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1. Introduction

Type inference allows programs to be statically typed, even without the presence of type annotations. A well-known
problem in type inference is that it is very hard to locate the real error cause and generate informative feedback once
type inference fails. Practical compilers pay little attention to address this problem. They usually report the place that type
inference first fails as the error cause and often report errors in their internal jargon. As a result, understanding type error
messages is a main challenge in learning functional programming [33,3,48].

This problem has also been intensively studied over the last three decades from different directions. One direction aims
to find the most likely error causes [29,34,18,27,24,57]. As an example, consider the following ill-typed expression, which
we will use throughout the paper.

rank = Ax.(x '1l',Xx True)

Helium [26], a Haskell compiler integrated with the type error debugging method developed in [27], produces the following
error message. GHC 8.0.2, the de facto Haskell compiler, generates a similar message that blames the same location.
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Fig. 1. Work flows of CFT and eCFT.

Type error in application

expression : x True
function T X

type : Char -> a
1st argument : True

type : Bool

does not match : Char

This error message blames True as the error cause. While changing True may remove the type error, this is not the only
possible fix. In fact, changing any of x (either occurrence), '1', or True can remove the type error. We seem to lack enough
context to justify that True is more likely the error source than other locations.

This example demonstrates the value of type error slicing [47,22,42], which returns all program locations that may
contribute to the type error and excludes those don’t. However, a problem with this approach is that the programmer
still has to decide the real error cause among the returned slice, which could be comparable to the original program in
size [27,7,10]. Recently, [39] improved this by finding all possible error causes and suggesting one location at a time.

Like error slicing, counter-factual typing (CFT) [7] also finds all possible error locations in the leaves and their com-
binations of the program AST. However, unlike error slicing, CFT also comes with a change suggestion for each identified
location. This suggestion includes the type the identified location has in the original program, the type it ought to have to
remove the type error, and the result type of the changed expression if the suggestion is applied. Since some locations are
more likely to be the error source than others in most common cases, CFT ranks all fixes and presents them to program-
mers iteratively. The evaluation result showed that CFT achieved better precision than state-of-the-art approaches when
considering the first suggestions and performed even better when considering also later suggestions [7].

One problem with CFT, however, is the long response time. To find all possible error locations and all change suggestions,
CFT has to perform a lot of computations. Although CFT uses variational typing [14] to reuse typing results, it can still take
dozens of seconds to deliver the first error message for programs within 100 LOC. This makes CFT too slow for interactive
use. In particular, our recent study of mining a program database [23,50,25] shows that in average students take about 29
steps to fix a type error with a maximum of 359 steps. The details of the study are given in Appendix A.

Fortunately, an accompanying finding of the study is that, during error debugging, the change between two consecutive
versions is very minor. In more than 80% cases, the change is within 10% of the old program. This result encourages us to
compute error fixes incrementally rather than recompute all error fixes from scratch as programs are updated.

In this work, we develop eCFT, an efficient version of CFT. Fig. 1 depicts the difference between eCFT and CFT. We use
blue, dashed arrows to denote computations of eCFT and red, solid arrows to denote those of CFT. P; denotes the ith version
of a program used in compilation, and F; is the set of all error fixes produced by CFT (eCFT produces the same set of error
fixes) for P;. In addition, let Ap;; denote the program difference between P; and P;. While CFT recomputes error fixes every
time the program is updated, eCFT reuses earlier error fixes and program differences to more efficiently compute all error
fixes. For example, CFT computes F; by using P; only, while eCFT takes F; and Ap;; as inputs to compute Fj.

In Summary, this paper makes the following contributions:

1. In Section 4, we present our first technical innovation of a declarative specification of typing applications, which sim-
plifies the type system of eCFT. Earlier work that combines variational types and error types uses an operational rule to
type applications, having to explicitly pass around and propagate error types. The type system in this paper averts this
problem.

2. The CFT’s typing rules pass around the type environment and its implementation is based on the algorithm ‘W, making
CFT hard to incrementalize. To address this issue, we base eCFT on principal typing, a typing scheme more amenable to
incremental updates. We present the typing rules of eCFT in Section 5. A subtle issue in the type system is about dealing
with unbound variables, which we handle nicely with our previous contribution.

3. We present three type inference algorithms in Sections 6, 7, and 8. While the algorithm in Section 6 recomputes all
error fixes as programs are updated, the algorithm in Section 7 only retypes subexpressions that are affected by the
program updates, and the algorithm in Section 8 improves the second one by solving the variational unification problems
incrementally, which is also our second technical innovation.
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4. We extensively evaluate the performance of eCFT. The result shows that in more than 80% cases eCFT is 12.4x faster
than CFT of computing error fixes in response to program updates.

This paper is an extended version of a conference paper published at TASE 2019 with the following additions and
updates. (1) We improved the exposition of this paper with more explanations and examples. For example, we added
Figs. 1, 3, 4, 8, and 9. We added examples throughout the paper. (2) We extended our formalization to support polymorphic
let-expressions and conditionals. We extended the type system (Section 5) and type inference algorithms (Sections 6 and
8) correspondingly. (3) We extended our evaluation and observed an interesting phenomenon in the evaluation result and
gave potential explanations for that (Section 9). (4) We included the statistics of an empirical study (Appendix A). about the
number of iterations students needed to fix a type error and the change ratio between each two steps.

In the rest of the paper, we present the background of variational typing (Section 2) with a focus on the typing rule
for function applications (Section 2.3), present the background of principal typing in Section 3, discuss related work in
Section 10, and conclude the paper in Section 11.

2. Variational typing

As already mentioned in Section 1, CFT relies on variational typing [14,12] to compute informative error messages for
all possible error locations. In fact, neither CFT nor eCFT is feasible without reusing typing information, the core idea of
variational typing. This section presents variational typing.

Variational expressions are obtained by extending normal expressions (plain expressions) with named choices [21]. For
example, the expression e = succ A(1,'a') contains a choice A, which has two alternatives, 1 and 'a'. We will use d
to range over choice names. While in general choices can be n-ary, binary choices are sufficient in this work, and we will
consider them only.

An important notion in variation representations is selectors that have the form d.i, where d is a choice name and i
is an alternative index. We call a set of selectors a decision and use § to range over decisions. Choices can be eliminated
through a process called selection, which takes in an expression e and a selector d.i and replaces each occurrence of the
choice d in e with its ith alternative. Selection extends naturally to decisions, by iteratively selecting with all of the selectors
in the decision. We write |e|q; and |e|s for selections. For example, |succ A(1, 'a')]a.1 yields succ 1. Plain expressions
can be obtained by eliminating all the choices in a variational expression. Choices with the same name are synchronized
and those with different names are independent. Therefore, the variational expression A{succ, odd) A(1, 'a') encodes two
plain expressions: succ 1 and odd 'a', while A(succ, odd) B(1, 'a') encodes four: succ 1, succ 'a', odd 1, and odd
‘a'.

Similarly, we have variational types. The notions and definitions of variational expressions carry over naturally to varia-
tional types. We will use T and ¢ to range over plain types and variational types, respectively.

2.1. Selection and semantics of variational types

Since selection and semantics of variational types serve an important foundation to formally discuss our approach, we
present them below. Both definition assume the type definition includes y for ranging over constant types (such as Int
and Bool), ¢ for ranging over type variables, the variational type, and the function type.

Ylai=vy Ld{(¢p1, #2)1d.1 = Ld1]a1
lalgi=o Ld{¢1, ¢2)]a2 = LP2]a2
[$1 — d2]ai = [d1)ai = LP2lai  Ld(d1, d2)lari =d{ld1]ay.i LP2]ari)

Selecting y or o with any selector yields themselves. Selecting a function type recursively selects its parameter and
return types. Selecting a variational type d(¢1,¢2) with a selector d.1 recursively selects the first alternative ¢; with
d.1. The reason for the recursive selection is that variations with the same name may be nested. For example, selecting
A(A(Int,Bool), Int) with A.1 yields Int. Without recursive selection, the result would be A(Int,Bool), which is in-
correct. The recursive selection addresses this issue. Similarly, selecting d{¢1, ¢2) with d.2 will recursively select the right
alternative ¢, with d.2. Selecting d(¢1, ¢») with a selector whose variation name is not d will push the selection onto its
alternatives, as specified by the last case of the definition of selection.

The semantics of a variational type is a mapping that maps decisions to plain types. Essentially, the semantics of a
variational type specifies how plain types are encoding using variations. The semantics of y («) contains only one element,
which maps the empty decision to y (o), respectively.

[y ={{} )}
[oll ={{}, @)}

[lé1laa1 [$11d.1 = LP2]a2
[d{p1. ¢2)1 =  {({d-1} U, T)I(8, T) € [ $1)a1 1}
U{({d.2} U8, 1)|(8, T) € [|¢2]4211} otherwise
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[d1 — @21l ={(61 U b2, T1 = 12)|(81, T1) € [[P1]] A (82, T2) € [[¢2]] A 81 ~ 82}

The semantics for d(¢1, ¢,) needs to consider several cases. First, if ¢; and ¢, are the same, then essentially the variation
d is redundant. Consequently, the semantics of d(¢1, ¢2) is the same as that of ¢; (or ¢;). In addition to accounting
for this, the case (with a condition [¢1]41 = |¢2]42) further handles variation nesting. For example, the semantics of
A(A(Int,Bool), Int) should be the same as that of A(Int, Int) because |A(A(Int,Bool), Int)]a.1 = |A(Int, Int)|aq =
Int and |A(A(Int,Bool), Int)]a2 = |A(Int,Int)|a2 = Int. Second, if |¢1]g1 and |¢2]q2 are not the same, then the
semantics of d(¢1, ¢2) is the union of the semantics of ¢, (but need to extend each decision with d.1) and of ¢, (but need
to extend each decision with d.2).

The semantics of the function type ¢1 — ¢ composes that of ¢; and ¢,. The composition needs to ensure that the
decisions §; (for the semantics of ¢1) and &, (for the semantics of ¢,) are consistent, expressed through the notation
81 ~ 82, which is defined as follows

S1~8 M Hdd1es,nd2es,vd2es Adlcs,

Essentially, §1 ~ &, if there is no variation such that one of §; and é, contains d.1 and the other contains d.2 for some d.
This condition is needed to prevent the creation of inconsistent decisions such as {A.1, A.2}. This decision is inconsistent
because applying it to some type means to take both alternatives of the variation A, which is not a well-defined operation
in the Choice Calculus [21].

2.2. Type equivalence

There are two different ways to type variational programs. A naive way is to individually type all the plain programs
generated from the variational program. Note that the number of plain programs is exponential in the number of different
named choices. Therefore, this method becomes impractical as it’s common for a variational program to have thousands of
independent choices [6].

A more scalable way is variational typing, which types variational programs once without generating plain programs. The
central idea of variational typing is reuse. In our previous work [14], we identified three opportunities for reusing typing
information in variational typing.

The conventional rule for typing a function application has the following form [40].

NkFei:1m 'Fey: 1o T1=T) —>

‘ T-APP-STD

'kFejey:t
Intuitively, for an application to be well typed, the function must have a function type (71) and the parameter type (72) of
the function be the same as the type of the argument (7). And if this is the case, the type of the whole application is the
return type of the function (7). The “=” sign in the third rule serves as an equality testing, which requires that its two sides
be syntactically the same.

However, the equality testing becomes too restrictive for typing variational expressions. Consider, for example, typing the
expression odd A(1,2). The function odd has the type Int — Int, and the parameter type of odd is Int. The type of the
argument A(1,2) is A(Int, Int). Since Int is not equal to (#) A(Int, Int), we can not use the application rule T-App-STD
to type the expression odd A(1,2). Nevertheless, if we generate the plain expressions from odd A(1,2), we can check that
both plain expressions (odd 1 and odd 2) are well typed. Thus, we expect that odd A(1,2) itself be well typed.

Our solution is relaxing the equality testing relation (=) in the typing rule to an equivalence relation (=), yielding the
following typing rule.

I'kej:ty Ikey: 1o N=T>T
T-APP-VARI

'Fejex:t

Two types ¢ and ¢, are equivalent, written as ¢1 = ¢, if ¢1 and ¢, have the same semantics,' as defined in Section 2.1.
Intuitively, ¢1 = ¢, if selecting ¢ and ¢, with the same decision always yield the same plain type. Fig. 2 gives the full set
of type equivalence rules. The first three rules state that type equivalence is reflexive, symmetric, and transitive. Rule E4
says that a choice whose alternatives are identical is equivalent to its alternatives.

In rule Es, we use ¢[ ] to denote a type term with a hole where we can plug in a type. Rule E5 states that type equiva-
lence is a congruence. Due to choice synchronization, if a choice type is nested in another choice type with the same name,
then one alternative of the inner choice is unreachable. For example, in A(A{¢1, ¢2), ¢3), ¢2 is unreachable since selecting
the type with A.1 gives us ¢; and selecting it with A.2 yields ¢3. Rule E6 states that eliminating unreachable alternatives
preserves type equivalence. Finally, rule E7 says that we may commute the function and choice type constructors. We defer
a detailed discussion of these rules to [14] or [6].

Based on the rule E4, we know Int = A(Int, Int). Combining this with the typing rule T-App-VaRri, the expression odd
A(1,2) has the type Int.

1 In practice, however, deciding type equivalence is more efficiently realized through term rewriting, a technique developed in [14].
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F1 E2 o=h B3 o= 1= E4 Es o1=¢2
p=¢ h=¢ o= dig,¢)=¢ dlp1]=dlg2]
E6 E7
d(¢1,¢2) =d(lp1]a1, [#2]a.2) d(¢1, d2) — d(y, ¢3) =d(p1 — ¢1. 2 — ¢))

Fig. 2. Variational type equivalence.

2.3. Error-tolerant variational typing

Variational typing assigns types to expressions that generate only well-typed plain expressions. For example, it fails
to assign a type to the expression odd A(1,True) since the plain expression odd True is ill typed. In practice, it’s very
useful to assign types to its well-typed variants even a variational program contains type errors in other variants [12]. We
addressed this problem by designing an error-tolerant type system, where type errors are represented explicitly by L and
variants that contain type errors receive this type [12]. For example, odd A(1, True) has the type A(Bool, L), indicating
that odd 1 has the type Bool and odd True is ill typed.

The typing rule for function applications is very complicated in the error-tolerant type system since applications can
introduce type errors in many different ways. In particular, the rule has to propagate errors from both the function and
argument types and generate errors when the parameter type fails to match the type of the argument exactly. We handle
all these situations with the following single rule plus an additional device ;v called typing pattern.

mo=1|T|d{m,m)
'+eqp:¢ 'Hey:¢n
by —> ¢ =1Mp1) T=dyeagp  p=m ¢
'Hejex:¢

T-ApP-ERR

A typing pattern 7 indicates which variants of an expression have type errors. It consists of L for ill-typed variants, T for
well-typed variants, and choice patterns for variational expressions.

The rule is quite complicated, relying on three operations: 4, o<, and <. We will briefly discuss this rule, mainly for the
purpose of comparing it with our new formalization in Section 4. Intuitively, the first two premises retrieve the types of the
function (eq) and the argument (e, ). The next three premises introduce and propagate errors, if there are any, to ¢, which
is the result type of the application (e e3).

After retrieving the types for the function and the argument, the rule uses the operation 1(¢) to transform ¢ into a
function type and introduces Lls when necessary. For example, 1(Int) = L — 1 and 1(A(Int — Int, Int — Bool)) =
Int — A(Int,Bool).

The operation ¢/ >« ¢, determines how well ¢/, matches ¢;. It returns a typing pattern containing Ts for variants that
¢, and ¢, match and Ls for those that they don’t. Its formal definition is given below, reproduced from [12].

The first rule specifies that two same types match completely, indicated by the result T. Matching variational types will
push the matching onto their alternatives, as shown by the next three rules. Matching a type against a L always fails.

Prap=T
d($1, ¢2) b d (. ¢)) = d($1 < 1, p2 > )
d(¢1, ¢2)p=d(p1< ¢, P2 )
prad(pr, ¢2) =d(p < p1, ¢ <)
lagp=¢p< Ll =1
P1 = P10 2 — Py = P19 2 @ P < @)
¢’ =1  (otherwise)

When matching two function types, we first match their respective parameter and return types and then combine the
matching results with the ® operation. This operation can be understood as the logic “and” operation when view T and L
as truth values “True” and “False”, respectively. Its formal definition is as follows.

1l@r=1L TQrn=n dmmer=dm T, mQm)

Finally, if none of the above case matches and the types are different, the matching yields a L. Based on this definition,
Int < Int = T (the first case of <), Int <1 Bool = L (the last case of ), Int < B(Int, Bool) = B(T, L) (the fourth case
of <), and A(Bool, Int) < B(Int,Bool) = A(Bool a1 B(Int, Bool), Int > B(Int,Bool)) = A(B(L,T), B(T, L1)).

The operation 7 <1¢’ replaces each occurrence of T in 7 with ¢’ and leaves Ls untouched, meaning that once errors
have occurred they can’t disappear along the typing process. For example, B(T, L) <t A(Int, Bool) = B(A(Int,Bool), L).
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Algorithm VV> Principal typing Tree branches
...................... > Jlinialtetebsnnti

Fig. 3. The environment flows in different directions for algorithm ‘W and principal typing.

Based on the above operations, we can compute the type of A(succ, odd) B(1, True) as follows. First, A{succ, odd) has
the type A(Int — Int, Int — Bool) and B(1, True) has the type B(Int, Bool). Next, by combining the last example from
each of the previous three paragraphs, we get the result type B{A(Int, Bool), L).

In general, to make a type system error-tolerant, every type equality in the typing rules has to be replaced with these
three operations. Both eCFT and CFT have to be error-tolerant since their main goal is to propose suggestions for ill-typed
expressions. It's easy to see that these operations appear several times in CFT [7] and will appear more often in eCFT since
it is based on principal typing, which has to equate all assumptions for the same variable quite often. Since these operations
are imperative, a use of them makes type systems hard to understand and prove [5]. In Section 4, we propose a declarative
formulation of error-tolerant type systems.

3. Principal typing for debugging type errors

This section presents the basic idea of principal typing and shows how to put together variational typing and principal
typing for debugging type errors.

3.1. Principal typing

In the Hindley-Milner type system (HM) and its implementation, the algorithm ‘W, type environment is an input. The
type environment stores type information for free variables, and is updated accordingly as the inference algorithm traverses
the program AST. As a result, type inference of the later part of the AST always depends on that of the earlier part.

Fig. 3 shows how ‘W passes around and updates the type environment for typing the expression rank from Section 1.
When first visiting the abstraction node, ‘W assigns a fresh type variable o as the type to the parameter x. This type is
updated to char — B after visiting the node x '1'. The reference to x in x True will thus have the type char — 8. It is
easy to see that type inference is left-biased.

This bias hinders incremental type inference since even a small change in the left subtree will require almost the full
type inference to be redone. For example, if we change '1' to 1 in Fig. 3 we have to update type information at all nodes.

In contrast, principal typingZ[28] doesn't suffer from this bias. Type inference in principal typing is done bottom-up. At
each variable reference, the variable is assumed to have a fresh type. The assumptions are refined as the inference gets
closer to the root and are made consistent at the corresponding abstraction. As an example, let’s again refer to Fig. 3, where
dashed blue lines denote how assumptions flow for principal typing. We observe that the assumptions for the same variable
but different occurrences flow upwards from leaves into the abstraction. As a result, there is no left-to-right bias.

Principal typing is more amenable to incremental typing. Again, assume '1' is changed to 1 in Fig. 3. We only need to
update four nodes, the path from '1' to the root. We will design eCFT based on principal typing, which has already been
used in incremental type checking [28,2,19] and smartest recompilation [45].

3.2. Variational typing and principal typing for debugging type errors
When an expression is ill typed, we generally ask two questions: Which subexpression caused the type error and how
should we change the subexpression to remove the type error? Conceptually, eCFT (and CFT) addresses these problems in

following steps: (1) assuming that all subexpressions may be the error causes, (2) computing the types that subexpression
ought to have to remove the type error, and (3) finding real error causes by filtering out subexpressions the types they have

2 Principal typing is very different from principal types.
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¢3 = (A(D!(Ba, ko), K16), B2)

. (z 10 , x True)
A

a7 Q1 Char Q2 O3 Q4 Bool (5

®3 ®3

Fig. 4. Type error debugging for Ax.(x 1,x 'a') with variational typing and principal typing.

differing from those they ought to have. However, implementing this idea seems to have a high complexity: for each of all
subexpressions and their possible combinations, we have to perform type inference of the expression to find out the type
the subexpression ought to have. To combat with this high complexity, eCFT and CFT employ variational typing to reuse
computations. Specifically, they create at each AST leaf a variational type, where the first alternative is the type of the leaf
under normal type inference and the second alternative is the type the leaf ought to have to remove the type error in
the whole expression. Our previous work [7] explained why CFT considered changing leaves only and how it achieved high
precision.

We illustrate this idea by debugging type errors for rank. We use principal typing to facilitate incremental updates of
error fixes as programs are changed. Fig. 4 shows choice types that are created for leaves. It also presents the result type of
the whole expression.

Remember that type information flows bottom-up in principal typing, and thus we first type leaves. According to Fig. 4,
the type created for the first x is A(a7, o1), where a7 is the assumption we make for x in principal typing and o1 represents
the type that x ought to have in case x is identified as an error cause. The type for '1' under normal type inference is
Char, thus the type created for '1' is B(Char, orp). Again, oy indicates how we need to change '1' to remove the type
error.

As the inference algorithm moves up in the tree, fresh types are made more and more concrete as unification problems
are solved.? For example, after visiting the application x '1', o7 will become A(B(Char, az) — B1,k1) and after visiting
the abstraction, it will further be made concrete to ¢3, which is shown below. After the type inference is completed,
the concrete types that variables are mapped to are as follows. The inference algorithm also returns the typing pattern
7w =A(B(D(E(L,T), T), T), T). The detailed typing process is given in Fig. 8.

o1 =A(ky, B{Char, K15) — K16)
o2 =A(B(Kk13, D(E(Bool, k12), K11)), K15)
a4 =D (K4, E(Bool, A(B({Kk7, K12), K14)) = B2)
o5 =A(B(D(Char, k7),K12), K14)
¢3 =o7 =ag =A(B(Char, D(E (Bool, k12),k11)) = D(B2, ko),
D (E (Bool, k14) = B2,K3))

B1 =A(D(B2,k9),K16)

Given the 4 choices that are generated during the type inference, we can have 16 potential decisions with each decision
takes either the first or second alternative of every choice. For example, the decision §; = {A.1, B.1, D.1, E.1} includes the
first alternatives of all choices. The decision specifies how we remove the type error. If the decision includes d.1, it means
that we don’t change the subexpression that d is created for. Otherwise, if it includes d.2, it means that we change the
corresponding subexpression.

We consider two decisions for removing the type error, §; from the previous paragraph and 8, = {A.1, B.2, D.1, E.1}. For
81, L ]s; = L, which means that the result is invalid if we don’t make any change to the original expression. In other words,
the original expression is ill typed. For 6, we have |75, = T, which means that the result is valid. In other words, if we
change '1' (what B corresponds to), then the resulting expression is well typed. Furthermore, if we change it to something
of type |az]s, =Bool, the resulting expression has the type |¢3 — (A(D (B2, k9),k16), B2)]s, = (Bool — B2) — (B2, B2).
Overall, we can extract the error message: “If we change '1' to something of type Bool, then the corrected expression has
the type (Bool — B2) — (B2, B2)".

For this expression, there are 15 possible ways to fix the type error, including 4 that change only one of the four leaves,
respectively. CFT [7] includes a set of heuristics to rank these error fixes to present the most likely ones to the user first.
For this expression, the first two suggested fixes are changing True to some expression that has the type char or change
'1' to something that has the type Bool. The next two suggestions change either occurrence of x. We will use the same
set of heuristics in eCFT.

3 For example, solving the unification problem between a type variable and the type Int makes the type variable to be Int, which is more concrete
than the type variable. We talk more about unification in Section 6.
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4. Declarative error-tolerant variational typing

Early work on error-tolerant variational typing (Section 2.3) directly introduces error types to the type syntax and care-
fully generates and propagates type errors during the typing process [12]. Instead of introducing error types into the type
syntax to represent type errors explicitly, we propose to use typing patterns to indicate which variants of the typing result
are correct and which are incorrect. More formally, the new type judgment has the form m; " e : ¢, meaning that e has
the type ¢ under I' with the validity restriction sr. Intuitively, r specifies that only the variants that 7w contains Ts are
valid (type correct) and those that ;v contains Ls are invalid (type incorrect) and shouldn’t be trusted.

For example, we have T; ' 1: Int, saying that 1 always has the type Int. Similarly, we have ;' True : Int, which
says that the typing result True has the type Int can not be trusted, as indicated by the L at the beginning of the
judgment. However, T; " True: Int is not a valid judgment because it says that the expression True has the type Int
can be trusted. Similarly, B(T, L); '~ B(1, True) : Int is a valid judgment because it encodes two judgments (obtained by
selecting the pattern B(T, L), the expression B(1, True), and the type Int by the selectors B.1 and B.2) T; ' 1: Int and
1; ' True: Int, and both of them are valid. Note that the v is an input in the judgment. In type inference, however, 7
will be computed through unification. We discuss this in Section 6.

With the extended judgment form, the rule for typing function applications can be formalized as follows.

;T Hep:¢y m;Tkey:idp 1= d2—>¢
m;Fejex: ¢

T-App-DECL Vé: mls=T = |p1]s = LP2ls
b1 =x $2

The typing rule can be read as: if the function e; has the type ¢1, the argument e; has the type ¢;, and ¢ is equivalent to
¢2 — ¢, all under the validity restriction s, then the application e; e, has the type ¢ under the same .

The typing pattern 7 in ¢ =5 ¢, specifies where ¢ and ¢, need to be equivalent. Specifically, for any §é, if |7 |s = T,
then |¢1]s = |¢2]s. However, if | |5 = L, then |¢1]s and | ¢, |s do not have to be equivalent. For example, all Int =T Int,
Int =7 A(Int, Int), Int =, Bool (note the subscript L) are all valid, but Int =1 Bool is invalid.

Both rules T-App-Err (Section 2.3) and T-Aep-DecL handles error-tolerant variational typing. The rule T-App-Err involves
three operations: type lifting 4, type matching =, and type masking <. These operations make the rule T-App-Err Opera-
tional. On the other hand, the rule T-App-DEcL gets rid of these three operations. We observe that the rule T-App-DEcL bears
more resemblance to the standard typing rule for application T-App-STD (Section 2.2) than the rule T-App-Err does. More
importantly, the idea and the machinery we developed in the rule T-App-DecL simplifies the presentation of our later typing
rules in Sections 5.2 and 5.3. In particular, had we used the idea from T-App-Err to handle error tolerance there, we need to
replace each occurrence of ;v in these rules with the three operations from T-App-ERr, which would significantly clutter our
typing rules later.

Based on the rule T-App-DicL, we can type A(succ, odd) B(1, True) as follows.

B(T, l); I+ A(succ,odd): Int — A(Int,Bool)
Premises 4 B(T, L); @+ B(1,True):Int
Int — A(Int,Bool) =p(T,1) Int — A(Int,Bool)

Conclusion {B(T, 1): &+ A(suce, odd) B(1, True) : A(Int, Bool)

Note that the pattern B(T, L) is an input to the typing process, which means that we need to come up with this before
we can begin the process. Fortunately, in the type system implementation, the pattern for each expression becomes an out-
put of the type inference result. The idea of providing some information as input in declarative specification while compute
it in type system implementation is standard in type system research. One such example is giving types to parameters for
abstractions [40].

The result indicates that the expression A(succ, odd) B(1, True) has the type A(Int, Bool). However, notice the pattern
B(T, L), which indicates that the result is valid in B.1 (because of the T in B(T,_L) in B.1) but not in B.2 (because of
the L). In Section 2.3, we have seen that the expression A(succ, odd) B(1, True) has the type B(A(Int,Bool), L) under
the rule T-App-ERR. We can observe that the typing results by T-App-Err and T-Aprp-DEcL are the same. In general, if we have
;e ¢q with T-App-DEcL and 't e : ¢ with T-App-ERr, then ¢p= 7 < ¢1.

5. Type system

In this section, we present the type system based on principal typing for producing a complete set of error fixes. The
syntax is given in Section 5.1, basic typing rules are discussed in Section 5.2, and the top-level rule for handling unbound
variables is given in Section 5.3. A variable is unbound if it is used without being declared. For example, in the expression
Ax.x y, the x in the body is bound but the y is unbound.
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Term variables x, y, z Value constants c
Type variables «, B, k Type constants y
Choice names A, B, D Choice meta variable d
Alternative index i € {1, 2} Program locations [

Expressionse, f :=c | x| Axe|ee|letx=eine |
if e then e else e

Monotypes Ti=yl|la|lT—>T
Variational types ¢ =1 | d{(¢p,¢) | ¢ > ¢
Typing patterns 7 ::= L1 | T | d(w, )
Selectors su=d.i

Type assumption sets A == & | A, (X, $,d)
Substitutions 0= |0,a> ¢
Choice environments A := @& | A, (,d(¢, ¢))

Fig. 5. Syntax of expressions, types, and environments.

5.1. Syntax

The syntax for types, expressions, and meta environments is given in Fig. 5. We support conditionals through if expres-
sions and support polymorphism through let expressions.

We stratify the type definition into two layers. First, monotypes, ranged over by 7, include constant types (y ), type
variables (&), and function types. In addition to o, we use B to denote fresh type variables used for representing func-
tion application results and use « to denote fresh type variables generated during unification. Variational types extend
monotypes with choice types. We support polymorphism without explicitly defining polymorphic types by using a method
proposed in [27, §4].

We use 0 to denote a sequence of objects o1, ..., 0, for any object o. The function TVs computes the set of type variables
in types. It collects type variables from both alternatives for choice types and has conventional definition for other types. We
use 0(¢) to denote the application of a type substitution. It replaces free type variables in ¢ by the corresponding images
in 6. Its definition is standard except for choice types, where substitution applies to both alternatives.

An assumption set A maps expression variables to variational types. Moreover, A stores the corresponding choice name
of each variable reference. We write A’ (x) and AP (x) to get the set of types and choice names that x maps to in A,
respectively.

We use [ to represent program locations and use the function ¢.(f) to return the location of f in e. We may omit the
subscript e when the context is clear. We assume f uniquely determines the location. The exact definition of £(-) doesn’t
matter.

The choice environment A associates each leaf | with a choice type d(¢1, @) during the typing process. Note that ¢; is
the type under normal type inference for the subexpression at [ and ¢, is the alternative type for the same subexpression
to remove the type error.

5.2. Basic typing rules

We present the typing rules in Fig. 6. The typing judgment has the form 7; AF e: ¢|A, meaning that the expression e
has the type ¢ with the assumption set A, the validity restriction 7r, and the change information A.

The conditions “d is fresh” in rules Con and Var are always satisfied since we have an unlimited supply of choice names.
The rule Con says that if c is of the type y, then in our type system it has the type d(y,¢) to indicate that we can
change c to any type ¢ to remove the type error in case c is an error cause. No assumption is made for typing c, and thus
the A component is empty. The choice environment records the change as {(¢(c),d(y, ¢))}. The function £(c), defined in
Section 5.1, returns the location of ¢ in the program. This function call is needed because the A is a mapping from locations
to types. For this rule, we can use any 7 since the typing of the constant is always valid.

The rule Var for variables is similar to the rule Con. The only difference is that the variable may have any type ¢ and the
assumption is recorded in A. At variable references, we always assume variables are bound. Therefore the typing pattern
component can be any value. We deal with unbound variables in Section 5.3.

Given an abstraction Ax.e, we first type the body e, which may contain multiple assumptions for the parameter x. These
assumptions need to be consistent for the abstraction to be well typed. The second premise in the Ass rule ensures that
all assumptions are equivalent to each other with the restriction ;7. The meaning of the notation =, is given earlier in
Section 4 (below the T-App-DEcL rule). Several examples are also given there. Intuitively, in ¢1 = ¢, ¢1 and ¢, are equivalent
or equal (syntactically the same) when selected with any decision. However, in ¢1 =5 ¢2, ¢1 and ¢, are equivalent or equal
(syntactically the same) only when selected with a decision § such that |7 |s = T. The second premise thus says that ¢
is the parameter type if it is equivalent to all the assumptions made about the parameter when typing the body, under
the restriction 7r. The assumptions for the abstraction are the assumptions for its body minus those for the parameter x.
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Ty Ale:plA

c is of type y d is fresh
T @ Ecdy, ¢){(L(0). d(y, o))}

CoN

d is fresh
T {(x, @)} Ex:d(g, ¢1)[{(L(x), d(9, ¢1))}

VAR

TARe:plA 1 =g (¢ | Voi € AT (X))
T A\NXEAxe: p1 — P|A

ABs

T A e ig|Ar wiAber:inldy pr1=xda—> @
T AT UA ep ex:p|A1U A,

AprpP

. (T A ei 1 gilADT? Bool=q¢1  ¢r=r¢3
7T A UA U A3 = if eq then ey else e3 : ¢|A1 UA; U A3

TA e g |A T Tpker:d|Ay T=TVs(¢) —TVs(Ah) ¢ =% (¢ilVi € A (X))

LET . -
T, AU (A \X)Hletx = eg iney: ¢ |A1 U A,

Fig. 6. Basic typing rules.

The choice environment of the abstraction is the same as that for its body since we don’t consider changes in function
parameters.

The Arp rule is very similar to the application rule discussed in Section 4. The only difference is that here we have to
merge assumption sets from the subexpressions and also change environments from them. The Ir rule is straightforward: it
ensures the type of the condition is equivalent to Bool and the branches have the equivalent type, both with the restriction
7. The conditional inherits assumption sets and change environments from all its subexpressions.

In HM, we type let x = e; in e, by first tying eq, binding x to the generalized type of e; in the type environment,
and typing the expression e;, where each access to x instantiates the type it is bound to. We observe that the body can’t
be typed without knowing the type of the variable x. How should we type let expressions in principal typing without
introducing this dependency? We address this by requiring that all assumptions about x in e, be type instances of the type
of e1.

We formalize this idea in rule Ler. The rule uses an auxiliary relation of the form ¢; E;’T_‘ ¢2, which states that ¢; is an
instance of ¢1 with the restriction 7 by instantiating variables in &. The relation is satisfied if the following condition holds.
The notation =, is defined in Section 4 (below the rule T-App-DEcL).

360: 6(¢1) =5 ¢ where dom(f) =&

Other than this relation, the rule is quite standard.
5.3. Handling unbound variables

In rule Var, we assume that all variables are bound. However, this is not always the case. A variable is bound if it was
declared and is unbound otherwise. For example, in the expression Ax.x y, x is bound and y is unbound. In standard typ-
ing [40], we first visit the abstraction then visit its body, allowing us to detect unbound variables once we encounter them.
However, in principal typing (the typing mechanism used in this paper), we first visit the body and then the abstraction
itself, and thus we are not able to determine whether variables are bound when we encounter them. We need to wait until
we have typed the whole expression.

How do we determine if an expression contains unbound variables after typing it? by checking A. If A is empty, then
all variables are bound. Otherwise, variables that have binding information left in A are unbound.

What should we do with unbound variables? Or more specifically, what does it mean if (x, ¢, d) still belongs to A after
typing the expression e with m; At e:¢|A? This means that the access to x should be incorrect but when typing e we
assumed it was correct under the Var rule. We can address this problem by adjusting the validity restriction . In fact,
(x, ¢, d) still belongs to A means that the typing result is invalid in d.1. Thus, we need to worsen 7 by d(L, T) to keep the
typing result valid.

In fact, there is a simpler way to address this problem. The key observation here is that if the typing pattern 7 is already
worse than d(L, T), then we don’t need to worsen it anymore. Before presenting the typing rule based on this idea, we
first formalize the notion that a typing pattern (771) is worse than the other one (7,), written as 71 < 73, as follows.

T =T Ty = T3 T =T T =73 T2 = T4

T<T l<m
m <73 T <7 d(my, mp) <d(7ms3, 4)
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inferl:e > T X Ax ¢ x A
(1a) infer1(x) =
¢ —dlar, ) {- d, @1, and o, fresh-}
return (T, {(x, a1, d)}, ¢, {(£L(X), $)})
(1b) inferl(e1 e3) =
(771, A1, 1, Ay) < inferl(er)
(T2, Az, $2, A2) < inferl(ez)
(77, 0) < vunify(¢1, p2 — B) {-B fresh-}
return (7 ® w1 ® 72, 6(A UAL),0(B),0(A1 U AR))
(1c) inferi(rx.e) =
(T, A, ¢, A) < inferl(e)
dp <—a; 0 < {} {- « fresh-}
for each ¢; in AT (x)
(71, 6i) < vunify (6 (¢p), 0 (¢i))
T« T Qmi; 0 «6iob
return (17, 0(A\X), 0(¢p — ¢),0(A))
(1d) inferi(let x = eq in ey) =
(771, A1, 1, A1) < inferl(er)
(w2, A, 2, A) < inferl(ez)
T <T@
o < TVs(p1) —TVs(Ay); 6 < {}
for each ¢; in AL (x)
(71, 6;) < vunify({a — B}(O (1)), 0 (1)) {-B fresh-}
T« T QRmi; 6 < 6job
return (77, 0(Ay U (A2 \ X)), 0(¢2), 0 (A1 U Az))

Fig. 7. An inference algorithm that recomputes all error fixes.

Intuitively, 71 < 7, expresses that ;r1 contains Ls in more variants than m, does. The first two rules say that all typing
patterns are worse than T and better than L. The third rule states that the relation is transitive. In the fourth rule, we reuse
the machinery of type equivalence by interpreting L and T as two constant types. The rule then says that two equivalent
patterns satisfy the < relation. The last rule states that two choice patterns satisfy < if both their corresponding alternatives
satisfy <.

With <, we can formalize the rule for unbound variables declaratively as follows.

T Ae:plA VX, ¢, d)e A: m <d(L,T)
Thme:plA

UNBOUND

We can see that A in the premise disappears in the conclusion. Intuitively, the rule says that if 7 is worse enough, then
the residual assumptions can simply be forgotten. The subscript M indicates that this is the main rule on top of all other
typing rules. In fact, given an expression, we should use this rule to compute error fixes.

As an example, consider the expression ubx = x 1. We have T;{(x, ¢, A)}ubx:Bool|A, where ¢ = B{Int,a3) —
Bool and A = {(£(x), ), (£(1), B(Int,a3))}. Since T £ A(L, T), we can’t derive T Fp ubx : Bool|A. Similarly, we have
A(L, T);{(x,¢, A)}-ubx :Bool|A. Since A(L, T) <A(L,T), we have A(L, T)Fp ubx:Bool|A, which tells us that with-
out changing x, the expression is ill typed.

Although our type system is based on principal typing, it generates the same set of error fixes as CFT does, as captured
in the following theorem.

Theorem 1 (CFT equivalence). w; @ e : ¢|A < @ Fcre : ¢ |AL such that ¢ = ¢+, A=, AL, and V5 : ¢t )5 # L < )5 #
1.

In the theorem, we use ¢ to denote the typing relation of CFT. The superscript L in ¢+ and AL reflects that errors
types are embedded in the type syntax in CFT. The relation A =, A~ is defined as VI € dom(A): A() =, AL().

This theorem could be proved through an additional typing relation called type-update system [7, §4.3]. We can prove
that both CFT and this type system are equivalent to the type-update system through inductions over typing relations. The
proof of this theorem is given in the companion [11] of this paper.

6. Recompute all error fixes

We will present three type inference algorithms from this section through Section 8. This section develops an inference
algorithm that recomputes all type error fixes as programs are updated, Section 7 shows a coarse incremental inference
algorithm that reuses results so that only nodes that are affected by the change are retyped, and Section 8 develops a
refined incremental inference algorithm on top of incremental variational unification.

As the type system in Section 5 is divided into two layers, the type inference algorithm follows a similar structure. The
algorithm infer1 in Fig. 7 provides a unification-based implementation of the typing rules from Fig. 6.
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AB(DE(L,T), T),T),T); {}|/\‘1U o3 — (A(D(Ba, ke, K16), B2)
3
Ti{ (@, 01), (2, 02)}(:) : (B, Bo)

Ul U2
T {(z, 1)} b1 Ti{(z, ¢2)}Q: o

T {(w,a7)}2: Alaz,a1) T;{}|’1’ : B(Char,an) T;{(z,a8)}7: Dlas,as) T;{}|True: E(Bool, s

U, :Alar,aq) =" B(Char, as) — ¢y = A(B(Char, ag) — B, K1)
U, :D/ag, o) = E(Bool,as) — B2 ¢y = D/ E(Bool,a5) — f32, k3
Us :A(B(Char, az) — By, k1) =' D(E(Bool,as) — P, k3 O3 =

Fig. 8. Compute error fixes for rank with inferl. The value of ¢3 and other typing information can be found in Section 3.2.

The function inferl has the type e —> m x A x ¢ x A, that is, it takes in an expression and returns a typing pattern
indicating which alternatives of the inference result are valid, an assumption set A, a result type, and a choice environment
storing type change information of leaves. Note that we don’t need to return a unifier in inferl since we can always keep
the typing assumption A that is returned by infer1 up to date. Since the main logic for constants is very similar to that
for variables and that for conditionals is very similar to that for applications, we have left out the cases for constants and
conditionals in inferl.

We now briefly go through infer1. The case (1a) deals with variable references. As mentioned earlier, we always assume
variables are bound at variable references. Therefore, inferl returns T for m, indicating no errors have occurred. Note that
we need two fresh type variables a1 and o in (1a), where o7 denotes that the variable can be mapped to any type based
on its uses and o, denotes that the variable can be changed to something of type ay to remove the type error if the
variable is an error cause. The main difference between them is that o« is recorded in A and will be later unified with
other assumptions for the same variable.

An important difference between this case and rule var (Fig. 6) for handling 7 is that in this case the returned 7 is T
whereas in Var the 7r can be any pattern (if a symbol appears unconstrained in a typing rule, then it can be instantiated
with any instance from the corresponding syntactical category). The reason we used 7t in VAR is to simplify the type system
specification: essentially we express that any 7 will make the conclusion in Var valid. In implementation, however, we aim
to compute the “best” 7 in the sense that we should never introduce more errors than needed. Since typing a variable
reference can always be succeeded, we return T, the best pattern among all possible patterns. We will return to this
discussion after the case (1b) below.

We use Fig. 8 for typing rank as a running example to illustrate inferl. In the tree, each node has a label in the form of
7; Ale : ¢, meaning that infer1 infers 7, A, and ¢ for e. For simplicity, we omitted A in the figure. The case (1a) is used to
compute the types for both occurrences of x in the figure.

Case (1b) deals with function applications. It first computes the results for the function and the argument independently
and then unifies the function type and the argument type with vunify, a variational unification algorithm from [9]. vu-
nify delegates unification problems involving plain types (types without variations) to the classical Robinson’s unification
algorithm [41], with, roughly, extensions in two dimensions.

First, vunify deals with variations. When variations are encountered in vunify, unification goes to their alternatives. For
example, for the problem vunify(A(int, 1), Int), the variation A(Int, 1) is broken down into Int and «1, yielding two
subproblems: vunify(Int, Int) and vunify(cq, Int). The first subproblem is simply discharged because the two types being
unified are the same. For the second subproblem, the solution is mapping o« to Int. However, as «; appeared in the
second alternative of the choice A only (in the original problem), there is no constraint regarding o1 in the first alternative
of A. As a result, the final solution to o« is A{k, Int), where « is a fresh type variable, indicating that the result for o is
unconstrained in the first alternative of A.

Second, while Robinson’s algorithm terminates the unification process if it encounters a constraint that can not be
solved, vunify will keep on constraint solving and use a L to denote where constraint solving failed. For example, consider
solving vunify(A(Bool, o1), Int), a slightly adapted version of the example from the last paragraph. Again, for this problem,
A(Bool, 1) is broken down into Bool and «. Thus, the first subproblem will be vunify(Bool, Int), which could not be
solved because Bool and Int are different. However, in vunify, we do not terminate the solving process, but use a L to
indicate that the unification problem could not be solved. The second subproblem is the same as in the last paragraph and
could be solved successfully with the same solution. In addition to returning the unifier, vunify returns a T to indicate
constraint solving is successful. In general, vunify returns a pair (i, 0), where 7 is the returned pattern and 6 is a unifier.
For vunify(A(Bool, @1), Int), the result is (A(L, T), {oty — A(k, Int)}). In Section 4, we mentioned that the typing pattern
7 is an input in declarative specification and is an output in type inference. In fact, the 7 is returned from vunify.

For vunify(A(Int, 1), B(Bool, a2)), the result is:

(AB{L, T), T), {or1 = Alk3, B(Bool, k2)), a2 > A(B(k1, Int), k2)})
The typing pattern component tells us that only one alternative, identified by {A.1, B.1}, fails to unify.
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In the rule Aep (Fig. 6), the same s appears four times, meaning that in all premises and the conclusion the typing
pattern should be the same. This handling of patterns significantly simplifies this typing rule, as discussed in Section 4.
In type inference, however, different subexpressions will return different “best” typing patterns, and we need to combine
them together to return the “best” pattern for typing the application itself. Theorem 3 below states that the typing pattern
returned from type inference is indeed the best with respect to <.

Specifically, we have three tying patterns, 771 and 7 from typing e; and e, respectively, and 7 from vunify. We will
combine them together through the ® operation, defined as follows (The same as in Section 2.3, reproduced here for
readability purposes.).

l@r=1 TQmn=m dim,m) @ =d(m Qm, M Q)

The result of ® is T only if both operands are T. Intuitively, ® can be understood as the logical and operation if we
interpret Tand L as the truth values true and false, respectively. Based on this operation, inferl returns 7= ® 71 ® 72,
meaning that ey ey is well typed only in the alternatives that both e; and e, are correct and the argument type of eq
unifies with the type of e;.

In Fig. 8, each @ represents an application and thus the corresponding node is typed with (1b). Typing each node needs
to solve a unification problem that is attached to the node. The figure also includes a node that uses a pair constructor (, ).
The rule for typing this constructor is standard and is omitted in this paper.

The case (1c) for typing abstractions is more complicated since we have to remove assumptions about the bound variable
from A. This is done through a for loop with the help of the variables ¢, for representing the parameter type of the function
and 6 for accumulating the unifiers returned in the loop. In each iteration, vunify is used to unify two assumptions for the
parameter. This case returns a typing pattern that has a T in each alternative that e is well typed and all assumptions are
consistent.

In Fig. 8, there are two assumptions ¢ and ¢, for the variable x before reaching the abstraction, the root node of the
tree. They are made consistent by solving the unification problem ¢; =7 ¢,. The result of typing this expression is presented
in Section 3.2, where we also showed how to extract error messages based on the result.

The case (1d) types polymorphic let expressions. Although we don’t represent polymorphic types explicitly in the pa-
per, we support polymorphism in principal typing through an approach proposed in [27]. The main logic of (1d) is very
similar to that of (1c) and we will not discuss it in detail. The notation {« +— S} creates a substitution that maps type vari-
ables oy, ay, ..., ap to fresh type variables 1, B2, ..., Bn, respectively. The uses of fresh type variables 8s help implement
polymorphic polymorphism [27]. The operation 6; o & composes two unifiers §; and 6, a commonly used operation in type
inference. Its definition is 6; 0 0 = 0; U {& > 0;(¢) | > ¢ € 6}.

In typing specification, we used the rule Unsounp to handle unbound variables, we need an implementation of this rule
in type inference. While 7 is an input in UNBounD, here 7 is an output so we have to compute it. We realize this by
worsening the typing pattern resulted from typing the expression with infer1. Specifically, for each entry (x, ¢, d) remained
in A, the typing information that can be reached from d.1 contains errors. The following function inferM implements this
idea. This function is also the main entry of the inference algorithm.

inferM:e — m X ¢ x A

inferM(e)

(m, A, ¢, A) < inferl(e)
for each (x, ¢,d) in A
T<«mTQd(L,T)

return (i, ¢, A)

Consider again the expression ubx from Section 5.3. inferl(ubx) = (T, {(x, A(¢, k), A)}, B1, A) and inferM(ubx) = (A(L, T),
B1, A), where ¢ = B(Int,a3) — B1 and A ={(£(x), ¢), (£(1), B{Int, a3))}.

We now investigate the properties of inferl and inferM. First, both of them are sound with respect to the typing relations
discussed in Section 5.

Theorem 2 (Inference soundness). Given e, if infer1(e) = (7r, A, ¢, A), then A; w e : ¢p|A. Similarly, if inferM(e) = (;r, ¢, A), then
Thpme:d|lA.

It's likely that in A we have multiple assumptions for some variable x, which means that different uses of x have
different types. Here we require that the variable reference at the same location has the same type in inferl and the typing
relation in Fig. 6. This theorem can be proved with an induction over different cases in Fig. 7. The proof of this and next
theorem is given in the companion [11] of this paper.

The infer1 and inferM are also complete, principal, and introducing fewest errors, as captured in the following theorem.
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T {(y, d1) HAx. : 2 — (B, B2)

Ti{(y, 01), (2, 02)}((;) : (B1, Ba)

Uy
" {me;% / @\
Ti{(y,an)}y: Alaz,on) 10 @ T ue

Fig. 9. Update typing information for changing the first occurrence of x in rank to y. The values for underlined objects are reused. The values of U1, ¢1,
and ¢, are the same as those in Fig. 8 and are omitted in this figure.

Theorem 3 (Inference completeness, principality, and error-minimality). If 7w1; Ay F e : ¢p1| A1, then inferl(e) = (72, Az, ¢2, A2)
(completeness) with 71 < 7 (error-minimality) and 0(¢2) =, ¢1 (principality), 0(Az) =5, A1, and 6(A3) =5, A for some 6.
A similar result holds for by and inferM.

In the theorem, we extend the relation =, to assumption sets and choice environment by applying it to their corre-
sponding type components. This theorem can be proved with an induction over the typing rules in Fig. 6.

7. Coarse incremental type inference

The type of inferl, e > m x A x ¢ x A, indicates that the expression e decides the type and the assumption set of e.
This immediately shows that if a subexpression hasn’'t been changed, then there is no need to perform type inference for
that subexpression. In particular, when a node is changed, the type information for only the path from that node to the
root needs to be recomputed. For example, if we change True in rank to 1, we need to update the type information for the
path from the right-most node to the root. This allows us to recompute type information for four nodes only, rather than
eight nodes if we recompute everything from scratch.

With some tricks, we can save more computations for updating error fixes. The first trick is to reuse fresh variables
generated for nodes. Consider, for example, now we want to change the first occurrence of x in rank to y. Note that in
Fig. 8 we generated fresh type variables o7 and «q and the fresh choice name A for x. If we generate other fresh names
for y, the left application node will detect that the type of the function has been changed, the type of the application thus
has to be recomputed. This recomputation, however, can be avoided by reusing the fresh names at y. Fig. 9 depicts this
process, where we reuse fresh names o7, a1, and A for y. As a result, we can reuse the type for the left @ without solving
the unification problem Uj. This allows us to further reuse the result type of the node (,).

The second trick is reordering the process of unifying all assumptions for the same variable, which is done at (1c) in
infer1. Given n types ¢1, ¢2, ¢3, ..., ¢n, inferl goes through n —1 iterations to unify them. It first unifies ¢1 and ¢», yielding
a unifier n1 and a typing pattern 1. Next, the types ¢, and ¢3 are substituted with 71 and then unified, producing another
unifier and typing pattern to be used in the next iteration. This continues until all types are unified. It's easy to see that
later iterations depend on previous iterations, meaning that if an assumption is changed, then all the unifications in later
iterations are invalidated.

We address this problem by first unifying the first assumption with each of the rest assumptions, yielding n — 1 unifiers
and n — 1 typing patterns. These unifiers are combined into a new unifier through substitution combination, a technique
developed in [31, §6]. Given a set of substitutions S = {11, 12, ..., Ny}, substitution combination C(S) returns a substitution
n and a typing pattern 7 such that

Vo1¢2: Vi € S: ni(d1) =7 ni(d2) = 1(P1) =5 N(¢P2)

In this method, an assumption change will invalidate n — 1 unifications if the first assumption is changed and only 1
unification if some other assumption is changed.

We refer to the inference algorithm implementing the ideas in this section infer2. We will omit its presentation since it
is very similar to infer3 in Section 8.2. In particular, infer2 can be obtained from Fig. 11 by replacing all occurrences of infer3
with infer2 and replacing function calls of the form incrVU(¢1 =? ¢, U’, (77, 6’)) with calls of the form vunify(¢1, ¢2).

8. Refined incremental type inference

Incremental type inference in Section 7 tries to maximize the reuse of typing information, thus minimizes the number
of variational unification problems to be resolved. However, once a type is changed, the unification problems involving that
type have to be resolved, even the change is minor. For example, consider again changing True to 1 in rank, which causes
the leaf to have the type Int. Based on previous subsection, we have to update the type information for four nodes, which
needs to solve the following unification problems U/, and U.
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U, :D(ag, o4) =’ EInt, a5 — B2
U4 :A(B(Char,a2) — p1,k1) =’ D(E Int,as — fa,k3)

We observe that U’ is very similar to Uy: the only difference is that Bool in the right-hand-side (RHS) of U; is changed
to Int in U). The change from Us to U} is the same. Since type unification is a main part of type inference and needs
intensive computations, a natural question is, can we reuse unification results to solve unification problems incrementally?
The answer is yes. We present in Section 8.1 such a method and in Section 8.2 a refined type inference algorithm using this
method.

8.1. Incremental variational unification

The general idea of incremental variational unification is that we first compute the difference between two unification
problems, yielding a delta unification problem, which is then solved and the result is merged into the original result to get
a unifier for the new unification problem.

Given two unification problems U: ¢; =’ ¢, and U’: o =’ ¢, and the result (7, 6) for U, we take the following steps to
solve U’.

Compute differences To compute the difference between two unification problems, we first need to compute that between
two types. We use the function D(¢1, ¢,) to compute the difference between ¢ and ¢;. The result is a set of decisions,
where each decision § satisfying |¢1 s # [¢2]s. Here are several examples of applying D.

D(A(Int, Char), Char) = {{A.1}}
D(EBool,as) — B2, ElInt,as5) — B2) = {{E.1}}
D(Bool, Bool) = {}
D(Int, Bool) = {{}}

The result of the first example indicates that two arguments differ in only one decision, the first alternative of A. The first
argument has Int while the second argument has char in that decision. The second example is similar although slightly
complicated. When two types are the same, the result is an empty set, meaning that there is no decision such that selecting
them with the decision results in different types. The third example falls in this case. When the two types are completely
different, the result set has one member, which is itself an empty set. Remember that selecting a type with an empty
decision gives that type back.

The function D(¢1, ¢2) is defined as follows.

D(tr,1)={}
D(t1, 12) = {{}}
D(p1 —> ¢2,¢3 = P4) = D(¢1, ¢3) U D(h2, P4)

D(d(¢1, d2),d(}3, ¢4)) ={A.1: 5|6 € D(¢1, ¢$3)}U
{A.2: 815 € D(¢2,da)}

D(d($1, $2), ) = D(d (1, ¢2), d{Ldla.1, ld1))
D(p,d(d1,¢2)) = D(d(p1, $2), $)

The first two cases are straightforward. The third case computes the difference between two function types by considering
their respective argument and return types. To compute the difference of two choice types with the same choice name d,
D first computes the difference of the first alternatives of the choices and then adds d.1 to each decision. Similar, D does
this for the right alternatives and extends the results with d.2. In the remaining cases, one argument is a choice type and
the other is not. These cases are reduced to the fourth case.

We overload D to compute difference between two unification problems and define D(U, U’) as D(¢y, ¢l/) U D(¢r, P}).
With this definition, we have D(U/, Uz) = {{E.1}} and D(U%, Us) = {{D.1, E.1}}.

Resolve subproblems Each decision § in D(U, U’) represents a unification problem |U’|s to be resolved. We can again use
vunify to solve these problems. However, to simplify the operation of the next step, we use vunify’, a variant of vunify.
The main difference lies in the way they represent unification results. Given a unification problem ¢ =? ¢, vunify re-
turns (r,6) while vunify’ returns {(8,7,0)}, a set of triples. Each triple (8, 7,0) satisfies that (1) vunify(L¢1]s, L¢2]s) =
(,6) and (2) vunify(L¢1ls, L¢2]s) doesn’t need to decompose any choice. Consider, for example, the unification problem
A(Int, o) =’ Int. While vunify returns (T, {a — A(k, Int)}), vunify’ returns {({A.2}, T, {a — Int})}. As another example,
consider U, from Fig. 8. For U,, vunify returns (T, 6,), where
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/ Int Boc{L >¥5 In{ >45
§={D2,E1} ¢ 1) comp(8, ¢, P)

Fig. 10. An example of comp.
0 = {ag+> D(E (Bool, &5) — B2,k3), s +> D(k4, E(Bool, s — B2)}

while vunify’ returns

{({D.1}, T, {ag — E(Bool, a5 — B2}),

({D.2}, T, {oa > E(Bool, a5 — B2})}

The definition of vunify’ differs from vunify in how it returns results only, and we will not present the definition in detail.
Based on vunify’, we define R(U, U’) to solve all the unification subproblems and collect all the results as follows,

RU, U= |J {6Us, 70| 7,60)cvunify' (1¢1s, [¢15)}

s5eD(U,U")
As an example, the result of R(U’, Uy) is

{{(D.1,E1}, T, {ag > Int — BoH({D.2, E1}, T, {4 — Int — B}

Merge results Given each {(§',’,6")} from R(U,U’) and (;r,0) for U, we can merge them together to get the result for
solving U’. An intuitive way to understand merging is view each variational type (pattern) as a tree and the merging
process is replacing the subtrees of the variational type (pattern) with given subtrees. The merging process is adapted from
the function comp from [14, §7.2].

Given 8, ¢/, ¢, comp(8, ¢’, ) replaces the type at § in ¢ with ¢’ and leaves other parts unchanged. We can view ¢ as
a tree with the root on the top and § as a path from the root to an internal node or a leaf, and comp(8, ¢’, ¢) replaces
the subtree specified by § with ¢’. For example, Fig. 10 gives an example of applying comp(8, ¢, ¢) with § = {D.2, E.1}
and ¢ = D (k4, EBool, as)). For ¢, the tree representation has internal nodes D and E and has three leaves. For the path
specification §, as it includes D.2, it means that the path takes the second children of D. As it includes E.1, it means that
the path takes the first children of E. Overall, the result of comp replaces Bool, the subtree at {D.2, E.1}, with Int.

The function comp is defined as follows. When it is called, the cases are tried top-down and the first case that matches
will be executed. In the first case, we replace ¢ with ¢, and we immediately return ¢ because the replacing does not make
any change. In the second case, if both types are function types, then comp is recursively applied to the corresponding
parameter types and return types.

comp (8, ¢, p) =¢
comp (8, 1 — ¢2, 3 — P4) = comp (8, P1, ¢3) — comp (8, P2, ¢a)
comp ({d.1}, ¢, d(¢1, ¢2)) =d(¢', ¢2)
comp ({d.2}, ¢, d(¢1, ¢2)) =d(¢1, ")
comp ({d.i}, ¢', ¢) = comp ({d.i}, ¢, d(¢, $))
comp (d.1:8,¢',d(¢1,$2)) =d(comp (8, ¢, 1), $2)
comp(d.2:8,¢',d(¢1,$2)) =d(¢p1,comp (8,4, $2))
comp(d.i:8,¢',¢) =comp(d.i:8,¢'.d(¢,9))

Cases three through five handle the situation that the § contains only one selector. The selector decides which alternative in
¢ will be replaced with ¢’. The last three cases handle the situation that the decision has more than a selector. We use the
syntax d.i : § to single out a selector d.i and bind the rest of the decision to §. The selector d.i decides the child in which
the comp will be recursively applied.

Given each {(§',7’,6")} from R(U,U’) and (7, 9) for U, we can merge them together to get the result for solving U’ as
follows. First, to merge 7’ into 7w with the decision &', we call comp (§’, 7/, 7r). We can merge ¢’ into 6 with § similarly. For
each o' ¢’ in 0/, if &’ € dom(9), we merge ¢’ into 8(«’) with &’ through comp (8, ¢’,0(a)). If o’ ¢ dom(8), we simply
add o’ +— comp(8’, ¢’, k) to 6, where k is a fresh type variable.

Now we can merge R(U3, Uj) into 6 (from previous step), yielding (T, 6;), where

0y = {ag > D(E(Int,as) — o, k3), s > DKy, E(Int, a5) — B2)}
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infer3:e >mT X Ax ¢ xA

(3a) infer3(x) =
¢ < d°(a], 03) {- reuse fresh names -}
return (T, {(x, @7, d°)}, ¢, {(€(x), $)})
(3b) infer3(e1 ez) =
(7r1, A1, 1, A1) < infer3(er)
(T2, Az, $2, A2) < infer3(ez)
if o7 =¢1 and ¢35 = ¢
return (771° ® 1 ® 72, 0° (A UA2), 7, 0°(A1 U Ag))
(7r,0) < incrVU(¢r = ¢ — B°,U°, (11°,6°))
return (7 ® w1 ® 2, 6(A1 UA), 0(B), (A1 U AR))
(3c¢) infer3(Ax.e) =
(7, A, ¢, A) < infer3(e)
{#1,¢2,.... ¢} < AT (x)
for each ¢; in {¢y,..., bn}
(717, 6;) < incrVU(¢1 =7 ¢, u?, (. 69))
(my,0) < C({ba, ..., 6n})
TTq = Qie(2....n} i
return (7 ® my @ g, O(A\ X), 0(p1 — ¢),0(A))

Fig. 11. A refined incremental inference algorithm that uses incremental variational unification.

Incremental variational unification Based on the three steps discussed above, we can define the function incrVU to incre-
mentally solve U’ based on the result (7, 0) for U, where M denotes the merging process described in the third step.

incrVUU’, U, (1, 0)) = M(R(U’, U), (r, 6))

Instantiating U’ to U, U to Uz, w to T, and 6 to 6, in incrVU, we obtain 6} as the solution for Uj. If we solve U/, with
vunify, then we obtain the same result as U’. In general, we have the following correctness result, where vunify(U) solves
U with the variational unification algorithm [14].

Theorem 4 (incrVU correctness). Given U and U’, let (;r, 6) = vunify(U), then vunify(U") = incrVU(U’, U, (7, 9)).
The proof of this theorem is given in the companion [11] of this paper.
8.2. Arefined incremental inference algorithm

Based on incrVU, we present infer3, a refined incremental type inference algorithm, in Fig. 11. In the figure, we don’t
present the case for let expressions since it can be translated from case (1d) in a similar way as we did for (3c) (Fig. 11)
from (1c) (Fig. 7). In the figure, we use the notation 0° to denote the saved copy of o from the last run of infer3. If there
is no saved value, then a meaningful value is returned. For example, in case (3a), we use d° to return the choice name
generated last time. However, if no fresh choice name was generated and saved, then d° just generates a new fresh choice
name and returns it. If U° doesn’t exist, then the corresponding call of incrVU will call vunify instead.

In the figure, we omitted the logic of using a dirty flag to denote if an expression is changed and propagate the flag to
its parent. If an expression is not changed, infer3 simply propagate this information to its parent and will not perform any
computations.

We now briefly go through each case. Case (3a) is very similar to (1a). The only difference is that we try to reuse fresh
names as much as possible. Case (3b) types applications. It first checks if both the function type and the argument type are
the same as saved copies. If so, then the saved 7° and 6° are used without unifying the function type and the argument
type. Otherwise, it uses the incremental variational unification algorithm to solve the new unification problem. Finally, case
(3c) deals with abstractions. It uses the idea of substitution combination introduced in Section 7 to reorder the process of
unifying all assumptions. This helps to reuse unification results.

9. Evaluation

To test the feasibility of eCFT, we have developed a prototype that implements the ideas from this paper in Haskell. The
prototype supports all three inference algorithms: inferM (Section 6), inferM calling infer2 (Section 7) instead of infer1, and
inferM calling infer3 (Section 8.2), which we will refer to as recomputing, coarse, and refined, respectively. In addition to the
constructors presented in Fig. 5, our prototype also supports data types and case expressions. Although the formalizations
in the paper don’t consider predefined global variables, the prototype supports them by resolving unbound variables left in
A in the predefined type environment and introducing errors when the resolution fails.

The prototype reuses two components from CFT: heuristics for ranking error suggestions and the algorithm for deducing
expression changes from type changes.
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Fig. 12. Running time of CFT and different inference algorithm of eCFT on student programs.

Section 5 shows that eCFT and CFT produces the same set of error fixes for any given expression. We have experimentally
confirmed this by running both eCFT and CFT prototypes over the benchmark we collected before [7]. The benchmark
contains 121 programs from 22 publications in the literature. For this reason, our evaluation focuses on performance.

9.1. Running time against program steps

Our first performance test used 60 program sequences from the student program databases [23,50]. The initial sizes of
these sequences range from 47 to 136 LOC and the numbers of steps range from 5 to 42. The results for different sequences
are quite similar and we present the result for a representative sequence (whose initial LOC is 125 and the number of
updates is 15) in more detail. The ratio of the difference between two consecutive program versions over the original
version ranges from 0.01 to 0.1 (except for the step 8 where the ratio is 0.14). Fig. 12 presents the running time of CFT and
three inference algorithms of eCFT. The times are measured on a laptop with a processor having four 2.4 GHz dual-cores
and 8 GB RAM running 64-bit Ubuntu 16.04 LTS and GHC 8.0.2.

The response time (the time delay to display the first error message) of CFT is about 22.3 s in average for this sequence.
eCFT is up to 3x faster with coarse and 13x faster with refined. With refined, the response time ranges from 1.7 s to 2.4 s
except for the step 8, where the response time is 4.0 s. The reason is that the change ratio is 0.14 at that step, much higher
than those at other steps. The fact that coarse is much slower than refined reflects that unification problems are getting
more and more complex as type inference moving up in the AST, although the change in each unification problem may be
minor. This demonstrates the value of refined.

Fig. 12 shows that recomputing is in average 1.4 s slower than CFT. There are two potential reasons for this. First, for
unbound variables, CFT directly detects the problem at variable references whereas recomputing first assumes that variables
are always bound and have to adjust the typing result after the typing is completed. Second, for variables predefined
globally, such as list processing operations, CFT immediately gets the types at variable references but eCFT first assigns fresh
type variables to variables and record them in A. In general, A in eCFT contains much more items than I" in CFT so looking
up A is more time consuming.

At step 1, coarse and refined can’t reuse any previous error fixes since they don't exist yet. As a result, they take slightly
more time than recomputing since they need to test if results have already computed. This can be seen from Fig. 12.

For other tested sequences, the speedup of refined over CFT ranges from 4.2x to 19.1x and is more than 12.4x in 80%
cases. For coarse, the speedup over CFT ranges from 1.2x to 5.3x and is more than 2.6x in 80% cases.

The previous test investigated how eCFT performs on real sequences of program updates, and such programs are relatively
small. We are also interested in investigating how eCFT performs in larger programs. Ideally, we could use some existing
benchmark for such an investigation, such as git commits and large applications. However, a main challenge to this idea
is that usually publicly available applications do not contain type errors since they are well typed. Also, the differences
between consecutive commits are often bigger than those programmers make during interactive program debugging and the
former thus may not reflect real-world error debugging situations well. Finally, real world applications often use language
features that are not provided by the prototype, such as type classes, type families, etc. [48].

For these reasons, we instead synthesized large programs by combining programs from different program sequences.
Specifically, in our experiment, we took three program sequences from the student program database, and created a new
sequence where each program is a combination of corresponding programs from these three sequences (necessary renaming
was done to avoid name conflicts). The programs in this sequence have a trend of getting bigger because in addition to
debug type errors, some new functions were added by students. The LOCs of these programs range from 331 to 409.

We present the running times for this sequence in Fig. 13. In general, we can observe that the running times for CFT
and recomputing are more sensitive to program size increase than coarse and refined do. For example, as the program size
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Fig. 13. Running time of CFT and different inference algorithm of eCFT on large, synthesized programs.
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Fig. 14. Running time of different inference algorithm of eCFT on synthesized programs.

experienced three quite significant increases, the running times of CFT and recomputing follow a similar pattern. In contrast,
the running times of coarse and refined increase quite significantly just once and then become quite stable. Also, we observe
that refined is much faster than CFT. It shortens the response time by about 89% for all steps except for those where program
sizes increased significantly, when no previous fixes for new code could be reused.

9.2. Running time against change ratios

In practice, programs may be updated very differently for debugging type errors. For this reason, we have conducted
another test, where we chose another 60 student programs of 71 to 142 LOC [23]. For each of the change ratios from 0.01
to 0.1 with an interval of 0.01 and from 0.1 to 0.3 with an interval of 0.05, we randomly generated changes to each original
program. (We used the Haskell package haskell-src to first parse the source code to an AST, make changes to the AST,
and then generate the source code from the AST.) Changes led to ill-formed programs were immediately discarded. We
stopped until we had generated 50 unique changes that all yield well-formed programs for each ratio for each program.

Since the results for the tested programs exhibit a very similar pattern, we report the result for the original program
that has 93 LOC in Fig. 14 and omit the details for other programs. Each time in the figure is an average of the randomly
generated 50 programs at that ratio.

The result is similar to that in Fig. 12 when the change ratio is less than 0.1. The result is somewhat surprising when
the ratio is high. As the change ratio increases, the running time for coarse increases almost linearly. However, the time
increases much faster to the increase of change ratio for refined.

While we don’t have the exact reason why this happens, we give a possible explanation here. According to the defini-
tion of D, the incremental variational unification doesn’t take the advantages of variational typing. For each decision § in
DU, U"), a subproblem |U’]s is solved. The subproblems may overlap, yielding many smaller subproblems to be solved re-
peatedly. This gets worse as the change ratio becomes larger. In particular, when the change ratio is 1, the difference covers
all decisions and refined degrades to the brute-force approach of finding all error fixes without using variational typing to
reuse typing information.

Why this sub-exponential growth doesn’t show up while the change ratio is low? There are two possible reasons. While
the ratio is low, the computations that are wasted are very limited. Also, at each point, the time for ranking all error fixes
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and for deducing expression changes is similar. When the ratio is low, the time for this part is more significant than the
time for update error fixes. As a result, this growth pattern is maybe shaded.

Ideally, refined is always (much) faster than coarse, but this is not the case as this test demonstrates. We are interested
in combining them into another algorithm that is always as fast as the better algorithm for different change ratios. One
parameter we can use is the change ratio. We, however, leave this for future work.

Nevertheless, the result of refined is very promising when we considering both Figs. A.16 (Appendix A) and 14. Fig. A.16
shows that for more than 80% of changes, the change ratio is below 0.1, and Fig. 14 shows that refined is still very fast when
the change ratio reaches 0.1. The probability of high change ratio is very low, which means that refined has low performance
in very few cases.

10. Related work

Type error debugging has been extensively studied [51,29,49,7,57,39,4]. In [7], we have discussed the relation of CFT
with much previous work, such as discriminative sum types [36], Seminal [30], and Chameleon [46]. These discussions also
apply here and thus in this paper we mainly discuss the relation with other work. We group our discussions based on the
properties these approaches share.

10.1. Principal typing for debugging type errors

Our type system is based on principal typing, which is very different from principal types [52]. There have been many
other error debugging approaches based on principal typing.

Chitil [16] suggested that the main difficulty of understanding why a program is ill typed lies in knowing why subexpres-
sions get certain types. He further argued that the core of the difficulty in HM is that the type system is not compositional.
Based on this observation, he developed a compositional error explanation approach using principal typing. His approach
allows the user to navigate through the explanation graph and inspects the type of each node. By asking the user whether
the type of each node is intended, his approach can potentially improve the precision of error localization. While our ap-
proach focuses on each potential erroneous expression once a time and provides a detailed error message, his approach
doesn’t provide change suggestions but allow the user to have a big-picture about why errors have occurred. In this sense,
these approaches are complementary to each other.

Helium [27] is a compiler designed for Haskell beginners. It aims to provide good quality type error messages. Helium
uses a constraint-based type inference algorithm to generate a set of type constraints, and then uses a solver to handle
all the constraints globally. When the constraints are unsatisfiable, it uses a set of heuristics to find the most suspicious
constraint [27,24], from which a few most likely error sources are identified. In this approach, it is important to keep the
constraints from different parts of the expression independent. For this reason, the order it traverses the AST is similar to
what principal typing does.

Haack and Wells [22] computed program slices that identify all program locations contributing to type errors. Their
approach first uses Damas’s type inference algorithm T [17] to generate type constraints, and then found the minimal
unsolvable subsets from the type constraints, from which program locations consisting of the error slice are computed. The
underlying type system T used in the approach can be viewed as a variant of principal typing [28].

While these approaches employed principal typing to make typing compositional or independent among different ex-
pression parts, we use principal typing to enable us to incrementally update error fixes. Another main difference is that our
approach provides a detailed change suggestions for all possible error causes while other approaches don’t do this or do so
for a few locations.

10.2. Other error debugging approaches

Reordering unifications and heuristics There have been many approaches to improve the precision of error localizations.
Algorithm W is biased in the order of solving unification problems. Consequently the accuracy of error localizations is
affected. Many approaches [18,34] altered the ordering of type unifications to eliminate the bias in “W. All these proposed
algorithms followed the idea of ‘W in the sense that they treated the place where unification failed as the error cause.
Unfortunately, the reported error location may be far from the real error cause in algorithms using a fixed ordering for
unifying types.

Some approaches [29,26,24] used heuristics to select the most likely error cause from a list of candidate locations.
Heuristics work well when the context information is abundant and not so well when little such information is available [7].

Type error slicing Another extreme to these approaches is the idea of finding all error locations that may contribute to
the type error [22,42]. Error slicing approaches never miss the real error cause, but their value diminishes when they cover
too many locations in the program, relying on the user to pinpoint the proper error location [27]. In addition, error slicing
approaches do not provide detailed error messages. Our type inference algorithm computes all potential type changes to
remove type errors. Comparing with slicing approaches, the changes we present cover fewer locations. Users can look at
one location and the corresponding suggestions for type changes.
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Type error explanations Many approaches have developed to generate explanations about why type errors have oc-
curred [51,55]. They were realized by extending type inference algorithms to record why certain types are unified with
each other. These approaches are very different to our approach in both realization techniques and behaviors.

In general, ill-typed programs can not be run. Seidel et al. [43], however, have developed a special language interpreter
that is able to evaluate ill-typed programs. Given a program, the interpreter could show intermediate evaluation results and
illustrates to the programmers where evaluation gets stuck due to type errors. Such information is usually more tangible to
programmers and helps them understand where the real error causes are. That idea, however, usually shows just one error
location (where evaluation is stuck) while CFT and eCFT can find all error locations.

Finding most likely error causes Given an ill-typed expression, SHErrLoc [56,57] first extracts typing constraints (such
as different occurrences of a single parameter should have the same type, the parameter type must match the type of
the argument in a function application, the condition must have the type Bool and the branch types must be the same
of a conditional), translates the typing constraints into a graph representation, and localizes the most likely error causes
using a simple Bayesian model. The basic idea is that in the graph representation, each path is classified as consistent or
inconsistent, and a node (which corresponds to some subexpression in the source program) in the graph is identified as an
error cause if it touches as few as consistent paths and as many as inconsistent paths. This idea coincides with the belief
that, when debugging type errors, the changes to the program should be as few as possible. The main difference between
SHErrLoc and CFT and eCFT is that SHErrLoc usually reports type errors at constraint level, which could be hard to make
use of by programmers, while CFT generates more concrete error messages, at the type level and sometimes even at the
expression level. Another difference is that while SHErrLoc finds a few most likely error causes, CFT and eCFT could find all
of them.

Instead of developing special graph representations to represent typing constraints, MinErrLoc [38,39] expresses typing
constraints as SMT formulas [37]. Essentially, MinErrLoc reduces the type inference problem to SMT constraint solving prob-
lem. If SMT solving for a program succeeds, then type inference for the program succeeds with no type errors. However, if
SMT solving fails, then the program contains type errors. In this case, MinErrLoc uses MaxSMT to identify the maximal sat-
isfiable set of SMT constraints and extract the rest of constraints as causing type errors. Similar to CFT and eCFT, MinErrLoc
can find comprehensive error causes but it does not provide concrete change suggestions.

Instead of using an off-the-self SMT solver, MYCROFT [32] explores the constraint solver developed by individual languages
to find the most likely error cause. The basic idea is that when solving the full constraint set of a program fails, it partitions
that into two subsets and recursively solves them.

Seidel et al. [44] developed a machine learning based approach, named NATE, to locate likely error causes. NATE is trained
from a set of more than 6,000 ill-typed student programs with the corresponding terms that are changed to fix the type
errors. Given each new program, NATE will predict a few most likely terms that need to be changed based on the trained
model. Compared to our approach, NATE's error messages include only location information while CFT and eCFT includes
more information, including the type the located term should have to remove the type error.

Based on our machinery from variational typing [14] and error-tolerant typing [12], Eremondi et al. [20] have developed
a framework for diagnosing type errors for dependently-typed programming languages.

Our earlier work on type error debugging We have explored many different directions for improving type error debugging
in addition to CFT [7,10], which has been discussed in detail in Section 1. On top of CFT, we developed a method named
Guided Type Debugging (GTD). A main difference of GTD with existing error debugging approaches, including CFT, is that it
takes users’ intended result types into consideration while others do not. GTD allows users to specify their expected type
of the ill-typed expression. It then computes all erroneous locations and their expected types, ranks them, and presents the
suggestions to users in that order. As GTD is based on CFT, it suffers from the same issue as CFT does. As a result, we expect
that our approach developed in this paper could help solve the problem in GTD as well.

Prior to CFT, we explored the idea of lazy typing [8]. The main idea is that when branches (in if and case expressions)
have inconsistent types, we create variational types whose alternatives are branch types and then continue the typing
process, rather than terminating the typing process and choose some branch as having type errors. This idea avoids a
premature, uninformed decision and gather information about the context to decide which branch has the type error. The
main differences between lazy typing and CFT are: (1) CFT generates a complete set of changes while lazy typing tries
to identify the most likely change only and (2) CFT points to very specific change location while lazy typing has only
branch-level granularity.

We have explored the idea of combining different error debugging tools for debugging type errors [13]. The main insight
is that different tools have different strengths and weaknesses, and they may good at debugging type errors caused by
certain reasons but not by others. Combining tools with complementary strengths is likely to yield a better tool. Our work
used Helium [27] and lazy typing as studying subjects and manually investigated their type error messages on more than
1,000 ill-typed programs. For each error message, we analyzed its precision (the difference between the reported error
location and the real error location) and its concreteness (whether it contains change suggestion at expression level, at type
level, or none). We observed that there is a connection between the concreteness and precision. We further analyzed that
creating a new tool based on Helium and lazy typing using this observation could improve error reporting accuracy by
about 20% over Helium and lazy typing.

We have also explored the idea of using machine learning to improve error locating and generate user-friendly error
messages [54]. The motivation there was that in practice fixing type errors requires restructuring programs (adding or



22 S. Chen, B. Wu / Science of Computer Programming 200 (2020) 102544

removing parentheses, adding or removing square brackets, pulling certain subexpressions out of or pushing them into
parentheses, etc.) but existing debugging methods do not work well for such type errors [53]. That work [54] thus has a
different focus point from this one.

10.3. Principal typing and incremental computing

Erdweg et al. [19] developed a method named co-contextual typing for deriving incremental type checkers by replac-
ing the top-down context flow with bottom-up typing flow. They explored many different incrementalization schemes, for
example, incremental constraint solving and eager substitution, which keeps the substitutions passed from children to par-
ents to be small. Their approach resolves the whole constraint once it is updated while our approach resolves only part of
the constraint (unification problems). The reason is that unification problems can be very complicated in our system as it
encodes different possibilities to remove the type error. As another difference, it seems that their approach doesn’t exploit
the full advantages of principal typing for processing let expressions [19, §3.2]. They first compute the type of the bound
expression, generalize the type for the variable, and then type the body. We take a different approach by allowing the bound
expression and the body to be typed independently.

Johnson and Walz [29] developed an approach to locate the most likely error source based on an idea similar to majority
voting. While type constraints are incrementally generated as programs are edited in their approach, type error debugging
itself is not incremental. Miao and Siek [35] developed a type system to detect type errors earlier in multi-staged program-
ming, such as C++ Templates. As meta evaluations are performed, new typing constraints are generated and added to those
generated in earlier stages and constraint satisfiability is checked. While in our approach type constraints maybe changed,
in their approach existing constraints are never changed.

Acar et al. [1,15] have developed frameworks for performing general incremental computing. We didn’t use their
framework and developed our own incremental algorithm for several reasons. On one hand, as reported in [15,19], such
frameworks usually impose high overhead. The reason is that they record detailed computing process and not only the
results. On the other hand, they don’t support domain-specific optimizations. For example, through reusing fresh type vari-
ables, a change from Ax.x to Ay.y will not change the type of the expression in our approach (both of them have the type
B — B), which is hard to achieve in their frameworks.

11. Conclusions

We have presented eCFT, a method to improve the performance of our previous type error debugging method CFT. While
CFT is quite effective in locating type errors and providing change suggestions, it has a long response time. To address
this problem, we redesigned the type system and used principal typing to compute all error fixes. We have also developed
two incremental methods for efficiently updating error fixes as programs are changed. Our evaluation result shows that in
average eCFT is 12.4x faster than CFT in more than 80% of cases. The response time drops from about 22.3 s in CFT to
about 1.7 s in eCFT for programs with about 125 LOC in our evaluation. In the future, we plan to investigate how we can
improve the performance of eCFT when programs are under significant changes.
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Appendix A. Statistical findings of debugging

This section presents our findings about how students debugged type errors. We studied the program database collected
at the Utrecht University [23]. The programs were written by students learning Haskell using the Helium compiler [26].
Whenever a program is compiled, Helium saved a copy of the program with a timestamp [25]. By compiling the program,
we can decide if it is well typed. This allows us to figure out how many steps are required to remove the type error and
how big is the difference between two consecutive versions. In this work, we use a total of 23529 collected programs from
367 different submissions.
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Fig. A.16. Statistics of step changes.

Fig. A.15 presents the statistics about number of steps needed to remove the type error. Given an ill-typed program P1, if
Pyg is well typed and P, is the first program that is well typed after P, then the number of debugging steps for Py is n—1.
We give both the probability density function (PDF) and the cumulative distribution function (CDF) for a given number of
debugging steps. For example, a point (x, y) on the PDF curve denotes that the likelihood that the type error is removed
using exactly x steps is y. Similarly, (x, y) on the CDF curve means that the likelihood of removing the type error using up
to x steps is y. We cut off the x axis at 100 since the probability that the type error needs to be fixed for more than 100
steps is very low, within 0.001. In addition, Fig. A.15 shows that over 92% of programs can be fixed within 100 steps. The
maximum debugging step in the collected data is 359, and the average value of debugging steps is 28.94.

We are also interested in measuring the difference between two consecutive versions of the same program, which we
will refer to as step change. To compute the step change, we first find all the different expressions between the two
programs, and then use Levenshtein distance* to measure the difference between those expressions. This gives us a number
of bytes that two programs differ. Given a program P, if it differs with the successive version by n bytes, then the step
change for P is calculated as m Fig. A.16 presents the statistics about step change. For a similar reason as in Fig. A.15,
we cut off the x axis at 0.1 since the probability that the step change exceeds 0.1 is very low. We again show both the PDF
and the CDF in the figure. From Fig. A.16, we observe that the probability that the step change is more than 10% is less
than 0.001, and more than 80% programs are changed less than 10%. The median value of step change is 0.0107, meaning
that the program is changed for only about 1%. To sum up, only a very small portion of the program is modified during the
debugging process.

Based on Figs. A.15 and A.16, students, and maybe other Haskell beginners, take quite many steps to remove the type
error with minor changes in each step. This indicates the feasibility and the value of incremental error fix generation. Our
evaluation result in Section 9 will further substantiate the feasibility.

4 https://en.wikipedia.org/wiki/Levenshtein_distance.
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