

191:2 John Peter Campora and Sheng Chen

and type cases [Abadi et al. 1991], hybrid type checking [Knowles and Flanagan 2010], gradual
typing [Siek and Taha 2006], and migratory typing [Tobin-Hochstadt and Felleisen 2006].

The last decade has seen a rapid development of gradual typing andmigratory typing. In academia,
researchers have studied the interaction of gradual typing with various language features[Ahmed
et al. 2011, 2017; Bañados Schwerter et al. 2014, 2016; Bader et al. 2018; Castagna and Lanvin 2017;
Disney and Flanagan 2011; Fennell and Thiemann 2013; Garcia et al. 2014; Herman et al. 2010;
Igarashi et al. 2017b,a; Ina and Igarashi 2011; Jafery and Dunfield 2017; Lehmann and Tanter 2017;
Sergey and Clarke 2012; Siek and Taha 2007; Siek et al. 2015b; Toro et al. 2019; Wolff et al. 2011; Xie
et al. 2018]. In industry, several languages supporting gradual or optional typing have been created.
For example, static type checking has been added to Dart, JavaScript (TypeScript), PHP (Hack), and
Racket (Typed Racket), and dynamic types have been added to C#.

1.1 Wrong Type Annotations and Their Consequences

1 def idD(x): return x

2

3 def equal(fst : String) -> (String -> Bool):

4 def impl(snd : String) : return fst == snd

5 return impl

6

7 def asciify(val : String, mkStr : String -> String,

8 opts : ⋆, callback : String -> ⋆):

9 return callback(mkStr(val) + opts)

10

11 asciify(idD('B'), idD, '3-d',equal('B'))

12 # str has the type ⋆ -> String

13 asciify(idD(138), str, 'pyramid', equal('138'))

14 asciify(idD(False), str, 'pyramid', equal('False'))

Fig. 1. A Reticulated Python program mixing static and dynamic

typing. Expressions relying on parameters and variables without

type annotations (or annotated with ⋆) are dynamically typed, and

other expressions are statically typed.

A main goal of gradual typing is
to allow users to easily migrate

programsśthat is adding or remov-
ing type annotations to enjoy more
advantages of static or dynamic typ-
ing, respectively. Removing type
annotations is an easy task, par-
ticularly as the gradual guaran-
tee [Siek et al. 2015a] specifies
that gradual typing should pre-
serve program behaviors as type
annotations are removed. Adding
type annotations, however, is a
much more challenging task that
entails many nontrivial activities,
including reading and understand-
ing programs, abstracting program
states, and rediscovering program
invariants [Tobin-Hochstadt and
Felleisen 2006; Tobin-Hochstadt et al. 2017]. As a result, it is quite common that the added type an-
notations may contain mistakes (the end of this subsection discusses previous research supporting
this claim), which lead to inconsistencies between type annotations and the program. Due to the
permissiveness of gradual typing, such inconsistencies may not be caught at compile time and will
instead be detected at runtime [Siek and Taha 2006].
There are two kinds of type inconsistencies in gradual programs: static and dynamic inconsis-

tencies that can and cannot be caught by a gradual type system statically, respectively. This paper
focuses on the latter kind. As a result, inconsistencies in the paper can always be understood as
runtime inconsistencies or cast errors.
As an example of an inconsistency, consider the program in Figure 1, adapted from [Williams

et al. 2017] and asciify [2018]. Without type annotations, this program runs correctly. With type
annotations, the program is still statically well typed because idD(138) and idD(False) have un-
known types (also known as dynamic types, written as ⋆), which can be validly passed to any
functions in gradual type systems. However, the annotations cause several cast errors. For example,
idD(138) and idD(False) produce values whose runtime types are Int and Bool, respectively. When
they are passed into asciify in the last two lines of Figure 1, two cast errors will be raised because

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:3

these values do not have the type String, asciify’s first parameter type (technically only the one
involving 138 is raised, but if the execution continued the other would also be raised).
Gradual language implementations [Siek et al. 2015a] catch such inconsistencies (violations of

type invariants) dynamically. Moreover, they use blame tracking [Ahmed et al. 2011; Siek et al.
2015a; Wadler and Findler 2009] to pinpoint program expressions that caused the violations. For
example, when running the program in Figure 1, Reticulated Python [Vitousek et al. 2017] reports
the following message, indicating that the dynamically typed value, 138, caused the cast error.

15 retic.guarded.CastError:

16 asciify.py:15:4: Expected argument of type String but value 138 was provided instead.

However, an approach that can statically detect such inconsistencies and provide fix suggestions
is beneficial for the following reasons. First, as cast errors are detected at runtime, they may be
undetected by programmers if they are not covered during developing and testing. They may be
encountered after the program is deployed and observed by users who have no expertise in fixing
such errors. Static approaches mitigate this issue. Second, handling cast errors at compile time can
assist program migration towards utilizing more static typing, when compared to detecting such
errors at runtime. Without the compile time detection of errors, programmers may introduce many
incorrect type annotations. They then must rerun the program multiple times to discover each cast
error, which could be avoided by immediately warning users about wrong type annotations.

Third, while blame tracking covers information for an inconsistency from a particular execution
path, fixing the inconsistency by changing wrong type annotation may require reconciling many
potential execution paths, which a static approach could provide quite easily. Consider, for instance,
the above message from Reticulated. This message mentions only the function call on line 13, and
following this message one may change the type of val from String to Int to fix the cast error.
Unfortunately, this fix will lead to another cast error in the program, namely on line 11 because
idD(’B’) is not a value of Int, the new type annotation for val, at runtime. In fact, to correctly
fix the cast error, one needs to reconcile the calls on lines 11 through 14, which becomes a more
significant undertaking, especially when relevant calls are scattered throughout larger programs.

Empirical facts and user preferences Several studies have shown that type annotations are
error prone. Wu and Chen [2017] performed a study on a program database that contains more than
55,000 Haskell programs, which logged student interactions of learning functional programming.
The results showed that among 2,757 programs that have type errors, 30% were caused by mistakes
in type annotations. In Typed Racket, St-Amour and Toronto [2013] indicated that wrong types
provided by the language developers were a main source (around 17.7%) for the 576 reported bugs. In
testing whether the type definition files in TypeScript are consistent with the (underlying Javascript)
libraries and test cases, Williams et al. [2017] observed that among 122 checked libraries 62 libraries
contain inconsistencies. Given that definition files are added later, it could be understood that 50.8%
of type definition files contain errors. In a separate study of testing the inconsistencies between
Typescript declaration files and libraries, Kristensen and Mùller [2017b] observed that numerous
inconsistencies were detected in 59 libraries, and they further noted that łsome declaration files
contain dozens of actual errorsž.
Overall, these facts indicate that migrating gradual programs towards more static could easily

introduce mistakes in type annotations. This coincides with the perspective shared by Siek et al.
[2015a], who noted that static or dynamic tools are expected to support migrating programs. In
above, we have given a few reasons why static support is more preferable than the dynamic one. The
insights from a recent survey by Tunnell Wilson et al. [2018] confirm our view, where programmers
indicated that they prefer more compile-time error reporting for wrong type annotations. Our goal

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:4 John Peter Campora and Sheng Chen

in this paper is to provide a static approach that detects and explains cast errors and recommend
fixes to them when they are caused by wrong type annotations.

1.2 Challenges in Detecting and Fixing Wrong Type Annotations

To detect inconsistencies between type annotations and the program, it is insufficient to solely
reason about the compile-time types assigned to expressions because dynamic types (⋆s) suppress
useful type information. For example, in gradual typing, the ascription 1:⋆ has the type ⋆, which
suppresses the łrealž type Int for 1 at compile time. In the asciify example, the function idD has
the type⋆→⋆, making idD(138) and idD(False) have types⋆. As values having the type⋆ can be
passed to any function, no errors are detected when passing idD(138) and idD(False) to asciify,
though its annotations expects values to have the type String.
Therefore, to uncover inconsistencies at compile time, we must find an approach to recover

information suppressed by ⋆s. We can achieve this by using more precise types, rather than ⋆s, for
expressions. For example, since the return type of idD is the same as its parameter type, we can
compute that idD(138) and idD(False) have the types Int and Bool, respectively. These two types
now enable us to detect type conflicts with String, the type of the first parameter of asciify. In
general, we can detect inconsistencies by recovering as much type information from dynamically
typed expressions as possible.
After detecting inconsistencies at compile time, a real challenge is developing a method for

automatically computing fixes to remove them. Inconsistencies can be fixed by removing or chang-
ing type annotations for parameters. For example, the inconsistencies caused by idD(138) and
idD(False) can be removed by changing val’s String type annotation to ⋆. However, determining
the exact parameters whose types have to be changed and how to change them is nontrivial.
The simple strategy that removes all type annotations will eliminate inconsistencies but is highly
undesirable since it counters the goal of migrating programs toward more static.

Another plausible strategy is to remove each type annotation individually and check whether the
removal will eliminate the inconsistency. Unfortunately, this strategy also does not work because
inconsistencies remain unless all relevant static type annotations are removed. For example, only
when the type annotations for both val and mkStr are simultaneously removed can asciify be
free of inconsistencies. In fact, there appears to be no good strategy for finding the smallest set
of parameters for which type annotations need to be removed to fix the inconsistency. The only
viable strategy is enumerating all the combinations of static parameters and removing their type
annotations until the inconsistency no longer exists, leading to a problem of exponential complexity.

1.3 A Solution Based on Variational Typing

To address the exponential complexity problem above, our key observation is that the programs
yielded from two different ways of changing1 static types differ only slightly, accounting for a
small portion of the whole program. For example, the programs produced by changing fst’s type
annotation versus that for changing snd’s annotation are almost the same. In particular, the typing
processes for these two programs differ only in typing the expression fst == snd and the three
calls to equal. The typing for other parts, including the functions idD and asciify, is the same.
Motivated by this observation, we propose employing variational typing [Chen et al. 2014a]

to reuse computations when type checking similar programs produced by changing different
combinations of static type annotations. A variational type succinctly encodes a large set of related
types. Thus, while conventionally an expression can be assigned only one type, each expression
may be assigned multiple types in variational typing [Chen et al. 2014a]. Variational typing allows

1We compute the static type to change to through type inference, which will be discussed in Section 4.5.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:5

us to check a program part with multiple types while visiting it just once, thereby reducing the
exponential complexity of typing all possible programs.2

Variational typing helps compute fixes to wrong type annotations as follows. For each static
parameter, we have two possibilities: the type annotation is either not wrong or wrong. Corre-
spondingly, we either do not need to change the static type annotation on the parameter under
consideration, or we need to replace it with another static type3. We use a unique variation to
encode these two possibilities for each static parameter, with the first alternative of the variation
being the type annotation of the parameter and the second being another static type. After the
program is typed, we can find the variations whose second alternatives must be used to remove
inconsistencies in the program. Since each variation can be uniquely traced back to the parameter,
we can find the smallest set of static parameters to fix the inconsistency. We give more details about
this process through an example in Section 3.

To illustrate the difference between naively searching the exponential space of annotation change
versus using variational typing, consider again the asciify example. Since it has 8 static types (7
Strings plus 1 Bool), we need to type-check and compare 28 = 256 programs. In contrast, with
variational typing, we type check just one program with 8 variations, which variational typing can
handle with ease, as it can type programs with tens of thousands of variations efficiently [Chen
et al. 2012b, 2014b].
Overall, the fundamental idea of the solution is to explore the types that can be assigned to

dynamic parameters when ⋆s are uncovered and alternative types that can be assigned to static
parameter to remove inconsistencies. For this reason, we name our solution exploratory typing. To
test the viability of exploratory typing, we have developed a tool named PyHound in Reticulated
Python [Vitousek et al. 2014, 2017] for repairing programs with wrong type annotations at compile
time in Python. For the asciify example, PyHound generates the following message.

17 The program has type inconsistencies at the following expressions:

18 asciify(idD(138), str, 'pyramid', equal('138'))

19 asciify(idD(False), str, 'pyramid', equal('False'))

20 because:

21 Int, the type of idD(138) at runtime, conflicts with

22 String, the type annotation for val (the first parameter of asciify)

23 Bool, the type of idD(False) at runtime, conflicts with

24 String, the type annotation for val (the first parameter of asciify)

25 The inconsistencies are cloaked by:

26 The ⋆ for the type annotation of idD

27 Possible fixes:

28 (1) Change the expressions mentioned on lines 18 through 19, or

29 (2) Change the type annotations for asciify as follows

30 Replace String for val with ⋆ and

31 Replace String -> String for mkStr with ⋆ -> String

This message consists of three parts, for statically detecting, understanding, and fixing runtime
inconsistencies, which we refer to as S1, S2, and S3, respectively.

S1 This part of the message, including lines 17 through 24, gives the type annotations and the
expressions that lead to runtime inconsistencies. The user can exploit this information to fix the
inconsistencies if he/she believes the errors are in expressions. In this particular example, idD(138)

2Other type constructs, such as union types, could also assign multiple type variants to a single expression. However, unlike
variational types, their goals are not to reuse computations. For a detailed discussion, please see Chen et al. [2014a].
3Our messages sometimes suggest to change the static type to a ⋆, which happens when the suggested type cannot be
represented in the gradual language.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:6 John Peter Campora and Sheng Chen

and idD(False) have to be changed to have the type String. This can be achieved, for example, by
changing 138 and False to '138' and 'False', respectively.

S2 The second part of the message, including lines 25 and 26, conveys that the inconsistencies
are cloaked by the type annotation for idD. We say ⋆s are cloaking if their presence prevent the
inconsistencies from being detected by gradual type systems at compile time. This happens because
⋆s suppress real types of their underlying values and allow such values to slip into contexts
expecting values of other types. Note that not all ⋆s are cloaking, and we will see such an example
in Section 3.

S3 The third part of the message, including lines 27 through 31, presents a recommendation for
fixing the inconsistency. Since the inconsistency could be caused by the two function calls to asciify
or the type annotation for asciify, our fix suggestion lists these two possibilities. Specifically,
line 28 specifies expressions to be fixed if the programmer believes the inconsistency was caused
by expressions. Lines 29 through 31 specify changes needed to type annotations if the user believes
that the inconsistencies are caused by the type annotations. The recommendation suggests to
use ⋆ for String solely because Reticulated Python does not support polymorphic types. Should
Reticulated support that, our suggestion would be change String to α and change String -> String

to α -> String, where α is a type variable. In general, PyHound finds the most precise static type
to fix cast errors and uses ⋆when that type cannot be represented by the gradual language. We
give more details about finding fixes in Section 5.2.
We observe that the message for changing the type annotations is much more concrete than that
for changing the expressions. The reason is that there are too many possibilities in changing
expressions to fix the type inconsistency. Instead, the possibilities for type changes are fewer
and can often be inferred by making good use of the type information of relevant expressions.
Nevertheless, reconciling type information from different execution paths could be a challenging
task (Section 1.1), and one main goal of this paper is to automate this task.

1.4 Relation with Previous Work and Contributions of This Work

The earliest work that tries to identify errors in type annotations dates back to Braßel [2004].
However, that work dealt with static typing with type inference but not gradual typing, and so
did not face challenges from this paper. It also did not try to compute fixes. There have been some
static and dynamic analyses to detect mistakes in Typescript definition files [Feldthaus and Mùller
2014; Kristensen and Mùller 2017b; Williams et al. 2017]. This paper goes further to explain what
dynamic types have cloaked type inconsistencies from being detected by gradual type systems and
to compute recommendations for fixing wrong type annotations. Finally, Campora et al. [2018b]
developed a solution for adding type annotations to gradual programs written in Hindley-Milner
extended with gradual types [Garcia and Cimini 2015]. However, it does not aim to identify cast
errors in the programs, nor does it compute fixes for them. For a program with cast errors, it may
suggest adding type annotations that introduce further mistakes into the program. For example, for
the expression e3 in Section 3, the work in Campora et al. [2018b] suggests adding a Bool annotation
to the parameter x , making that expression even more incorrect. In contrast, this work can detect
the problem in the expression and find a fix to it. Moreover, this paper develops mechanisms for
handling tricky language features that are absent in Campora et al. [2018b], such as conditionals
having different branch types.
In developing an approach for statically detecting, understanding, and fixing runtime inconsis-

tencies, this paper makes the following contributions.

(1) In Section 1, we motivated the importance of detecting, understanding, and fixing inconsis-
tencies at compile-time. We also outlined an approach to provide such supports.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:7

(2) In Section 4, we develop exploratory typing for analyzing the dynamic type safety of grad-
ual programs. The type system handles some ubiquitous yet challenging features used in
dynamically-typed languages, including conditional statements with different branch types
and expressions whose types cannot be determined at compile-time. We prove that our type
system is correct in Section 4.4.

(3) In Section 5, we provide methods to detect, understand, and fix inconsistencies after ex-
ploratory typing finishes. We show the correctness of them.

(4) In Section 7, we evaluate PyHound using benchmarks from the literature [Campora et al.
2018a; Vitousek et al. 2017]. Our evaluation on 282 programs with inconsistencies demon-
strates that PyHound can effectively support its intended goal and can scale to large programs.

We present background in Section 2, illustrate the idea of exploratory typing through an informal
example in Section 3, discuss related work in Section 8, and conclude in Section 9.

2 BACKGROUND

In this section, we review gradual typing and variational typing, which form the cornerstones for
the technical developments in subsequent sections. For simplicity we will now use simple examples
written in the gradually typed lambda calculus developed by Siek and Taha [2006].

2.1 Gradual Typing

As shown earlier, gradual typing allows the interoperation between dynamically and statically typed
code. At the heart of this interoperation is a consistency relation (denoted by∼). The relationG1 ∼ G2

states that two types G1 and G2 are consistent if no parts of them disagree statically. The dynamic
type ⋆ is trivially consistent with any type because it has no static parts. Primitive static types
(such as Int) are consistent with themselves. Two function types are consistent when their domains
and codomains are consistent. Therefore, we have Int ∼ Int, ⋆ ∼ Int, and ⋆→ Int ∼ Int→ Int.
However, ⋆→ Bool and Int→ Int are not consistent since their codomains are inconsistent.
The equality checking in static typing is weakened to the consistency checking in gradual

typing [Garcia et al. 2016]. Casts will be inserted into the places where two types are consistent, but
not equal, to ensure that types are indeed equal at runtime. For example, consider the expression
(λy : Bool.y) ((λz : ⋆.z) 42). In this expression, a cast is inserted at the innermost application to
check whether the argument 42 has the type ⋆ or not at runtime. At the outermost application,
a cast is inserted to check if the argument has the type Bool, the parameter type of the function
λy : Bool.y. If a check fails, then a cast error will be raised. Thus, this program raises a cast error at
the outermost application.

2.2 Variational Typing

Variational typing [Chen et al. 2012b] is used to type check variational programs. The goal of
variations is to succinctly represent a large set of different but closely related expressions or types.
For example, the following expression represents two expressions succ 0 and succ (1 : ⋆).

succ A⟨0, 1 : ⋆⟩ (e1)

This expression contains a choice named A, with the first alternative 0 and the second alternative
1 : ⋆. We use the meta-variable d to range over choice names. A variational program may contain
any number of choices, and their names do not have to be unique. A program is plain if it contains no
choices. A selector, written as d .i , consists of a choice name d and an alternative index i . Variations
can be eliminated through the selection process, denoted as ⌊o⌋d .i , which replaces all choices named
d in the variational object (expression or type) o with their ith alternative. For example we have:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:8 John Peter Campora and Sheng Chen

⌊Int⌋A.1 = Int ⌊A⟨0, 1 : ⋆⟩⌋A.2 = 1 : ⋆

⌊A⟨⋆, Int⟩→A⟨Int,⋆⟩⌋A.1 = ⋆→Int ⌊A⟨⋆, Int⟩→B⟨Int,⋆⟩⌋A.2 = Int→B⟨Int,⋆⟩

The examples in the second row indicate that variations with the same name are synchronized
(both As in the left column are eliminated) and those with different names are independent (only A,
but not B, in the right column is eliminated). A decision, written as δ , is a set of selectors. Selection
extends naturally to decisions by recursively applying the selectors in the decision.
To type the expression e1, we note that the variation is directly lifted to the type level so

that the argument has the type A⟨Int,⋆⟩. The succ function has the type Int→ Int. To type the
expression e1, we need to match the parameter type Int with the type of the argument A⟨Int,⋆⟩.
Since these types contain both a ⋆ and a variation A, the traditional typing rule for applications
does not directly apply, and neither do the typing rules for gradual typing [Siek and Taha 2006]
or variational typing [Chen et al. 2014b]. Campora et al. [2018b] introduced a type compatibility

relation, written as ≈, to address this issue. The ≈ relation combines the consistency relation in
gradual typing and the type equivalence relation in variational typing. Intuitively, two types are
compatible if selecting them with any decision that eliminates all variations yields two consistent
types. Following this intuition, the type of the argument (A⟨Int,⋆⟩) and the parameter type (Int)
are compatible. As a result, the expression e1 is well typed and has the type Int.

2.3 Error Tolerance

Next let us change 0 to False in the expression e1 and retype it.

succ A⟨False, 1 : ⋆⟩ (e2)

First, the argument now has the type A⟨Bool,⋆⟩, which is incompatible with Int, the parameter
type of succ. Traditionally, this would cause the typing process to terminate with an error. This is,
however, undesirable in variational typing because we are interested in both knowing typing results
for well typed variants and determining which variants have type errors. Under early termination,
we are not able to generate explanations for understanding inconsistencies nor are we able to
compute fixes for them. Chen et al. [2012b] avoided the early termination problem with the idea
of error-tolerant typing and Campora et al. [2018b] adapted that solution to work with gradual
types. The main idea of their solution is extending the typing process Γ ⊢ e : V with a pattern π

to indicate the validity of the process, yielding π ; Γ ⊢ e : V . Here Γ is a type environment and V
denotes a variational type (see Section 4.1).
A pattern can be ⊥, indicating that the typing process is invalid, ⊤, indicating the process is

valid, or a variation between two patterns that recursively indicate the validity in typing the
variational program. Recall that in Section 1.3 we said that, for any expression, our typing result
encodes all possibilities for understanding and fixing type inconsistencies (by changing static type
annotations). Intuitively, within those possibilities, some are well-typed, meaning that changing
the type annotation in the corresponding ways could indeed fix the inconsistencies, and some are
ill-typed, meaning that the corresponding changes could not fix the inconsistencies. We can extract
the well-typed possibilities by collecting all possibilities whose typing patterns are ⊤ and ignoring
the possibilities whose patterns are ⊥. Our implementation, which we present in Section 5, takes a
more efficient approach, by exploring the relations between patterns.
With the new typing relation, we can type the expression e2 as follows. First, we have

⊥; Γ ⊢ False : Int. Note that the pattern is ⊥, since the process of assigning the type Int to False

is invalid. Similar, we have ⊤; Γ ⊢ (1 : ⋆) : ⋆ since assigning ⋆ to 1 : ⋆ is valid. Combining the
previous two typing judgments (by embedding the patterns, the expressions, and the types into the
variation A⟨, ⟩), we have A⟨⊥,⊤⟩; Γ ⊢ A⟨False, 1 : ⋆⟩ : A⟨Int,⋆⟩. Since A⟨Int,⋆⟩, the type of the
argument in the expression e2, is compatible with Int, the parameter type of succ, we have the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:9

following typing result for the expression e2, A⟨⊥,⊤⟩; Γ ⊢ e2 : Int. Based on the typing pattern for
e2, only the result in A.2 is valid, and that in A.1 is invalid. This is desirable since the expression at
A.2 is succ (1 : ⋆) and that at A.1 is succ False.

Like with the typing relation, we can similarly decorate other relations with typing patterns for
error tolerance. To illustrate, consider decorating the type compatibility relation ≈ with a pattern to
form a new relation ≈π , which could be applied to incompatible types. For example, the types Int
and B⟨⋆, Bool⟩ are incompatible because Int is not compatible with the second alternative of the B
variation. However, the two types can be considered as compatible if we restrict the relation with
the pattern B⟨⊤,⊥⟩ since the pattern already indicates that the validity of compatibility is only
required for the first alternative of B (because the pattern there is ⊤) but not the second alternative
(because the pattern there is ⊥). We express this result as Int ≈B ⟨⊤, ⊥⟩ B⟨⋆, Bool⟩.

3 FIXES THROUGH AN INFORMAL EXAMPLE

In this Section, we give a detailed description of how we use exploratory typing to facilitate S1
through S3 for detecting, understanding, and fixing dynamic inconsistencies, by typing and analyz-
ing the program below. The program locations (ℓ1, ℓ2, and ℓ3) are needed for the formal presentation
of the type system (in Section 4) and can be ignored for now.

(λℓ1y : Bool.y) ((λℓ2x : ⋆.x) ((λℓ3z : ⋆.z) 42)) (e3)

As mentioned in Section 1.3, we detect inconsistencies by recovering type information hidden by
uses of⋆ at compile-time. We fulfill that purpose by creating a variation for each dynamic parameter
with the first alternative being a⋆ and the second alternative being an appropriately recovered type
for the parameter. We call such variations dynamic variations and use the metavariable D to range
over them. Following this idea, we assign the dynamic variation D1⟨⋆, Int⟩ to the parameter x and
D2⟨⋆, Int⟩ to z. The type Int in the second alternative can be computed through type inference,
which we discuss in Section 4.5. Note that D1 and D2 represent two distinct variations, allowing
us to directly connect typing results to parameters, for use in determining the set of cloaking ⋆s
mentioned in S2.

For static parameters, we similarly create variations in the static domain S . For example, for the
parameter y we assign a static variation whose first alternative is Bool, the annotation given to y in
the program. What should the second alternative be? One may suggest to use a ⋆. However, that is
undesirable for several reasons. First, using a ⋆means removing that static type annotation, which
counters the goal of migrating gradual programs toward utilizing more static checking. Second,
using a ⋆may falsely compute a fix where none is possible.
For example, consider (λx : Int.x + length (x : ⋆)) 3. This expression is statically well typed

because the ascription x : ⋆ assigns the type ⋆ to x , making the type of x : ⋆ consistent with the
parameter type of length. Removing the ascription, we can detect that this program contains a
runtime inconsistency since the program is ill typed. We can provide what appears a fix by changing
the Int annotation for x to⋆. This will make the program statically well typed but an inconsistency
remains at the call to length (which expects lists) and thus this is not a proper fix. In fact, there is
no fix possible for this program by solely changing annotations.
In fact, we should use a static type for the second alternative because a static type ensures

that all of its uses are consistent. Following this idea, we use Int (Again computed through type
inference) for y and so the variational type for it should be S1⟨Bool, Int⟩. Note that variation names
Si are drawn from the static domain S , and Di are drawn from the dynamic domain D. The use of
two different domains is necessary since each supports different aspects of the repair process for
inconsistencies.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:10 John Peter Campora and Sheng Chen

We list the typing process for the expression e3 in Figure 2, whose resulting pattern πe3 and type
Ee3 are as follows.

πe3 = S1⟨D1⟨⊤,⊥⟩,⊤⟩ Ee3 = S1⟨Bool, Int⟩

The pattern indicates that a typing conflict is detected at {S1.1,D1.2} for this expression.

Expressions Types

λℓ3z : ⋆.z D2⟨⋆, Int⟩→D2⟨⋆, Int⟩

42 Int

(λℓ3z : ⋆.z) 42 D2⟨⋆, Int⟩

λℓ2x : ⋆.x D1⟨⋆, Int⟩→D1⟨⋆, Int⟩

(λℓ2x : ⋆.x) ((λℓ3z : ⋆.z) 42) D1⟨⋆, Int⟩

λℓ1y : Bool.y S1⟨Bool, Int⟩→ S1⟨Bool, Int⟩

Expression e3 S1⟨Bool, Int⟩

Fig. 2. Variational types for typing different subexpressions of e3.

The patterns for the first six rows are ⊤ and that for the last row is

S1⟨D1⟨⊤,⊥⟩,⊤⟩.

From πe3 and Ee3, we can com-
pute repair steps (S1 through S3).
As discussed in Section 2.2, we
can eliminate variations from varia-
tional types and patterns by select-
ing them with decisions. Support-
ing each repair step corresponds to
finding decisions that eliminate typ-
ing patterns in a specific way, and
we discuss the process for each re-
pair step below.

S1 To decide whether the program
contains a runtime inconsistency,
we start by selecting the pattern with the decision that contains Di .2 for each Di created. This
replaces the ⋆s that suppress types with proper static types for use in detecting errors statically.
We also select with Si .1 for each Si because we are detecting whether runtime inconsistencies exist
under the existing type annotations. Following this idea, the decision for detecting the error in the
expression e3 is δ = {D1.2, S1.1}. Since selecting the pattern πe3 with δ yields a ⊥, we conclude
that e3 contains runtime inconsistencies.

S2 To help compute cloaking ⋆s, we first observe that: (1) For each static variation Si we should
select the pattern (πe3) with Si .1 to keep the original static type information. (2) For each dynamic
variation Di , if the corresponding ⋆ helps hide an inconsistency then the pattern is ⊤ when
selecting Di .1 and is ⊥ in Di .2. In other words, Di ⟨⊤,⊥⟩ should be in the result pattern. Recall
from Section 2.3 that a ⊤ and a ⊥ denote the typing is valid and invalid, respectively. Returning to
the expression e3, with observation (1), we can reduce πe3 to D1⟨⊤,⊥⟩. With observation (2), we
derive that the ⋆ for x , the parameter that corresponds to D1, is cloaking.

S3 To fix inconsistencies, we need to produce the decision that (1) contains Di .2 for all Dis and
Si .2 for any number of Sis and (2) yields ⊤ when selecting the pattern with it. Essentially, this
communicates whether the newly found type information for statically typed parameters (Si .2)
agrees with that for the recovered dynamic (Di .2) type information. In our example, there is only
one decision, δ = {D1.2, S1.2}, that satisfies (1) and (2). Consequently, we conclude that changing
the type annotation of y, the parameter that corresponds to S1, to Int can fix the inconsistencies.

4 EXPLORATORY TYPING

The informal example in Section 3 illustrates that the fundamental idea of exploratory typing
is exploring the typing results for a large set of programs that can be generated by replacing
dynamic and static parameters with alternative types. We present the syntax of exploratory typing
in Section 4.1, introduce all of the different variational domains in Section 4.2, present the typing
rules in Section 4.3, and investigate its properties in Section 4.4.

4.1 Syntax

We present the syntax of expressions, types, and various typing judgment elements in Figure 3. The
source language is a straightforward extension of the gradually typed lambda calculus [Siek and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:11

Term variables x , y, z Value constants c

Type variables α Type constants γ Program locations ℓ

Expressions e ::= c | x | λℓx : G .e | e e | eℓo | let x = e in e | ifℓ e then e else e

Static types T ::= γ | α | T →T | F ⟨T ,T ⟩

Gradual types G ::= γ | G→G | ⋆ | F ⟨G,G⟩

Variation domains d ::= F | D | S | O

Variational types V ::= γ | α | V →V | d ⟨V ,V ⟩

Exploratory types E ::= γ | α | E→E | ⋆ | d ⟨E,E⟩

Type Schemes σ ::= E | ∀F .E

Type environment Γ ::= ∅ | Γ,x 7→ E

Exploratory map Ω ::= ∅ | Ω, ℓ 7→ E

Program update K ::= ∅ | K , ℓ 7→ G

Typing patterns π ::= ⊥ | | ⊤ | d ⟨π ,π ⟩

Fig. 3. Syntax of exploratory typing.

Taha 2006], with constants (c), conditionals, and opaque expressions (eo). We introduce program
locations (ℓ) to record where variations are introduced. The opaque expression can be instantiated
with language features that make type-based exploratory analysis difficult, like the eval expression.
We discuss typing opaque expressions in Section 4.2.

The syntax of types is stratified into several kinds. In addition to conventional constructs, static
types (T) contain F variations. The F domain is used to more precisely type conditionals, and we
discuss it in detail in Section 4.2. While static types and gradual types (G) do not contain choices
other than F , variational (V) and exploratory types (E) do. We use the meta-variable d to range
over variations from the D, S , F , and O domains. We have seen the first two domains in Section 3.
The O domain is used to safely associate types to opaque expressions. Type schemes quantify over
F variations, and we will elaborate on their purpose when discussing the typing of let-expressions
in Section 4.3.

The definition of type environments Γ is standard. The exploratory map (Ω) records where and
what variations are introduced during the typing process. For example, let Ωe3 be the exploratory
map in typing the expression e3 in Section 3, then

Ωe3 = {ℓ2 7→ D1⟨⋆, Int⟩, ℓ1 7→ S1⟨Bool, Int⟩, ℓ3 7→ D2⟨⋆, Int⟩}.

The main goal of introducing K is to establish the correctness of our type system, and we leave the
discussion of it to Section 4.4. The syntax for typing patterns (π) extends those in Section 2.2 with
a for typing opaque expressions. We discuss this in Section 4.2.

4.2 Typing Rules Introducing Variational Domains

In this subsection we motivate the needs for four different variational domains and present the
typing rules for introducing them in Figure 4. Our typing judgments have the form π ; Γ ⊢ e : E | Ω,
which can be read as: under Γ, the expression e has the type E, with alternative type assignments
to parameters recorded in the exploratory map Ω and judgment validity specified in the typing
pattern π .
The rule Abs types abstractions. Given a gradual type G for the parameter, we first use the

following function varIntro to make G variational (the first premise, denoted by E1) and type the
body of the abstraction under the assumption that the parameter has the type E1 (the second

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:12 John Peter Campora and Sheng Chen

Abs
E1 = varIntro (G) π ; Γ,x 7→ E1 ⊢ e : E | Ω

π ; Γ ⊢ λℓx : G .e : E1 →E | Ω ∪ {ℓ 7→ E1}

If

Fi fresh Fi ⟨π1,π2⟩; Fi ⟨Γ1, Γ2⟩ ⊢ e1 : E1 | Ω1 E1 ≈Fi ⟨π1, π2 ⟩ Bool

π1; Γ1 ⊢ e2 : E2 | Ω2 π2; Γ2 ⊢ e3 : E3 | Ω3 Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ {ℓ 7→ Fi ⟨E2,E3⟩}

Fi ⟨π1,π2⟩; Fi ⟨Γ1, Γ2⟩ ⊢ if
ℓ e1 then e2 else e3 : Fi ⟨E2,E3⟩ | Ω

Opaqe
Oi fresh

Oi ⟨⊤, ⟩; Γ ⊢ eℓo : Oi ⟨⋆,V ⟩ | {ℓ 7→ Oi ⟨⋆,V ⟩}

Fig. 4. Typing Rules for introducing variations.

premise). In the conclusion, we record the change (ℓ 7→ E1) in Ω.

varIntro (T) = Si ⟨T ,V ⟩ where Si fresh
varIntro (⋆) = Di ⟨⋆,V ⟩ where Di fresh

varIntro (G1 →G2) = varIntro (G1)→ varIntro (G2)

The intuitions on why and how we create variations were given in Section 3. Essentially, for
each static type T , we create a static variation Si (the first case of varIntro). For each ⋆, we create
a dynamic variation Di (the second case of varIntro). The variation names should be unique
(expressed as conditions in varIntro) such that we could explore type changes to different parameters
independently (Section 2.2). Note that the second alternative in the first two cases of varIntro useV ,
indicating that we may change a static type or a⋆ to any variational type during exploration (In type
inference, the second alternatives will be fresh type variables and will be made concrete based on
type constraints from the program (Section 4.5)). As an example of varIntro, varIntro (⋆→ Bool) =

D1⟨⋆,E1⟩→ S1⟨Bool,E2⟩, where E1 and E2 denote any variational gradual type.
The goal of the domain F is to more precisely represent and reason about conditional statements

with different branch types. For example, consider the following expression:

succ_or_not = λℓ1x : ⋆.λℓ2y : ⋆.ifℓ3 x then succ y else not y

What type should we assign to the parameter y? We cannot assign a traditional static type since
the then branch requires its type to be Int whereas the else branch requires it to be Bool. Thus,
it is natural to assign ⋆ to y. However, this is undesirable since we would treat the application
succ_or_not True 'a' as well typed, while its evaluation always leads to a cast error because no
branch accepts a Char value.

To combat the inadequacy of⋆, we assign toy a flow variation F ⟨Int, Bool⟩, which communicates
that the type of y should be Int if the control flow enters the then branch and Bool otherwise. This
now allows us to detect a cast error in succ_or_not True 'a', since Char matches neither of the
alternatives of F ⟨Int, Bool⟩. Alternatively, we could use recent work to assign gradual intersection
or union types for such cases [Castagna and Lanvin 2017; Toro and Tanter 2017], but F variations
give more precise results as shown via an example in Section 8.1.
The essence of typing conditionals is thus allowing variables to have different types in the

branches. To support this, we need to use separate type environments and typing patterns for typ-
ing the branches, whose types may also differ. The rule If formally describes this idea. After typing
the branches, the environments and patterns for branches are combined to type the entire condition

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:13

via F ⟨Γ1, Γ2⟩ and F ⟨π1,π2⟩. The environment F ⟨Γ1, Γ2⟩ essentially maps variables used with differ-
ent types in Γ1 and Γ2 to variational flow types. For example, F ⟨{y 7→ Int}, {y 7→ Bool}⟩={y 7→

F ⟨Int, Bool⟩}. If a variable appears in only one environment, then it can be treated as having any
type in the other environment. We also keep track of which conditionals introduce certain flow vari-
ations, by having ℓ 7→ Fi ⟨E2,E3⟩ in Ω. This is important when fixing inconsistencies in certain con-
ditional branches. Overall, we assign the type D1⟨⋆, Bool⟩→D2⟨⋆, F1⟨Int, Bool⟩⟩→ F1⟨Int, Bool⟩

to succ_or_not, where F1 is the fresh variation for the conditional in succ_or_not. We give the
detailed typing derivation for this example in Appendix A of the long version of this paper.4

Finally, the domain O is for reasoning about values produced by statically un-checkable expres-
sions, determining if these values are used consistently when flowing into analyzable contexts.
Consequently, the right alternative of each opaque variation will contain the type the opaque
expression is consistently used with. To illustrate, consider the following Python program.

x = eval(input("Please enter an Integer: "))

x+1

We observe that x is used with type Int consistently in the program, but we cannot statically
verify that x receives only an Integer at runtime (the user might provide True as the input). As a
result, having the derivation ⊤; Γ ⊢ x : Int | Ω is incorrect for the variable x in the above program,
because ⊤ can only be attached to judgments that can be determined as valid at compile time.
Meanwhile, we should not use the judgment ⊥; Γ ⊢ x : Int | Ω because ⊥ is attached to judgments
that can be determined as invalid at compile time.
We introduce , a new pattern construct, for such situations. This pattern can be attached to

judgments that can be statically determined to be valid but at runtime the values may violate
assumed types, when, for example, such values depend on user inputs. With the pattern, we can
now assign x the opaque variational typeO ⟨⋆, Int⟩, and the derivationO ⟨⊤, ⟩; Γ ⊢ x : O ⟨⋆, Int⟩ | Ω

indicates that the expected type at runtime for x is Int. Overall, Opaqe in Figure 4 captures this
intuition of trying to find an alternative static type for normally uncheckable expressions, where
the pattern indicates that the alternative static type is an expectation but may not hold at runtime.
We add ℓ 7→ Oi ⟨⋆,V ⟩ to Ω to record which opaque expressions introduce their opaque variations.

4.3 Other Typing Rules

Now that we have already discussed the introduction of different variational domains, we turn
to the remaining typing rules, which appear in Figure 5. The rule for constants (Con) is standard.
A variable reference (Var) simply looks up the type in the environment and instantiates the type
scheme over flow variations. We use F to denote a sequence of flow variations. We discuss the
necessity of flow variation instantiation when we discuss the rule for typing let expressions.

There is an interesting interaction between F variations and let expressions. To illustrate, recall
the succ_or_not function and consider the pair: (succ_or_not True 1, succ_or_not False True). Given
that the type for succ_or_not is D1⟨⋆, Bool⟩→D2⟨⋆, F1⟨Int, Bool⟩⟩→ F1⟨Int, Bool⟩, the two calls
generate the typing patterns F1⟨⊤,⊥⟩ and F1⟨⊥,⊤⟩, respectively. As a result, the best typing pattern
we can assign to this expression is F1⟨⊥,⊥⟩, which is equivalent to ⊥, the same as saying this
expression contain runtime inconsistencies. In fact, however, no such inconsistencies are present.
The problem is that while different calls of succ_or_not will likely take different branches or
succ_or_not, the types and patterns fail to reflect this fact.
To alleviate this problem, we introduce choice type schemes (quantifying over

flow choices) so that the two references to succ_or_not generate the separate types
D1⟨⋆, Bool⟩→D2⟨⋆, F2⟨Int, Bool⟩⟩→ F2⟨Int, Bool⟩ and D1⟨⋆, Bool⟩→D2⟨⋆, F3⟨Int, Bool⟩⟩→

4https://people.cmix.louisiana.edu/schen//ws/techreport/uslong.pdf

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:14 John Peter Campora and Sheng Chen

Con
c is of type γ

⊤; Γ ⊢ c : γ |∅
Var

x 7→ ∀F .E1 ∈ Γ Fi fresh E = {F 7→ Fi }(E1)

⊤; Γ ⊢ x : E |∅

Let
π ; Γ,x 7→ E1 ⊢ e1 : E1 | Ω1 F = FC(E1) − FC(Γ) π ; Γ,x 7→ ∀F .E1 ⊢ e2 : E2 | Ω2

π ; Γ ⊢ let x = e1 in e2 : E2 | Ω1 ∪ Ω2

App
π ; Γ ⊢ e1 : E1 | Ω1 π ; Γ ⊢ e2 : E2 | Ω2 domπ (E1) ≈π E2

π ; Γ ⊢ e1 e2 : codπ (E1) | Ω1 ∪ Ω2

Weaken
π ; Γ ⊢ e : E | Ω π1 ≤ π

π1; Γ ⊢ e : E | Ω

dom (⋆) = ⋆ cod (⋆) = ⋆
dom (E1 →E2) = E1 cod (E1 →E2) = E2
dom (d ⟨E1,E2⟩) = d ⟨dom (E1), dom (E2)⟩ cod (d ⟨E1,E2⟩) = d ⟨cod (E1), cod (E2)⟩

Fig. 5. The remaining typing rules. For cases not listed, dom and cod are undefined.

F3⟨Int, Bool⟩, which have distinct F variation indices. Consequently, the patterns for these two calls
become F2⟨⊤,⊥⟩ and F3⟨⊥,⊤⟩ and the best pattern for this expression becomes F2⟨F3⟨⊥,⊤⟩,⊥⟩,
which indicates that the pair can potentially run without failures, due to the presence of ⊤. We
realize this idea by introducing choice schemes using Let for let expressions and instantiating
them using Var for variable references. The structure for Let is standard except for the choice
scheme ∀F .E and the free choices function FC, which collects all F variations in the given type (or
type environment). Note that we support recursive let-bindings by typing e1 with x .

The rule for typing function applications (App) uses the pattern-constrained compatibility relation
introduced in Section 2.3.We use the domπ and codπ functions to compute the domain and codomain
of types that are compatible with function types. The subscript π indicates that these functions
need to be defined only for the variants where π has a ⊤. For example, dom⊤(Int) is invalid since
dom (Int) is not well-defined, but dom⊥(Int) is valid since the⊥ indicates that this is untrustworthy.
The main goal of Weaken is to relax the validity requirement π in the sense that we can use

another pattern π1 that has ⊥ in equal or more places. This typing rule relies on a less-defined
relation ≤ from Chen et al. [2012a]. While the definition of π extends that of [Chen et al. 2012a]
with a , the ≤ stays the same because is more precise than ⊥ and less precise than ⊤ and as before
⊥ is less precise than ⊤. Essentially, π1 ≤ π2 holds if for any variant where π2 has a ⊥ then π1 also
has a ⊥. We give the definition of ≤ in Appendix B (of the long version of this paper).
The purpose of Weaken is that, when typing a compound expression (such as an application),

we can use different patterns for typing subexpressions (the function and the argument) and use ≤
to adjust patterns for subexpressions to a same pattern for the compound expression to be typed.

4.4 Properties

In this section, we investigate the properties of the type system presented in Figures 4 and 5. Note
that the type system essentially type checks a set of related programs, finds proper static types for
dynamic parameters, replaces type annotations for static parameters, and explores the different
uses of values produced by opaque expressions. For this reason, we should first ensure that the
result of our exploratory typing is the same as individually typing each related program.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:15

We start by discussing some assumptions and the method to obtain and type each individual
program. We assume that after the typing π ; Γ ⊢ e : E | Ω completes, π , Ω, and E are simplified
as much as possible in the sense that they do not contain variations with identical alternatives
or variations with unreachable alternatives. For example, d ⟨Int, Int⟩ is simplified to Int and
d ⟨Int,d ⟨Bool, String⟩⟩ is simplified to d ⟨Int, String⟩. An efficient simplification method was pre-
sented in Chen et al. [2014b].
As discussed in Section 4.1, once the typing π ; Γ ⊢ e : E | Ω finishes, Ω maps each parameter,

opaque expression, and conditional to a variational type. The Ω thus records all potential ways of
changing the original program. For example, Ωe3, the Ω for typing the expression e3, is given in
Section 4.1. In contrast, we use a program update K (the syntax is given in Figure 3) to characterize
one way of changing the program. Each K can be obtained from the corresponding Ω by selecting
it with a decision. We use δc to denote decisions that eliminate all D, S , and O variations. For
example, for π = S ⟨D ⟨⊤,⊥⟩, F ⟨⊥,⊤⟩⟩, {S .1,D .2} and {S .2} are such decisions, while {S .1} and
{D .1} are not. For a given δc and a Ω, we obtain a K through the function update, defined as
follows. The function exp2chc (ℓ,Ω) gives the name of the choice introduced at the location ℓ when
typing the expression yields the exploratory mapping Ω. For example, exp2chc (ℓ2,Ωe3) is D1 and
exp2chc (ℓ3,Ωe3) is D2 when typing the expression e3 in Figure 2.

K = update (Ω,δc) = ⌊Ω⌋δ c = {(ℓ, ⌊E⌋δ c) | ℓ 7→ E ∈ Ω ∧ exp2chc (ℓ,Ω).2 ∈ δc }

For example, let δce3 = {D1.2, S1.2,D2.1}, we can derive the following Ke3.

Ke3 = ⌊Ωe3⌋δ c
e3
= {ℓ1 7→ Int, ℓ2 7→ Int}

When we apply Ke3 to the expression e3, written as Ke3(e3), it changes the expression to
(λℓ1y : Int.y) ((λℓ2x : Int.x) ((λℓ3z : ⋆.z) 42)).

Given an expression e and a K , we use the judgment K ; Γ ⊢G e : G to denote that e , under the
environment Γ and configuration update K , has the typeG . Intuitively, derivations using ⊢G are the
same as in a typical gradual type system, but for any parameter at the location ℓ with ℓ 7→ G ∈ K ,
then the parameter type at the location ℓ is updated to have the type G. For example, we have
Ke3; Γ ⊢G e3 : Int, which intuitively says that the expression e3 has the type Int if we update the
parameter types at ℓ1 and ℓ2 to Int. We defer the formal presentation of ⊢G to Section ??.

By relating the typing rules in Figure 5 to ⊢G , the following theorem states that our type system
is correct. We defer the proof of the theorem to Appendix C.

Theorem 4.1 (Exploratory typing correctness). If π ; Γ ⊢ e : E | Ω, then for any δc such that

⌊π ⌋δ c = ⊤ we have ⌊Ω⌋δ c ; Γ ⊢G e : ⌊E⌋δ c .

We observe that typing rules in Figures 4 and 5 have some nondeterminism. For example, the
V in Abs (through varIntro) can take any value, as can the π in all other rules. However, we can
find a best typing for any expression e under any environment Γ, in the sense that the π is as good
as possible and the Ω is as precise and general as possible. We make this idea formal through
Theorem 4.2. The theorem employs a standard precision relation on gradual types (such as the
one in Siek and Vachharajani [2008]) and we write G2 ⊑ G1 when G2 is more static than G1. We
extend this relation with an additional axiom α ⊑ γ so that more general types are considered
more precise (for example α →α ⊑ Int→ Int). We also write K2 ⊑ K1 if K1 and K2 share the same
domain and for all x in the domain K2(x) ⊑ K1(x).
Overall, Theorem 4.2 states that there is a most defined, most static, and most general typing

derivation possible for any program, which can be computed through type inference (see below).
The notion of best typing is critical in most of the lemmas and theorems in Section 5 that involve
the machinery for repair steps S1-S3.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:16 John Peter Campora and Sheng Chen

Theorem 4.2 (Best Typing). For any e and Γ, there is a best typing π ; Γ ⊢ e : E | Ω such that for

any π1; Γ ⊢ e : E1 | Ω1, ∀δ
c .⌊π1⌋δ c = ⊤ ⇒ ⌊π ⌋δ c = ⊤ ∧ ⌊E⌋δ ⊑ ⌊E1⌋δ c .

Proof. The proof of this theorem is a consequence of the Lemmas ?? and ?? in Appendix C. □

4.5 Type Inference

Theorem 4.2 stated that for any expression and type environment, there exists a best typing. This
best typing can be computed through a type inference algorithm. Since the type inference algorithm
can be obtained by a relative simple extension of the variational type inference algorithm [Chen et al.
2012b] to handle dynamic types, we defer its presentation to Appendix D. The inference algorithm
can also be understood as extending the inference algorithm of Garcia and Cimini [2015] with the
support for variational types. An important difference with previous inference algorithms [Chen
et al. 2012b; Garcia and Cimini 2015] is that conditional branches are allowed to have different
types.

5 STEPS FOR REPAIRING INCONSISTENCIES

In this section, we focus on providing the repair steps S1-S3 outlined in Section 1. We use two
examples throughout this section. The first example is the expression e3, for which the resulting
pattern πe3 (reproduced from Section 3) and the exploratory map Ωe3 (reproduced from Section 4.4)
are as follows.

πe3 = S1⟨D1⟨⊤,⊥⟩,⊤⟩ Ωe3 = {ℓ2 7→ D1⟨⋆, Int⟩, ℓ1 7→ S1⟨Bool, Int⟩, ℓ3 7→ D2⟨⋆, Int⟩}

The second expression, adapted from succ_or_not in Section 4.2, is given below.

λℓ1x : ⋆.λℓ2y : Int.ifℓ3 x then succ y else (notℓ4 : ⋆) y (e4)

The result pattern πe4 and the exploratory map Ωe4 for this expression can be computed using
type inference (Section 4.5) and are given below.

πe4 = F1⟨⊤, S1⟨D2⟨⊤,⊥⟩,⊤⟩⟩

Ωe4 = {ℓ1 7→ D1⟨⋆, Bool⟩, ℓ2 7→ S1⟨Int, F1⟨Int, Bool⟩⟩, ℓ3 7→ F1⟨Int, Bool⟩,

ℓ4 7→ D2⟨⋆, Bool→ Bool⟩}

To simplify the discussion in this section, we assume that the exploratory maps and result
patterns do not contain O variations. We can extend our methods to support them by simply
replacing O variations with their second alternatives, treating s as ⊤s, and decorating the results
with łmaybež.

To simplify our discussion below, we introduce some auxiliary functions and notions. We use
chcs (δ) to collect all the choice names in δ , that is chcs (δ) = {d | d .1 ∈ δ ∨ d .2 ∈ δ }. We also use
chcs (π) to return the set of choices in π , for example, chcs (D1⟨S1⟨⊥,⊤⟩,⊤⟩) yields {D1, S1}. We
use πF to denote a pattern that contains only ⊥, ⊤, and F variations.

Finally, to formally talk about cast errors, we need an evaluation relation e ⇓ (v,δ) that specifies
that the cast-inserted expression of e reduces to the value v [Siek et al. 2015a]. We use error for v
to denote that the evaluation of e leads to a cast error. Note that our error does not contain a blame
label [Wadler and Findler 2009] because we are only focused on identifying whether a program
fails, and not what it blames. The δ records the branches that were covered during the execution.
For example, for e4, we have (e4 True 3) ⇓ (4, {F1.1}), where F1 is the variation for the conditional
in e4 (Please refer to Ωe4 above). Similarly, (e4 False 3) ⇓ (error, {F1.2}). The δ in the evaluation
relation is mainly used in Theorems 5.2 through 5.4. The definition of ⇓ is given in Appendix F,
which is a simple extension of standard gradual program reduction rules, like those given by Siek
et al. [2015a]. We use e ⇑ to denote that evaluating e is divergent.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:17

5.1 Detecting and Understanding Runtime Inconsistencies

Step S1 Given an expression e and its typing pattern π , this step detects at compile-time whether
executing e will yield inconsistencies. We provide this functionality in two steps. First, from π , we
generate a decision used to eliminate all choices in π . Intuitively, we take the second alternatives
of all dynamic variations Di s (for removing type suppression) and the first alternatives of all static
variations Sis (for testing e without changing its type annotations). Below, we define a function
descS1 (·) for this step.

descS1 (π) = {Si .1 | Si ∈ chcs (π)} ∪ {Di .2 | Di ∈ chcs (π)}

Second, we select π with the generated decision. If that leads to a ⊥, then evaluating e will lead
to a cast error. If the selection leads to a πF variation, then the evaluation may lead to a cast
error, depending on conditional branches that will be taken. For example, for πe3, descS1 (πe3)
= {D1.2, S1.1}. Since selecting πe3 with {D1.2, S1.1} leads to a ⊥, we can correctly derive that
evaluating e3 yields a cast error. For πe4, descS1 (πe4) = {S1.1,D2.2}. Selecting πe4 with that decision
yields F1⟨⊤,⊥⟩, a πF variation. Thus, our conclusion is that evaluating the expression e4 may lead
to a cast error (for example with the arguments False and 3) or may not (for example with the
arguments True and 3). We can verify that this conclusion is correct.
Our detection result may contain false positiveness. To illustrate, consider the expression

(λx : ⋆.(x 1,x True)) id. The typing pattern for this expression is D3⟨⊤,⊥⟩, where D3 is the
fresh variation for the parameter x . Based on this pattern, we may derive that this expression
contains an inconsistency. However, evaluation of this expression succeeds. The reason is that we
do not infer higher-rank types [Peyton Jones et al. 2007] as alternative types.
We can eliminate such false positiveness through the idea of program updates introduced in

Section 4.4. Specifically, if we have detected an inconsistency for a given expression and the
inconsistency can be removed by changing some static type annotations of the expression, then the
inconsistency is real. We formally capture this idea in the following theorem, where KS updates
only static type annotations.

Theorem 5.1 (Soundness of inconsistency detection). Given e, let π ;∅ ⊢ e : E | Ω be the best

typing. If ⌊π ⌋descS1 (π) =⊥ and there exists someKS such that π1;∅ ⊢ KS (e) : E1 | Ω1 and ⌊π1⌋descS1 (π1)

= ⊤, then e ⇓ (error,δ).

In practice, we can determine if such a KS exists by checking if a fix that changes only static
type annotations exists, and a method for this is provided in Section 5.2.
The proof of this theorem is given in Appendix F.

Step S2 This step aims to find cloaking ⋆s (or cloaked parameters and expressions). Since each ⋆
corresponds to a unique Di choice, we sometimes refer to this step as collecting cloaking variations.
By definition, a ⋆ is cloaking if removing the type suppression of that ⋆ in the program makes
the runtime inconsistency statically detectable by gradual type systems. Formally, let π be the
simplified pattern for typing e and Di is created for some ⋆, then Di is cloaking if there is some
δ such that ⌊π ⌋{Di .1}∪δ = ⊤ and ⌊π ⌋{Di .2}∪δ = ⊥. For example, for the expression e3 and πe3, we
can choose δ= {S1.1} and Di = D1 to identify D1 as a cloaking variation. We express this idea of
collecting cloaking variations in the following function, which takes a typing pattern as the input.

cloakingVars (π) = {D | ∃δ .⌊π ⌋{D .1}∪δ = ⊤ ∧ ⌊π ⌋{D .2}∪δ = ⊥}

Collecting cloaking variations directly based on this definition has a high complexity because
we need to consider all Ds in π and for each D we need to find a δ satisfying the conditions given
in the definition. A more efficient way to find them is by checking if the pattern contains D ⟨⊤,⊥⟩

as a smaller pattern for some D. For example, as πe3 = S1⟨D1⟨⊤,⊥⟩,⊤⟩ contains D1⟨⊤,⊥⟩ as

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:18 John Peter Campora and Sheng Chen

a smaller pattern, we immediately conclude that D1 is cloaking. We give an approach, together
with an algorithm, for collecting cloaking variations use this idea in Appendix E. The algorithm is
able to handle more complicated patterns that has nested variations such as D1⟨⊤,D2⟨⊤,⊥⟩⟩. The
algorithm has a linear complexity to the size of the input pattern.

5.2 Fixing Wrong Type Annotations

Determine if cast errors can be fixed Our first step in computing fixes is to determine if the cast
errors can be fixed solely by changing type annotations, as motivated in Section 1.1. Not every cast
error can be fixed in this manner. For example, λℓ1x : Int.succ ((not:⋆) x) is statically well typed
but always leads to a cast error, no matter how we change x ’s type annotation. On the other hand,
some programs have multiple fixes. For example, (λℓ1x : Bool→ Bool.x) (λℓ2y : ⋆.y) (λℓ3z : Int.z)

has two fixes: changing Bool→ Bool for x to Int→ Int or Int for z to Bool. This expression’s typing
pattern is πmul= D1⟨⊤, S1⟨S2⟨⊥,⊤⟩,⊤⟩⟩, assuming the variations created for ℓ1, ℓ2, and ℓ3 are S1,
D1, and S2, respectively.
To collect all possible fixes, it is helpful to view a pattern as a tree, where leaves are ⊤s or ⊥s

and internal nodes are variation names. For πmul from the previous paragraph, it has four leaves,
which are ⊤, ⊥, ⊤, and ⊤ from left to right. It has three internal nodes, D1, S1, and S2. Each leaf
corresponds to a program configuration, which can be determined by moving up the tree from that
leaf to the root. For example, the leaf marked with a ⊤ at the second alternative of S2 corresponds
to the configuration that changes the type annotation for z (moving up the tree will take the second
alternative of S2), keeps the type annotation for x (the first alternative of S1), and changes the type
annotation for y (the second alternative of D1).

Therefore, we collect all fixes by first collecting good configurations. A configuration is good if
(1) the corresponding leaf is ⊤ and (2) the configuration does not cover the first alternative of any
Di variation since that may hide type inconsistencies. Based on this idea, we define the function
goodConfigs for collecting all good configurations as follows.

goodConfigs (⊤) = {∅} goodConfigs (⊥) = ∅

goodConfigs (Si ⟨π1,π2⟩) = {{Si .1} ∪ δ | δ ∈ goodConfigs (π2)}

∪ {{Si .2} ∪ δ | δ ∈ goodConfigs (π2)}

goodConfigs (Di ⟨π1,π2⟩) = {{Di .2} ∪ δ | δ ∈ goodConfigs (π2)}

goodConfigs (Fi ⟨π1,π2⟩) = goodConfigs (π1) ∪ goodConfigs (π2)

The general idea of goodConfigs is that it starts from leaves and accumulates configurations as it
moves up to the root, where goodConfigs terminates. For ⊤, goodConfigs returns a unit set whose
element is an empty set. This allows goodConfigs to accumulate configurations in recursive calls.
Instead, for ⊥, it returns an empty set. For each internal node, it performs different operations. For
a static variation Si , it expands configurations from the left child with Si .1 and those from the right
child with Si .2 and returns them. For a dynamic variation Di , it discards configurations from the
left child and expands those from the right with Di .2 and returns them. For a flow variation Fi , it
combines configurations from both children and returns them.
Since each good configuration corresponds to a fix, we can determine if the inconsistencies

can be fixed as follows. Assume π is the pattern for typing e , then the inconsistencies in e cannot
be fixed by changing type annotations if goodConfigs (π) is empty. Otherwise, for any δ from
goodConfigs (π) ⌊π ⌋δ=⊤ implies the the inconsistencies in e can be fixed and ⌊π ⌋δ=πF implies the
inconsistencies can possibly be fixed, depending on the conditional branches being taken when
evaluating e .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:19

For the expression e3 and its pattern πe3, goodConfigs (πe3) = {{S1.2,D1.2}} and selecting πe3
with the decision in the set yields a⊤, the inconsistency can thus be fixed. For the expression e4 and
its pattern πe4, goodConfigs (πe4) = {{S1.2}} and selecting πe4 with that decision leads to F1⟨⊤,⊤⟩,
which is the same as ⊤, meaning that the inconsistency in the expression e4 can also be fixed. For
the expression given in the first paragraph of this section and its pattern πmul, goodConfigs (πmul) =
{{S2.2, S1.1,D1.2}, {S1.2,D1.2}}. Selecting πmul with either decision in the set yields a ⊤, and the
inconsistency in it can thus be fixed.
This idea of determining whether inconsistencies can be fixed is correct, expressed in the

following theorem.

Theorem 5.2. Let π ;∅ ⊢ e : E | Ω be the best typing for e , π1= ⌊π ⌋δ1 where δ1 ∈ goodConfigs (π),

and e⋆ is obtained by removing all type annotations in e , then

• π1 = ⊤ and e⋆ ⇓ (v,δ) imply v , error for some δ .

• π1 = πF , e⋆ ⇓ (v,δ), and ⌊πF ⌋δ = ⊤ implies v , error.

• π1 = ⊤ may imply e⋆ ⇑.

This theorem is reminiscent of the dynamic part of gradual guarantee [Siek et al. 2015a]. Note,
π1 = ⊤ does not necessarily imply that e⋆ terminates. For example, consider the following expres-
sion. 5

let f = λℓ1x : ⋆. f (x + 1) in f ((λℓ2y : Bool.y) (1ℓ3 : ⋆)) (e5)

This expression is statically well typed but has a cast error. The reason is that the expression 1 that
has runtime type Int is passed into a function whose parameter type is Bool. For this expression,
the result pattern πe5 and the exploratory map Ωe5 are given as follows, where the variations for x ,
y, and the ascription are D1, S2, and D3, respectively.

πe5 = S2⟨D3⟨D1⟨⊤,⊥⟩,⊥⟩,⊤⟩ Ωe5 = {ℓ1 7→ D1⟨⋆, Int⟩, ℓ2 7→ S1⟨Bool, Int⟩, ℓ3 7→ D2⟨⋆, Int⟩}

Based on the definition of goodConfigs, we have goodConfigs (πe5) = {{S2.2}}. Let δce5 = {S2.2},
we have ⌊πe5⌋δ c

e5
= ⊤. However, running the expression that removes all type annotations from e5

is non-terminating, due to the recursive call inside f that has no base case. To our best knowledge,
no work exists in gradual typing that reasons about program termination as type annotations are
removed.

Compute fixes for inconsistencies From each good configuration, we can derive a fix. Based
on the definition goodConfigs, each good configuration contains some selectors of the form Si .2 if
the program contains inconsistencies. As Si variations are created for parameters with static type
annotations (please refer to Section 3 for an informal example and Section 4.2 for formal rules).
Moreover, the first and second alternatives of such variations are the original type annotation
and the type annotation it should be changed to remove the inconsistencies. Consequently, the
fix corresponds to each good configuration needs to update the type annotations for parameters
where Si s are introduced.

A fix is thus a program update, and we reuse the idea of generating program updates in Section 4.4
to produce a fix. Specifically, we implement this idea in the following functions, with π ; Γ ⊢ e : E | Ω

being the best typing for e and δ is from goodConfigs (π),

fix (e,δ) = update (Ω, chgPars (δ)) chgPars (δ) = {Si .2 | Si .2 ∈ δ }

The update function is defined in Section 4.4. The function chgPars (δ) removes all Di .2s from δ

because we do not change ⋆s for fixing inconsistencies. Based on chgPars, we can find the minimal

5This expression uses ascription to specify that 1 has the type ⋆ at compile time. While our expression syntax does not
support ascription, (1:⋆) could be easily represented in our syntax as (λz : ⋆.z) 1.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:20 John Peter Campora and Sheng Chen

fix by going through all good configurations and find the set that changes the fewest parameters.
We define a function minalFix (e) for computing the minimal fix for e . The definition, though space
consuming, is simple; we omit its definition here.
For the expression e3 and its pattern πe3 and exploratory map Ωe3, we have:

minalFix (e3) = update (Ωe3, chgPars ({S1.2,D1.2})) = update (Ωe3, {S1.2}) = {ℓ2 7→ Int}

Thus, the sole (and minimal) fix for e3 is changing its annotation for the parameter y to Int.
For the expression e4 and its πe4 and Ωe4, we have:

minalFix (e4) = update (Ωe4, chgPars ({S1.2})) = update (Ωe4, {S1.2}) = {ℓ2 7→ F1⟨Int, Bool⟩}

Thus, the only fix for e4 is changing its annotation for the parameter y to a flow type. However,
since type checkers and users may not be able to make use of variational types directly, we will
have to suggest changing the type annotation of y to a ⋆.
In addition, if the computed fix suggests changing some parameter type to a type variable but

the language does not support type variables as annotations, we must also resort to ⋆. One such
example is the fix for asciify in Section 1.
Our computed fix is correct in the sense that the fixed expression will no longer produce cast

errors, as captured in the following theorem, where K (e) applies the update K to e (Section 4.4).

Theorem 5.3. Let π ;∅ ⊢ e : E | Ω be the best typing for e , δ is any member of goodConfigs (π),

and K= fix (e,δ), then

• K(e) ⇓ (v,δ1) such that v , error for some δ1, or

• K(e) ⇑.

Similar to Theorem 5.2, K(e) may be divergent. The expression e5 is one such example. For e5,
we have Ke5 = fix (e5,δce5) = {ℓ2 7→ Int}, and Ke5(e5) changes the type for y to Int. It is easy to
check that the resulting expression is indeed non-terminating.

For a given expression e , our fix not only removes the cast error, but is łmeaningfulž in the sense
that the expression obtained by applying the fix to e and the expression that removes all type
annotations in e (we call it e⋆ in the theorem) evaluate to the same value. The following theorem
expresses this connection.

Theorem 5.4. Let π ;∅ ⊢ e : E | Ω be the best typing for e , δ is any member of goodConfigs (π),

and K= fix (e,δ), then

• e⋆ ⇓ (v2,δ2) implies K(e) ⇓ (v1,δ1) such that v1 = v2 and δ1 = δ2.

• e⋆ ⇑ implies K(e) ⇑.

Again, we observe that both the dynamic version (removed all type annotations) and the fixed
version (applied Ke5) of e5 are non-terminating.

6 EXTENSIONS

As our prototype and evaluation are for Python, it would be useful to show how to extend our
machinery so far to handle common features found in Python. We particularly consider objects
and structural subtyping. Our extension is built on top of the work by Siek and Taha, who studied
combining gradual typing and objects [2007].
To support objects, we first need to extend our type syntax to represent objects, which is a list

of label and type pairs [Siek and Taha 2007]. For example, the object type [l1 : Int,m1 : Int→⋆]

includes a filed l1 (we use ℓs to denote program locations and ls to denote field labels.) whose type
is Int and a fieldm1 whose type is Int→⋆. We skip the extension of type syntax here since it is
rather straightforward and it would take quite much space.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:21

The syntax used for creating objects in Siek and Taha [2007] is [li = Gir ς(xi : Giд)ei
∀i ∈1...n],

where li is the label and ς indicates a method definition (just like λ indicates a function definition).
For a method, xi denotes the parameter, ei denotes the body, Giд denotes the parameter type, and
Gir denotes the return type. Our rule for typing objects is given below.

Obj

Eiд = varIntro (Giд) π ; Γ, self 7→ Eρ ,xi 7→ Eiд ⊢ ei : Eir | Ωi

Eir |1 = Gir ∀i ∈ 1 . . .n Eρ = [li : Eiд →Eir
∀i ∈1...n]

π ; Γ ⊢ [li = Gir ς(xi : Giд)ei
∀i ∈1...n] : Eρ | Ωi ∪ . . . ∪ Ωn

This rule is very similar to the rule for typing objects in Siek and Taha [2007] with two main
differences. The first difference is that, in our rule, for each parameter type Giд we construct Eiд
by introducing variations through varIntro, as we did for typing abstractions in Section 4.2. We
then type the body ei under the assumption that xi has the type Eiд . The second difference is that
in Siek and Taha [2007] the body ei should have the specified type Gir . In our rule, however, since
we have changed the parameter type from Giд to Eiд , we should not make the same requirement.
Instead, we denote the body type as Eir and require that the type yielded from taking the first
alternatives of all variations in Eir (denoted as Eir |1 in the third premise of the rule) should be the
same as Gir . As an example of ·|1, we have D1⟨S2⟨Int, Bool⟩, Bool⟩|1 = Int.

We next move to type method invocation. In Siek and Taha [2007], for an invocation e1.l(e2) to
be well typed, the type of the argument (G2) and the parameter type (G1) should satisfy the relation
G2 ≲ G1. Intuitively, G2 ≲ G1 if all parts that are static in both G2 and G1 satisfy the subtyping
relation. For example, [l : Int→⋆] ≲ [l : Int→ Bool] but [l : Int→⋆] ≴ [l : Bool→ Bool].
We extend ≲ to handle variations and allow it to hold in certain alternatives only through the

relation ≲π , defined as follows.

∀δ .⌊π ⌋δ = ⊤ ⇒ ⌊E2⌋δ ≲ ⌊E1⌋δ

E2 ≲π E1

Intuitively, for E2 ≲π E1 to hold, we require only the alternatives that π have ⊤ the E2 ≲ E1
holds and disregard the ≲ between E2 and E1 at other alternatives. As an example of ≲π , we have
[l : Int→⋆] ≲S1 ⟨⊤, ⊥⟩ [l : S1⟨Int, Bool⟩→ Bool].
With ≲π , we could type method invocation as follows.

Invk
π ; Γ ⊢ e1 : [. . . , l : E1 →E, . . .] | Ω1 π ; Γ ⊢ e2 : E2 | Ω2 E2 ≲π E1

π ; Γ ⊢ e1.l(e2) : E | Ω1 ∪ Ω2

The only difference between this rule and the one in Siek and Taha [2007] is that here we use ≲π

rather than ≲ in theirs. As the rule is quite self-explanatory, we will not elaborate further.
All other typing rules in Siek and Taha [2007] are simpler than the object creation and method

invocation rules we have presented. Extending these rules to deal with variations is straightforward,
and we omit it here.

Another interesting language feature to consider here is variable assignment, such as x := e that
assigns e to x . The work on Flow [Chaudhuri et al. 2017] has developed a nice solution for this.
The idea is to extend the typing judgment to pass out a type environment that records changes
made to it. We can literally reuse their rule here for this purpose, and we will not repeat it here.

7 EVALUATION

To evaluate the feasibility of exploratory typing, we have implemented the ideas developed in
this paper in PyHound, a tool (built on the guarded variant of Reticulated 0.1) for detecting
and fixing inconsistencies in Reticulated Python [Vitousek et al. 2017] programs. We support

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:22 John Peter Campora and Sheng Chen

structural subtyping by inferring the least required fields of a parameter based on the function
body. We evaluate PyHound’s effectiveness (i.e. its ability to find and fix errors) and performance
in Sections 7.1 and 7.2, respectively.

7.1 PyHound Effectiveness

In this section, we evaluate PyHound’s ability to support each of the repair steps S1-S3.

Evaluation setup Ideally, we could test PyHound on an existing benchmark with different
inconsistencies. However, we are not aware of any such program sets. Thus, to make our evaluation
result meaningful, we drew evaluation programs from three different sources: (1) We adopted
programs from the artifact created by Campora et al. [2018a] (which adapted programs from the
Python benchmark suite on github) and adapted some programs from Rosetta Code’s Python
entries, totaling 8 programs. To make our test results representative, each original program we
considered already contained about 20% to 70% of parameters that had static type annotations.
(2) We synthesized two large programs by merging the 8 programs from source (1) repeatedly,
making necessary function renaming to avoid name conflicts. These two programs are to stress test
PyHound. (3) We took all programs that have cast errors from student logging. Gradual typing was
included as an optional topic in an undergraduate programming language course and a graduate
course one coauthor taught. We have created a web interface running Reticulated Python to allow
students to migrate the 8 benchmark programs from the source (1) as well as migrate their own
programs. We have 82 programs that have cast errors, and they contain 117 cast errors in total.
Their sizes range from 69 to 277 LOC.

For each of programs from sources (1) and (2), we randomly added type annotations to function
parameters with a Bash script until an inconsistency was added. The inserted type annotations were
constructed by binary type constructors (including→ for constructing function types and (,) for
constructing tuple types in Python), unary type constructors (including List), and other primitive
types (including Int Bool, etc.). For example, the types that were inserted include⋆→ Int, List(⋆),
(⋆,⋆), and so on.

We repeated this process to generate 20 unique configurations of each program, with each
containing at least one dynamic inconsistency. Automatically generating a configuration with
dynamic inconsistencies is tricky because randomly inserting type annotations quickly creates static
inconsistencies that we need to discard. It was common that our script needed to run for hours of
generating and discarding programs before encountering a program with dynamic inconsistencies.
For this reason, we considered only 20 programs with dynamic inconsistencies at different locations
for each benchmark. Overall, this leads to 200 distinct programs containing inconsistencies based
on sources (1) and (2). Figure 6 lists the details of the programs and their metrics.

Evaluation results We now discuss how PyHound supports each repair step. To decide if
PyHound supports step S1 on each program, we check the result reported by PyHound against
running the program. If they agree, for example, both indicated a cast error, then the result by
PyHound is correct. From Figure 6, we observe that PyHound is able to detect inconsistencies in
196 out of 200 programs (with a ratio of 98%). It did not detect errors in 4 variant programs of the
runge benchmark. All of these errors have the form in Figure 7 (left). PyHound fails to detect an
inconsistency in the snippet because PyHound and Reticulated Python do not type-check library
functions and thus they have type ⋆. Since all of sqrt, map, enumerate, and range have the type ⋆, y
interacts with no statically typed code and thus no type information can be exploited by PyHound

to detect the inconsistency caused by the incorrect annotation for y.
We have also evaluated the effectiveness of pytype [2020] on detecting inconsistencies (S1) using

the same protocol as we evaluated PyHound (We have to make necessary type annotation changes

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:23

Name LOC #Par #Err
S1

S2 S3
Time

PyHound pytype PyHound pytype

meteor 238 28 24 20 3 20 20 0.16 3.37
nbody 164 17 20 20 5 20 20 0.08 3.25
pascal 68 9 32 20 12 32 32 0.04 1.74
raytrace 277 68 26 20 5 26 26 0.47 3.28
runge 74 11 24 16 6 16 16 0.07 2.00
sci_mark 221 23 36 20 3 32 32 0.25 2.79
spectral 69 9 20 20 5 20 20 0.04 2.44
tic_tac 87 5 28 20 14 24 24 0.05 2.19

syn_1 4521 951 24 20 9 24 24 16.85 47.85
syn_2 15255 2451 24 20 4 24 24 97.08 550.94

Overall - - 258 196/200 66/200 238/258 238/258 - -

Fig. 6. Effectiveness evaluation of PyHound and pytype. The first three columns give the name, the size in

LOC, and the number of parameters in the program. The #Err column gives the total number of inconsistencies

within all 20 generated programs. The S1 through S3 columns show the effectiveness of PyHound and pytype

(which supports S1 only) supporting each repair step. The Time column measures the average time for

PyHound and pytype to type check and generate suggestions across the 20 programs. All times in this paper

are in seconds and are measured on a System76 Galago Pro with a Intel Core i5-8250U CPU @ 1.60GHz,

running 64 bit Ubuntu 16.04 LTS. Each time is an average of 10 runs.

def f(x,y:Bool): def square(x, y:String):

return x * sqrt(y) return x ** 2

l = enumerate(range(20)) square(4, sqrt(16))

map(f, l)

Fig. 7. Code adapted from benchmarks, that pose difficulties to PyHound on S1 and S2 (left) and S3 (right).

for pytype to work, for example, changing Dyn to Any.). Pytype is probably the most powerful
Python tool to detect inconsistencies between user type annotations and the code and is used by
thousands of projects at Google. The result (in Figure 6) indicates that pytype could detecting
inconsistencies in 33% of programs, much lower than the ratio of PyHound.

For all the 82 student programs containing cast errors, PyHound is able to detect inconsistencies
in 78 programs (yielding a ratio of 95%) while pytype could detect only 30 (with a ratio of 37%) of
them. Cast errors in 4 student programs were not detected by PyHound are due to the interactions
of library functions, very similar to the situation given in Figure 7. This shows that PyHound is
more effective at detecting inconsistencies in student programs.
To determine if PyHound supports S2, we added a type annotation to each variable whose ⋆

PyHound identifies as cloaking. We determine that PyHound has correctly identified a cloaking
⋆ if the added type annotation caused a static type error. In all the 258 cast errors, PyHound is
able to correctly identify cloaking ⋆s for 238 errors. PyHound misses other cases because these
inconsistencies are not detected, due to the same reason for S1. The difference for the results
between S1 and S2 means that while some single programs contain multiple inconsistencies,
PyHound detects some, but not all inconsistencies.

To evaluate S3, we follow the fixmessages from PyHound by replacing the static type annotations
with the suggested types. If this removes the inconsistency, then PyHound supports S3 for the
given program. Otherwise, it does not. From Figure 6, we see that PyHound removes 100% of all

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:24 John Peter Campora and Sheng Chen

inconsistencies across all the generated programs for six programs. In average, it removes 93% of
all inconsistencies.
The only inconsistencies that PyHound fails to compute fixes for, are those that cannot be

detected. Such errors are caused because: (1) the parameter is used only with type ⋆ in a function
body (or is unused) and (2) the arguments flowing into this parameter all have type ⋆. One such
example, shortened from the meteor program, is presented in Figure 7 (right). Since y is not used
in square and only received an input from sqrt(16), which has type ⋆ due to the way Reticulated
Python handles library functions. Essentially, the ubiquitous interaction of dynamic types with y

hides the useful type information for removing the incorrect type annotation.
For all the 117 inconsistencies in the student programs, PyHound is able to find correct cloaking

⋆s and propose fixes to 108 inconsistencies, with a correct ratio of 92%.
Overall, we conclude that PyHound is effective in helping users detect (S1), understand (S2), and

fix (S3) inconsistencies, with ratios of 98%, 93%, and 93%, respectively.

Discussions Our evaluation results on the datasets demonstrate that PyHound is effective. We
next investigate the generalizability of our results. Our investigation covers the following aspects.

We first investigated the amount of type information that could be inferred. This information is
important because all three reparation steps of PyHound rely on inferred types. For example, to
detect inconsistencies, we need to infer types for parameters with ⋆s. To compute fixes, we need to
find correct types for parameters with static type annotations. However, type inference for Python
is tricky. On the one hand, Python is dynamically typed, and, like other such languages, many
language features and expressions in programs can not be captured using static types and thus
by type inference. On the other hand, as observed by Takikawa et al. [2016], łstatic type systems
accommodate common untyped programming idiomsž, implying that quite much type information
may be inferred for dynamic programs.

Across different benchmarks, the amount of type information that could be inferred by PyHound
varies significantly. Besides the initially given 20% to 70% of static annotations (detailed in our
evaluation setup), the ratios of the parameters whose full static types could be inferred are about
33% for nbody, 42% for meteor, 50% for spectral and runge, 65% for tic_tac and pascal, 75% for
sci_mark, and 82% for raytrace. For student programs, the inferred type ratio varies from 30% to
85%. In addition, in many cases, our approach infers types that are not fully static. For example, we
may infer List[⋆], (⋆,⋆), ⋆→ Int, etc.

Although the amount of type information that could be inferred for different programs are quite
different, we observed that PyHound is quite consistent on detecting cast errors and finding fixes.
Our deep investigation into this revealed two insights. First, while inferring types for the whole
programs is difficult (due to the dynamic nature of Python), there are always regions whose types
could be inferred. Interestingly. these are the places where static types could be added, where types
could be inferred, and where cast errors are most likely to happen. For this reason, our approach is
likely to detect these cast errors while full type inference is difficult. Second, while we could infer
only parts of static types for some parameters, they are sufficient to detect cast errors. For example,
if an inferred type is (⋆,Int) and a type (String,Bool) is given, then an inconsistency between Int

and Bool could already be detected.
We then looked into the language features used by the evaluated datasets. We found out that

a wide range of language features were covered by these datasets, including mutability, classes,
objects, most control structures (conditionals, while, for, break, and continue), (mutual) recursive
definitions, and so on. Finally, we have looked into the dependency graphs of our evaluated
programs and the relation between dependency graph complexity and whether cast errors could be
detected. We observed some correlation between them. Specifically, programs with more complex

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:25

dependency graphs, using more higher-order functions, and calling more library functions making
cast error detection more difficult. However, complex dependency graphs or higher-order functions
alone does not cause any difficulty.

Overall, PyHound is effective at detecting cast errors and suggesting fixes for programs that could
be inferred with different amount of type information, that cover diverse language features, and
that with different dependency graph complexities. We thus are quite confident that our evaluation
results generalize to other programs.

7.2 PyHound Performance

Figure 6 presents the time duration of PyHound for all steps S1 to S3. To give a sense about the
efficiency of PyHound, we have measured the times for Reticulated Python [Vitousek et al. 2017] to
type check syn_1 and syn_2. These times are 3 and 13 seconds, respectively. These results indicate
that PyHound incurs a very minor slowdown, within a factor of 8. Without PyHound, it would
take 22451 × 13 seconds (obtained by multiplying the brute-force search space and the time to
handle a single configuration) to find fixes for syn_2. The figure also presents the time duration of
pytype on the benchmarks. We observe that PyHound runs much faster than pytype does.

Fig. 8. PyHound performance with respect to increased

program sizes. The numbers next to the points are the

number of parameters.

To more thoroughly test the scalability of
PyHound as program size increases, we cre-
ated large programs by repeating function
definitions from the sci_mark and raytrace
benchmarks in 1000 LOC increments from
(≈1000 LOC) to (≈10,000 LOC). We present
the evaluation result for these programs in
Figure 8. Across the ten measured programs,
the time growth is linear. Even for a program
with 1,971 parameters (which creates 1,971
D and S variations), the overhead is small.

Note, the difference between running syn-
thetic, large programs and running small
program multiple times is significant. The
reason is that larger programs will have
more functions and thus more parameters,
more statically untypable code, and more
conditionals, such programs will have more variations created during analysis. Synthetic programs
thus test how well our approach handles a large number of variations. Based on Figure 8, running
small programs multiple times needs to handle 174 variations at a time, whereas analyzing the
synthesized program needs to handle as many as 1971 variations at once, a much more difficult
task. Overall, we conclude that PyHound scales to large programs.

8 RELATED WORK

In this section, we discuss the relation of exploratory typing and repairing inconsistencies to related
research directions in gradual typing and static contract analyses.

8.1 Type System Design

Designing more expressive gradual type systems has been an active area of research [Ahmed et al.
2011, 2017; Igarashi et al. 2017b,a; Jafery and Dunfield 2017; Kent et al. 2016; Lehmann and Tanter
2017; Siek and Taha 2007]. One popular type system extension present in many gradually typed
languages is union types, which appear in Typed Racket [Tobin-Hochstadt and Felleisen 2008],

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:26 John Peter Campora and Sheng Chen

TypeScript, and JavaScript (Flow) [Chaudhuri et al. 2017]. Our flow variations provide similar
functionality to the union types in these languages in that they similarly allow flow sensitive
reasoning about variable use in different branches of conditional expressions. However, these union
types differ from our flow variations in that they use explicit typecase expressions to handle values
for the different types in the overall union. The typecase expression verifies which type the variable
has before it is used with expressions expecting that type in the branch. In contrast, our approach
does not require that a value’s type is checked before uses in a branch.

Our flow variations bear greater resemblance to somemore recent formalizations, namely gradual
set theoretic types [Castagna and Lanvin 2017] and gradual union types [Toro and Tanter 2017]. Like
our flow variations, both of these approaches forgo typecase expressions. A main difference with
these formalizations is that our type representations are more precise about where inconsistencies
can occur. Recall the succ_or_not function from Section 4.2, which can also be typed in both of
these systems. They deem the expression succ_or_not True True as well typed and assign Bool to
it, while in fact evaluating the expression leads to a cast error. In contrast, our type system assigns
F ⟨Int, Bool⟩ to it with the pattern F ⟨⊥,⊤⟩, which indicates that executing this expression may
result in an inconsistency and must result in one when control flow enters the then-branch in
succ_or_not, a more precise result for the purpose of detecting runtime inconsistencies.

8.2 Migrating Gradual Types

Campora et al. [2018b] developed a method called Migrating Gradual Types (MGT) that adds static
types to as many parameters with⋆s as possible. MGT suggests a static type for a⋆ as long as using
that static type will not cause static type errors. As a result, a migration by MGT may introduce cast
errors to a given program. For example, for the following expression (reproduced from Section 3
for readability purposes), MGT suggests two possible migrations: 1) using Bool as the static type
annotation for x and keep ⋆ for z or 2) use Int as the type annotation for z and keep ⋆ for x . We
can verify that following these migrations the expression e3 remains statically well typed. However,
the migration 1) introduces another cast error because at runtime the expression (λℓ3z : ⋆.z) 42

produces an Int value that will be passed to the function (λℓ2x : Bool.x) whose parameter type is
Bool.

(λℓ1y : Bool.y) ((λℓ2x : ⋆.x) ((λℓ3z : ⋆.z) 42)) (e3)

The expression e3 illustrates that MGTmay introduce cast errors to an expression that already has
cast errors. The following expression indicates that MGT may introduce type errors to expressions
that have no cast errors.

(λℓ1x : ⋆.ifℓ2 True then 3 else x) (True : ⋆) (e6)

For expression e6, MGT suggests a migration of using Int for the parameter x . MGT finds this
migration as it requires branches of a conditional to have the same type, making the type of 3 being
propagated to x and then to the parameter. This migration, however, will cause a cast error because
the value (True:⋆) that has the type Bool will be passed to a function whose parameter type is Int.
Our approach in this paper could detect and suggest fixes to cast errors if both e3 and e6 were

migrated following MGT’s migrations.
Technically, MGT also makes use of variations to efficiently compute migrations. However,

compared to that work, this paper poses the following unique challenges. First, this work allows
conditional branches to have different types while in MGT they must have the same type. Our
solution is to introduce F variations to represent types for conditionals.While union and intersection
types [Castagna and Lanvin 2017] could also be used for this purpose, we believe that F variations
have two benefits. First, as discussed in Section 8.1, F variations yield more precise results for
detecting inconsistencies. Second, using F variations simplifies our type system since the paper

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:27

already includes the machinery for handling variations. If we use union and intersection types, we
need to investigate the interaction between variational types and these types.

The second challenge is that this paper needs to reason about the types of subexpressions whose
type can not be statically determined. Our solution is using O variations and introducing a new
pattern construct (Section 4.2) to represent and reason about types of such subexpressions. The
third challenge is that different call sites of a function with conditionals will be synchronized on
the branch being taken although different call sites may take different branches. One such example
was given in the second paragraph of Section 4.3. Our solution is introducing choice type schemes
such that different call sites will be instantiated with different flow variation names (Section 4.3),
allowing different calls of a single conditional to take different branches.

8.3 Gradual Program Analysis and Contract Verification

Several dynamic analysis [Kristensen and Mùller 2017b; Williams et al. 2017] and static analysis
[Feldthaus and Mùller 2014; Kristensen and Mùller 2017a] approaches have been developed to detect
the inconsistencies between type signatures in TypeScript definition files and their corresponding
Javascript libraries and client code. Dynamic analysis based approaches do not provide sufficient
support for our problem domain, for the same reasons as given for the dynamic gradual guarantee
and blame tracking (Section 1.1). Another important difference is that while the mentioned previ-
ous work mainly focuses on detecting errors, our work also supports understanding and fixing
inconsistencies by changing type annotations.
While the main goal of soft contract verification (SCV) [Nguyen et al. 2014] is not detecting

inconsistencies in gradual typing, it is capable of detecting contract violations in Racket programs
at compile time. This bears some similarity to our goal of statically detecting inconsistencies in
gradually typed programs. Nevertheless, SCV and our approach differ in several notable ways.

First, SCV assumes that contracts are always correct and never reports them as a possible cause
for an error, while our approach detects and fixes errors in type annotations, which can likely be
wrong when migrating programs towards using more static checking [Williams et al. 2017]. Second,
after observing a failing contract, SCV short circuits its analysis and propagates the error outwards.
This means that it will not detect all of the contract failures for certain programs. For example, in
the expression (λx .λy.if not x then succ y else pred y) 1 True, where not has type Bool→ Bool

and succ and pred have type Int→ Int, SCV will detect the failure at not x only and will not report
the possible failures in the branches. In contrast, our approach can detect all inconsistencies due to
the error tolerance of variational typing.
Overall, our work and SCV seem to be complementary.

9 CONCLUSION

We have presented a methodology for detecting, understanding, and fixing inconsistencies in
gradually typed programs. To support this, we designed exploratory typing to efficiently explore all
possible ways of adding, removing, and replacing type annotations for a given program. We have
implemented exploratory typing and our algorithms for supporting repair steps S1-S3 in PyHound.
Our evaluation on 282 programs shows that PyHound effectively meets its goals, realizing repair
steps S1-S3 in more than 93% of cases, significantly outperforming the widely used Python type
annotation enforcement tool pytype. Moreover, PyHound is efficient, scaling linearly with program
size and having less than eight times the overhead of Reticulated’s type-checking, even for programs
with 15,000 LOC. In the future, we plan to explore the applicability of exploratory typing to other
gradually typed languages.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:28 John Peter Campora and Sheng Chen

REFERENCES

2020. Pytype. https://github.com/google/pytype Last accessed on April 27th, 2020.
Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. 1991. Dynamic Typing in a Statically Typed Language.

ACM Trans. Program. Lang. Syst. 13, 2 (April 1991), 237ś268. https://doi.org/10.1145/103135.103138
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. SIGPLAN Not. 46, 1 (Jan. 2011),

201ś214. https://doi.org/10.1145/1925844.1926409
Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, with and

Without Types. Proc. ACM Program. Lang. 1, ICFP, Article 39 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110283
Alex Aiken and Brian Murphy. 1991. Static Type Inference in a Dynamically Typed Language. In Proceedings of the 18th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’91). ACM, New York, NY, USA, 279ś290.
https://doi.org/10.1145/99583.99621

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In Proceedings of the

19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA, 283ś295.
https://doi.org/10.1145/2628136.2628149

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2016. Gradual type-and-effect systems. Journal of Functional
Programming 26 (2016), e19. https://doi.org/10.1017/S0956796816000162

Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Verification. In Verification, Model Checking, and

Abstract Interpretation, Isil Dillig and Jens Palsberg (Eds.). Springer International Publishing, Cham, 25ś46.
Bernd Braßel. 2004. TypeHope: There is hope for your type errors. In Int. Workshop on Implementation of Functional

Languages.
John Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2018b. Migrating Gradual Types. In Proceedings of the

45th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’18). ACM, New York, NY, USA.
John Peter Campora, Sheng Chen, and Eric Walkingshaw. 2018a. Casts and Costs: Harmonizing Safety and Performance in

Gradual Typing. Proc. ACM Program. Lang. 2, ICFP, Article 98 (July 2018), 30 pages. https://doi.org/10.1145/3236793
Robert Cartwright and Mike Fagan. 1991. Soft Typing. In Proceedings of the ACM SIGPLAN 1991 Conference on Programming

Language Design and Implementation (PLDI ’91). ACM, New York, NY, USA, 278ś292. https://doi.org/10.1145/113445.
113469

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP 2017). To appear.
Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and Precise Type Checking

for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA, Article 48 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133872
S. Chen, M. Erwig, and E. Walkingshaw. 2012a. An Error-Tolerant Type System for Variational Lambda Calculus. In ACM

Int. Conf. on Functional Programming. 29ś40.
Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012b. An Error-tolerant Type System for Variational Lambda Calculus.

In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12). ACM, New York,
NY, USA, 29ś40. https://doi.org/10.1145/2364527.2364535

S. Chen, M. Erwig, and E. Walkingshaw. 2014a. Extending Type Inference to Variational Programs. ACM Trans. on

Programming Languages and Systems 36, 1, Article 1 (2014), 54 pages.
Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014b. Extending Type Inference to Variational Programs. ACM Trans.

Program. Lang. Syst. 36, 1, Article 1 (March 2014), 54 pages. https://doi.org/10.1145/2518190
Tim Disney and Cormac Flanagan. 2011. Gradual Information Flow Typing. In International Workshop on Scripts to Programs.
Oli Evans and Alan Shaw. 2018. asciify. https://github.com/olizilla/asciify
Asger Feldthaus and Anders Mùller. 2014. Checking Correctness of TypeScript Interfaces for JavaScript Libraries. SIGPLAN

Not. 49, 10 (Oct. 2014), 1ś16. https://doi.org/10.1145/2714064.2660215
Luminous Fennell and Peter Thiemann. 2013. Gradual Security Typing with References. In Proceedings of the 2013 IEEE

26th Computer Security Foundations Symposium (CSF ’13). IEEE Computer Society, Washington, DC, USA, 224ś239.
https://doi.org/10.1109/CSF.2013.22

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42Nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA,
303ś315. https://doi.org/10.1145/2676726.2676992

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 429ś442.
https://doi.org/10.1145/2837614.2837670

Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of Typestate-Oriented Programming.
ACM Trans. Program. Lang. Syst. 36, 4, Article 12 (Oct. 2014), 44 pages. https://doi.org/10.1145/2629609

Fritz Henglein. 1994. Dynamic Typing: Syntax and Proof Theory. In Selected Papers of the Symposium on Fourth European

Symposium on Programming (ESOP’92). Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

Taming Type Annotations in Gradual Typing 191:29

197ś230. http://dl.acm.org/citation.cfm?id=197475.190867
David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient Gradual Typing. Higher Order Symbol. Comput. 23,

2 (June 2010), 167ś189. https://doi.org/10.1007/s10990-011-9066-z
Atsushi Igarashi, Peter Thiemann, Vasco Vasconcelos, and Philip Wadler. 2017b. Gradual Session Types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP 2017). To appear.
Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017a. On Polymorphic Gradual Typing. Proc. ACM Program. Lang. 1,

ICFP, Article 40 (Aug. 2017), 29 pages. https://doi.org/10.1145/3110284
Lintaro Ina and Atsushi Igarashi. 2011. Gradual Typing for Generics. In Proceedings of the 2011 ACM International Conference

on Object Oriented Programming Systems Languages and Applications (OOPSLA ’11). ACM, New York, NY, USA, 609ś624.
https://doi.org/10.1145/2048066.2048114

Khurram A. Jafery and Joshua Dunfield. 2017. Sums of Uncertainty: Refinements Go Gradual. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 804ś817.
https://doi.org/10.1145/3009837.3009865

Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. 2016. Occurrence Typing Modulo Theories. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). ACM, New York, NY,
USA, 296ś309. https://doi.org/10.1145/2908080.2908091

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking. ACM Trans. Program. Lang. Syst. 32, 2, Article 6 (Feb.
2010), 34 pages. https://doi.org/10.1145/1667048.1667051

Erik Krogh Kristensen and Anders Mùller. 2017a. Inference and Evolution of TypeScript Declaration Files. In Fundamen-

tal Approaches to Software Engineering, Marieke Huisman and Julia Rubin (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 99ś115.

Erik Krogh Kristensen and Anders Mùller. 2017b. Type Test Scripts for TypeScript Testing. Proc. ACM Program. Lang. 1,
OOPSLA, Article 90 (Oct. 2017), 25 pages. https://doi.org/10.1145/3133914

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In Proceedings of the 44th ACM SIGPLAN Symposium on

Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 775ś788. https://doi.org/10.1145/3009837.
3009856

Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft Contract Verification. In Proceedings of the 19th

ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA, 139ś152.
https://doi.org/10.1145/2628136.2628156

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical Type Inference for Arbitrary-
rank Types. J. Funct. Program. 17, 1 (Jan. 2007), 1ś82.

Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In Proceedings of the 21st European Conference on Programming

Languages and Systems (ESOP’12). Springer-Verlag, Berlin, Heidelberg, 579ś599. https://doi.org/10.1007/978-3-642-
28869-2_29

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st European Conference on ECOOP

2007: Object-Oriented Programming (ECOOP ’07). Springer-Verlag, Berlin, Heidelberg, 2ś27. https://doi.org/10.1007/978-
3-540-73589-2_2

Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic References
for Efficient Gradual Typing. https://doi.org/10.1007/978-3-662-46669-8_18

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In IN SCHEME AND FUNCTIONAL

PROGRAMMING WORKSHOP. 81ś92.
Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Unification-based Inference. In Proceedings of the 2008

Symposium on Dynamic Languages (DLS ’08). ACM, New York, NY, USA, Article 7, 12 pages. https://doi.org/10.1145/
1408681.1408688

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined criteria for gradual typing. In
LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Vincent St-Amour and Neil Toronto. 2013. Experience Report: Applying Random Testing to a Base Type Environment. In
ACM Int. Conf. on Functional Programming. 351ś356.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’16). ACM, New York, NY, USA, 456ś468. https://doi.org/10.1145/2837614.2837630
Satish Thatte. 1988. Type inference with partial types. In Automata, Languages and Programming, Timo Lepistö and Arto

Salomaa (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 615ś629.
Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In Companion to

the 21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 964ś974. https://doi.org/10.1145/1176617.1176755

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

191:30 John Peter Campora and Sheng Chen

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM, New York,
NY, USA, 395ś406. https://doi.org/10.1145/1328438.1328486

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, AndrewM. Kent, Vincent St-Amour,
T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In 2nd Summit on Advances in

Programming Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner,
Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 17:1ś17:17. https://doi.org/10.4230/LIPIcs.SNAPL.2017.17

Matías Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricity, Revisited. InACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’19). To appear.
Matías Toro and Éric Tanter. 2017. A Gradual Interpretation of Union Types. In SAS.
Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018. The Behavior of Gradual Types:

A User Study. In Proceedings of the 14th ACM SIGPLAN International Symposium on Dynamic Languages (DLS 2018). ACM,
New York, NY, USA, 1ś12. https://doi.org/10.1145/3276945.3276947

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for
Python. (2014), 45ś56.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-world Soundness and
Collaborative Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages (POPL 2017). ACM, New York, NY, USA, 762ś774. https://doi.org/10.1145/3009837.3009849
Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European

Symposium on Programming Languages and Systems: Held As Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2009 (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1ś16. https://doi.org/10.1007/978-3-642-00590-9_1
Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. 2017. Mixed Messages: Measuring Conformance and

Non-Interference in TypeScript. In 31st European Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz

International Proceedings in Informatics (LIPIcs)), Peter Müller (Ed.), Vol. 74. Schloss DagstuhlśLeibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 28:1ś28:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.28

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. 2011. Gradual Typestate. In Proceedings of the 25th

European Conference on Object-oriented Programming (ECOOP’11). Springer-Verlag, Berlin, Heidelberg, 459ś483. http:
//dl.acm.org/citation.cfm?id=2032497.2032529

Baijun Wu and Sheng Chen. 2017. How Type Errors Were Fixed and What Students Did? Proc. ACM Program. Lang. 1,
OOPSLA, Article 105 (Oct. 2017), 27 pages. https://doi.org/10.1145/3133929

Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In Programming Languages and

Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 3ś30.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 191. Publication date: November 2020.

	Abstract
	1 Introduction
	1.1 Wrong Type Annotations and Their Consequences
	1.2 Challenges in Detecting and Fixing Wrong Type Annotations
	1.3 A Solution Based on Variational Typing
	1.4 Relation with Previous Work and Contributions of This Work

	2 Background
	2.1 Gradual Typing
	2.2 Variational Typing
	2.3 Error Tolerance

	3 Fixes Through an Informal Example
	4 Exploratory Typing
	4.1 Syntax
	4.2 Typing Rules Introducing Variational Domains
	4.3 Other Typing Rules
	4.4 Properties
	4.5 Type Inference

	5 Steps for Repairing Inconsistencies
	5.1 Detecting and Understanding Runtime Inconsistencies
	5.2 Fixing Wrong Type Annotations

	6 Extensions
	7 Evaluation
	7.1 PyHound Effectiveness
	7.2 PyHound Performance

	8 Related Work
	8.1 Type System Design
	8.2 Migrating Gradual Types
	8.3 Gradual Program Analysis and Contract Verification

	9 Conclusion
	References

