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Providing effective error messages in response to type errors continues to be a challenge 
in functional programming. Type error messages often point to bogus error locations or 
lack sufficient information for removing the type error, making error debugging ineffective. 
Counter-factual typing (CFT) addressed this problem by generating comprehensive error 
messages with each message includes a rich set of information. However, this comes with 
a cost of huge computations, making it too slow for interactive use. In particular, our recent 
study shows that programmers usually have to go through multiple iterations of updating 
and recompiling programs to remove a type error. Interestingly, our study also finds that 
program updates are minor in each iteration during type error debugging. We exploit this 
fact and develop eCFT, an efficient version of CFT, which doesn’t recompute all error fixes 
from scratch for each updated program but only recomputes error fixes that are changed 
in response to the update. Our key observation is that minor program changes lead to 
minor error suggestion changes. eCFT is based on principal typing, a typing scheme more 
amenable to reuse previous typing results. We have evaluated our approach and found it 
is about 12.4× faster than CFT in updating error fixes.

 2020 Elsevier B.V. All rights reserved.

1. Introduction

Type inference allows programs to be statically typed, even without the presence of type annotations. A well-known 
problem in type inference is that it is very hard to locate the real error cause and generate informative feedback once 
type inference fails. Practical compilers pay little attention to address this problem. They usually report the place that type 
inference first fails as the error cause and often report errors in their internal jargon. As a result, understanding type error 
messages is a main challenge in learning functional programming [33,3,48].

This problem has also been intensively studied over the last three decades from different directions. One direction aims 
to find the most likely error causes [29,34,18,27,24,57]. As an example, consider the following ill-typed expression, which 
we will use throughout the paper.

rank = λx.(x '1', x True)

Helium [26], a Haskell compiler integrated with the type error debugging method developed in [27], produces the following 
error message. GHC 8.0.2, the de facto Haskell compiler, generates a similar message that blames the same location.
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Fig. 1. Work flows of CFT and eCFT.

Type error in application

expression : x True

function : x

type : Char -> a

1st argument : True

type : Bool

does not match : Char

This error message blames True as the error cause. While changing True may remove the type error, this is not the only 
possible fix. In fact, changing any of x (either occurrence), '1', or True can remove the type error. We seem to lack enough 
context to justify that True is more likely the error source than other locations.

This example demonstrates the value of type error slicing [47,22,42], which returns all program locations that may 
contribute to the type error and excludes those don’t. However, a problem with this approach is that the programmer 
still has to decide the real error cause among the returned slice, which could be comparable to the original program in 
size [27,7,10]. Recently, [39] improved this by finding all possible error causes and suggesting one location at a time.

Like error slicing, counter-factual typing (CFT) [7] also finds all possible error locations in the leaves and their com-

binations of the program AST. However, unlike error slicing, CFT also comes with a change suggestion for each identified 
location. This suggestion includes the type the identified location has in the original program, the type it ought to have to 
remove the type error, and the result type of the changed expression if the suggestion is applied. Since some locations are 
more likely to be the error source than others in most common cases, CFT ranks all fixes and presents them to program-

mers iteratively. The evaluation result showed that CFT achieved better precision than state-of-the-art approaches when 
considering the first suggestions and performed even better when considering also later suggestions [7].

One problem with CFT, however, is the long response time. To find all possible error locations and all change suggestions, 
CFT has to perform a lot of computations. Although CFT uses variational typing [14] to reuse typing results, it can still take 
dozens of seconds to deliver the first error message for programs within 100 LOC. This makes CFT too slow for interactive 
use. In particular, our recent study of mining a program database [23,50,25] shows that in average students take about 29 
steps to fix a type error with a maximum of 359 steps. The details of the study are given in Appendix A.

Fortunately, an accompanying finding of the study is that, during error debugging, the change between two consecutive 
versions is very minor. In more than 80% cases, the change is within 10% of the old program. This result encourages us to 
compute error fixes incrementally rather than recompute all error fixes from scratch as programs are updated.

In this work, we develop eCFT, an efficient version of CFT. Fig. 1 depicts the difference between eCFT and CFT. We use 
blue, dashed arrows to denote computations of eCFT and red, solid arrows to denote those of CFT. P i denotes the ith version 
of a program used in compilation, and F i is the set of all error fixes produced by CFT (eCFT produces the same set of error 
fixes) for P i . In addition, let �P i j

denote the program difference between P i and P j . While CFT recomputes error fixes every 
time the program is updated, eCFT reuses earlier error fixes and program differences to more efficiently compute all error 
fixes. For example, CFT computes F j by using P j only, while eCFT takes F i and �P i j

as inputs to compute F j .

In Summary, this paper makes the following contributions:

1. In Section 4, we present our first technical innovation of a declarative specification of typing applications, which sim-

plifies the type system of eCFT. Earlier work that combines variational types and error types uses an operational rule to 
type applications, having to explicitly pass around and propagate error types. The type system in this paper averts this 
problem.

2. The CFT’s typing rules pass around the type environment and its implementation is based on the algorithm W, making 
CFT hard to incrementalize. To address this issue, we base eCFT on principal typing, a typing scheme more amenable to 
incremental updates. We present the typing rules of eCFT in Section 5. A subtle issue in the type system is about dealing 
with unbound variables, which we handle nicely with our previous contribution.

3. We present three type inference algorithms in Sections 6, 7, and 8. While the algorithm in Section 6 recomputes all 
error fixes as programs are updated, the algorithm in Section 7 only retypes subexpressions that are affected by the 
program updates, and the algorithm in Section 8 improves the second one by solving the variational unification problems 
incrementally, which is also our second technical innovation.
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4. We extensively evaluate the performance of eCFT. The result shows that in more than 80% cases eCFT is 12.4× faster 
than CFT of computing error fixes in response to program updates.

This paper is an extended version of a conference paper published at TASE 2019 with the following additions and 
updates. (1) We improved the exposition of this paper with more explanations and examples. For example, we added 
Figs. 1, 3, 4, 8, and 9. We added examples throughout the paper. (2) We extended our formalization to support polymorphic 
let-expressions and conditionals. We extended the type system (Section 5) and type inference algorithms (Sections 6 and 
8) correspondingly. (3) We extended our evaluation and observed an interesting phenomenon in the evaluation result and 
gave potential explanations for that (Section 9). (4) We included the statistics of an empirical study (Appendix A). about the 
number of iterations students needed to fix a type error and the change ratio between each two steps.

In the rest of the paper, we present the background of variational typing (Section 2) with a focus on the typing rule 
for function applications (Section 2.3), present the background of principal typing in Section 3, discuss related work in 
Section 10, and conclude the paper in Section 11.

2. Variational typing

As already mentioned in Section 1, CFT relies on variational typing [14,12] to compute informative error messages for 
all possible error locations. In fact, neither CFT nor eCFT is feasible without reusing typing information, the core idea of 
variational typing. This section presents variational typing.

Variational expressions are obtained by extending normal expressions (plain expressions) with named choices [21]. For 
example, the expression e = succ A〈1, 'a'〉 contains a choice A, which has two alternatives, 1 and 'a'. We will use d
to range over choice names. While in general choices can be n-ary, binary choices are sufficient in this work, and we will 
consider them only.

An important notion in variation representations is selectors that have the form d.i, where d is a choice name and i
is an alternative index. We call a set of selectors a decision and use δ to range over decisions. Choices can be eliminated 
through a process called selection, which takes in an expression e and a selector d.i and replaces each occurrence of the 
choice d in e with its ith alternative. Selection extends naturally to decisions, by iteratively selecting with all of the selectors 
in the decision. We write �e�d.i and �e�δ for selections. For example, �succ A〈1,'a'〉�A.1 yields succ 1. Plain expressions 
can be obtained by eliminating all the choices in a variational expression. Choices with the same name are synchronized 
and those with different names are independent. Therefore, the variational expression A〈succ, odd〉 A〈1, 'a'〉 encodes two 
plain expressions: succ 1 and odd 'a', while A〈succ, odd〉 B〈1, 'a'〉 encodes four: succ 1, succ 'a', odd 1, and odd

'a'.

Similarly, we have variational types. The notions and definitions of variational expressions carry over naturally to varia-
tional types. We will use τ and φ to range over plain types and variational types, respectively.

2.1. Selection and semantics of variational types

Since selection and semantics of variational types serve an important foundation to formally discuss our approach, we 
present them below. Both definition assume the type definition includes γ for ranging over constant types (such as Int

and Bool), α for ranging over type variables, the variational type, and the function type.

�γ �d.i = γ �d〈φ1, φ2〉�d.1 = �φ1�d.1
�α�d.i = α �d〈φ1, φ2〉�d.2 = �φ2�d.2

�φ1 → φ2�d.i = �φ1�d.i → �φ2�d.i �d〈φ1, φ2〉�d1.i = d〈�φ1�d1.i, �φ2�d1.i〉

Selecting γ or α with any selector yields themselves. Selecting a function type recursively selects its parameter and 
return types. Selecting a variational type d〈φ1, φ2〉 with a selector d.1 recursively selects the first alternative φ1 with 
d.1. The reason for the recursive selection is that variations with the same name may be nested. For example, selecting 
A〈A〈Int, Bool〉, Int〉 with A.1 yields Int. Without recursive selection, the result would be A〈Int, Bool〉, which is in-
correct. The recursive selection addresses this issue. Similarly, selecting d〈φ1, φ2〉 with d.2 will recursively select the right 
alternative φ2 with d.2. Selecting d〈φ1, φ2〉 with a selector whose variation name is not d will push the selection onto its 
alternatives, as specified by the last case of the definition of selection.

The semantics of a variational type is a mapping that maps decisions to plain types. Essentially, the semantics of a 
variational type specifies how plain types are encoding using variations. The semantics of γ (α) contains only one element, 
which maps the empty decision to γ (α), respectively.

[[γ ]] = {({},γ )}

[[α]] = {({},α)}

[[d〈φ1, φ2〉]] =

⎧

⎨

⎩

[[�φ1�d.1]] �φ1�d.1 = �φ2�d.2

{({d.1} ∪ δ,τ )|(δ,τ ) ∈ [[�φ1�d.1]]}
∪{({d.2} ∪ δ,τ )|(δ,τ ) ∈ [[�φ2�d.2]]} otherwise
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[[φ1 → φ2]] = {(δ1 ∪ δ2,τ1 → τ2)|(δ1,τ1) ∈ [[φ1]] ∧ (δ2,τ2) ∈ [[φ2]] ∧ δ1 ∼ δ2}

The semantics for d〈φ1, φ2〉 needs to consider several cases. First, if φ1 and φ2 are the same, then essentially the variation 
d is redundant. Consequently, the semantics of d〈φ1, φ2〉 is the same as that of φ1 (or φ2). In addition to accounting 
for this, the case (with a condition �φ1�d.1 = �φ2�d.2) further handles variation nesting. For example, the semantics of 
A〈A〈Int, Bool〉, Int〉 should be the same as that of A〈Int, Int〉 because �A〈A〈Int, Bool〉, Int〉�A.1 = �A〈Int, Int〉�A.1 =

Int and �A〈A〈Int, Bool〉, Int〉�A.2 = �A〈Int, Int〉�A.2 = Int. Second, if �φ1�d.1 and �φ2�d.2 are not the same, then the 
semantics of d〈φ1, φ2〉 is the union of the semantics of φ1 (but need to extend each decision with d.1) and of φ2 (but need 
to extend each decision with d.2).

The semantics of the function type φ1 → φ2 composes that of φ1 and φ2 . The composition needs to ensure that the 
decisions δ1 (for the semantics of φ1) and δ2 (for the semantics of φ2) are consistent, expressed through the notation 
δ1 ∼ δ2 , which is defined as follows

δ1 ∼ δ2
def
= �d.d.1 ∈ δ1 ∧ d.2 ∈ δ2 ∨ d.2 ∈ δ1 ∧ d.1 ∈ δ2

Essentially, δ1 ∼ δ2 if there is no variation such that one of δ1 and δ2 contains d.1 and the other contains d.2 for some d. 
This condition is needed to prevent the creation of inconsistent decisions such as {A.1, A.2}. This decision is inconsistent 
because applying it to some type means to take both alternatives of the variation A, which is not a well-defined operation 
in the Choice Calculus [21].

2.2. Type equivalence

There are two different ways to type variational programs. A naive way is to individually type all the plain programs 
generated from the variational program. Note that the number of plain programs is exponential in the number of different 
named choices. Therefore, this method becomes impractical as it’s common for a variational program to have thousands of 
independent choices [6].

A more scalable way is variational typing, which types variational programs once without generating plain programs. The 
central idea of variational typing is reuse. In our previous work [14], we identified three opportunities for reusing typing 
information in variational typing.

The conventional rule for typing a function application has the following form [40].

	 
 e1 : τ1 	 
 e2 : τ2 τ1 = τ2 → τ

	 
 e1 e2 : τ
T-App-Std

Intuitively, for an application to be well typed, the function must have a function type (τ1) and the parameter type (τ2) of 
the function be the same as the type of the argument (τ2). And if this is the case, the type of the whole application is the 
return type of the function (τ ). The “=” sign in the third rule serves as an equality testing, which requires that its two sides 
be syntactically the same.

However, the equality testing becomes too restrictive for typing variational expressions. Consider, for example, typing the 
expression odd A〈1, 2〉. The function odd has the type Int → Int, and the parameter type of odd is Int. The type of the 
argument A〈1, 2〉 is A〈Int, Int〉. Since Int is not equal to ( �=) A〈Int, Int〉, we can not use the application rule T-App-Std
to type the expression odd A〈1, 2〉. Nevertheless, if we generate the plain expressions from odd A〈1, 2〉, we can check that 
both plain expressions (odd 1 and odd 2) are well typed. Thus, we expect that odd A〈1, 2〉 itself be well typed.

Our solution is relaxing the equality testing relation (=) in the typing rule to an equivalence relation (≡), yielding the 
following typing rule.

	 
 e1 : τ1 	 
 e2 : τ2 τ1 ≡ τ2 → τ

	 
 e1 e2 : τ
T-App-Vari

Two types φ1 and φ2 are equivalent, written as φ1 ≡ φ2 , if φ1 and φ2 have the same semantics,1 as defined in Section 2.1. 
Intuitively, φ1 ≡ φ2 if selecting φ1 and φ2 with the same decision always yield the same plain type. Fig. 2 gives the full set 
of type equivalence rules. The first three rules state that type equivalence is reflexive, symmetric, and transitive. Rule E4
says that a choice whose alternatives are identical is equivalent to its alternatives.

In rule E5, we use φ[ ] to denote a type term with a hole where we can plug in a type. Rule E5 states that type equiva-
lence is a congruence. Due to choice synchronization, if a choice type is nested in another choice type with the same name, 
then one alternative of the inner choice is unreachable. For example, in A〈A〈φ1, φ2〉, φ3〉, φ2 is unreachable since selecting 
the type with A.1 gives us φ1 and selecting it with A.2 yields φ3 . Rule E6 states that eliminating unreachable alternatives 
preserves type equivalence. Finally, rule E7 says that we may commute the function and choice type constructors. We defer 
a detailed discussion of these rules to [14] or [6].

Based on the rule E4, we know Int≡ A〈Int,Int〉. Combining this with the typing rule T-App-Vari, the expression odd 
A〈1, 2〉 has the type Int.

1 In practice, however, deciding type equivalence is more efficiently realized through term rewriting, a technique developed in [14].
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E1
φ ≡ φ

E2
φ ≡ φ1

φ1 ≡ φ
E3

φ ≡ φ1 φ1 ≡ φ2

φ ≡ φ2

E4

d〈φ,φ〉 ≡ φ
E5

φ1 ≡ φ2

φ[φ1] ≡ φ[φ2]

E6
d〈φ1, φ2〉 ≡ d〈�φ1�d.1, �φ2�d.2〉

E7

d〈φ1, φ2〉 → d〈φ′
1, φ

′
2〉 ≡ d〈φ1 → φ′

1, φ2 → φ′
2〉

Fig. 2. Variational type equivalence.

2.3. Error-tolerant variational typing

Variational typing assigns types to expressions that generate only well-typed plain expressions. For example, it fails 
to assign a type to the expression odd A〈1, True〉 since the plain expression odd True is ill typed. In practice, it’s very 
useful to assign types to its well-typed variants even a variational program contains type errors in other variants [12]. We 
addressed this problem by designing an error-tolerant type system, where type errors are represented explicitly by ⊥ and 
variants that contain type errors receive this type [12]. For example, odd A〈1, True〉 has the type A〈Bool, ⊥〉, indicating 
that odd 1 has the type Bool and odd True is ill typed.

The typing rule for function applications is very complicated in the error-tolerant type system since applications can 
introduce type errors in many different ways. In particular, the rule has to propagate errors from both the function and 
argument types and generate errors when the parameter type fails to match the type of the argument exactly. We handle 
all these situations with the following single rule plus an additional device π called typing pattern.

π ::= ⊥ | � | d〈π ,π〉

	 
 e1 : φ1 	 
 e2 : φ2

φ′
2 → φ′ = ↑(φ1) π = φ′

2 �� φ2 φ = π � φ′

	 
 e1 e2 : φ
T-App-Err

A typing pattern π indicates which variants of an expression have type errors. It consists of ⊥ for ill-typed variants, � for 
well-typed variants, and choice patterns for variational expressions.

The rule is quite complicated, relying on three operations: ↑, ��, and �. We will briefly discuss this rule, mainly for the 
purpose of comparing it with our new formalization in Section 4. Intuitively, the first two premises retrieve the types of the 
function (e1) and the argument (e2). The next three premises introduce and propagate errors, if there are any, to φ, which 
is the result type of the application (e1 e2).

After retrieving the types for the function and the argument, the rule uses the operation ↑(φ) to transform φ into a 
function type and introduces ⊥s when necessary. For example, ↑(Int) = ⊥ → ⊥ and ↑(A〈Int → Int, Int → Bool〉) =
Int→ A〈Int, Bool〉.

The operation φ′
2 �� φ2 determines how well φ′

2 matches φ2 . It returns a typing pattern containing �s for variants that 
φ′
2 and φ2 match and ⊥s for those that they don’t. Its formal definition is given below, reproduced from [12].

The first rule specifies that two same types match completely, indicated by the result �. Matching variational types will 
push the matching onto their alternatives, as shown by the next three rules. Matching a type against a ⊥ always fails.

φ �� φ = �

d〈φ1, φ2〉 �� d〈φ′
1, φ

′
2〉 = d〈φ1 �� φ′

1, φ2 �� φ′
2〉

d〈φ1, φ2〉 �� φ = d〈φ1 �� φ,φ2 �� φ〉

φ �� d〈φ1, φ2〉 = d〈φ �� φ1, φ �� φ2〉

⊥ �� φ = φ �� ⊥ = ⊥

φ1 → φ′
1 �� φ2 → φ′

2 = φ1 �� φ2 ⊗ φ′
1 �� φ′

2

φ �� φ′ = ⊥ (otherwise)

When matching two function types, we first match their respective parameter and return types and then combine the 
matching results with the ⊗ operation. This operation can be understood as the logic “and” operation when view � and ⊥
as truth values “True” and “False”, respectively. Its formal definition is as follows.

⊥ ⊗ π = ⊥ � ⊗ π = π d〈π1,π2〉 ⊗ π = d〈π1 ⊗ π ,π2 ⊗ π〉

Finally, if none of the above case matches and the types are different, the matching yields a ⊥. Based on this definition, 
Int �� Int= � (the first case of ��), Int �� Bool= ⊥ (the last case of ��), Int �� B〈Int, Bool〉 = B〈�, ⊥〉 (the fourth case 
of ��), and A〈Bool, Int〉 �� B〈Int, Bool〉 = A〈Bool �� B〈Int, Bool〉, Int �� B〈Int, Bool〉〉 = A〈B〈⊥, �〉, B〈�, ⊥〉〉.

The operation π � φ′ replaces each occurrence of � in π with φ′ and leaves ⊥s untouched, meaning that once errors 
have occurred they can’t disappear along the typing process. For example, B〈�, ⊥〉 � A〈Int, Bool〉 = B〈A〈Int, Bool〉, ⊥〉.
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Fig. 3. The environment flows in different directions for algorithmW and principal typing.

Based on the above operations, we can compute the type of A〈succ, odd〉 B〈1, True〉 as follows. First, A〈succ, odd〉 has 
the type A〈Int→ Int, Int→ Bool〉 and B〈1, True〉 has the type B〈Int, Bool〉. Next, by combining the last example from 
each of the previous three paragraphs, we get the result type B〈A〈Int, Bool〉, ⊥〉.

In general, to make a type system error-tolerant, every type equality in the typing rules has to be replaced with these 
three operations. Both eCFT and CFT have to be error-tolerant since their main goal is to propose suggestions for ill-typed 
expressions. It’s easy to see that these operations appear several times in CFT [7] and will appear more often in eCFT since 
it is based on principal typing, which has to equate all assumptions for the same variable quite often. Since these operations 
are imperative, a use of them makes type systems hard to understand and prove [5]. In Section 4, we propose a declarative 
formulation of error-tolerant type systems.

3. Principal typing for debugging type errors

This section presents the basic idea of principal typing and shows how to put together variational typing and principal 
typing for debugging type errors.

3.1. Principal typing

In the Hindley-Milner type system (HM) and its implementation, the algorithm W, type environment is an input. The 
type environment stores type information for free variables, and is updated accordingly as the inference algorithm traverses 
the program AST. As a result, type inference of the later part of the AST always depends on that of the earlier part.

Fig. 3 shows how W passes around and updates the type environment for typing the expression rank from Section 1. 
When first visiting the abstraction node, W assigns a fresh type variable α as the type to the parameter x. This type is 
updated to Char → β after visiting the node x '1'. The reference to x in x True will thus have the type Char → β . It is 
easy to see that type inference is left-biased.

This bias hinders incremental type inference since even a small change in the left subtree will require almost the full 
type inference to be redone. For example, if we change '1' to 1 in Fig. 3 we have to update type information at all nodes.

In contrast, principal typing2[28] doesn’t suffer from this bias. Type inference in principal typing is done bottom-up. At 
each variable reference, the variable is assumed to have a fresh type. The assumptions are refined as the inference gets 
closer to the root and are made consistent at the corresponding abstraction. As an example, let’s again refer to Fig. 3, where 
dashed blue lines denote how assumptions flow for principal typing. We observe that the assumptions for the same variable 
but different occurrences flow upwards from leaves into the abstraction. As a result, there is no left-to-right bias.

Principal typing is more amenable to incremental typing. Again, assume '1' is changed to 1 in Fig. 3. We only need to 
update four nodes, the path from '1' to the root. We will design eCFT based on principal typing, which has already been 
used in incremental type checking [28,2,19] and smartest recompilation [45].

3.2. Variational typing and principal typing for debugging type errors

When an expression is ill typed, we generally ask two questions: Which subexpression caused the type error and how 
should we change the subexpression to remove the type error? Conceptually, eCFT (and CFT) addresses these problems in 
following steps: (1) assuming that all subexpressions may be the error causes, (2) computing the types that subexpression 
ought to have to remove the type error, and (3) finding real error causes by filtering out subexpressions the types they have 

2 Principal typing is very different from principal types.
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Fig. 4. Type error debugging for λx.(x 1, x 'a') with variational typing and principal typing.

differing from those they ought to have. However, implementing this idea seems to have a high complexity: for each of all 
subexpressions and their possible combinations, we have to perform type inference of the expression to find out the type 
the subexpression ought to have. To combat with this high complexity, eCFT and CFT employ variational typing to reuse 
computations. Specifically, they create at each AST leaf a variational type, where the first alternative is the type of the leaf 
under normal type inference and the second alternative is the type the leaf ought to have to remove the type error in 
the whole expression. Our previous work [7] explained why CFT considered changing leaves only and how it achieved high 
precision.

We illustrate this idea by debugging type errors for rank. We use principal typing to facilitate incremental updates of 
error fixes as programs are changed. Fig. 4 shows choice types that are created for leaves. It also presents the result type of 
the whole expression.

Remember that type information flows bottom-up in principal typing, and thus we first type leaves. According to Fig. 4, 
the type created for the first x is A〈α7, α1〉, where α7 is the assumption we make for x in principal typing and α1 represents 
the type that x ought to have in case x is identified as an error cause. The type for '1' under normal type inference is
Char, thus the type created for '1' is B〈Char, α2〉. Again, α2 indicates how we need to change '1' to remove the type 
error.

As the inference algorithm moves up in the tree, fresh types are made more and more concrete as unification problems 
are solved.3 For example, after visiting the application x '1', α7 will become A〈B〈Char, α2〉 → β1, κ1〉 and after visiting 
the abstraction, it will further be made concrete to φ3 , which is shown below. After the type inference is completed, 
the concrete types that variables are mapped to are as follows. The inference algorithm also returns the typing pattern 
π = A〈B〈D〈E〈⊥, �〉, �〉, �〉, �〉. The detailed typing process is given in Fig. 8.

α1 =A〈κ2, B〈Char,κ15〉 → κ16〉

α2 =A〈B〈κ13, D〈E〈Bool,κ12〉,κ11〉〉,κ15〉

α4 =D〈κ4, E〈Bool, A〈B〈κ7,κ12〉,κ14〉〉 → β2〉

α5 =A〈B〈D〈Char,κ7〉,κ12〉,κ14〉

φ3 = α7 = α8 =A〈B〈Char, D〈E〈Bool,κ12〉,κ11〉〉 → D〈β2,κ9〉,

D〈E〈Bool,κ14〉 → β2,κ3〉〉

β1 =A〈D〈β2,κ9〉,κ16〉

Given the 4 choices that are generated during the type inference, we can have 16 potential decisions with each decision 
takes either the first or second alternative of every choice. For example, the decision δ1 = {A.1, B.1, D.1, E.1} includes the 
first alternatives of all choices. The decision specifies how we remove the type error. If the decision includes d.1, it means 
that we don’t change the subexpression that d is created for. Otherwise, if it includes d.2, it means that we change the 
corresponding subexpression.

We consider two decisions for removing the type error, δ1 from the previous paragraph and δ2 = {A.1, B.2, D.1, E.1}. For 
δ1 , �π�δ1 = ⊥, which means that the result is invalid if we don’t make any change to the original expression. In other words, 
the original expression is ill typed. For δ2 , we have �π�δ2 = �, which means that the result is valid. In other words, if we 
change '1' (what B corresponds to), then the resulting expression is well typed. Furthermore, if we change it to something 
of type �α2�δ2 = Bool, the resulting expression has the type �φ3 → (A〈D〈β2, κ9〉, κ16〉, β2)�δ2 = (Bool → β2) → (β2, β2). 
Overall, we can extract the error message: “If we change '1' to something of type Bool, then the corrected expression has 
the type (Bool→ β2) → (β2, β2)”.

For this expression, there are 15 possible ways to fix the type error, including 4 that change only one of the four leaves, 
respectively. CFT [7] includes a set of heuristics to rank these error fixes to present the most likely ones to the user first. 
For this expression, the first two suggested fixes are changing True to some expression that has the type Char or change
'1' to something that has the type Bool. The next two suggestions change either occurrence of x. We will use the same 
set of heuristics in eCFT.

3 For example, solving the unification problem between a type variable and the type Int makes the type variable to be Int, which is more concrete 
than the type variable. We talk more about unification in Section 6.
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4. Declarative error-tolerant variational typing

Early work on error-tolerant variational typing (Section 2.3) directly introduces error types to the type syntax and care-
fully generates and propagates type errors during the typing process [12]. Instead of introducing error types into the type 
syntax to represent type errors explicitly, we propose to use typing patterns to indicate which variants of the typing result 
are correct and which are incorrect. More formally, the new type judgment has the form π ;	 
 e : φ, meaning that e has 
the type φ under 	 with the validity restriction π . Intuitively, π specifies that only the variants that π contains �s are 
valid (type correct) and those that π contains ⊥s are invalid (type incorrect) and shouldn’t be trusted.

For example, we have �;	 
 1 : Int, saying that 1 always has the type Int. Similarly, we have ⊥;	 
 True : Int, which 
says that the typing result True has the type Int can not be trusted, as indicated by the ⊥ at the beginning of the 
judgment. However, �;	 
 True : Int is not a valid judgment because it says that the expression True has the type Int

can be trusted. Similarly, B〈�, ⊥〉;	 
 B〈1,True〉 : Int is a valid judgment because it encodes two judgments (obtained by 
selecting the pattern B〈�, ⊥〉, the expression B〈1, True〉, and the type Int by the selectors B.1 and B.2) �;	 
 1 : Int and 
⊥;	 
 True : Int, and both of them are valid. Note that the π is an input in the judgment. In type inference, however, π
will be computed through unification. We discuss this in Section 6.

With the extended judgment form, the rule for typing function applications can be formalized as follows.

π ;	 
 e1 : φ1 π ;	 
 e2 : φ2 φ1 ≡π φ2 → φ

π ;	 
 e1 e2 : φ
T-App-Decl ∀δ : �π�δ = � ⇒ �φ1�δ ≡ �φ2�δ

φ1 ≡π φ2

The typing rule can be read as: if the function e1 has the type φ1 , the argument e2 has the type φ2 , and φ1 is equivalent to 
φ2 → φ, all under the validity restriction π , then the application e1 e2 has the type φ under the same π .

The typing pattern π in φ1 ≡π φ2 specifies where φ1 and φ2 need to be equivalent. Specifically, for any δ, if �π�δ = �, 
then �φ1�δ ≡ �φ2�δ . However, if �π�δ = ⊥, then �φ1�δ and �φ2�δ do not have to be equivalent. For example, all Int≡� Int, 
Int≡� A〈Int, Int〉, Int≡⊥ Bool (note the subscript ⊥) are all valid, but Int≡� Bool is invalid.

Both rules T-App-Err (Section 2.3) and T-App-Decl handles error-tolerant variational typing. The rule T-App-Err involves 
three operations: type lifting ↑, type matching ��, and type masking �. These operations make the rule T-App-Err opera-

tional. On the other hand, the rule T-App-Decl gets rid of these three operations. We observe that the rule T-App-Decl bears 
more resemblance to the standard typing rule for application T-App-Std (Section 2.2) than the rule T-App-Err does. More 
importantly, the idea and the machinery we developed in the rule T-App-Decl simplifies the presentation of our later typing 
rules in Sections 5.2 and 5.3. In particular, had we used the idea from T-App-Err to handle error tolerance there, we need to 
replace each occurrence of π in these rules with the three operations from T-App-Err, which would significantly clutter our 
typing rules later.

Based on the rule T-App-Decl, we can type A〈succ, odd〉 B〈1, True〉 as follows.

Premises

⎧

⎪

⎨

⎪

⎩

B〈�,⊥〉;∅ 
 A〈succ,odd〉 : Int→ A〈Int,Bool〉

B〈�,⊥〉;∅ 
 B〈1,True〉 : Int

Int→ A〈Int,Bool〉 ≡B〈�,⊥〉 Int→ A〈Int,Bool〉

Conclusion
{

B〈�,⊥〉;∅ 
 A〈succ,odd〉 B〈1,True〉 : A〈Int,Bool〉

Note that the pattern B〈�, ⊥〉 is an input to the typing process, which means that we need to come up with this before 
we can begin the process. Fortunately, in the type system implementation, the pattern for each expression becomes an out-
put of the type inference result. The idea of providing some information as input in declarative specification while compute 
it in type system implementation is standard in type system research. One such example is giving types to parameters for 
abstractions [40].

The result indicates that the expression A〈succ, odd〉 B〈1, True〉 has the type A〈Int, Bool〉. However, notice the pattern 
B〈�, ⊥〉, which indicates that the result is valid in B.1 (because of the � in B〈�, ⊥〉 in B.1) but not in B.2 (because of 
the ⊥). In Section 2.3, we have seen that the expression A〈succ, odd〉 B〈1, True〉 has the type B〈A〈Int, Bool〉, ⊥〉 under 
the rule T-App-Err. We can observe that the typing results by T-App-Err and T-App-Decl are the same. In general, if we have 
π ;	 
 e : φ1 with T-App-Decl and 	 
 e : φ2 with T-App-Err, then φ2= π � φ1 .

5. Type system

In this section, we present the type system based on principal typing for producing a complete set of error fixes. The 
syntax is given in Section 5.1, basic typing rules are discussed in Section 5.2, and the top-level rule for handling unbound 
variables is given in Section 5.3. A variable is unbound if it is used without being declared. For example, in the expression 
λx.x y, the x in the body is bound but the y is unbound.
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Term variables x, y, z Value constants c

Type variables α, β , κ Type constants γ

Choice names A, B , D Choice meta variable d

Alternative index i ∈ {1,2} Program locations l

Expressions e, f ::= c | x | λx.e | e e | let x = e in e |

if e then e else e

Monotypes τ ::= γ | α | τ → τ

Variational types φ ::= τ | d〈φ,φ〉 | φ → φ

Typing patterns π ::= ⊥ | � | d〈π ,π 〉

Selectors s ::= d.i

Type assumption sets A ::= ∅ | A, (x, φ,d)

Substitutions θ ::= ∅ | θ,α �→ φ

Choice environments � ::= ∅ | �, (l,d〈φ,φ〉)

Fig. 5. Syntax of expressions, types, and environments.

5.1. Syntax

The syntax for types, expressions, and meta environments is given in Fig. 5. We support conditionals through if expres-

sions and support polymorphism through let expressions.

We stratify the type definition into two layers. First, monotypes, ranged over by τ , include constant types (γ ), type 
variables (α), and function types. In addition to α, we use β to denote fresh type variables used for representing func-
tion application results and use κ to denote fresh type variables generated during unification. Variational types extend 
monotypes with choice types. We support polymorphism without explicitly defining polymorphic types by using a method 
proposed in [27, §4].

We use o to denote a sequence of objects o1, . . . , on for any object o. The function TVs computes the set of type variables 
in types. It collects type variables from both alternatives for choice types and has conventional definition for other types. We 
use θ(φ) to denote the application of a type substitution. It replaces free type variables in φ by the corresponding images 
in θ . Its definition is standard except for choice types, where substitution applies to both alternatives.

An assumption set A maps expression variables to variational types. Moreover, A stores the corresponding choice name 
of each variable reference. We write AT (x) and AD(x) to get the set of types and choice names that x maps to in A, 
respectively.

We use l to represent program locations and use the function �e( f ) to return the location of f in e. We may omit the 
subscript e when the context is clear. We assume f uniquely determines the location. The exact definition of �(·) doesn’t 
matter.

The choice environment � associates each leaf l with a choice type d〈φ1, α2〉 during the typing process. Note that φ1 is 
the type under normal type inference for the subexpression at l and φ2 is the alternative type for the same subexpression 
to remove the type error.

5.2. Basic typing rules

We present the typing rules in Fig. 6. The typing judgment has the form π ; A 
 e : φ|�, meaning that the expression e
has the type φ with the assumption set A, the validity restriction π , and the change information �.

The conditions “d is fresh” in rules Con and Var are always satisfied since we have an unlimited supply of choice names. 
The rule Con says that if c is of the type γ , then in our type system it has the type d〈γ , φ〉 to indicate that we can 
change c to any type φ to remove the type error in case c is an error cause. No assumption is made for typing c, and thus 
the A component is empty. The choice environment records the change as {(�(c), d〈γ , φ〉)}. The function �(c), defined in 
Section 5.1, returns the location of c in the program. This function call is needed because the � is a mapping from locations 
to types. For this rule, we can use any π since the typing of the constant is always valid.

The rule Var for variables is similar to the rule Con. The only difference is that the variable may have any type φ and the 
assumption is recorded in A. At variable references, we always assume variables are bound. Therefore the typing pattern 
component can be any value. We deal with unbound variables in Section 5.3.

Given an abstraction λx.e, we first type the body e, which may contain multiple assumptions for the parameter x. These 
assumptions need to be consistent for the abstraction to be well typed. The second premise in the Abs rule ensures that 
all assumptions are equivalent to each other with the restriction π . The meaning of the notation ≡π is given earlier in 
Section 4 (below the T-App-Decl rule). Several examples are also given there. Intuitively, in φ1 ≡ φ2 , φ1 and φ2 are equivalent 
or equal (syntactically the same) when selected with any decision. However, in φ1 ≡π φ2 , φ1 and φ2 are equivalent or equal 
(syntactically the same) only when selected with a decision δ such that �π�δ = �. The second premise thus says that φ1

is the parameter type if it is equivalent to all the assumptions made about the parameter when typing the body, under 
the restriction π . The assumptions for the abstraction are the assumptions for its body minus those for the parameter x. 
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π ;A 
 e : φ|�

Con
c is of type γ d is fresh

π ;∅ 
 c : d〈γ , φ〉|{(�(c),d〈γ , φ〉)}

Var
d is fresh

π ; {(x, φ)} 
 x : d〈φ,φ1〉|{(�(x),d〈φ,φ1〉)}

Abs
π ;A 
 e : φ|� φ1 ≡π (φi | ∀φi ∈AT (x))

π ;A \ x 
 λx.e : φ1 → φ|�

App
π ;A1 
 e1 : φ1|�1 π ;A2 
 e2 : φ2|�2 φ1 ≡π φ2 → φ

π ;A1 ∪A2 
 e1 e2 : φ|�1 ∪ �2

If
(π ;Ai 
 ei : φi |�i)

i:1..3 Bool≡π φ1 φ2 ≡π φ3

π ;A1 ∪A2 ∪A3 
 if e1 then e2 else e3 : φ2|�1 ∪ �2 ∪ �3

Let
π ;A1 
 e1 : φ′|�1 π ;A2 
 e2 : φ′′|�2 α = TVs(φ′) − TVs(A1) φ′ ≡α

π (φi |∀φi ∈AT
2 (x))

π ;A1 ∪ (A2 \ x) 
 let x = e1 in e2 : φ′′|�1 ∪ �2

Fig. 6. Basic typing rules.

The choice environment of the abstraction is the same as that for its body since we don’t consider changes in function 
parameters.

The App rule is very similar to the application rule discussed in Section 4. The only difference is that here we have to 
merge assumption sets from the subexpressions and also change environments from them. The If rule is straightforward: it 
ensures the type of the condition is equivalent to Bool and the branches have the equivalent type, both with the restriction 
π . The conditional inherits assumption sets and change environments from all its subexpressions.

In HM, we type let x = e1 in e2 by first tying e1 , binding x to the generalized type of e1 in the type environment, 
and typing the expression e2 , where each access to x instantiates the type it is bound to. We observe that the body can’t 
be typed without knowing the type of the variable x. How should we type let expressions in principal typing without 
introducing this dependency? We address this by requiring that all assumptions about x in e2 be type instances of the type 
of e1 .

We formalize this idea in rule Let. The rule uses an auxiliary relation of the form φ1 ≡α
π φ2 , which states that φ2 is an 

instance of φ1 with the restriction π by instantiating variables in α. The relation is satisfied if the following condition holds. 
The notation ≡π is defined in Section 4 (below the rule T-App-Decl).

∃θ : θ(φ1) ≡π φ2 where dom(θ) = α

Other than this relation, the rule is quite standard.

5.3. Handling unbound variables

In rule Var, we assume that all variables are bound. However, this is not always the case. A variable is bound if it was 
declared and is unbound otherwise. For example, in the expression λx.x y, x is bound and y is unbound. In standard typ-
ing [40], we first visit the abstraction then visit its body, allowing us to detect unbound variables once we encounter them. 
However, in principal typing (the typing mechanism used in this paper), we first visit the body and then the abstraction 
itself, and thus we are not able to determine whether variables are bound when we encounter them. We need to wait until 
we have typed the whole expression.

How do we determine if an expression contains unbound variables after typing it? by checking A. If A is empty, then 
all variables are bound. Otherwise, variables that have binding information left in A are unbound.

What should we do with unbound variables? Or more specifically, what does it mean if (x, φ, d) still belongs to A after 
typing the expression e with π ;A 
 e : φ|�? This means that the access to x should be incorrect but when typing e we 
assumed it was correct under the Var rule. We can address this problem by adjusting the validity restriction π . In fact, 
(x, φ, d) still belongs to A means that the typing result is invalid in d.1. Thus, we need to worsen π by d〈⊥, �〉 to keep the 
typing result valid.

In fact, there is a simpler way to address this problem. The key observation here is that if the typing pattern π is already 
worse than d〈⊥, �〉, then we don’t need to worsen it anymore. Before presenting the typing rule based on this idea, we 
first formalize the notion that a typing pattern (π1) is worse than the other one (π2), written as π1 ≤ π2 , as follows.

π ≤ � ⊥ ≤ π
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

π1 ≡ π2

π1 ≤ π2

π1 ≤ π3 π2 ≤ π4

d〈π1,π2〉 ≤ d〈π3,π4〉
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infer1 : e → π ×A× φ × �

(1a) infer1(x) =
φ ← d〈α1, α2〉 {- d, α1 , and α2 fresh-}

return (�, {(x, α1, d)}, φ, {(�(x), φ)})

(1b) infer1(e1 e2) =
(π1, A1, φ1, �1) ← infer1(e1)

(π2, A2, φ2, �2) ← infer1(e2)

(π , θ) ← vunify(φ1, φ2 → β) {-β fresh-}

return (π ⊗ π1 ⊗ π2, θ(A1 ∪A2), θ(β), θ(�1 ∪ �2))

(1c) infer1(λx.e) =
(π , A, φ, �) ← infer1(e)

φp ← α; θ ← {} {- α fresh-}

for each φi in AT (x)

(πi , θi) ← vunify(θ(φp), θ(φi))

π ← π ⊗ πi ; θ ← θi ◦ θ

return (π , θ(A \ x), θ(φp → φ), θ(�))

(1d) infer1(let x = e1 in e2) =
(π1, A1, φ1, �1) ← infer1(e1)

(π2, A2, φ2, �2) ← infer1(e2)

π ← π1 ⊗ π2

α ← TVs(φ1) − TVs(A1); θ ← {}

for each φi in AT
2 (x)

(πi , θi) ← vunify({α �→ β}(θ(φ1)), θ(φi)) {-β fresh-}

π ← π ⊗ πi ; θ ← θi ◦ θ

return (π , θ(A1 ∪ (A2 \ x)), θ(φ2), θ(�1 ∪ �2))

Fig. 7. An inference algorithm that recomputes all error fixes.

Intuitively, π1 ≤ π2 expresses that π1 contains ⊥s in more variants than π2 does. The first two rules say that all typing 
patterns are worse than � and better than ⊥. The third rule states that the relation is transitive. In the fourth rule, we reuse 
the machinery of type equivalence by interpreting ⊥ and � as two constant types. The rule then says that two equivalent 
patterns satisfy the ≤ relation. The last rule states that two choice patterns satisfy ≤ if both their corresponding alternatives 
satisfy ≤.

With ≤, we can formalize the rule for unbound variables declaratively as follows.

Unbound
π ;A 
 e : φ|� ∀(x, φ,d) ∈A : π ≤ d〈⊥,�〉

π 
M e : φ|�

We can see that A in the premise disappears in the conclusion. Intuitively, the rule says that if π is worse enough, then 
the residual assumptions can simply be forgotten. The subscript M indicates that this is the main rule on top of all other 
typing rules. In fact, given an expression, we should use this rule to compute error fixes.

As an example, consider the expression ubx = x 1. We have �;{(x, φ, A)} 
 ubx : Bool|�, where φ = B〈Int, α3〉 →

Bool and � = {(�(x), φ), (�(1), B〈Int, α3〉)}. Since � �≤ A〈⊥, �〉, we can’t derive � 
M ubx : Bool|�. Similarly, we have 
A〈⊥,�〉; {(x, φ, A)} 
 ubx : Bool|�. Since A〈⊥, �〉 ≤ A〈⊥, �〉, we have A〈⊥,�〉 
M ubx : Bool|�, which tells us that with-

out changing x, the expression is ill typed.
Although our type system is based on principal typing, it generates the same set of error fixes as CFT does, as captured 

in the following theorem.

Theorem 1 (CFT equivalence). π ; ∅ 
 e : φ|� ⇔ ∅ 
CFT e : φ⊥|�⊥ such that φ ≡π φ⊥ , � ≡π �⊥ , and ∀δ : �φ⊥�δ �= ⊥ ⇔ �π�δ �=

⊥.

In the theorem, we use 
CFT to denote the typing relation of CFT. The superscript ⊥ in φ⊥ and �⊥ reflects that errors 
types are embedded in the type syntax in CFT. The relation � ≡π �⊥ is defined as ∀l ∈ dom(�) : �(l) ≡π �⊥(l).

This theorem could be proved through an additional typing relation called type-update system [7, §4.3]. We can prove 
that both CFT and this type system are equivalent to the type-update system through inductions over typing relations. The 
proof of this theorem is given in the companion [11] of this paper.

6. Recompute all error fixes

We will present three type inference algorithms from this section through Section 8. This section develops an inference 
algorithm that recomputes all type error fixes as programs are updated, Section 7 shows a coarse incremental inference 
algorithm that reuses results so that only nodes that are affected by the change are retyped, and Section 8 develops a 
refined incremental inference algorithm on top of incremental variational unification.

As the type system in Section 5 is divided into two layers, the type inference algorithm follows a similar structure. The 
algorithm infer1 in Fig. 7 provides a unification-based implementation of the typing rules from Fig. 6.
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Fig. 8. Compute error fixes for rank with infer1. The value of φ3 and other typing information can be found in Section 3.2.

The function infer1 has the type e → π ×A × φ × �, that is, it takes in an expression and returns a typing pattern 
indicating which alternatives of the inference result are valid, an assumption set A, a result type, and a choice environment 
storing type change information of leaves. Note that we don’t need to return a unifier in infer1 since we can always keep 
the typing assumption A that is returned by infer1 up to date. Since the main logic for constants is very similar to that 
for variables and that for conditionals is very similar to that for applications, we have left out the cases for constants and 
conditionals in infer1.

We now briefly go through infer1. The case (1a) deals with variable references. As mentioned earlier, we always assume 
variables are bound at variable references. Therefore, infer1 returns � for π , indicating no errors have occurred. Note that 
we need two fresh type variables α1 and α2 in (1a), where α1 denotes that the variable can be mapped to any type based 
on its uses and α2 denotes that the variable can be changed to something of type α2 to remove the type error if the 
variable is an error cause. The main difference between them is that α1 is recorded in A and will be later unified with 
other assumptions for the same variable.

An important difference between this case and rule Var (Fig. 6) for handling π is that in this case the returned π is �
whereas in Var the π can be any pattern (if a symbol appears unconstrained in a typing rule, then it can be instantiated 
with any instance from the corresponding syntactical category). The reason we used π in Var is to simplify the type system 
specification: essentially we express that any π will make the conclusion in Var valid. In implementation, however, we aim 
to compute the “best” π in the sense that we should never introduce more errors than needed. Since typing a variable 
reference can always be succeeded, we return �, the best pattern among all possible patterns. We will return to this 
discussion after the case (1b) below.

We use Fig. 8 for typing rank as a running example to illustrate infer1. In the tree, each node has a label in the form of 
π ; A|e : φ, meaning that infer1 infers π , A, and φ for e. For simplicity, we omitted � in the figure. The case (1a) is used to 
compute the types for both occurrences of x in the figure.

Case (1b) deals with function applications. It first computes the results for the function and the argument independently 
and then unifies the function type and the argument type with vunify, a variational unification algorithm from [9]. vu-
nify delegates unification problems involving plain types (types without variations) to the classical Robinson’s unification 
algorithm [41], with, roughly, extensions in two dimensions.

First, vunify deals with variations. When variations are encountered in vunify, unification goes to their alternatives. For 
example, for the problem vunify(A〈Int, α1〉, Int), the variation A〈Int, α1〉 is broken down into Int and α1 , yielding two 
subproblems: vunify(Int, Int) and vunify(α1, Int). The first subproblem is simply discharged because the two types being 
unified are the same. For the second subproblem, the solution is mapping α1 to Int. However, as α1 appeared in the 
second alternative of the choice A only (in the original problem), there is no constraint regarding α1 in the first alternative 
of A. As a result, the final solution to α1 is A〈κ, Int〉, where κ is a fresh type variable, indicating that the result for α1 is 
unconstrained in the first alternative of A.

Second, while Robinson’s algorithm terminates the unification process if it encounters a constraint that can not be 
solved, vunify will keep on constraint solving and use a ⊥ to denote where constraint solving failed. For example, consider 
solving vunify(A〈Bool, α1〉, Int), a slightly adapted version of the example from the last paragraph. Again, for this problem, 
A〈Bool, α1〉 is broken down into Bool and α1 . Thus, the first subproblem will be vunify(Bool, Int), which could not be 
solved because Bool and Int are different. However, in vunify, we do not terminate the solving process, but use a ⊥ to 
indicate that the unification problem could not be solved. The second subproblem is the same as in the last paragraph and 
could be solved successfully with the same solution. In addition to returning the unifier, vunify returns a � to indicate 
constraint solving is successful. In general, vunify returns a pair (π , θ), where π is the returned pattern and θ is a unifier. 
For vunify(A〈Bool, α1〉, Int), the result is (A〈⊥, �〉, {α1 �→ A〈κ, Int〉}). In Section 4, we mentioned that the typing pattern 
π is an input in declarative specification and is an output in type inference. In fact, the π is returned from vunify.

For vunify(A〈Int, α1〉, B〈Bool, α2〉), the result is:

(A〈B〈⊥,�〉,�〉, {α1 �→ A〈κ3, B〈Bool,κ2〉〉,α2 �→ A〈B〈κ1,Int〉,κ2〉})

The typing pattern component tells us that only one alternative, identified by {A.1, B.1}, fails to unify.
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In the rule App (Fig. 6), the same π appears four times, meaning that in all premises and the conclusion the typing 
pattern should be the same. This handling of patterns significantly simplifies this typing rule, as discussed in Section 4. 
In type inference, however, different subexpressions will return different “best” typing patterns, and we need to combine 
them together to return the “best” pattern for typing the application itself. Theorem 3 below states that the typing pattern 
returned from type inference is indeed the best with respect to ≤.

Specifically, we have three tying patterns, π1 and π2 from typing e1 and e2 , respectively, and π from vunify. We will 
combine them together through the ⊗ operation, defined as follows (The same as in Section 2.3, reproduced here for 
readability purposes.).

⊥ ⊗ π = ⊥ � ⊗ π = π d〈π1,π2〉 ⊗ π = d〈π1 ⊗ π ,π2 ⊗ π〉

The result of ⊗ is � only if both operands are �. Intuitively, ⊗ can be understood as the logical and operation if we 
interpret �and ⊥ as the truth values true and false, respectively. Based on this operation, infer1 returns π ⊗ π1 ⊗ π2 , 
meaning that e1 e2 is well typed only in the alternatives that both e1 and e2 are correct and the argument type of e1
unifies with the type of e2 .

In Fig. 8, each @ represents an application and thus the corresponding node is typed with (1b). Typing each node needs 
to solve a unification problem that is attached to the node. The figure also includes a node that uses a pair constructor (, ). 
The rule for typing this constructor is standard and is omitted in this paper.

The case (1c) for typing abstractions is more complicated since we have to remove assumptions about the bound variable 
from A. This is done through a for loop with the help of the variables φp for representing the parameter type of the function 
and θ for accumulating the unifiers returned in the loop. In each iteration, vunify is used to unify two assumptions for the 
parameter. This case returns a typing pattern that has a � in each alternative that e is well typed and all assumptions are 
consistent.

In Fig. 8, there are two assumptions φ1 and φ2 for the variable x before reaching the abstraction, the root node of the 
tree. They are made consistent by solving the unification problem φ1 ≡? φ2 . The result of typing this expression is presented 
in Section 3.2, where we also showed how to extract error messages based on the result.

The case (1d) types polymorphic let expressions. Although we don’t represent polymorphic types explicitly in the pa-
per, we support polymorphism in principal typing through an approach proposed in [27]. The main logic of (1d) is very 
similar to that of (1c) and we will not discuss it in detail. The notation {α �→ β} creates a substitution that maps type vari-
ables α1, α2, . . . , αn to fresh type variables β1, β2, . . . , βn , respectively. The uses of fresh type variables βs help implement 
polymorphic polymorphism [27]. The operation θi ◦ θ composes two unifiers θi and θ , a commonly used operation in type 
inference. Its definition is θi ◦ θ = θi ∪ {α �→ θi(φ) | α �→ φ ∈ θ}.

In typing specification, we used the rule Unbound to handle unbound variables, we need an implementation of this rule 
in type inference. While π is an input in Unbound, here π is an output so we have to compute it. We realize this by 
worsening the typing pattern resulted from typing the expression with infer1. Specifically, for each entry (x, φ, d) remained 
in A, the typing information that can be reached from d.1 contains errors. The following function inferM implements this 
idea. This function is also the main entry of the inference algorithm.

inferM : e → π × φ × �

inferM(e)

(π , A, φ, �) ← infer1(e)

for each (x, φ, d) in A
π ← π ⊗ d〈⊥, �〉

return (π , φ, �)

Consider again the expression ubx from Section 5.3. infer1(ubx) = (�, {(x, A〈φ, κ〉, A)}, β1, �) and inferM(ubx) = (A〈⊥, �〉,

β1, �), where φ = B〈Int, α3〉 → β1 and � = {(�(x), φ), (�(1), B〈Int, α3〉)}.

We now investigate the properties of infer1 and inferM. First, both of them are sound with respect to the typing relations 
discussed in Section 5.

Theorem 2 (Inference soundness). Given e, if infer1(e) = (π , A, φ, �), then A;π 
 e : φ|�. Similarly, if inferM(e) = (π , φ, �), then 
π 
M e : φ|�.

It’s likely that in A we have multiple assumptions for some variable x, which means that different uses of x have 
different types. Here we require that the variable reference at the same location has the same type in infer1 and the typing 
relation in Fig. 6. This theorem can be proved with an induction over different cases in Fig. 7. The proof of this and next 
theorem is given in the companion [11] of this paper.

The infer1 and inferM are also complete, principal, and introducing fewest errors, as captured in the following theorem.
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Fig. 9. Update typing information for changing the first occurrence of x in rank to y. The values for underlined objects are reused. The values of U1, φ1 , 
and φ2 are the same as those in Fig. 8 and are omitted in this figure.

Theorem 3 (Inference completeness, principality, and error-minimality). If π1;A1 
 e : φ1|�1 , then infer1(e) = (π2, A2, φ2, �2)

(completeness) with π1 ≤ π2 (error-minimality) and θ(φ2) ≡π1 φ1 (principality), θ(A2) ≡π1 A1 , and θ(�2) ≡π1 �1 for some θ . 
A similar result holds for 
M and inferM.

In the theorem, we extend the relation ≡π to assumption sets and choice environment by applying it to their corre-
sponding type components. This theorem can be proved with an induction over the typing rules in Fig. 6.

7. Coarse incremental type inference

The type of infer1, e → π ×A × φ × �, indicates that the expression e decides the type and the assumption set of e. 
This immediately shows that if a subexpression hasn’t been changed, then there is no need to perform type inference for 
that subexpression. In particular, when a node is changed, the type information for only the path from that node to the 
root needs to be recomputed. For example, if we change True in rank to 1, we need to update the type information for the 
path from the right-most node to the root. This allows us to recompute type information for four nodes only, rather than 
eight nodes if we recompute everything from scratch.

With some tricks, we can save more computations for updating error fixes. The first trick is to reuse fresh variables 
generated for nodes. Consider, for example, now we want to change the first occurrence of x in rank to y. Note that in 
Fig. 8 we generated fresh type variables α7 and α1 and the fresh choice name A for x. If we generate other fresh names 
for y, the left application node will detect that the type of the function has been changed, the type of the application thus 
has to be recomputed. This recomputation, however, can be avoided by reusing the fresh names at y. Fig. 9 depicts this 
process, where we reuse fresh names α7 , α1 , and A for y. As a result, we can reuse the type for the left @ without solving 
the unification problem U1 . This allows us to further reuse the result type of the node (, ).

The second trick is reordering the process of unifying all assumptions for the same variable, which is done at (1c) in 
infer1. Given n types φ1 , φ2 , φ3 , . . . , φn , infer1 goes through n −1 iterations to unify them. It first unifies φ1 and φ2 , yielding 
a unifier η1 and a typing pattern π1 . Next, the types φ2 and φ3 are substituted with η1 and then unified, producing another 
unifier and typing pattern to be used in the next iteration. This continues until all types are unified. It’s easy to see that 
later iterations depend on previous iterations, meaning that if an assumption is changed, then all the unifications in later 
iterations are invalidated.

We address this problem by first unifying the first assumption with each of the rest assumptions, yielding n − 1 unifiers 
and n − 1 typing patterns. These unifiers are combined into a new unifier through substitution combination, a technique 
developed in [31, §6]. Given a set of substitutions S = {η1, η2, . . . , ηn}, substitution combination C(S) returns a substitution 
η and a typing pattern π such that

∀φ1φ2 : ∀ηi ∈ S : ηi(φ1) ≡π ηi(φ2) ⇒ η(φ1) ≡π η(φ2)

In this method, an assumption change will invalidate n − 1 unifications if the first assumption is changed and only 1 
unification if some other assumption is changed.

We refer to the inference algorithm implementing the ideas in this section infer2. We will omit its presentation since it 
is very similar to infer3 in Section 8.2. In particular, infer2 can be obtained from Fig. 11 by replacing all occurrences of infer3
with infer2 and replacing function calls of the form incrVU(φ1 ≡? φ2, U ′, (π ′, θ ′)) with calls of the form vunify(φ1, φ2).

8. Refined incremental type inference

Incremental type inference in Section 7 tries to maximize the reuse of typing information, thus minimizes the number 
of variational unification problems to be resolved. However, once a type is changed, the unification problems involving that 
type have to be resolved, even the change is minor. For example, consider again changing True to 1 in rank, which causes 
the leaf to have the type Int. Based on previous subsection, we have to update the type information for four nodes, which 
needs to solve the following unification problems U ′

2 and U ′
3 .
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U ′
2 :D〈α8,α4〉 ≡? E〈Int,α5〉 → β2

U ′
3 :A〈B〈Char,α2〉 → β1,κ1〉 ≡? D〈E〈Int,α5〉 → β2,κ3〉

We observe that U ′
2 is very similar to U2: the only difference is that Bool in the right-hand-side (RHS) of U2 is changed 

to Int in U ′
2 . The change from U3 to U ′

3 is the same. Since type unification is a main part of type inference and needs 
intensive computations, a natural question is, can we reuse unification results to solve unification problems incrementally? 
The answer is yes. We present in Section 8.1 such a method and in Section 8.2 a refined type inference algorithm using this 
method.

8.1. Incremental variational unification

The general idea of incremental variational unification is that we first compute the difference between two unification 
problems, yielding a delta unification problem, which is then solved and the result is merged into the original result to get 
a unifier for the new unification problem.

Given two unification problems U : φl ≡
? φr and U ′ : φ′

l
≡? φ′

r and the result (π , θ) for U , we take the following steps to 
solve U ′ .

Compute differences To compute the difference between two unification problems, we first need to compute that between 
two types. We use the function D(φ1, φ2) to compute the difference between φ1 and φ2 . The result is a set of decisions, 
where each decision δ satisfying �φ1�δ �≡ �φ2�δ . Here are several examples of applying D.

D(A〈Int,Char〉,Char) = {{A.1}}

D(E〈Bool,α5〉 → β2, E〈Int,α5〉 → β2) = {{E.1}}

D(Bool,Bool) = {}

D(Int,Bool) = {{}}

The result of the first example indicates that two arguments differ in only one decision, the first alternative of A. The first 
argument has Int while the second argument has Char in that decision. The second example is similar although slightly 
complicated. When two types are the same, the result is an empty set, meaning that there is no decision such that selecting 
them with the decision results in different types. The third example falls in this case. When the two types are completely 
different, the result set has one member, which is itself an empty set. Remember that selecting a type with an empty 
decision gives that type back.

The function D(φ1, φ2) is defined as follows.

D(τ ,τ ) = {}

D(τ1,τ2) = {{}}

D(φ1 → φ2, φ3 → φ4) =D(φ1, φ3) ∪D(φ2, φ4)

D(d〈φ1, φ2〉,d〈φ3, φ4〉) = {A.1 : δ | δ ∈D(φ1, φ3)}∪

{A.2 : δ | δ ∈D(φ2, φ4)}

D(d〈φ1, φ2〉, φ) =D(d〈φ1, φ2〉,d〈�φ�d.1, �φ�d.1〉)

D(φ,d〈φ1, φ2〉) =D(d〈φ1, φ2〉, φ)

The first two cases are straightforward. The third case computes the difference between two function types by considering 
their respective argument and return types. To compute the difference of two choice types with the same choice name d, 
D first computes the difference of the first alternatives of the choices and then adds d.1 to each decision. Similar, D does 
this for the right alternatives and extends the results with d.2. In the remaining cases, one argument is a choice type and 
the other is not. These cases are reduced to the fourth case.

We overload D to compute difference between two unification problems and define D(U , U ′) as D(φl, φ′
l
) ∪D(φr, φ′

r). 
With this definition, we have D(U ′

2, U2) = {{E.1}} and D(U ′
3, U3) = {{D.1, E.1}}.

Resolve subproblems Each decision δ in D(U , U ′) represents a unification problem �U ′�δ to be resolved. We can again use 
vunify to solve these problems. However, to simplify the operation of the next step, we use vunify′ , a variant of vunify. 
The main difference lies in the way they represent unification results. Given a unification problem φ1 ≡? φ2 , vunify re-

turns (π , θ) while vunify′ returns {(δ, π , θ)}, a set of triples. Each triple (δ, π , θ) satisfies that (1) vunify(�φ1�δ, �φ2�δ) =
(π , θ) and (2) vunify(�φ1�δ, �φ2�δ) doesn’t need to decompose any choice. Consider, for example, the unification problem 
A〈Int,α〉 ≡? Int. While vunify returns (�, {α �→ A〈κ, Int〉}), vunify′ returns {({A.2},�, {α �→ Int})}. As another example, 
consider U2 from Fig. 8. For U2 , vunify returns (�, θ2), where
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Fig. 10. An example of comp.

θ2 = {α8 �→ D〈E〈Bool,α5〉 → β2,κ3〉,α4 �→ D〈κ4, E〈Bool,α5〉 → β2〉}

while vunify′ returns

{({D.1},�, {α8 �→ E〈Bool,α5〉 → β2}),

({D.2},�, {α4 �→ E〈Bool,α5〉 → β2})}

The definition of vunify′ differs from vunify in how it returns results only, and we will not present the definition in detail.
Based on vunify′ , we define R(U , U ′) to solve all the unification subproblems and collect all the results as follows,

R(U ′,U ) =
⋃

δ∈D(U ,U ′)

{(δ ∪ δ′,π , θ) | (δ′,π , θ) ∈ vunify′(�φ′
l �δ, �φ

′
r�δ)}

As an example, the result of R(U ′
2, U2) is

{({D.1, E.1},�, {α8 �→ Int→ β2})({D.2, E.1},�, {α4 �→ Int→ β2})}

Merge results Given each {(δ′,π ′, θ ′)} from R(U , U ′) and (π , θ) for U , we can merge them together to get the result for 
solving U ′ . An intuitive way to understand merging is view each variational type (pattern) as a tree and the merging 
process is replacing the subtrees of the variational type (pattern) with given subtrees. The merging process is adapted from 
the function comp from [14, §7.2].

Given δ, φ′ , φ, comp(δ, φ′, φ) replaces the type at δ in φ with φ′ and leaves other parts unchanged. We can view φ as 
a tree with the root on the top and δ as a path from the root to an internal node or a leaf, and comp(δ, φ′, φ) replaces 
the subtree specified by δ with φ′ . For example, Fig. 10 gives an example of applying comp(δ, φ′, φ) with δ = {D.2, E.1}

and φ = D〈κ4, E〈Bool, α5〉〉. For φ, the tree representation has internal nodes D and E and has three leaves. For the path 
specification δ, as it includes D.2, it means that the path takes the second children of D . As it includes E.1, it means that 
the path takes the first children of E . Overall, the result of comp replaces Bool, the subtree at {D.2, E.1}, with Int.

The function comp is defined as follows. When it is called, the cases are tried top-down and the first case that matches 
will be executed. In the first case, we replace φ with φ, and we immediately return φ because the replacing does not make 
any change. In the second case, if both types are function types, then comp is recursively applied to the corresponding 
parameter types and return types.

comp (δ,φ,φ) = φ

comp (δ,φ1 → φ2, φ3 → φ4) = comp (δ,φ1, φ3) → comp (δ,φ2, φ4)

comp ({d.1}, φ′,d〈φ1, φ2〉) = d〈φ′, φ2〉

comp ({d.2}, φ′,d〈φ1, φ2〉) = d〈φ1, φ
′〉

comp ({d.i}, φ′, φ) = comp ({d.i}, φ′,d〈φ,φ〉)

comp (d.1 : δ,φ′,d〈φ1, φ2〉) = d〈comp (δ,φ′, φ1),φ2〉

comp (d.2 : δ,φ′,d〈φ1, φ2〉) = d〈φ1, comp (δ,φ′, φ2)〉

comp (d.i : δ,φ′, φ) = comp (d.i : δ,φ′,d〈φ,φ〉)

Cases three through five handle the situation that the δ contains only one selector. The selector decides which alternative in 
φ will be replaced with φ′ . The last three cases handle the situation that the decision has more than a selector. We use the 
syntax d.i : δ to single out a selector d.i and bind the rest of the decision to δ. The selector d.i decides the child in which 
the comp will be recursively applied.

Given each {(δ′,π ′, θ ′)} from R(U , U ′) and (π , θ) for U , we can merge them together to get the result for solving U ′ as 
follows. First, to merge π ′ into π with the decision δ′ , we call comp (δ′, π ′, π). We can merge θ ′ into θ with δ′ similarly. For 
each α′ �→ φ′ in θ ′ , if α′ ∈ dom(θ), we merge φ′ into θ(α′) with δ′ through comp (δ′, φ′, θ(α′)). If α′ /∈ dom(θ), we simply 
add α′ �→ comp(δ′, φ′,κ) to θ , where κ is a fresh type variable.

Now we can merge R(U2, U ′
2) into θ2 (from previous step), yielding (�, θ ′

2), where

θ ′
2 = {α8 �→ D〈E〈Int,α5〉 → β2,κ3〉,α4 �→ D〈κ4, E〈Int,α5〉 → β2〉}
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infer3 : e → π ×A× φ × �

(3a) infer3(x) =
φ ← d◦〈α◦

1, α◦
2〉 {- reuse fresh names -}

return (�, {(x, α◦
1, d◦)}, φ, {(�(x), φ)})

(3b) infer3(e1 e2) =
(π1, A1, φ1, �1) ← infer3(e1)

(π2, A2, φ2, �2) ← infer3(e2)

if φ◦
1 = φ1 and φ◦

2 = φ2

return (π◦ ⊗ π1 ⊗ π2, θ◦(A1 ∪A2), φ◦
r , θ◦(�1 ∪ �2))

(π , θ) ← incrVU(φ1 ≡? φ2 → β◦, U ◦, (π◦, θ◦))

return (π ⊗ π1 ⊗ π2, θ(A1 ∪A2), θ(β), θ(�1 ∪ �2))

(3c) infer3(λx.e) =
(π , A, φ, �) ← infer3(e)

{φ1, φ2, . . . , φn} ←AT (x)

for each φi in {φ2, . . . , φn}

(πi , θi) ← incrVU(φ1 ≡? φi , U ◦
i
, (π◦

i
, θ◦

i
))

(πu , θ) ← C({θ2, . . . , θn})
πa = ⊗i∈{2,...,n}πi

return (π ⊗ πu ⊗ πa, θ(A \ x), θ(φ1 → φ), θ(�))

Fig. 11. A refined incremental inference algorithm that uses incremental variational unification.

Incremental variational unification Based on the three steps discussed above, we can define the function incrVU to incre-
mentally solve U ′ based on the result (π , θ) for U , where M denotes the merging process described in the third step.

incrVU(U ′,U , (π , θ)) =M(R(U ′,U ), (π , θ))

Instantiating U ′ to U ′
2 , U to U2 , π to �, and θ to θ2 in incrVU, we obtain θ ′

2 as the solution for U ′
2 . If we solve U ′

2 with 
vunify, then we obtain the same result as U ′

2 . In general, we have the following correctness result, where vunify(U ) solves 
U with the variational unification algorithm [14].

Theorem 4 (incrVU correctness). Given U and U ′ , let (π , θ) = vunify(U ), then vunify(U ′) = incrVU(U ′, U , (π , θ)).

The proof of this theorem is given in the companion [11] of this paper.

8.2. A refined incremental inference algorithm

Based on incrVU, we present infer3, a refined incremental type inference algorithm, in Fig. 11. In the figure, we don’t 
present the case for let expressions since it can be translated from case (1d) in a similar way as we did for (3c) (Fig. 11) 
from (1c) (Fig. 7). In the figure, we use the notation o◦ to denote the saved copy of o from the last run of infer3. If there 
is no saved value, then a meaningful value is returned. For example, in case (3a), we use d◦ to return the choice name 
generated last time. However, if no fresh choice name was generated and saved, then d◦ just generates a new fresh choice 
name and returns it. If U ◦ doesn’t exist, then the corresponding call of incrVU will call vunify instead.

In the figure, we omitted the logic of using a dirty flag to denote if an expression is changed and propagate the flag to 
its parent. If an expression is not changed, infer3 simply propagate this information to its parent and will not perform any 
computations.

We now briefly go through each case. Case (3a) is very similar to (1a). The only difference is that we try to reuse fresh 
names as much as possible. Case (3b) types applications. It first checks if both the function type and the argument type are 
the same as saved copies. If so, then the saved π◦ and θ◦ are used without unifying the function type and the argument 
type. Otherwise, it uses the incremental variational unification algorithm to solve the new unification problem. Finally, case 
(3c) deals with abstractions. It uses the idea of substitution combination introduced in Section 7 to reorder the process of 
unifying all assumptions. This helps to reuse unification results.

9. Evaluation

To test the feasibility of eCFT, we have developed a prototype that implements the ideas from this paper in Haskell. The 
prototype supports all three inference algorithms: inferM (Section 6), inferM calling infer2 (Section 7) instead of infer1, and 
inferM calling infer3 (Section 8.2), which we will refer to as recomputing, coarse, and refined, respectively. In addition to the 
constructors presented in Fig. 5, our prototype also supports data types and case expressions. Although the formalizations 
in the paper don’t consider predefined global variables, the prototype supports them by resolving unbound variables left in 
A in the predefined type environment and introducing errors when the resolution fails.

The prototype reuses two components from CFT: heuristics for ranking error suggestions and the algorithm for deducing 
expression changes from type changes.
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Fig. 12. Running time of CFT and different inference algorithm of eCFT on student programs.

Section 5 shows that eCFT and CFT produces the same set of error fixes for any given expression. We have experimentally 
confirmed this by running both eCFT and CFT prototypes over the benchmark we collected before [7]. The benchmark 
contains 121 programs from 22 publications in the literature. For this reason, our evaluation focuses on performance.

9.1. Running time against program steps

Our first performance test used 60 program sequences from the student program databases [23,50]. The initial sizes of 
these sequences range from 47 to 136 LOC and the numbers of steps range from 5 to 42. The results for different sequences 
are quite similar and we present the result for a representative sequence (whose initial LOC is 125 and the number of 
updates is 15) in more detail. The ratio of the difference between two consecutive program versions over the original 
version ranges from 0.01 to 0.1 (except for the step 8 where the ratio is 0.14). Fig. 12 presents the running time of CFT and 
three inference algorithms of eCFT. The times are measured on a laptop with a processor having four 2.4 GHz dual-cores 
and 8 GB RAM running 64-bit Ubuntu 16.04 LTS and GHC 8.0.2.

The response time (the time delay to display the first error message) of CFT is about 22.3 s in average for this sequence. 
eCFT is up to 3× faster with coarse and 13× faster with refined. With refined, the response time ranges from 1.7 s to 2.4 s
except for the step 8, where the response time is 4.0 s. The reason is that the change ratio is 0.14 at that step, much higher 
than those at other steps. The fact that coarse is much slower than refined reflects that unification problems are getting 
more and more complex as type inference moving up in the AST, although the change in each unification problem may be 
minor. This demonstrates the value of refined.

Fig. 12 shows that recomputing is in average 1.4 s slower than CFT. There are two potential reasons for this. First, for 
unbound variables, CFT directly detects the problem at variable references whereas recomputing first assumes that variables 
are always bound and have to adjust the typing result after the typing is completed. Second, for variables predefined 
globally, such as list processing operations, CFT immediately gets the types at variable references but eCFT first assigns fresh 
type variables to variables and record them in A. In general, A in eCFT contains much more items than 	 in CFT so looking 
up A is more time consuming.

At step 1, coarse and refined can’t reuse any previous error fixes since they don’t exist yet. As a result, they take slightly 
more time than recomputing since they need to test if results have already computed. This can be seen from Fig. 12.

For other tested sequences, the speedup of refined over CFT ranges from 4.2× to 19.1× and is more than 12.4× in 80% 
cases. For coarse, the speedup over CFT ranges from 1.2× to 5.3× and is more than 2.6× in 80% cases.

The previous test investigated how eCFT performs on real sequences of program updates, and such programs are relatively 
small. We are also interested in investigating how eCFT performs in larger programs. Ideally, we could use some existing 
benchmark for such an investigation, such as git commits and large applications. However, a main challenge to this idea 
is that usually publicly available applications do not contain type errors since they are well typed. Also, the differences 
between consecutive commits are often bigger than those programmers make during interactive program debugging and the 
former thus may not reflect real-world error debugging situations well. Finally, real world applications often use language 
features that are not provided by the prototype, such as type classes, type families, etc. [48].

For these reasons, we instead synthesized large programs by combining programs from different program sequences. 
Specifically, in our experiment, we took three program sequences from the student program database, and created a new 
sequence where each program is a combination of corresponding programs from these three sequences (necessary renaming 
was done to avoid name conflicts). The programs in this sequence have a trend of getting bigger because in addition to 
debug type errors, some new functions were added by students. The LOCs of these programs range from 331 to 409.

We present the running times for this sequence in Fig. 13. In general, we can observe that the running times for CFT 
and recomputing are more sensitive to program size increase than coarse and refined do. For example, as the program size 
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Fig. 13. Running time of CFT and different inference algorithm of eCFT on large, synthesized programs.

Fig. 14. Running time of different inference algorithm of eCFT on synthesized programs.

experienced three quite significant increases, the running times of CFT and recomputing follow a similar pattern. In contrast, 
the running times of coarse and refined increase quite significantly just once and then become quite stable. Also, we observe 
that refined is much faster than CFT. It shortens the response time by about 89% for all steps except for those where program 
sizes increased significantly, when no previous fixes for new code could be reused.

9.2. Running time against change ratios

In practice, programs may be updated very differently for debugging type errors. For this reason, we have conducted 
another test, where we chose another 60 student programs of 71 to 142 LOC [23]. For each of the change ratios from 0.01 
to 0.1 with an interval of 0.01 and from 0.1 to 0.3 with an interval of 0.05, we randomly generated changes to each original 
program. (We used the Haskell package haskell-src to first parse the source code to an AST, make changes to the AST, 
and then generate the source code from the AST.) Changes led to ill-formed programs were immediately discarded. We 
stopped until we had generated 50 unique changes that all yield well-formed programs for each ratio for each program.

Since the results for the tested programs exhibit a very similar pattern, we report the result for the original program 
that has 93 LOC in Fig. 14 and omit the details for other programs. Each time in the figure is an average of the randomly 
generated 50 programs at that ratio.

The result is similar to that in Fig. 12 when the change ratio is less than 0.1. The result is somewhat surprising when 
the ratio is high. As the change ratio increases, the running time for coarse increases almost linearly. However, the time 
increases much faster to the increase of change ratio for refined.

While we don’t have the exact reason why this happens, we give a possible explanation here. According to the defini-
tion of D, the incremental variational unification doesn’t take the advantages of variational typing. For each decision δ in 
D(U , U ′), a subproblem �U ′�δ is solved. The subproblems may overlap, yielding many smaller subproblems to be solved re-
peatedly. This gets worse as the change ratio becomes larger. In particular, when the change ratio is 1, the difference covers 
all decisions and refined degrades to the brute-force approach of finding all error fixes without using variational typing to 
reuse typing information.

Why this sub-exponential growth doesn’t show up while the change ratio is low? There are two possible reasons. While 
the ratio is low, the computations that are wasted are very limited. Also, at each point, the time for ranking all error fixes 
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and for deducing expression changes is similar. When the ratio is low, the time for this part is more significant than the 
time for update error fixes. As a result, this growth pattern is maybe shaded.

Ideally, refined is always (much) faster than coarse, but this is not the case as this test demonstrates. We are interested 
in combining them into another algorithm that is always as fast as the better algorithm for different change ratios. One 
parameter we can use is the change ratio. We, however, leave this for future work.

Nevertheless, the result of refined is very promising when we considering both Figs. A.16 (Appendix A) and 14. Fig. A.16
shows that for more than 80% of changes, the change ratio is below 0.1, and Fig. 14 shows that refined is still very fast when 
the change ratio reaches 0.1. The probability of high change ratio is very low, which means that refined has low performance 
in very few cases.

10. Related work

Type error debugging has been extensively studied [51,29,49,7,57,39,4]. In [7], we have discussed the relation of CFT 
with much previous work, such as discriminative sum types [36], Seminal [30], and Chameleon [46]. These discussions also 
apply here and thus in this paper we mainly discuss the relation with other work. We group our discussions based on the 
properties these approaches share.

10.1. Principal typing for debugging type errors

Our type system is based on principal typing, which is very different from principal types [52]. There have been many 
other error debugging approaches based on principal typing.

Chitil [16] suggested that the main difficulty of understanding why a program is ill typed lies in knowing why subexpres-
sions get certain types. He further argued that the core of the difficulty in HM is that the type system is not compositional. 
Based on this observation, he developed a compositional error explanation approach using principal typing. His approach 
allows the user to navigate through the explanation graph and inspects the type of each node. By asking the user whether 
the type of each node is intended, his approach can potentially improve the precision of error localization. While our ap-
proach focuses on each potential erroneous expression once a time and provides a detailed error message, his approach 
doesn’t provide change suggestions but allow the user to have a big-picture about why errors have occurred. In this sense, 
these approaches are complementary to each other.

Helium [27] is a compiler designed for Haskell beginners. It aims to provide good quality type error messages. Helium 
uses a constraint-based type inference algorithm to generate a set of type constraints, and then uses a solver to handle 
all the constraints globally. When the constraints are unsatisfiable, it uses a set of heuristics to find the most suspicious 
constraint [27,24], from which a few most likely error sources are identified. In this approach, it is important to keep the 
constraints from different parts of the expression independent. For this reason, the order it traverses the AST is similar to 
what principal typing does.

Haack and Wells [22] computed program slices that identify all program locations contributing to type errors. Their 
approach first uses Damas’s type inference algorithm T [17] to generate type constraints, and then found the minimal 
unsolvable subsets from the type constraints, from which program locations consisting of the error slice are computed. The 
underlying type system T used in the approach can be viewed as a variant of principal typing [28].

While these approaches employed principal typing to make typing compositional or independent among different ex-
pression parts, we use principal typing to enable us to incrementally update error fixes. Another main difference is that our 
approach provides a detailed change suggestions for all possible error causes while other approaches don’t do this or do so 
for a few locations.

10.2. Other error debugging approaches

Reordering unifications and heuristics There have been many approaches to improve the precision of error localizations. 
Algorithm W is biased in the order of solving unification problems. Consequently the accuracy of error localizations is 
affected. Many approaches [18,34] altered the ordering of type unifications to eliminate the bias in W. All these proposed 
algorithms followed the idea of W in the sense that they treated the place where unification failed as the error cause. 
Unfortunately, the reported error location may be far from the real error cause in algorithms using a fixed ordering for 
unifying types.

Some approaches [29,26,24] used heuristics to select the most likely error cause from a list of candidate locations. 
Heuristics work well when the context information is abundant and not so well when little such information is available [7].

Type error slicing Another extreme to these approaches is the idea of finding all error locations that may contribute to 
the type error [22,42]. Error slicing approaches never miss the real error cause, but their value diminishes when they cover 
too many locations in the program, relying on the user to pinpoint the proper error location [27]. In addition, error slicing 
approaches do not provide detailed error messages. Our type inference algorithm computes all potential type changes to 
remove type errors. Comparing with slicing approaches, the changes we present cover fewer locations. Users can look at 
one location and the corresponding suggestions for type changes.
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Type error explanations Many approaches have developed to generate explanations about why type errors have oc-
curred [51,55]. They were realized by extending type inference algorithms to record why certain types are unified with 
each other. These approaches are very different to our approach in both realization techniques and behaviors.

In general, ill-typed programs can not be run. Seidel et al. [43], however, have developed a special language interpreter 
that is able to evaluate ill-typed programs. Given a program, the interpreter could show intermediate evaluation results and 
illustrates to the programmers where evaluation gets stuck due to type errors. Such information is usually more tangible to 
programmers and helps them understand where the real error causes are. That idea, however, usually shows just one error 
location (where evaluation is stuck) while CFT and eCFT can find all error locations.
Finding most likely error causes Given an ill-typed expression, SHErrLoc [56,57] first extracts typing constraints (such 
as different occurrences of a single parameter should have the same type, the parameter type must match the type of 
the argument in a function application, the condition must have the type Bool and the branch types must be the same 
of a conditional), translates the typing constraints into a graph representation, and localizes the most likely error causes 
using a simple Bayesian model. The basic idea is that in the graph representation, each path is classified as consistent or 
inconsistent, and a node (which corresponds to some subexpression in the source program) in the graph is identified as an 
error cause if it touches as few as consistent paths and as many as inconsistent paths. This idea coincides with the belief 
that, when debugging type errors, the changes to the program should be as few as possible. The main difference between 
SHErrLoc and CFT and eCFT is that SHErrLoc usually reports type errors at constraint level, which could be hard to make 
use of by programmers, while CFT generates more concrete error messages, at the type level and sometimes even at the 
expression level. Another difference is that while SHErrLoc finds a few most likely error causes, CFT and eCFT could find all 
of them.

Instead of developing special graph representations to represent typing constraints, MinErrLoc [38,39] expresses typing 
constraints as SMT formulas [37]. Essentially, MinErrLoc reduces the type inference problem to SMT constraint solving prob-
lem. If SMT solving for a program succeeds, then type inference for the program succeeds with no type errors. However, if 
SMT solving fails, then the program contains type errors. In this case, MinErrLoc uses MaxSMT to identify the maximal sat-
isfiable set of SMT constraints and extract the rest of constraints as causing type errors. Similar to CFT and eCFT, MinErrLoc 
can find comprehensive error causes but it does not provide concrete change suggestions.

Instead of using an off-the-self SMT solver, Mycroft [32] explores the constraint solver developed by individual languages 
to find the most likely error cause. The basic idea is that when solving the full constraint set of a program fails, it partitions 
that into two subsets and recursively solves them.

Seidel et al. [44] developed a machine learning based approach, named Nate, to locate likely error causes. Nate is trained 
from a set of more than 6,000 ill-typed student programs with the corresponding terms that are changed to fix the type 
errors. Given each new program, Nate will predict a few most likely terms that need to be changed based on the trained 
model. Compared to our approach, Nate’s error messages include only location information while CFT and eCFT includes 
more information, including the type the located term should have to remove the type error.

Based on our machinery from variational typing [14] and error-tolerant typing [12], Eremondi et al. [20] have developed 
a framework for diagnosing type errors for dependently-typed programming languages.
Our earlier work on type error debugging We have explored many different directions for improving type error debugging 
in addition to CFT [7,10], which has been discussed in detail in Section 1. On top of CFT, we developed a method named 
Guided Type Debugging (GTD). A main difference of GTD with existing error debugging approaches, including CFT, is that it 
takes users’ intended result types into consideration while others do not. GTD allows users to specify their expected type 
of the ill-typed expression. It then computes all erroneous locations and their expected types, ranks them, and presents the 
suggestions to users in that order. As GTD is based on CFT, it suffers from the same issue as CFT does. As a result, we expect 
that our approach developed in this paper could help solve the problem in GTD as well.

Prior to CFT, we explored the idea of lazy typing [8]. The main idea is that when branches (in if and case expressions) 
have inconsistent types, we create variational types whose alternatives are branch types and then continue the typing 
process, rather than terminating the typing process and choose some branch as having type errors. This idea avoids a 
premature, uninformed decision and gather information about the context to decide which branch has the type error. The 
main differences between lazy typing and CFT are: (1) CFT generates a complete set of changes while lazy typing tries 
to identify the most likely change only and (2) CFT points to very specific change location while lazy typing has only 
branch-level granularity.

We have explored the idea of combining different error debugging tools for debugging type errors [13]. The main insight 
is that different tools have different strengths and weaknesses, and they may good at debugging type errors caused by 
certain reasons but not by others. Combining tools with complementary strengths is likely to yield a better tool. Our work 
used Helium [27] and lazy typing as studying subjects and manually investigated their type error messages on more than 
1,000 ill-typed programs. For each error message, we analyzed its precision (the difference between the reported error 
location and the real error location) and its concreteness (whether it contains change suggestion at expression level, at type 
level, or none). We observed that there is a connection between the concreteness and precision. We further analyzed that 
creating a new tool based on Helium and lazy typing using this observation could improve error reporting accuracy by 
about 20% over Helium and lazy typing.

We have also explored the idea of using machine learning to improve error locating and generate user-friendly error 
messages [54]. The motivation there was that in practice fixing type errors requires restructuring programs (adding or 
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removing parentheses, adding or removing square brackets, pulling certain subexpressions out of or pushing them into 
parentheses, etc.) but existing debugging methods do not work well for such type errors [53]. That work [54] thus has a 
different focus point from this one.

10.3. Principal typing and incremental computing

Erdweg et al. [19] developed a method named co-contextual typing for deriving incremental type checkers by replac-
ing the top-down context flow with bottom-up typing flow. They explored many different incrementalization schemes, for 
example, incremental constraint solving and eager substitution, which keeps the substitutions passed from children to par-
ents to be small. Their approach resolves the whole constraint once it is updated while our approach resolves only part of 
the constraint (unification problems). The reason is that unification problems can be very complicated in our system as it 
encodes different possibilities to remove the type error. As another difference, it seems that their approach doesn’t exploit 
the full advantages of principal typing for processing let expressions [19, §3.2]. They first compute the type of the bound 
expression, generalize the type for the variable, and then type the body. We take a different approach by allowing the bound 
expression and the body to be typed independently.

Johnson and Walz [29] developed an approach to locate the most likely error source based on an idea similar to majority 
voting. While type constraints are incrementally generated as programs are edited in their approach, type error debugging 
itself is not incremental. Miao and Siek [35] developed a type system to detect type errors earlier in multi-staged program-

ming, such as C++ Templates. As meta evaluations are performed, new typing constraints are generated and added to those 
generated in earlier stages and constraint satisfiability is checked. While in our approach type constraints maybe changed, 
in their approach existing constraints are never changed.

Acar et al. [1,15] have developed frameworks for performing general incremental computing. We didn’t use their 
framework and developed our own incremental algorithm for several reasons. On one hand, as reported in [15,19], such 
frameworks usually impose high overhead. The reason is that they record detailed computing process and not only the 
results. On the other hand, they don’t support domain-specific optimizations. For example, through reusing fresh type vari-
ables, a change from λx.x to λy.y will not change the type of the expression in our approach (both of them have the type 
β → β), which is hard to achieve in their frameworks.

11. Conclusions

We have presented eCFT, a method to improve the performance of our previous type error debugging method CFT. While 
CFT is quite effective in locating type errors and providing change suggestions, it has a long response time. To address 
this problem, we redesigned the type system and used principal typing to compute all error fixes. We have also developed 
two incremental methods for efficiently updating error fixes as programs are changed. Our evaluation result shows that in 
average eCFT is 12.4× faster than CFT in more than 80% of cases. The response time drops from about 22.3 s in CFT to 
about 1.7 s in eCFT for programs with about 125 LOC in our evaluation. In the future, we plan to investigate how we can 
improve the performance of eCFT when programs are under significant changes.
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Appendix A. Statistical findings of debugging

This section presents our findings about how students debugged type errors. We studied the program database collected 
at the Utrecht University [23]. The programs were written by students learning Haskell using the Helium compiler [26]. 
Whenever a program is compiled, Helium saved a copy of the program with a timestamp [25]. By compiling the program, 
we can decide if it is well typed. This allows us to figure out how many steps are required to remove the type error and 
how big is the difference between two consecutive versions. In this work, we use a total of 23529 collected programs from 
367 different submissions.
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Fig. A.15. Statistics of number of debugging steps.

Fig. A.16. Statistics of step changes.

Fig. A.15 presents the statistics about number of steps needed to remove the type error. Given an ill-typed program P1 , if 
P0 is well typed and Pn is the first program that is well typed after Pn , then the number of debugging steps for P1 is n −1. 
We give both the probability density function (PDF) and the cumulative distribution function (CDF) for a given number of 
debugging steps. For example, a point (x, y) on the PDF curve denotes that the likelihood that the type error is removed 
using exactly x steps is y. Similarly, (x, y) on the CDF curve means that the likelihood of removing the type error using up 
to x steps is y. We cut off the x axis at 100 since the probability that the type error needs to be fixed for more than 100 
steps is very low, within 0.001. In addition, Fig. A.15 shows that over 92% of programs can be fixed within 100 steps. The 
maximum debugging step in the collected data is 359, and the average value of debugging steps is 28.94.

We are also interested in measuring the difference between two consecutive versions of the same program, which we 
will refer to as step change. To compute the step change, we first find all the different expressions between the two 
programs, and then use Levenshtein distance4 to measure the difference between those expressions. This gives us a number 
of bytes that two programs differ. Given a program P , if it differs with the successive version by n bytes, then the step 
change for P is calculated as n

size of P
. Fig. A.16 presents the statistics about step change. For a similar reason as in Fig. A.15, 

we cut off the x axis at 0.1 since the probability that the step change exceeds 0.1 is very low. We again show both the PDF 
and the CDF in the figure. From Fig. A.16, we observe that the probability that the step change is more than 10% is less 
than 0.001, and more than 80% programs are changed less than 10%. The median value of step change is 0.0107, meaning 
that the program is changed for only about 1%. To sum up, only a very small portion of the program is modified during the 
debugging process.

Based on Figs. A.15 and A.16, students, and maybe other Haskell beginners, take quite many steps to remove the type 
error with minor changes in each step. This indicates the feasibility and the value of incremental error fix generation. Our 
evaluation result in Section 9 will further substantiate the feasibility.

4 https://en .wikipedia .org /wiki /Levenshtein _distance.



24 S. Chen, B. Wu / Science of Computer Programming 200 (2020) 102544

References

[1] U.A. Acar, G.E. Blelloch, M. Blume, R. Harper, K. Tangwongsan, An experimental analysis of self-adjusting computation, ACM Trans. Program. Lang. Syst. 
32 (1) (2009) 3:1–3:53.

[2] S. Aditya, R.S. Nikhil, Incremental polymorphism, in: FPCA, 1991, pp. 379–405.
[3] C. Chambers, S. Chen, D. Le, C. Scaffidi, The function, and dysfunction, of information sources in learning functional programming, J. Comput. Sci. Coll. 

28 (1) (Oct. 2012) 220–226.
[4] A. Charguéraud, Improving type error messages in OCaml, in: OCaml Users and Developers Workshops, in: Theoretical Computer Science, vol. 198, 

2015, pp. 80–97.
[5] S. Chen, Variational Typing and Its Applications, PhD thesis, Oregon State University, 2015.
[6] S. Chen, M. Erwig, Type-based parametric analysis of program families, in: ICFP, 2014, pp. 39–51.
[7] S. Chen, M. Erwig, Counter-factual typing for debugging type errors, in: POPL, 2014, pp. 583–594.
[8] S. Chen, M. Erwig, Better Type-Error Messages Through Lazy Typing, Technical Report, Oregon State University, 2014, http://ir.library.oregonstate .edu /

xmlui /handle /1957 /58138.
[9] S. Chen, M. Erwig, Principal type inference for gadts, in: POPL, 2016, pp. 416–428.

[10] S. Chen, M. Erwig, Systematic identification and communication of type errors, J. Funct. Program. 28 (2018) e2, https://doi .org /10 .1017 /
S095679681700020X.

[11] S. Chen, B. Wu, Efficient Counter-Factual Type Error Debugging, Tech Report, 2019, Available at https://people .cmix .louisiana .edu /schen //ws /techreport /
incrcft .pdf.

[12] S. Chen, M. Erwig, E. Walkingshaw, An error-tolerant type system for variational lambda calculus, in: ICFP, 2012.
[13] S. Chen, M. Erwig, K. Smeltzer, Let’s hear both sides: on combining type-error reporting tools, in: IEEE Int. Symp. on Visual Languages and Human-

Centric Computing, 2014, pp. 145–152.
[14] S. Chen, M. Erwig, E. Walkingshaw, Extending type inference to variational programs, ACM Trans. Program. Lang. Syst. 36 (1) (2014) 1:1–1:54.
[15] Y. Chen, U.A. Acar, K. Tangwongsan, Functional programming for dynamic and large data with self-adjusting computation, in: ICFP, 2014.
[16] O. Chitil, Compositional explanation of types and algorithmic debugging of type errors, in: ICFP, 2001.
[17] L. Damas, Type Assignment in Programming Languages, PhD thesis, 1985.
[18] H. Eo, O. Lee, K. Yi, Proofs of a set of hybrid let-polymorphic type inference algorithms, New Gener. Comput. 22 (1) (2004) 1–36.
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