdo (A2 042), ol = (aPal) (a7a2) and o) =
<A%A§3L>O (AE?;AE;;), where o is the Hadamard product. The auxiliary
matrices need to be initialized before the streaming data starts pro-
gressing. To this end, a small partition {7} € R”/*" of data, containing
few 7 slices/video frames 7, are utilized. Naturally, 7 < t,iq. The process
can be generalized for any number of dimensions [13].

Then, the update of AL (see line 3 in Algorithm 1) is executed via
[13].

where

AV pgn™! 4

Note that P{") and Q\!) are computed from the past data, hence only

PV and Q" need to be incrementally updated, thus considerably
saving computational resources. A® can be updated in similar a fashion
to A [13], see line 4 in Algorithm 1.

After the OnlineCP is executed, the non-temporal factorization
matrices, namely AV and A, are updated and deployed to perform the
detection feature extraction within the user-defined sw (see lines 2-8 in
Algorithm 1). We ultimately obtain the temporal factorization matrix

ailf;ll) € R"*R where i € [1, sw] (see line 7 in Algorithm 1), and the
temporal sequence at each sw can be reconstructed as {74} = AV,
A<2);a§¥f+ll)]. In this way, we assure that the features are extracted from
the same vector space. The monitoring statistics (see Fig. 5 (b.2)) are
allocated in the temporal factorization matrix and are the inputs for

subsequent analysis.
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Fig. 3. Streaming data illustration (Third-order Tensor): (a) IJP frames sequence and (b) Sequence representation.
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Fig. 4. OnlineCP tensor decomposition scheme.

3.4. Bayesian online change detection

Algorithm 1. Online video anomaly detection.

input: Streaming data {7}, rank R, sliding window sw, initialized auxiliary matrices
P(N), Q(NJ

output: Anomaly detected (AD)
1 repeat
2 Detection feature extraction;
3 Update A1 = PQM " by fixing A® and A®,
4 Update A® = P2 0@ by fixing AV and A®,

AP
5 Update A®) = t""’ by fixing AV and A®, via Eq. (2);

tnew

6 fori < 1 toswdo
7 Update a ™) = {T}3)(( ) ©AW) )f

t—i+1 T
8 end
9 Anomaly detection within each sw;
10 for t < 1 to sw do
11 Compute predictive probability, p(au, 2" );
12 Compute posterior probability, p (rtlal:t., re1);

(continued on next column)

(continued)

13 Current length, r, = max(p(r¢lai.e,re-1));
14 if r, < r,_; then

15 lastAD = t;

16 else

17 continue;

18 end

19 Update parameters 7,

20 end

21 until 7, is finished;

22 return Detected ADs

Once the monitoring statistics are extracted, a mechanism to find the
anomalies in the IJP videos is required. Although offline detection al-
gorithms usually lead to more accurate results, online detection algo-
rithms are necessary for dynamic systems that require instantaneous
responses [38], as shown in Fig. 5.

BOCD assumes that the temporal factorization matrix can be
modeled with a certain parametric function in each sliding window (see
lines 9-20 in Algorithm 1), and abrupt anomalies in the droplet videos
are detected when the model’s parameters vary. In particular, based on
the prior probability density functions for the segment’s parameters and
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Fig. 5. An Illustration of the BOCD: (a) Sliding window scheme over the streaming data (i.e., IJP videos), and (b) Detection results (e.g., sliding window that contains
the detected anomaly at frame 2449): (b.1) Frames before and after the detected anomaly, and (b.2) Temporal factorization matrix at the detected anomaly.

the length of the segment, and the temporal factorization matrix in the
sliding window [12], BOCD computes the posterior probabilities of the
current run length r; that represents the probability of finding an
anomaly in the recorded droplet video [12] via (see line 12 of Algorithm
1),

p(rlay,ro) =
p(ri-ila@r-1y, ri—2 )p(@ilay. -1, m )p(rilri-1) )
p(al:t)

where p(r:_1la1.-1), -2 ) is the posterior probability at the previous
time, p(a;|a;..-1),7) is the posterior distribution of the temporal factor-
ization matrix at time t, p(r;|r,_; ) is the prior on the segment length, and
p(ay.p is the distribution of the detection features (i.e., vectorized tem-
poral factorization matrix over sw). In the following, we will introduce
each term in Eq. (5).

The posterior distribution for a new observation a, is calculated as
pladar.-1),n) = [p(ald,n)p(Blai.—1),n)dd, where 0 is a vector of
segment parameters, with its hyperparameters 7. Here, p(a,|0,7) is the
conjugate prior to p(atlalz(t,l),r] ), thus the posterior probability for the
incoming data can be found analytically and has the same form of the
prior (see line 11 of Algorithm 1). Under the assumption that the
incoming data follow a multivariate Gaussian distribution N(g,ZX),
BOCD detects the possible changes in g and X. In particular, the posterior

predictive probability, p(a,|u™, 2 ) will follow a normal inverse
Wishart (NIW) distribution. In addition, following [12], the prior on the
segment length is assumed to have a constant rate ¢, and is represented
by p(relre-1) = é

As a result, the posterior in Eq. (5) can be computed to detect the
droplet anomalies (see Fig. 5 (b)), represented by changes in p and X.
The posterior is updated for each droplet video frame in the sliding
window (see lines 9-20 of Algorithm 1), and Algorithm 1 returns the
detected anomalies as the streaming data progress.

4. Case study

As mentioned in the Introduction, the timely droplet anomalies
detection is crucial for the quality preservation of printed parts in the [JP
process. For instance, droplet behaviors, such as the ones in Fig. 2
(b.2-b.4), may cause severe defects in the printed parts, hence affecting
product functionality. In this section, we demonstrate the proposed
framework for the timely and accurate droplet anomalies detection in
the IJP process.

We used distilled water as ink/solution, and filled it into a syringe
container (i.e., material reservoir in Fig. 2 (a)). The droplets were
ejected and recorded as specified in Section 3.2, and we collected 4
videos using different settings (i.e., nozzle diameter, back-pressure, and
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video length), as shown in Table 1. Here, video (1) and videos (2)-(4)
were recorded with strobing delays of 200us and 250us, respectively,
and at 30 fps.

We run Algorithm 1 on a desktop with an Intel(R) Xeon(R) W-2145
CPU @3.70 GHz and 64.0 GB of RAM. First, every incoming video frame
T, € R*9%640 which represents 1.5 mm x 2 mm in the physical area and
1pixel = 3.125 um?, is pre-processed as shown in Fig. 2 (d.1). During the
pre-processing, we extract the sub-area corresponding to the shape of
the droplet and further downsample (in terms of resolution) the image.
As a result, we have 7, € R3°*>* after the pre-processing.

We then perform the OnlineCP where the rank R and sliding window
sw, are chosen as 5 and 60, respectively. After extensive simulation, it is
determined that ranks R > 5 are sufficient to properly approximate the
streaming tensor data in our case (see Figs. 6 (a) and 8 (a.3)). The sw size
is determined to have a trade-off between anomaly detection accuracy
and speed. Particularly, a too short sw may not guarantee the detection
of anomaly since the BOCD method needs to gather evidence (some
frames before and after an anomaly occurs) to determine whether an
anomaly happens or not, while a too large sw will drastically affect the
computational efficiency. Typically, sw > 50 is recommended to guar-
antee statistical significance and detect anomalies [44]. Therefore, we
chose sw to cover 2 s (i.e., sw = 60) of the recorded IJP videos. After
OnlineCP, we get the non-temporal factorization matrices, A" € R30*R
and A® € R®**R_ and these are used to update the detection features
a® e R*R in the specified sliding window (see Fig. 5 (b)). Concisely,
sw corresponds to the number of frames that entails the sliding window.
Finally, the detection features allocated in the vectorized temporal
factorization matrices a® serve as the inputs for BOCD. The droplet
anomalies are detected accurately, see representative examples in Fig. 6
(b). In the following, we use video (1) to demonstrate the anomaly
detection results and computational performance. Fig. 6 (a) shows the
tensor reconstruction results for frames 550 and 564, the first pair of
actual and detected anomalies. From Fig. 6 (a), the OnlineCP can
accurately approximate the streaming video. As shown in Fig. 6 (b), the
anomaly starts some frames before it is detected, and this is because
BOCD needs to accumulate some frames to corroborate that a change
really happens. In addition, the performance of BOCD is affected by the
distribution properties of the features extracted from OnlineCP, hence
the closer to a normal distribution the features are, the better the BOCD
performs. For instance, Fig. 7 (a-b) show QQ plots corresponding to
features extracted from two different segments. The latter derives into
relatively big detection delays, where the anomaly is detected at frame
632, while the corresponding actual anomaly happens at frame 615. The
time consumption of Algorithm 1 per frame (i.e., from line 2 to line 20,
including OnlineCP, detection feature extraction, and BOCD) is reported
in Fig. 7 (c), where the worst-case scenario takes 0.0300 s and the
best-case scenario takes 0.0161 s (the average time is 0.0246 s). Based
on the average time to process a frame in the streaming video, the
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proposed framework is able to analyze up to 40 fps, which is fast enough
for online anomaly detection in our case.

Additional analysis is performed to study the effects of varying R and
sw on the proposed framework, as shown in Fig. 8. Fig. 8 (a.1) and (b.1)
show how the accuracy of the proposed framework is impacted by the R
and sw selection. Large values of R and sw will not necessarily increase
the detection accuracy of the method. For instance, high rank values
may not guarantee the normality assumption of the extracted features
and this impacts the detection accuracy of the BOCD (see Fig. 8 (a.1)).
On the other hand, large sw sizes may include multiple change points
within each sliding window [44], hence disturbing the detection accu-
racy (see Fig. 8 (b.1)). Furthermore, as expected, large values of R and sw
will increase the computational time per frame processed, as shown in
Fig. 8 (a.2) and (b.2), respectively. Fig. 8 (a.3) shows that higher ranks
benefit the IJP streaming video frames reconstruction. The R and sw
selection is a case-specific process and depends on system setup, camera,
etc.

The proposed framework was also evaluated under different settings,
namely nozzle size and back-pressure, as shown in the videos (2)-(4) of
Table 1. The detection results and comparison are shown in Fig. 9, where
Fig. 9 (a) shows a normal droplet evolution at different strobing delays,
Fig. 9 (b.1-b.2) display a comparison of the detection results for
different settings (videos (2)—(3) in Table 1), and Fig. 9 (b.3) presents a
normal process where no anomalies happen in the IJP process (video (4)
in Table 1). If the droplet is adequately formed at initial stages (e.g.,
100 ps), it is very likely to have a droplet of good quality for the printing
process, see strobing delay 1000 us in Fig. 9 (a). Consequently, the
comparison was performed at a strobing delay of 250 us. Fig. 9 (b.1)
shows the actual and detected frames of anomalies for IJP with a nozzle
diameter of 50 um. After varying the back-pressure, at frame 720 the
droplet suffers from a displacement to the right of the nozzle and sub-
sequently a satellite surrounds the droplet at frame 762, and these
anomalies were timely detected by the proposed method. Furthermore,
Fig. 9 (b.2) shows actual and detected frames for severe anomalies
induced by the settings displayed in video (3) of Table 1. Here, the initial
droplet is shown to be normal, and once the back-pressure is severely
increased, a blockage is generated as shown in frame 149 (absence of
droplet). Afterwards, the pressure was drastically increased causing an
overflow, as can be seen in frame 820. These anomalies were accurately
detected. Finally, Fig. 9 (b.3) shows a droplet that does not suffer from
any anomaly during the process, and the proposed framework did not
detect any change as the streaming, i.e., IJP video, progressed.

The capabilities of the proposed framework were hitherto demon-
strated by Figs. 6-9. Complementary to this, we numerically evaluate
the detection performance with anomaly detection precision, recall, and
F—1 measures for time series [45]. Traditionally, these metrics have
been concerned with evaluating point-based anomalies, while our case
requires range-based evaluation since the IJP anomalies occur over the
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BOCD BOCD :
e MW W
|
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Fig. 6. Proposed framework detection results: (a) Observed and reconstructed tensors (i.e., video frames) and (b) Representative actual versus detected droplet

anomalies frames in various scenarios.
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Recall = 7%, where TP is true positive, FP is false positive, and FN is
false negative, Tatbul et al. [45] extended these concepts to range-based
evaluations. Specifically, these metrics are performed on the overlap
between the actual and detected ranges [45]. For example, the actual
range of frames [550,615] and the detected range of frames [564,632] in
Fig. 6(b).

Fig. 10 shows an overall evaluation for the performance of the pro-
posed framework. Generally, the larger the overlap between actual and
detected ranges, the higher the measures are going to be. From Fig. 10,
the proposed framework can timely and accurately detect the anomalies
in the IJP process. Although our method showed to be very accurate
when drastic anomalies happen (Fig. 9 (b.2)), a detection delay occurs
when the anomalies progressively appear (Fig. 6 (b)), and this is re-
flected on the measures of video (1) in Fig. 10. Nevertheless, the delay
for the worst case scenario in video (1) is 17 frames, which is approxi-
mately 0.57 s delay, and this will not hamper the anomalies detection.

course of time. Based on the classical definitions of Precision = and

In summary, the proposed online droplet anomaly detection frame-
work can accurately and efficiently detect the anomalies in IJP and can
pave the way for achieving real-time control. The proposed framework
can be applied to a broad range of ink/solution materials, since it only
depends on the droplet videos (i.e., shape of the droplets regardless of
the material), and other fast changing processes.

5. Conclusion and discussion

IJP is capable of producing parts with high-quality and high-
resolution using a wide variety of materials. However, the droplet
behavior is vulnerable to a lot of dynamic process and ambient condi-
tions, and the quality of the printed parts can be harmed by the abrupt
droplet anomalies. Detecting these abrupt anomalies is important but
has been very challenging in the literature. In this work, we propose an
online framework that is capable to timely detect anomalies from real-
time videos. The novelties of this paper include the online change
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detection of the streaming data, and no baseline data is required for
feature extraction and subsequent anomalies identification. The pro-
posed framework detection and computational performance show
promising results towards achieving real-time change detection and
control in IJP processes. The framework can be applied to problems with
streaming data recorded from other AM processes and beyond with
complex process dynamics.

There are several potential research directions that can be pursued in
the future. One direction is to further accelerate the OTF by incorpo-
rating compressed sketch multiplications into the OnlineCP method.
Another direction is to extend this framework so that it can handle non-
parametric streaming data. Finally, hardware capabilities may cause
detection delays, which may affect the framework performance.

Incorporating advanced hardware modules might reduce not only the
computational time of running the algorithm but also the operational
time cost, which will be investigated in the future.
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