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A B S T R A C T   

Inkjet printing (IJP) has demonstrated its capabilities to produce high-quality and high-resolution parts, such as 
sensors, bio-chips, etc., with outstanding functionality. However, the quality of the printed parts can be en
dangered by the abnormal droplet jetting behaviors, which are substantially governed by the process dynamics 
and ambient conditions. Additionally, the droplet behaviors extensively define the final drop deposition quality 
in IJP. Timely capturing and identifying abrupt anomalies that the ejected droplets may suffer from are pri
mordial for the quality assurance of the printed parts. Machine vision systems are able to record the droplet 
videos during IJP. Nevertheless, it is challenging to timely detect the anomalies from the collected droplet videos. 
The objective of this work is to build an analytical framework that allows for online droplet anomaly detection 
from droplet videos. There are several challenges that have not been addressed before: (1) the features of the 
droplet videos need to be extracted in an online fashion; and (2) there is no well-defined baseline to support the 
droplet anomalies detection, due to the complex process dynamics. Here, we propose a novel online framework 
to efficiently detect the anomalies from process streaming videos. In particular, we extend the multivariate 
Bayesian online change detection (BOCD) framework to high-dimensional data (i.e., tensor data of droplet 
videos) by leveraging online tensor factorization (OTF). OTF decomposes the streaming data into non-temporal 
and temporal low-dimensional factorization matrices. The non-temporal factorization matrices are deployed to 
extract the frame-specific temporal factorization matrix within a user-defined sliding window. Subsequently, the 
temporal factorization matrix for each frame is monitored with BOCD, which accurately detects anomalies in the 
streaming data. The proposed framework is demonstrated by detecting droplet anomalies from streaming data in 
IJP, showing excellent accuracy and efficiency.   

1. Introduction 

Additive manufacturing (AM) is a novel technology that will trans
form the way products are created and consumed [1]. Inkjet printing 
(IJP) is an AM process that is capable of producing parts with 
high-quality and high-resolution at micro-scale levels. Particularly, IJP 
is realized by the direct deposition of liquid-phase materials (e.g., 
ink/solution droplets at different concentrations) onto a substrate to 
form a finished part, as shown in Fig. 1 (a). Due to its noticeable char
acteristics (e.g., non-contact, high-resolution, low-cost, and scalability 
to large manufacturing area [2]), IJP has been able to produce func
tional parts, such as sensors, optic/electronic devices, biochips, and 
scaffolds [3], that have a wide range of applications in the electronics, 
energy, environment, and health areas. Among different IJP processes, 
the drop-on-demand (DOD) approach can deliver the highest resolution 
reported so far [4]. A suitable technology to supply droplets in DOD 
mode is the piezoelectric inkjet (PIJ) printing process (see Fig. 1), in 

which the droplet behaviors (i.e., ejection, formation, and stability) play 
a crucial role towards the quality and repeatability of the printed parts. 
The dynamic droplet behaviors are governed by the driving electrical 
signal, process back-pressure, ink/solution properties (e.g., surface 
tension, viscosity, etc.), and the interaction among ink/solution, air, and 
substrate (e.g., wettability of the nozzle) [5]. For instance, different 
regimes of back-pressure directly affect the droplet sizes and velocities 
[6]. Additionally, external factors, such as air flow, vibration, ambient 
temperature, and humidity, can also induce severe droplet changes. 
Thus, it is paramount to have a system that is able to timely detect 
sudden droplet changes (e.g., droplet size, clogs, etc.) that may derive 
into product defects, such as dimension and shape off specifications (see 
Fig. 1(b)). 

To preserve the quality of the IJP process, several statistical ap
proaches, such as analysis of variance (ANOVA) and response surface 
methodology (RSM) have been used [7]. However, these studies have 
restricted their analysis in offline fashion, and online analysis still 
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remains a critical challenge. The online droplet behavior can be recor
ded by computer vision systems, such as charged-couple device (CCD) 
camera and high-speed camera. For instance, Lies et al. [8] developed a 
vision assisted micro-filament detection method to monitor IJP. This 
analysis was limited to detecting whether a micro-filament is present or 
not. In addition, Wang et al. [9] developed a catadioptric stereo system 
to record droplet location but did not detect its shape changes. Actually, 
videos are represented by complex data structure, high-dimensionality 
and correlation characteristics, and are non-trivial to analyze [10]. For 
example, an image-based process monitoring using low-rank tensor 
decomposition was developed to monitor the steel tube manufacturing 
[10]. This and other monitoring approaches [11] need a set of baseline 
data (i.e., video of the process under control) to build the control charts 
offline, which cannot be used in the dynamic IJP processes since it is 
extremely hard to obtain the baseline data in IJP. 

The objective of this paper is to build a framework that allows for 
online droplet anomaly detection from streaming tensor data (i.e., 
droplet videos). In particular, a CCD camera coupled with a magnifying 
lens was used to record the videos. Based on these videos, we achieve the 
online anomaly detection via extending the Bayesian online change 
detection (BOCD) [12] framework to tensor data. Specifically, tensors, 
multi-way generalizations of matrices, can represent a 
multi-dimensional complex structure such as frames in a video 
recording. Here, the tensor dimensions increase considerably over time, 
and extracting features from dynamic tensors is challenging [13]. The 
merits of the proposed framework are three-fold: (a) we leverage the 
online Candecomp/Parafac (CP) tensor factorization (OnlineCP) [13] to 
analyze the IJP videos in real-time, which does not require baseline data 
to extract the features of videos. Hence, once the process is initialized, 
recurrent batch updates are not required even if the process baseline 
changes. (b) The OnlineCP incrementally tracks the CP decomposition of 
dynamic tensors, namely IJP video frames, while keeping a relatively 
constant computational time to process new incoming frames, and (c) 
the BOCD detects the IJP process anomalies in real-time without needing 
to know the baseline data. 

As will be demonstrated in the Case Study section, the proposed 
framework is able to accurately detect the droplet anomalies in the 
incoming streaming data. Even though there are several methods dedi
cated to modeling high-dimensional data and monitoring the extracted 
features [10,14], to the best of our knowledge, this is the first study 
dedicated to the online detection of sudden changes from videos in IJP. 
The accuracy of the proposed framework is evaluated by comparing the 
actual versus detected anomalies in the recorded droplet videos under 
various conditions. The results showed that the proposed framework has 
high accuracy and efficiency. Such a framework is applicable to other 
processes, e.g., electrospinning and electrohydrodynamics IJP. 

The organization of the paper is as follows. Section 2 will briefly 
review related studies on AM monitoring approaches. The proposed 

framework will be described in Section 3. Section 4 will show the 
experimental results. Finally, Section 5 will conclude the paper and 
discuss the future work. 

2. Literature review 

2.1. Process improvements in IJP 

IJP process has shown capabilities to produce parts with high accu
racy at macro-scale and micro-scale levels. However, the printed parts’ 
quality extensively relies on the stability and repeatability of the ejected 
droplets, which is not always the case and is intricate to achieve. Thus, 
several empirical and analytical studies have been realized in order to 
ensure IJP process performance [15–17]. 

Empirical models have been most widely explored. On one hand, 
several studies have been dedicated to tailoring ink/solutions to assure 
product consistency. For example, a high-throughput characterization 
methodology of fluid properties to predict droplet ejection for three- 
dimensional IJP process was presented in [16]. Wang et al. [18] opti
mized the IJP process via surface engineering of the substrate, and 
printing parameters selection. Lee et al. [19] studied the suppression of 
clogging in IJP by optimizing the experimental ink/solution parameters 
(e.g., surface tension, viscosity). The Ohnesorge number was deployed 
to determine the jettability and non-jettability regimes in the printing of 
Zinc Oxide (ZnO). Similar studies can be seen in [20,21]. On the other 
hand, solution and process parameters have also been studied by 
empirical statistical methods, such as ANOVA and RSM [7], to improve 
the IJP process. Abu-Khalaf et al. [15] presented an approach for the 
optimization of geometry parameters of inkjet printed silver 
nano-particle traces on polydimethylsiloxane (PDMS) substrates using 
RSM. Rahul et al. [22] established a Taguchi and ANOVA optimization 
approach to improve the fabrication of thick ceramic coatings in the IJP 
process. Mueller et al. [23] studied the optimal parameters to improve 
the mechanical properties in 3D IJP process. A full factorial design was 
used and the improvements in mechanical properties (e.g., elastic 
modulus, ultimate tensile strength, etc.) were significant. Other similar 
studies can be seen in [24,25]. 

Analytical models have also been used to predict and control the 
droplet dynamics and quality of the printed parts in the IJP process. For 
instance, Morrison et al. [26] investigated the effects of viscoelasticity 
on drop generation in IJP since ink/solution’s concentration and mo
lecular weight must be carefully chosen for optimal printing. Van der 
Bos et al. [27] realized a comparison of a numerical simulation based on 
the slender jet approximation of the Navier-Stokes equations and an 
experimental approach, which showed accurate agreement and was 
beneficial for the printing process. More examples can be seen in [28, 
29]. 

Although the aforementioned methods have shown to be beneficial 

Fig. 1. A Scheme of the inkjet printing process (IJP): (a) Piezoelectric inkjet (PIJ) printing process, and (b) Representative PIJ droplet anomalies: (b.1) Normal, (b.2), 
Off-trajectory, (b.3) Attached to the nozzle, and (b.4) Blockage. 
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to improving the IJP process, they are performed offline, therefore 
preventing them from their applicability in real-time monitoring and 
control. 

2.2. Process monitoring approaches 

Image sensors, such as borescope, CCD cameras, etc., are able to 
provide a great amount of process information. However, this infor
mation has not been adequately exploited. In particular, image sensor 
information is usually of high frequency and high dimension, and pro
cessing this information is challenging. To address this, dimensional 
reduction techniques, such as principal component analysis (PCA) and 
unfolded PCA, are utilized to extract features that will be used for later 
analysis. For instance, Khanzadeh et al. [30] presented a process 
monitoring of metal-based AM using a multilinear PCA (MPCA) feature 
extraction approach, which was applied to thermal image streams. See 
other related works in [31–33]. However, these techniques break the 
original structure of the data, and this might affect the anomalies 
detection accuracy. 

Alternatively, tensor decomposition methods preserve the structure 
of the original data and have been recently explored in image-based 
process monitoring [10,14,33]. Most proposed methods used alter
nating least squares (ALS) to solve the formulation of the tensor 
decomposition, which can be time consuming if continuous updates are 
needed due to complex process dynamics, as in the case of IJP. In 
addition, the available frameworks require a baseline to determine the 
monitoring statistics and control limits for subsequent anomalies 
detection, which is a complex task to achieve. To avoid the baseline data 
requirement, online feature extraction is paramount. Hawkins et al. [34] 
developed a streaming tensor factorization approach via variational 
Bayesian inference, which enjoys high accuracy but lacks computational 
efficiency. See other methods in [35,36]. Conversely, a faster approach, 
namely OnlineCP, is shown by Zhou et al. [13] and will be deployed 
here. In particular, this approach is capable to incrementally track the 
CP decompositions of dynamic tensors, e.g., IJP droplet video, with an 

arbitrary number of dimensions and has shown good stability, effi
ciency, and scalability. 

Once the online features are available, change point (i.e., anomaly) 
detection methods are able to detect anomalies without needing the 
baseline data [37,38]. To achieve the online change detection, Adams 
et al. [39] developed a BOCD method, where priors for the segment’s 
parameters and for the length of the segment are needed for the Bayesian 
inference. Kawahara et al. [40] presented an online method for change 
point detection in sequential data by deploying direct density-ratio 
estimation. Other examples can be seen in [41,42]. Nonetheless, most 
of these methods can only be applied to univariate sequential data and 
are not feasible to leverage the features extracted from online tensor 
factorization. Thus, multivariate change point detection methods are 
imperative to identify abrupt anomalies in streaming data. The BOCD 
presented in [39] has shown sufficient robustness and has been 
expanded to detecting abrupt anomalies in multivariate streaming data 
[12]. We will integrate the BOCD and OnlineCP in this paper to effi
ciently and accurately detect abrupt anomalies from droplet videos in 
the IJP process. 

3. Proposed framework 

3.1. Overview of the proposed framework 

A schematic illustration of the proposed framework is presented in  
Fig. 2. Fig. 2 (a) shows the IJP setup. The variations of ink/solution, 
process, and ambient parameters may induce droplet anomalies (see 
examples in Fig. 2 (b)), hence affecting the quality of the printed parts. 
As illustrated in Fig. 2 (c), we record droplet videos with a CCD camera 
to capture the droplet behaviors. The high-dimensional videos are used 
as input data to detecting anomalies. In particular, the videos are firstly 
pre-processed as shown in Fig. 2 (d.1) for later analysis. After that, on
line tensor factorization (OTF), namely OnlineCP [13], is deployed for 
feature extraction (see Fig. 2 (d.2)) in a sliding window (sw). The 
OnlineCP can efficiently process streaming data (e.g., new video 

Fig. 2. A Schematic illustration of the proposed framework: (a) Inkjet printing (IJP) setup, (b) Droplet changes in IJP, (c) Data acquisition by video recording with a 
CCD camera, and (d) Online change detection via OTF and BOCD. 
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frames). After OnlineCP, we extract the non-temporal factorization 
matrices, specifically A(1), …, A(N) in Fig. 2 (d.2), and use them to update 
the temporal factorization matrix, namely a(N+1), in the specified sw. We 
then use BOCD to detect anomalies in each frame based on the updated 
temporal factorization matrix. The aforementioned OnlineCP and BOCD 
are recursively performed until the end of the streaming data, as shown 
in Algorithm 1. 

In the proposed method, image pre-processing, streaming data 
feature extraction, and anomalies detection are performed online. Thus, 
real-time process control could be feasible, which is out of the scope of 
this paper and will be investigated in the future. The following section is 
dedicated to explaining the details of the proposed framework. 

3.2. Setup for video data acquisition 

The hardware of our video collection system is shown in Fig. 2 (a). 
The droplets are generated by a piezo-based micro-dispensing nozzle 
(MicroFab Inc.). This print-head system is suitable for typical Newtonian 
ink/solutions, such as water and glycerol. The nozzle’s diameters are 
50 μm and 100 μm, as presented in Table 1. The droplet videos are 
captured by a CCD camera (Sensor Technologies Inc.) coupled with a 
magnification lens. The video resolution is 480 × 640 pixels. Finally, 
strobing technology is utilized to capture the droplet at a specific 
instance after the droplet is ejected, as shown in Fig. 2 (d.1). The strobe 
delay time, time between the jetting signal and lighting signal of the LED 
for illumination, was set as shown in Table 1. 

3.3. OnlineCP decomposition 

The online droplet behaviors are crucial for IJP, and it is challenging 
to extract the behavior information from real-time videos. OTF is a 
powerful tool to address this issue by exploring and extracting the un
derlying structure of the multi-way data [13]. The objective of OTF is to 
approximate high-dimensional tensors with the tensor product of 
low-dimensional non-temporal factorization matrices (e.g., A(1), …, 
A(N)) and temporal factorization matrix (e.g., a(N+1)

t ) in an online 
manner, as shown in Fig. 2 (d.2). OTF has been studied under several 
low-rank tensor models, such as Tucker [43] and CP [13] decomposi
tion. We apply the CP decomposition in this study due to its sparse core 
tensor structure. 

Let {𝒯 t} be a temporal sequence (i.e., droplet video frames in our 
case) of N-way tensors, where t ∈ N is the time index and 𝒯 t of 
dimension I1 × I2 × … × IN is a slice (i.e., frame) of the multi-way 
stream, see Fig. 3 for an illustration of the data structure. Specifically, 
a new incoming slice 𝒯 tnew can be approximated by the CP decomposi
tion: 𝒯 tnew = [[A(1), …, A(N); a(N+1)

tnew ]], where [[•]] is the tensor product, 

A(N) ∈ RIN×R are the non-temporal factorization matrices, a(N+1)
tnew ∈

Rtnew×R denotes the frame-specific temporal factorization matrix (e.g., 
tnew = 1 for a new single incoming video frame), and R is the tensor rank. 
The CP decomposition problem can be solved via ALS. However, the 
computation time of ALS is intractable for high-dimensional streaming 
data. We use the OnlineCP decomposition [13] to tackle this problem. 
Without loss of generality, the OnlineCP is illustrated with a third-order 
online tensor {𝒯 t} ∈ RI×J×(told+tnew), where t = told + tnew, as shown in  
Fig. 4. {𝒯 t} is expanded from {𝒯 told } ∈ RI×J×told by appending new 

incoming data {𝒯 tnew } ∈ RI×J×tnew , which can be a tensor or a set of 
multiple tensors. It is assumed that tnew ≪ told. The CP decomposition of 
{𝒯 told } is approximately {𝒯 told } = [[A(1)

told
, A(2)

told
, A(3)

told
]], and the ultimate 

objective is to find the CP decomposition [[A(1), A(2), A(3)]] of {𝒯 t}. 
The temporal factorization matrix A(3) can be computed by: 

A(3)←arg min
A(3)

1
2

‖ {𝒯 t}(3) −A(3)
(
A(2) ⊙ A(1)

)T
‖

2
F

= arg min
A(3)

1
2

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

⎡

⎢
⎢
⎣

{𝒯 told }(3) −A(3)
told

(
A(2) ⊙ A(1)

)T

{𝒯 tnew }(3) −A(3)
tnew

(
A(2) ⊙ A(1)

)T

⎤

⎥
⎥
⎦

⃦
⃦
⃦
⃦
⃦
⃦
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⃦

2

F

,

(1) 

where ‖•‖F is the Frobenius norm, ⊙ is the Khatri-Rao product. A(1) 

and A(2) are fixed as A(1)
told 

and A(2)
told 

from the previous time. The first row in 
Eq. (1) is minimized by A(3)

told
, and the optimal solution to minimize the 

second row is A(3)
tnew

= {𝒯 tnew }(3)

((
A(2)

told
⊙ A(1)

told

)T
)†

, here † represents the 

Moore-Penrose pseudoinverse, and finally A(3) (see line 5 in Algorithm 
1) is updated as: 

A(3) =

⎡

⎣
A(3)

told

A(3)
tnew

⎤

⎦

=

⎡

⎢
⎢
⎣

A(3)
told

{𝒯 tnew }(3)

((
A(2)

told
⊙ A(1)

told

)T
)†

⎤

⎥
⎥
⎦

(2) 

Subsequently, the non-temporal factorization matrices A(1) and A(2) 

need to be updated. For instance, A(1) is updated by fixing A(2) and A(3) 

(see line 3 in Algorithm 1): 

A(1)←arg min
A(1)

1
2

‖ {𝒯 t}(1) −A(1)
(
A(2) ⊙ A(3)

)T
‖

2
F (3) 

Define two auxiliary matrices P(1) = P(1)
told

+ P(1)
tnew 

and Q(1) = Q(1)
told

+

Q(1)
tnew 

in R(N), where P(1)
told

= {𝒯 told }(1)

(
A(3)

told
⊙ A(2)

told

)
, P(1)

tnew
=

{𝒯 tnew }(1)

(
A(3)

tnew
⊙ A(2)

told

)
, Q(1)

told
=

(
A(3)

tTold
A(3)

told

)◦(
A(2)

tTold
A(2)

told

)
and Q(1)

tnew
=

(
A(3)

tTnew
A(3)

tnew

)◦(
A(2)

tTold
A(2)

told

)
, where ∘ is the Hadamard product. The auxiliary 

matrices need to be initialized before the streaming data starts pro
gressing. To this end, a small partition {𝒯 τ} ∈ RI×J×τ of data, containing 
few τ slices/video frames 𝒯 , are utilized. Naturally, τ ≪ told. The process 
can be generalized for any number of dimensions [13]. 

Then, the update of A(1) (see line 3 in Algorithm 1) is executed via 
[13]. 

A(1)←P(1)Q(1)−1 (4) 

Note that P(1)
told 

and Q(1)
told 

are computed from the past data, hence only 
P(1)

tnew 
and Q(1)

tnew 
need to be incrementally updated, thus considerably 

saving computational resources. A(2) can be updated in similar a fashion 
to A(1) [13], see line 4 in Algorithm 1. 

After the OnlineCP is executed, the non-temporal factorization 
matrices, namely A(1) and A(2), are updated and deployed to perform the 
detection feature extraction within the user-defined sw (see lines 2–8 in 
Algorithm 1). We ultimately obtain the temporal factorization matrix 
a(N+1)

t−i+1 ∈ Rsw×R, where i ∈ [1, sw] (see line 7 in Algorithm 1), and the 
temporal sequence at each sw can be reconstructed as {𝒯 sw} = [[A(1),

A(2); a(N+1)

t−i+1 ]]. In this way, we assure that the features are extracted from 
the same vector space. The monitoring statistics (see Fig. 5 (b.2)) are 
allocated in the temporal factorization matrix and are the inputs for 
subsequent analysis. 

Table 1 
Experimental Settings for the IJP Video Collection.  

Video Nozzle Back-pressure Length Delay  
(μm) (in H2O) (seconds) (μs) 

(1) 100 [−6,3] 121 200 
(2) 50 [−3.5, 0] 40 250 
(3) 100 [−10, 2] 40 250 
(4) 100 4 100 250  
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3.4. Bayesian online change detection 

Algorithm 1. Online video anomaly detection.  

input: Streaming data {𝒯 t}, rank R, sliding window sw, initialized auxiliary matrices 
P(N), Q(N)  

output: Anomaly detected (AD) 
1 repeat 
2 Detection feature extraction; 

3 Update A(1) = P(1)Q(1)−1 by fixing A(2) and A(3);  

4 Update A(2) = P(2)Q(2)−1 
by fixing A(1) and A(3);  

5 Update A(3) =

⎡

⎣
A(3)

told

A(3)
tnew

⎤

⎦ by fixing A(1) and A(2), via Eq. (2);  

6 for i ← 1 to sw do 

7 Update a(N+1)

t−i+1 = {𝒯 i}(3)

((
A(2) ⊙ A(1)

)T
)†

;  

8 end 
9 Anomaly detection within each sw; 
10 for t ← 1 to sw do 
11 Compute predictive probability, p(at ∣μ(rt ) ,Σ(rt ) );  
12 Compute posterior probability, p(rt ∣a1:t , rt−1 );  

(continued on next column)  

(continued ) 

13 Current length, rt = max(p(rt ∣a1:t , rt−1 ) );  
14 if rt < rt−1 then 
15 lastAD = t; 
16 else 
17 continue; 
18 end 
19 Update parameters ηt 
20 end 
21 until 𝒯 tnew is finished;  
22 return Detected ADs  

Once the monitoring statistics are extracted, a mechanism to find the 
anomalies in the IJP videos is required. Although offline detection al
gorithms usually lead to more accurate results, online detection algo
rithms are necessary for dynamic systems that require instantaneous 
responses [38], as shown in Fig. 5. 

BOCD assumes that the temporal factorization matrix can be 
modeled with a certain parametric function in each sliding window (see 
lines 9–20 in Algorithm 1), and abrupt anomalies in the droplet videos 
are detected when the model’s parameters vary. In particular, based on 
the prior probability density functions for the segment’s parameters and 

Fig. 3. Streaming data illustration (Third-order Tensor): (a) IJP frames sequence and (b) Sequence representation.  

Fig. 4. OnlineCP tensor decomposition scheme.  
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the length of the segment, and the temporal factorization matrix in the 
sliding window [12], BOCD computes the posterior probabilities of the 
current run length rt that represents the probability of finding an 
anomaly in the recorded droplet video [12] via (see line 12 of Algorithm 
1), 

p(rt∣a1:t, rt−1 ) =

p(rt−1∣a1:(t−1), rt−2 )p(at∣a1:(t−1), η )p(rt∣rt−1 )

p(a1:t)

(5) 

where p(rt−1∣a1:(t−1), rt−2 ) is the posterior probability at the previous 
time, p(at ∣a1:(t−1), η ) is the posterior distribution of the temporal factor
ization matrix at time t, p(rt ∣rt−1 ) is the prior on the segment length, and 
p(a1:t) is the distribution of the detection features (i.e., vectorized tem
poral factorization matrix over sw). In the following, we will introduce 
each term in Eq. (5). 

The posterior distribution for a new observation at is calculated as 
p(at ∣a1:(t−1), η ) =

∫
p(at ∣θ, η )p(θ∣a1:(t−1), η )dθ, where θ is a vector of 

segment parameters, with its hyperparameters η. Here, p(at|θ, η) is the 
conjugate prior to p(at∣a1:(t−1), η ), thus the posterior probability for the 
incoming data can be found analytically and has the same form of the 
prior (see line 11 of Algorithm 1). Under the assumption that the 
incoming data follow a multivariate Gaussian distribution N(μ,Σ), 
BOCD detects the possible changes in μ and Σ. In particular, the posterior 

predictive probability, p(at ∣μ(rt),Σ(rt) ) will follow a normal inverse 
Wishart (NIW) distribution. In addition, following [12], the prior on the 
segment length is assumed to have a constant rate ϕ, and is represented 
by p(rt ∣rt−1 ) = 1

ϕ. 
As a result, the posterior in Eq. (5) can be computed to detect the 

droplet anomalies (see Fig. 5 (b)), represented by changes in μ and Σ. 
The posterior is updated for each droplet video frame in the sliding 
window (see lines 9–20 of Algorithm 1), and Algorithm 1 returns the 
detected anomalies as the streaming data progress. 

4. Case study 

As mentioned in the Introduction, the timely droplet anomalies 
detection is crucial for the quality preservation of printed parts in the IJP 
process. For instance, droplet behaviors, such as the ones in Fig. 2 
(b.2–b.4), may cause severe defects in the printed parts, hence affecting 
product functionality. In this section, we demonstrate the proposed 
framework for the timely and accurate droplet anomalies detection in 
the IJP process. 

We used distilled water as ink/solution, and filled it into a syringe 
container (i.e., material reservoir in Fig. 2 (a)). The droplets were 
ejected and recorded as specified in Section 3.2, and we collected 4 
videos using different settings (i.e., nozzle diameter, back-pressure, and 

Fig. 5. An Illustration of the BOCD: (a) Sliding window scheme over the streaming data (i.e., IJP videos), and (b) Detection results (e.g., sliding window that contains 
the detected anomaly at frame 2449): (b.1) Frames before and after the detected anomaly, and (b.2) Temporal factorization matrix at the detected anomaly. 
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video length), as shown in Table 1. Here, video (1) and videos (2)–(4) 
were recorded with strobing delays of 200μs and 250μs, respectively, 
and at 30 fps. 

We run Algorithm 1 on a desktop with an Intel(R) Xeon(R) W-2145 
CPU @3.70 GHz and 64.0 GB of RAM. First, every incoming video frame 
𝒯 t ∈ R480×640, which represents 1.5 mm × 2 mm in the physical area and 
1pixel = 3.125 μm2, is pre-processed as shown in Fig. 2 (d.1). During the 
pre-processing, we extract the sub-area corresponding to the shape of 
the droplet and further downsample (in terms of resolution) the image. 
As a result, we have 𝒯 t ∈ R30×54 after the pre-processing. 

We then perform the OnlineCP where the rank R and sliding window 
sw, are chosen as 5 and 60, respectively. After extensive simulation, it is 
determined that ranks R ≥ 5 are sufficient to properly approximate the 
streaming tensor data in our case (see Figs. 6 (a) and 8 (a.3)). The sw size 
is determined to have a trade-off between anomaly detection accuracy 
and speed. Particularly, a too short sw may not guarantee the detection 
of anomaly since the BOCD method needs to gather evidence (some 
frames before and after an anomaly occurs) to determine whether an 
anomaly happens or not, while a too large sw will drastically affect the 
computational efficiency. Typically, sw > 50 is recommended to guar
antee statistical significance and detect anomalies [44]. Therefore, we 
chose sw to cover 2 s (i.e., sw = 60) of the recorded IJP videos. After 
OnlineCP, we get the non-temporal factorization matrices, A(1) ∈ R30×R 

and A(2) ∈ R54×R, and these are used to update the detection features 
a(3) ∈ Rsw×R in the specified sliding window (see Fig. 5 (b)). Concisely, 
sw corresponds to the number of frames that entails the sliding window. 
Finally, the detection features allocated in the vectorized temporal 
factorization matrices a(3) serve as the inputs for BOCD. The droplet 
anomalies are detected accurately, see representative examples in Fig. 6 
(b). In the following, we use video (1) to demonstrate the anomaly 
detection results and computational performance. Fig. 6 (a) shows the 
tensor reconstruction results for frames 550 and 564, the first pair of 
actual and detected anomalies. From Fig. 6 (a), the OnlineCP can 
accurately approximate the streaming video. As shown in Fig. 6 (b), the 
anomaly starts some frames before it is detected, and this is because 
BOCD needs to accumulate some frames to corroborate that a change 
really happens. In addition, the performance of BOCD is affected by the 
distribution properties of the features extracted from OnlineCP, hence 
the closer to a normal distribution the features are, the better the BOCD 
performs. For instance, Fig. 7 (a–b) show QQ plots corresponding to 
features extracted from two different segments. The latter derives into 
relatively big detection delays, where the anomaly is detected at frame 
632, while the corresponding actual anomaly happens at frame 615. The 
time consumption of Algorithm 1 per frame (i.e., from line 2 to line 20, 
including OnlineCP, detection feature extraction, and BOCD) is reported 
in Fig. 7 (c), where the worst-case scenario takes 0.0300 s and the 
best-case scenario takes 0.0161 s (the average time is 0.0246 s). Based 
on the average time to process a frame in the streaming video, the 

proposed framework is able to analyze up to 40 fps, which is fast enough 
for online anomaly detection in our case. 

Additional analysis is performed to study the effects of varying R and 
sw on the proposed framework, as shown in Fig. 8. Fig. 8 (a.1) and (b.1) 
show how the accuracy of the proposed framework is impacted by the R 
and sw selection. Large values of R and sw will not necessarily increase 
the detection accuracy of the method. For instance, high rank values 
may not guarantee the normality assumption of the extracted features 
and this impacts the detection accuracy of the BOCD (see Fig. 8 (a.1)). 
On the other hand, large sw sizes may include multiple change points 
within each sliding window [44], hence disturbing the detection accu
racy (see Fig. 8 (b.1)). Furthermore, as expected, large values of R and sw 
will increase the computational time per frame processed, as shown in 
Fig. 8 (a.2) and (b.2), respectively. Fig. 8 (a.3) shows that higher ranks 
benefit the IJP streaming video frames reconstruction. The R and sw 
selection is a case-specific process and depends on system setup, camera, 
etc. 

The proposed framework was also evaluated under different settings, 
namely nozzle size and back-pressure, as shown in the videos (2)–(4) of 
Table 1. The detection results and comparison are shown in Fig. 9, where 
Fig. 9 (a) shows a normal droplet evolution at different strobing delays, 
Fig. 9 (b.1–b.2) display a comparison of the detection results for 
different settings (videos (2)–(3) in Table 1), and Fig. 9 (b.3) presents a 
normal process where no anomalies happen in the IJP process (video (4) 
in Table 1). If the droplet is adequately formed at initial stages (e.g., 
100 μs), it is very likely to have a droplet of good quality for the printing 
process, see strobing delay 1000 μs in Fig. 9 (a). Consequently, the 
comparison was performed at a strobing delay of 250 μs. Fig. 9 (b.1) 
shows the actual and detected frames of anomalies for IJP with a nozzle 
diameter of 50 μm. After varying the back-pressure, at frame 720 the 
droplet suffers from a displacement to the right of the nozzle and sub
sequently a satellite surrounds the droplet at frame 762, and these 
anomalies were timely detected by the proposed method. Furthermore, 
Fig. 9 (b.2) shows actual and detected frames for severe anomalies 
induced by the settings displayed in video (3) of Table 1. Here, the initial 
droplet is shown to be normal, and once the back-pressure is severely 
increased, a blockage is generated as shown in frame 149 (absence of 
droplet). Afterwards, the pressure was drastically increased causing an 
overflow, as can be seen in frame 820. These anomalies were accurately 
detected. Finally, Fig. 9 (b.3) shows a droplet that does not suffer from 
any anomaly during the process, and the proposed framework did not 
detect any change as the streaming, i.e., IJP video, progressed. 

The capabilities of the proposed framework were hitherto demon
strated by Figs. 6–9. Complementary to this, we numerically evaluate 
the detection performance with anomaly detection precision, recall, and 
F−1 measures for time series [45]. Traditionally, these metrics have 
been concerned with evaluating point-based anomalies, while our case 
requires range-based evaluation since the IJP anomalies occur over the 

Fig. 6. Proposed framework detection results: (a) Observed and reconstructed tensors (i.e., video frames) and (b) Representative actual versus detected droplet 
anomalies frames in various scenarios. 
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course of time. Based on the classical definitions of Precision = TP
TP+FP and 

Recall = TP
TP+FN, where TP is true positive, FP is false positive, and FN is 

false negative, Tatbul et al. [45] extended these concepts to range-based 
evaluations. Specifically, these metrics are performed on the overlap 
between the actual and detected ranges [45]. For example, the actual 
range of frames [550,615] and the detected range of frames [564,632] in 
Fig. 6(b). 

Fig. 10 shows an overall evaluation for the performance of the pro
posed framework. Generally, the larger the overlap between actual and 
detected ranges, the higher the measures are going to be. From Fig. 10, 
the proposed framework can timely and accurately detect the anomalies 
in the IJP process. Although our method showed to be very accurate 
when drastic anomalies happen (Fig. 9 (b.2)), a detection delay occurs 
when the anomalies progressively appear (Fig. 6 (b)), and this is re
flected on the measures of video (1) in Fig. 10. Nevertheless, the delay 
for the worst case scenario in video (1) is 17 frames, which is approxi
mately 0.57 s delay, and this will not hamper the anomalies detection. 

In summary, the proposed online droplet anomaly detection frame
work can accurately and efficiently detect the anomalies in IJP and can 
pave the way for achieving real-time control. The proposed framework 
can be applied to a broad range of ink/solution materials, since it only 
depends on the droplet videos (i.e., shape of the droplets regardless of 
the material), and other fast changing processes. 

5. Conclusion and discussion 

IJP is capable of producing parts with high-quality and high- 
resolution using a wide variety of materials. However, the droplet 
behavior is vulnerable to a lot of dynamic process and ambient condi
tions, and the quality of the printed parts can be harmed by the abrupt 
droplet anomalies. Detecting these abrupt anomalies is important but 
has been very challenging in the literature. In this work, we propose an 
online framework that is capable to timely detect anomalies from real- 
time videos. The novelties of this paper include the online change 

Fig. 7. Proposed framework computational performance: (a) QQ plot for features (sw segment containing frame 564), (b) QQ plot for features (sw segment con
taining frame 632), and (c) Computational time per frame processed. 

Fig. 8. The impact of rank and sliding window size: (a) Rank effect on: (a.1) Precision, recall, and F-1 measures, (a.1) Mean time per frame processed, and (a.3) 
Tensor reconstruction, (b) Sliding window size effect on: (b.1) Precision, recall, and F-1 measures and (b.2) Mean time per frame processed. 
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detection of the streaming data, and no baseline data is required for 
feature extraction and subsequent anomalies identification. The pro
posed framework detection and computational performance show 
promising results towards achieving real-time change detection and 
control in IJP processes. The framework can be applied to problems with 
streaming data recorded from other AM processes and beyond with 
complex process dynamics. 

There are several potential research directions that can be pursued in 
the future. One direction is to further accelerate the OTF by incorpo
rating compressed sketch multiplications into the OnlineCP method. 
Another direction is to extend this framework so that it can handle non- 
parametric streaming data. Finally, hardware capabilities may cause 
detection delays, which may affect the framework performance. 

Incorporating advanced hardware modules might reduce not only the 
computational time of running the algorithm but also the operational 
time cost, which will be investigated in the future. 

CRediT authorship contribution statement 

Luis Javier Segura: Conceptualization, Methodology, Software, 
Formal analysis, Writing - original draft, Writing - review & editing. 
Tianjiao Wang: Investigation, Writing - review & editing. Chi Zhou: 
Conceptualization, Writing - review & editing. Hongyue Sun: Concep
tualization, Methodology, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This work is partially supported by the NSF Grant No. CMMI- 
1846863 and Sustainable Manufacturing and Advanced Robotics 
Technologies, Community of Excellence (SMART CoE) at the State 
University of New York at Buffalo. 

References 

[1] J.D. Prince, 3d printing: an industrial revolution, J. Electron. Resour. Med. Libr. 11 
(1) (2014) 39–45. 

[2] J. Huang, L.J. Segura, T. Wang, G. Zhao, H. Sun, C. Zhou, Unsupervised learning 
for the droplet evolution prediction and process dynamics understanding in inkjet 
printing, Addit. Manuf. (2020), 101197. 

[3] M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing process and its 
applications, Adv. Mater. 22 (6) (2010) 673–685. 

[4] S.D. Hoath, Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, 
John Wiley & Sons,, 2016. 

[5] O.A. Basaran, H. Gao, P.P. Bhat, Nonstandard inkjets, Annu. Rev. Fluid Mech. 45 
(2013) 85–113. 

[6] M.H. Tsai, W.S. Hwang, H. Chou, The micro-droplet behavior of a molten lead-free 
solder in an inkjet printing process, J. Micromech. Microeng. 19 (12) (2009), 
125021. 

Fig. 9. Detection comparison results for different disturbance regimes: (a) Droplet evolution of a normal IJP jetting behavior, (b) Representative detection results: 
(b.1) Nozzle diameter 50 μm, (b.2) Nozzle diameter 100 μm, and (c) Normal process with nozzle diameter 100 μm. 

Fig. 10. Anomaly detection precision, recall, and F-1 measures for each video.  

L.J. Segura et al.                                                                                                                                                                                                                                



Additive Manufacturing 38 (2021) 101835

10

[7] J. Kechagias, P. Stavropoulos, A. Koutsomichalis, I. Ntintakis, N. Vaxevanidis, 
Dimensional accuracy optimization of prototypes produced by polyjet direct 3D 
printing technology, Adv. Eng. Mech. Mater. (2014) 61–65. 

[8] B.T. Lies, Y. Cai, E. Spahr, K. Lin, H. Qin, Machine vision assisted micro-filament 
detection for real-time monitoring of electrohydrodynamic inkjet printing, 
Procedia Manuf. 26 (2018) 29–39. 

[9] T. Wang, C. Zhou, W. Xu, Online droplet monitoring in inkjet 3d printing using 
catadioptric stereo system, IISE Trans. 51 (2) (2019) 153–167. 

[10] H. Yan, K. Paynabar, J. Shi, Image-based process monitoring using low-rank tensor 
decomposition, IEEE Trans. Autom. Sci. Eng. 12 (1) (2014) 216–227. 

[11] D.C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons,, 
2007. 

[12] I. Lauzana, Online change-point detection algorithm for multi-variate data: 
Applications on human/robot demonstrations, (2018).〈https://github.com/epfl 
-lasa/changepoint-detection〉. 

[13] S. Zhou, N.X. Vinh, J. Bailey, Y. Jia, I. Davidson, Accelerating online cp 
decompositions for higher order tensors, in: Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, (2016), 
1375–1384. 

[14] L.J. Segura, C. Narvaez-Munoz, C. Zhou, H. Sun, Sketch-based tensor 
decomposition for non-parametric monitoring of electrospinning processes, in: 
Proceedings of the International Manufacturing Science and Engineering 
Conference, American Society of Mechanical Engineers, (2020), (Accepted). 

[15] J. Abu-Khalaf, L. Al-Ghussain, A. Nadi, R. Saraireh, A. Rabayah, S. Altarazi, A. Al- 
Halhouli, et al., Optimization of geometry parameters of inkjet-printed silver 
nanoparticle traces on pdms substrates using response surface methodology, 
Materials 12 (20) (2019) 3329. 

[16] Z. Zhou, L.R. Cantu, X. Chen, M.R. Alexander, C.J. Roberts, R. Hague, C. Tuck, 
D. Irvine, R. Wildman, High-throughput characterization of fluid properties to 
predict droplet ejection for three-dimensional inkjet printing formulations, Addit. 
Manuf. 29 (2019), 100792. 

[17] H. Wijshoff, Drop dynamics in the inkjet printing process, Curr. Opin. Colloid 
Interface Sci. 36 (2018) 20–27. 

[18] X. Wang, M. Yuan, X. Xiong, M. Chen, M. Qin, L. Qiu, H. Lu, G. Zhang, G. Lv, A. 
H. Choi, Process optimization for inkjet printing of triisopropylsilylethynyl 
pentacene with single-solvent solutions, Thin Solid Films 578 (2015) 11–19. 

[19] A. Lee, K. Sudau, K.H. Ahn, S.J. Lee, N. Willenbacher, Optimization of 
experimental parameters to suppress nozzle clogging in inkjet printing, Ind. Eng. 
Chem. Res. 51 (40) (2012) 13195–13204. 

[20] L. Zhou, L. Yang, M. Yu, Y. Jiang, C.-F. Liu, W.-Y. Lai, W. Huang, Inkjet-printed 
small-molecule organic light-emitting diodes: halogen-free inks, printing 
optimization, and large-area patterning, ACS Appl. Mater. Interfaces 9 (46) (2017) 
40533–40540. 

[21] Z. Xiong, C. Liu, Optimization of inkjet printed PEDOT:PSS thin films through 
annealing processes, Org. Electron. 13 (9) (2012) 1532–1540. 

[22] S. Rahul, K. Balasubramanian, S. Venkatesh, Optimizing inkjet printing process to 
fabricate thick ceramic coatings, Ceram. Int. 43 (5) (2017) 4513–4519. 

[23] J. Mueller, K. Shea, C. Daraio, Mechanical properties of parts fabricated with inkjet 
3d printing through efficient experimental design, Mater. Des. 86 (2015) 902–912. 

[24] G. Cummins, R. Kay, J. Terry, M.P. Desmulliez, A.J. Walton, Optimization and 
characterization of drop-on-demand inkjet printing process for platinum 
organometallic inks, in: Proceedings of the 2011 IEEE 13th Electronics Packaging 
Technology Conference, IEEE, (2011), 256–261. 

[25] R. Das, A.K. Ball, S.S. Roy, Parametric optimization of e-jet based micro 
manufacturing system through hybrid taguchi methodology, Mater. Today Proc. 5 
(2) (2018) 6981–6989. 

[26] N.F. Morrison, O.G. Harlen, Viscoelasticity in inkjet printing, Rheol. Acta 49 (6) 
(2010) 619–632. 

[27] A. van der Bos, M.-J. van der Meulen, T. Driessen, M. van den Berg, H. Reinten, 
H. Wijshoff, M. Versluis, D. Lohse, Velocity profile inside piezoacoustic inkjet 
droplets in flight: comparison between experiment and numerical simulation, Phys. 
Rev. Appl. 1 (1) (2014), 014004. 

[28] D. Bartolo, A. Boudaoud, G. Narcy, D. Bonn, Dynamics of non-newtonian droplets, 
Phys. Rev. Lett. 99 (17) (2007), 174502. 

[29] K. Rahman, J.-B. Ko, S. Khan, D.-S. Kim, K.-H. Choi, Simulation of droplet 
generation through electrostatic forces, J. Mech. Sci. Technol. 24 (1) (2010) 
307–310. 

[30] M. Khanzadeh, W. Tian, A. Yadollahi, H.R. Doude, M.A. Tschopp, L. Bian, Dual 
process monitoring of metal-based additive manufacturing using tensor 
decomposition of thermal image streams, Addit. Manuf. 23 (2018) 443–456. 

[31] F.M. Megahed, L.J. Wells, J.A. Camelio, W.H. Woodall, A spatiotemporal method 
for the monitoring of image data, Qual. Reliab. Eng. Int. 28 (8) (2012) 967–980. 

[32] H. Sun, K. Wang, Y. Li, C. Zhang, R. Jin, Quality modeling of printed electronics in 
aerosol jet printing based on microscopic images, J. Manuf. Sci. Eng. 139 (7) 
(2017). 

[33] H. Yan, M. Grasso, K. Paynabar, B.M. Colosimo, Real-time detection of clustered 
events in video-imaging data with applications to additive manufacturing, arXiv 
preprint arXiv:2004.10977. 

[34] C. Hawkins, Z. Zhang, Variational bayesian inference for robust streaming tensor 
factorization and completion, in: Proceedings of the 2018 IEEE International 
Conference on Data Mining (ICDM), IEEE, (2018), 1446–1451. 

[35] M. Mardani, G. Mateos, G.B. Giannakis, Subspace learning and imputation for 
streaming big data matrices and tensors, IEEE Trans. Signal Process. 63 (10) (2015) 
2663–2677. 

[36] H. Kasai, Online low-rank tensor subspace tracking from incomplete data by cp 
decomposition using recursive least squares, in: Proceedngs of the 2016 IEEE 
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 
IEEE, (2016), 2519–2523. 

[37] S. Aminikhanghahi, D.J. Cook, A survey of methods for time series change point 
detection, Knowl. Inf. Syst. 51 (2) (2017) 339–367. 

[38] Y. Li, G. Lin, T. Lau, R. Zeng, A review of changepoint detection models, arXiv 
preprint arXiv:1908.07136. 

[39] R.P. Adams, D.J. MacKay, Bayesian online changepoint detection, arXiv preprint 
arXiv:0710.3742. 

[40] Y. Kawahara, M. Sugiyama, Change-point detection in time-series data by direct 
density-ratio estimation, in: Proceedings of the 2009 SIAM International 
Conference on Data Mining, SIAM, (2009), 389–400. 

[41] F. Desobry, M. Davy, C. Doncarli, An online kernel change detection algorithm, 
IEEE Trans. Signal Process. 53 (8) (2005) 2961–2974. 

[42] S. Li, Y. Xie, H. Dai, L. Song, Scan b-statistic for kernel change-point detection, Seq. 
Anal. 38 (4) (2019) 503–544. 

[43] J. Sun, D. Tao, C. Faloutsos, Beyond streams and graphs: dynamic tensor analysis, 
in: Proceedings of the 12th ACM SIGKDD international conference on Knowledge 
discovery and data mining, (2006), 374–383. 

[44] Z. Harchaoui, E. Moulines, F.R. Bach, Kernel change-point analysis, Adv. Neural 
Inf. Process. Syst. (2009) 609–616. 

[45] N. Tatbul, T.J. Lee, S. Zdonik, M. Alam, J. Gottschlich, Precision and recall for time 
series, Adv. Neural Inf. Process. Syst. (2018) 1920–1930. 

L.J. Segura et al.                                                                                                                                                                                                                                


	Online droplet anomaly detection from streaming videos in inkjet printing
	1 Introduction
	2 Literature review
	2.1 Process improvements in IJP
	2.2 Process monitoring approaches

	3 Proposed framework
	3.1 Overview of the proposed framework
	3.2 Setup for video data acquisition
	3.3 OnlineCP decomposition
	3.4 Bayesian online change detection

	4 Case study
	5 Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


