This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Toward Mining Capricious Data Streams:
A Generative Approach

Yi He™', Baijun Wu, Di Wu", Ege Beyazit, Sheng Chen, and Xindong Wu, Fellow, IEEE

Abstract— Learning with streaming data has received extensive
attention during the past few years. Existing approaches assume
that the feature space is fixed or changes by following explicit
regularities, limiting their applicability in real-time applications.
For example, in a smart healthcare platform, the feature space of
the patient data varies when different medical service providers
use nonidentical feature sets to describe the patients’ symptoms.
To fill the gap, we in this article propose a novel learning para-
digm, namely, Generative Learning With Streaming Capricious
(GLSC) data, which does not make any assumption on the feature
space dynamics. In other words, GLSC handles the data streams
with a varying feature space, where each arriving data instance
can arbitrarily carry new features and/or stop carrying partial
old features. Specifically, GLSC trains a learner on a universal
feature space that establishes relationships between old and new
features, so that the patterns learned in the old feature space can
be used in the new feature space. The universal feature space is
constructed by leveraging the relatednesses among features. We
propose a generative graphical model to model the construction
process, and show that learning from the universal feature
space can effectively improve the performance with theoretical
guarantees. The experimental results demonstrate that GLSC
achieves conspicuous performance on both synthetic and real
data sets.

Index Terms— Biconvex optimization, capricious data streams,
graphical model, online learning.

NOMENCLATURE
t t €[1,2,...,T], current iteration number.
T T € N7, total number of data instances.

R% Observable feature space of data instance x;.

Manuscript received July 19, 2019; revised January 3, 2020; accepted March
3, 2020. This work was supported in part by the National Key Research and
Development Program of China under Grant 2016YFB 1000901, in part by the
National Natural Science Foundation of China (NSFC) under Grant 91746209,
and in part by the U.S. National Science Foundation (NSF) under Grant
1IS-1652107, Grant IIS-1763620, and Grant CCF-1750886. (Corresponding
author: Xindong Wu.)

Yi He, Baijun Wu, Ege Beyazit, and Sheng Chen are with the Center
for Advanced Computer Studies, School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA 70503 USA (e-mail:
yi.hel @louisiana.edu; bj.wu@]louisiana.edu; exb6143 @louisiana.edu;
chen@]ouisiana.edu).

Di Wu is with the Chongqing Institute of Green and Intelligent Tech-
nology, Chinese Academy of Sciences, Chongqing 376348, China (e-mail:
wudi@cigit.ac.cn).

Xindong Wu is with the Key Laboratory of Knowledge Engineering with
Big Data, Ministry of Education, Hefei University of Technology, Hefei
230009, China, and also with the Mininglamp Academy of Sciences, Min-
inglamp Technology, Beijing 100084, China (e-mail: xwu@hfut.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.2981386

w(x;)

Vi
A
f(yt»)A)t)

obs
L T

Hypothesis space of learner w,.

Universal feature space at the rth iteration.
Reconstructive mapping: R% > ;.

G =, ¢&), generative graph that embeds .
Vertices in G, each of which represents a feature
in U,.

Edges in G, each of which represents a
relatedness between two vertices.

Out-edge from vertex i to j.

O, = [G,‘,l, Gi,z, ey Gi,|ul|]T S R‘M’l, vertex
approximator corresponding to vertex i.

G =[], Dy,..., CI)|1,,I|]-r € RIUIXIUI concrete
matrix representation of G.

Laplacian matrix corresponding to G.

I, € R%*IU1 indicator matrix indicating which
features in U/, are carried by Xx;.

Orthogonal projection operator. For any vector b,
its orthogonal projection onto an R” space is
Mg (b) = arg mingp. ||a — bl|>.

Gr = G, concrete matrix representation of .
x; = [f1, 2, ..., ;1" € R%, arriving data
instance carrying observable features.

w(x,) = [fi, 2, ..., fiy 1" € U, reconstructed
data instance carrying universal features.

% = [f4,,,...,fu]" €U \ R%, reconstructed
data instance carrying unobservable features.

u, = [x;,%]" € RUI recovery of data instance
X, in the universal feature space.

w, = [wy, wa, ..., wM‘]T € R, learner built at
rth iteration.

W, = [wy, wa, ..., we]" € R, weight
coefficients in learner w, corresponding to X;.
W, = [wd,H N w|u,|]T S Rlu’lid’, weight
coefficients in learner w, corresponding to X;.
Confidence degree of predicting x, with respect
to w,.

Confidence degree of predicting X; with respect
to w;.

Groundtruth label of data instance x;.

Predicted label of data instance Xx;.
Instantaneous loss reflecting the discrepancy
between the prediction and the groundtruth.
L™ = Z,T:l t(y;, (W;, X;)), cumulative loss
suffered by making predictions on x; over T
iterations.

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5357-6623
https://orcid.org/0000-0002-7788-9202

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

L% LY = Zthl (y;, (W, X)), cumulative loss
suffered by making predictions on X, over T

iterations.

I. INTRODUCTION

O DATE, many online learning approaches have been

developed to handle streaming data [1]-[3]. Most of them
assume that each data stream has a fixed feature space. Only
a few recent studies have explored to learn from a dynamic
feature space, yet they all make strong assumptions on the
feature space dynamics, such as monotonically increasing,
where the later data instances should include increasingly more
features [4], or batchly evolving, where a few consecutive
data instances must include all possible features from the
feature space [5]. Unfortunately, these assumptions do not
always hold in real applications. For example, in a smart
healthcare platform [6]—[8], features describing the symptoms
of patients can vary across the IoT devices (thermometers,
pulse monitors, respiratory sensors, etc.) and medical service
providers (hospitals, labs, insurance companies, etc.). This
means that the patient data are streaming with an arbitrarily
varying feature space. We refer to such data streams as
capricious data streams.

At first glance, one may think to adapt existing algorithms,
such as online convex optimization (OCO) [1], for handling
capricious data streams. Fig. 1 depicts such a learning para-
digm. The learner is trained on an observable feature space
which only comprises the features carried by an arriving
instance at the rth iteration. Therefore, this approach does not
work well and is limited in two aspects. First, although the new
features (e.g., features 2 and 3 at the second iteration in Fig. 1)
enlarge the dimension of the learner’s hypothesis set, they may
not be described by a sufficient number of instances, leading
to the curse of dimensionality [9]. Second, when the features
that have been observed by the learner become unavailable in
latter iterations, the learned patterns regarding these features
are ignored. As a result, the learner does not exert the full
power to achieve the best prediction performance.

To overcome these limitations, we in this article propose
the Generative Learning With Streaming Capricious (GLSC)
data algorithm by training a learner based on a universal
feature space that includes the features appeared at each
iteration. Introducing a universal feature space provides several
advantages over an observable feature space. In the training
phase, since the newly appeared features at the fth iteration
are maintained in the universal feature space in all following
iterations, the learner could benefit from being continuously
provided information from them. In the predicting phase, the
universal feature space is wider than the observable one, con-
veying additional information, so that the learner’s prediction
performance is improved.

The question, then, is how to obtain the universal feature
space. On capricious data streams, an instance may not carry
some features that are already included in the universal feature
space. Taking the second iteration in Fig. 1 as an example,
the universal feature 1 is missing in the arriving instance.
We call such missing features unobservable features, and the
problem of obtaining the universal feature space is thus recast
as reconstructing them.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Hypothesis Set
of the Learner

Feature Space of the
Arriving Instances

Iteration 1 fi w1

fa f3

Iteration 2 w1 w2 w3

fa fs

Iteration 3 fi W] Wy w3 W4 Ws

Fig. 1. Naive way of learning from a varying feature space. The weight
coefficient w; (marked in dark gray) of the corresponding new feature is
initialized as zero.

We build upon a key insight that enables GLSC to infer
unobservable features from observable ones: in practice there
exist relatednesses among features [10]-[12]. Specifically,
GLSC uses a graph to capture feature relatednesses. Each
vertex in the graph denotes a feature in the universal feature
space, and all out-edges of a vertex together represent the
relationship between the corresponding feature and the others.
We embed the graph learning process into the online learning
task. The effectiveness of GLSC is validated in three scenarios:
trapezoidal data streams [4], feature evolvable streams [5], and
capricious data streams.

Specific contributions of this article are summarized as
follows.

1) This is the first work to learn with capricious data
streams where data come with an arbitrarily varying
feature space. We want to emphasize that our learning
task does not make any assumption on the feature space
dynamics, which is different from existing studies.

2) We introduce a generative graphical model, which takes
the observable feature space as the input and outputs
a universal feature space. We analyze the performance
bound of GLSC and prove that the obtained universal
feature space can effectively improve the learning per-
formance.

3) Extensive experiments on both synthetic and real-world
data sets demonstrate the superiority of GLSC.

The remainder of this article is organized as follows.
Section II discusses related work. Section III introduces pre-
liminaries. Section IV presents the building blocks of GLSC.
Section V analyzes the performance bound of our approach.
Section VI reports experimental results. We conclude the work
in Section VII. Due to the page limitation, we put the detailed
derivations and proofs, time complexity analysis, and complete
experimental results in the Supplementary Material.!

II. RELATED WORK

In this article, we focus on learning data streams from a
varying feature space, which is closely related to the following
literatures. It is worth pointing out that though concept-drift
happens in streaming data where the underlying data distrib-
ution keeps changing [13], the number of features carried by
each instance is fixed in concept-drift, which is different from
our learning task.

Ibit.ly/3aAzDJF

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH 3

A. Online Learning

The works that are most related to our learning task include
online learning from a fixed feature space [1], [3], from an
incremental feature space [4], [14], and from an evolvable
feature space [5], [15]. Those approaches tackling the stream-
ing data problem under different settings, however, rely on
the assumptions that the feature space is fixed or changes by
following explicit regularities. Thus, they cannot handle an
arbitrarily varying feature space. A recent work in [16] lifted
these assumptions, but it makes an implicit assumption that
there are overlapping features among arriving instances. Our
work makes no such assumption and thus has its technical
challenges and solutions.

B. Feature Reconstruction Learning

The key idea of GLSC is to learn reconstructive mapping
by exploiting feature relatednesses. As such, our work is also
related to the feature space reconstruction-based approaches.
Specifically, Boutsidis et al. [17], Farahat et al. [18], and
Tang and Liu [19] use the capability of features to approx-
imate original data as a novel criterion for unsupervised
feature selection. They assume that the most informa-
tive subset of features can reconstruct the whole feature
space with few reconstruction errors. Similarly, Huang et
al. [20] considers that, in completing a highly sparse matrix,
one can actively query the missing features that have the
strongest capability to recover the other features. Moreover,
Mairal et al. [21] and Ruvolo and Eaton [22] propose to
learn sparse representations of data streams via reconstruct-
ing original features from extracted latent features. How-
ever, these methods mainly focus on feature selection and
extraction, and to the best of our knowledge, none of them
consider the varying of feature space during the learning
process.

C. Graphical Models

Our proposed graphical model can also be viewed as a
type of Markov random field and is thus related to other
graphical models such as the Boltzmann machines [23]-[26].
At the structural level, our graphical model and the Boltzmann
machine both have visible (observable) and hidden (unobserv-
able) vertices. The main difference is how vertex visibility
is determined. In the Boltzmann machine, hidden vertices
are predefined and fixed and are independent of the data. In
our graph, however, the status of vertices are determined by
the arriving data in a stochastic manner. The vertices corre-
sponding to features in the arriving data turn to observable
and all other vertices remain unobservable. At the algorithm
level, training a Boltzmann machine in general does not entail
label information, which is more similar to feature extraction
or dimension reduction rather than supervised learning. To
see this, we can deem hidden vertices as latent features.
Instead, our graphical model is trained jointly with the learner,
serving directly for the purpose of supervised learning, and
the label information, in turn, contributes to a better-trained
graph.

III. PRELIMINARIES

In this article, we focus on binary classification. Multiclass
problems could be decomposed to multiple binary classifica-
tion subproblems, using One-Versus-Rest [27] or One-Versus-
One [28] strategies.

A. Learning Task Setup

Let {(x;, y)|t = 1,2,..., T} denote a sequence of arriving
data instances with labels, where x, = [f}, f2,...,f;]T € R%
is a d,-dimensional vector and y, € {—1,+1} represents
the class label. At the rth iteration, the learner observes the
instance X, and then returns its prediction. The true label y,
is revealed thereafter, and the learner suffers an instantaneous
loss reflecting the discrepancy between the prediction and the
groundtruth.

We define feature space as a set of features. Let U, =
(R UR% U ... UR%} denote the universal feature space
at the rth iteration where the features of xi,xp,---,X, are
included. Note that |U,| < d; +d> + ... + d; as we treat
the feature shared by multiple instances as a single feature.
For example, in Fig. 1, U, = {fi}, th = {f1, f2, f3}, and
Us = {11, f2, f3, fa, f5}-

For simplicity, we denote a linear classifier by w,, a vector
of weight coefficients. If new features appear in Xx,, their
corresponding weight coefficients in w, can be initialized as
small scalars (or zeros). As a result, the dimension of w;

matches that of I/, namely, w, € Rl

B. Generative Graphical Model

A generative graph is to embed a reconstructive mapping
w: R% — U,. Let G denote the graph whose vertices represent
the features in Uf,. The weight of each edge in G encodes a
feature-wise relatedness. In this article, we have G, ; > 0 if
feature i and feature j are related, and G; ; = 0 otherwise.

We define vertex approximator ®; as a vector containing the
weights of all out-edges of a vertex i. The adjacency matrix of
G can thus be viewed as a matrix whose column vectors are
the vertex approximators, namely, G = [Dy,..., CIDW,\]T €
RIUIIUI | Viewing G as a gathering of vertex approximators
instead of an adjacency matrix facilitates the understanding of
the later derivations.

We define the desired reconstruction of x, in the universal
feature space as w, = [fi,..., T4, 00, .., T] € RUL
where f; and f ; represent an original observable feature and a
reconstructed unobservable feature, respectively. We infer u,
by maximizing a log-likelihood function

d,
Q= logP(ufi, ;). (0
i=1
The features in U, are inferred by given a vertex i and the
corresponding ®; as follows:
4]
P, [f;, @) = [[Pu;lfi, @:))
j=1
where u; denotes the jth universal feature in w,. Note,
although universal features are inferred independently in (2),

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the values of the inferred universal features are indeed related,
and are determined by values of the observable features
(e.g., f;) and the vertex approximators (e.g., ®;). When a
different f; is observed, ®; will be updated correspondingly,
resulting in different values of the inferred universal features.
In this sense, the relatednesses among universal features are
captured via observable features that are used in the recon-
struction.

For the sake of simplicity of mathematical expression and
without loss of generality, assume P(u;|f;, ®;) follows a
Laplacian distribution [29], [30]. We can also choose, for
example, Gaussian distribution prior to the data distribution
to handle data from different sources [26], [31], [32]
M) 3)

1
Plu;lfi, ;) = —— -
it)= 2o - 17
where ¢ is a fixed variance [33], and E(u;) is approximated
based on y given f; and ®; (see Section IV-A).

IV. OUR PROPOSED APPROACH
The objective function of GLSC takes the form
T

1

min - tzzl(z(yf, Wiy () +a H+2 QW y) @)
where the first term as a supervised loss function is minimized
for classification purpose. The second term, a reconstruction
error function, indicates the approximation between the desired
u, and the reconstructed w(x;). The third term Q(w;, y)
is a model regularizer (penalty function), which on the one
hand penalizes the model if it becomes too complex to avoid
over-fitting and on the other hand encourages a sparse model
representation to bound the maximal dimension of the model
parameters. oo and 4 are the tradeoff parameters for controlling
the significance of the second and third terms, respectively.

In the rest of this section, we begin by presenting the
building blocks of GLSC (such as H and Q(w;, i) in the
objective function). The updating rules and the prediction
strategy are thereafter scrutinized. We end by analyzing the
complexity of our proposal.

A. Learning From Reconstruction Error

In capricious data streams, the feature spaces between any
two consecutive instances could be different, leading to a
highly dynamic environment. Learning a complex reconstruc-
tive mapping based on existing methods [34], [35] is thus
unrealistic. We restrict our interest in finding a linear mapping
relationship between two features. As a motivating example
to justify the appropriateness of using a linear mapping, we
consider an online text classification task where the universal
features are vocabularies from multiple languages [36]. Typi-
cally, when the word “Sano” (SP) is unobservable, it can be
reconstructed with a linear combination of its related words,
such as “Saine” (FR), “Great” (EN), and “Wholesome” (EN),
through an equation of “Sano” = 0.4 x “Saine” 4+ 0.4 x
“Great” + 0.2 x “Wholesome.” The coefficient of the related
words (i.e., “Saine,” “Great,” and “Wholesome”) indicates the
relatedness between “Sano” and each of these words—the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

larger the value, the higher the relatedness. The non-related
words (e.g., “Awful,” whose semantic meaning is opposite to
“Sano”) are thus assigned zero-valued coefficients, and shall
not be involved in the reconstruction of “Sano.”

Specifically, we define E(u;) = G, ;f; in (3), where G; ; >
0 represents the weight of the out-edge from vertex i to j.
Accordingly, the log-likelihood maximization problem in (1)
can be rewritten as

d, [t
max Q = Zlog (HP(Mj|fi» (Di))

i=1 j=1
d; Ui
uj — Gi 'fl‘ 1
=ZZ(—7| Lt |+log—). (5)
— < o 20
i=1 j=I
Evidently, maximizing (5) is equivalent to minimizing the
following optimization problem with respect to G:

di U] 2
1
minH=§ § u; — G fj| = |lu, — —Gr'x 6
A . | J 1] 1| 1 dt 1) ()
i=1 j=I
where | - ||, is an €;-norm. Here, Gr denotes [®, ..., CDd,]T,

where the vertex approximator ®; is selected according to
the features f; in x,. The use of Gr enables us to update G
more efficiently. In particular, instead of updating the whole
G, we update only Gr, which is a part of G, determined by
the features carried by x;.

Optimizing (6) requires the knowledge of the unknown part
of u; (the X; part). To make (6) optimizable, we orthogonally
project both u, and Gr'x, onto the R% feature space, trans-
forming the (6) into the following:

1
H]R"I (u, — d—GrTx,)
t

1
Hga (u;) — 4 HRa (GrTXt)
1

2
min

2

2
= min .

2

The aforementioned transformation is realized by distributing
the orthogonal projection operator over the minus operation.
By the definition of u,, we have Ilg« (u,) = X,, allowing us
to simplify the aforementioned equation to the following:
2
min .

@)

1
X; — _H]Rdr (GrTX[)
dy

2

Surprisingly, we can tell from (7) that the reconstruction
error is minimized if the reconstructive mapping is defined
as w(x;) = (1/d,)(Gr'x,). Alternatively, we can understand
the minimization problem in (7) as follows. Suppose there is
an accurate mapping y that can reconstruct X, in U/, without
any noise, then the values of the observable features in the
reconstructed x, should be numerically identical to those in
the original x;.

It is worth noting that, since Gr is a discrete variable
determined by x;, the problem in (7) is an integer program
and it is difficult to solve. We introduce an indicator matrix
I, € RéxIUI to represent which features in U, are carried
by x;. Such kind of indicator matrix is also known as binary
selector matrix [37], whose nonzero entries are pointers to
the universal features carried by x,. For example, having an

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH 5

arriving x, = [fy, f3, f6]" and Uy = {f1, fo, f3. fas [5, fo), we
construct I, as

i o s fa s fs

1 0 0 0 0 0]f
L=l0o o 1 0o o off
0 0 0 0 0 1] f

which satisfies Gr = I,G and Ilgs (Gr'x,) = L(Gr'x,).
As such, the optimization problem in (7) with respect to G
is tightly relaxed and becomes differentiable, which provides
great convenience for our further derivation.

B. Learning From Supervised Loss

The accuracy of the universal feature space recovered by
minimizing (7) may be affected when x, does not convey suf-
ficient information, for example, x, only carries new features
or the number of features in x, is few. In this case, there
could exist arbitrarily many possible reconstruction choices of
w (x,) that perfectly match x; on the observable entries, among
which searching the optimal one requires external information.
To address this issue, we utilize the class label, an abstract
representation of the reconstructed features, to provide extra
supervised information for learning a better mapping .

We train the learner by minimizing the supervised loss
jointly along with the reconstruction error. With w(x;) =
(1/d,)(Gr'x,), in this article, the supervised loss function is
implemented with the squared loss

ﬁ()’t, WT‘/’(Xz)) = (yt - W—zr‘//(xz))z
2
= (y, — inGrTx,) . (8)

Model Sparsity: The dimension of w, will go infinite as
the data keep streaming with new features. To bound the
maximum dimension, penalizing the learning model with an
{1-norm regularizer is a common choice. This is because it
encourages a sparse solution of w, in which the values of
many weight coefficients are forced to be small or even zero.
The dimension of w, could thus be bounded by truncating the
smallest weight coefficients, with a ratio of y.

Unfortunately, directly adopting the £;-norm regularizer for
dealing with capricious data streams faces the following issue.
The issue is, since the feature space of capricious data streams
varies arbitrarily, the features are described by the different
numbers of data instances as data streams flow in. The smaller
the number of instances describing a feature, the more biased
the distribution is learned regarding this feature. Such biases
may escalate with an increasing number of features being
described by few instances, rendering the £;-norm regularizer
to be.

1) Ineffective: In real applications, the dimension of the
universal feature space can increase rapidly, asking for
timely truncation. The £;-norm regularizer, in this case,
is inefficient since it may require a very large number
of learning iterations between two truncations to offset
the biases.

2) Invalid: When a new feature just appears, it is a conven-
tion to initialize its weight coefficient as a small scalar as
we do not have any prior knowledge about this feature.
If one iteration concurrently involves features-appearing
and learner-truncating, the weight coefficients of these
newly appeared features are truncated by coincident,
among which we may miss the important features. In
this case, the ¢;-norm regularizer becomes functionally
invalid, as it is sensitive to the sequence of arriving
instances.

To address the aforementioned drawback, we take the struc-
ture of graph G, which represents the relationship between
features, into consideration. When a pair of features show
strong relatedness, the weight of the edge between them, i.e.,
G, ;, is large, and their feature coefficients, i.e., w; and wj,
should be similar. To achieve this, we draw insights from graph
spectral analysis to design a graph regularizer onto £;-norm.
The regularization term in (4) is finally defined as

[t (U |
QWi y) = Blwedli + (1= B) DD Gij(wi — w))?
i=1 j=1
= Bl +2(1 — B) Tr (w; Lw,))

where L is the graph Laplacian of G and f is a tradeoff
parameter.

C. Updating Rules

By plugging (7), (8), and (9) into (4), our learning task is
reduced to solve the empirical risk minimization problem as
follows:

1 1 2
arg min T Z ((y, — d_,w—’r (IZG)TX,)

wi.G =1

1
+allxi — =Tz LG)"x 3
t

+ﬁ1||Wz||1+/32Tr(w,TLw,)) (10)

where 1 = Af, and S, = 24(1 — f). We prove that the
main function (denoted by F) in (10) is bi-convex, providing a
theoretical guarantee for convergence (see Section I in the Sup-
plementary Material for details). To solve (10), we follow the
common steps of solving a bi-convex optimization problem:
1) we divide (10) into two convex optimization subproblems,
which are with respect to w, and G, respectively, and 2) the
two subproblems are simultaneously solved at each iteration.

In this article, we wuse block-coordinate gradient
descent [38], [39] to optimize the subproblems. For
updating w;, we simply employ the first-order gradient
descent as w,; = w, — tVyF. For updating G, to
guarantee its nonnegativity, we follow the spirit in [40] to
use the multiplicative updating rules in a generic form as:
G=Go(VgF)/ (Vér F), where we put all the negative terms
of the gradient in the numerator Vi F and all the positive
terms in the denominator V&L}' . o denotes the Hadamard
(element-wise) product. In implementing algorithms, any

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

negative value appears in G is set to zero. The gradients of
F with respect to w, and G are

Vo F = —2/d)) (v — (1/d)W, (1,G) %) (1,G) X,

+Biolwilli + fo(L + LDw, (11)
Ve F = (_Z/dt)(yt - (1/dt)WT(ItG)TXt)I,TXtWT
— Qa/d) % (x — (1/d)LL,G) x,) I, (12)

D. Ensemble Prediction

Given y(x,;) and the corresponding learner w,, conven-
tionally the prediction is defined in an inner product form,
namely, (w;, y(x;)). To further improve the prediction per-
formance, we can combine two base predictions based on
x;, which contains the original observable features, and X, =
[’fdr+1, R f‘w]T € RUI=d: \which contains the reconstructed
unobservable features

Yo =pWe,x) + (1 = p) (Wi, X;) 13)

where W, and w,, together forming w,, are the weight coef-
ficients of x, and X,, respectively. The value of p decides
the impact of x, and X, in making predictions. Such an
ensemble prediction can eliminate the prediction errors caused
by potential noises in the reconstructed observable features,
which is likely to happen in the initial iterations when few
data instances have been seen.

The prediction loss function £(-) is convex in its first argu-
ment. In the implementation, we choose logistic loss for classi-
fication task, namely, £(y, $) = (1/In2) In(14+exp(—y¥)). Let
LY = 3 €, (Wi x,) and L = DL E(yi, (Wi, K1)
denote the cumulative losses suffered by making predictions
on x, and X, over 7T iterations, respectively. At the iteration
T +1, we update the parameter p in (13) based on exponential
of the cumulative loss [41]

() "
P= exp (— nL$™) +exp (— nLEc)
where # is a tuned parameter and its value assignment is
discussed in Section V. The intuition behind such ensemble
prediction strategy is that, when L‘}bs (or LF°) is larger than
L7 (or L(}bs), the impact of x; (or X,) is negatively rewarded
by our learning system.

E. Complexity Analysis

The details of GLSC are presented in Algorithm 1. A
step-by-step running time complexity analysis is provided
in Section IIl of the Supplementary Material. It is worth
noting that the largest number of operations occurs at step 7,
where the gradients in (11) and (12) are calculated, and
correspondingly, the worst running time complexity is O(d? x
|U;|?). Clearly, such complexity is unacceptable when the
data streams flow in with high dimensionality. In response,
this section analyzes the main causes of the poor efficiency
and introduces a retrieval strategy used in the implementation
which effectively improves the efficiency of GLSC.

The poor efficiency of GLSC is mainly caused by the
inappropriate treatments in handling Gr and G. We in (7)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 GLSC Algorithm

Initialize: w;, =[0,...,0]' e RY, U, = @, G = &,
p=0.5, and L‘}bs =Ly =0.

1fort=1,...,T do

2 | Receive instance x;, and U, = U;_; UR%;

Retrieve Gr from G;

Predict the label as sign(¥,) using (13);

LY 4= Ly, (Wi, X)), LFE 4= L(r, (Wi, %0));
Reweight the parameter p using (14), where
n=381/InT;

Update w,4; and G using (11) and (12), respectively;
8 | Truncate w,;; based on y;

(= WY | B SN

~

introduce I, to relax the discreteness of the optimization
problem. However, such a treatment brings more inner product
operations, making GLSC less efficient. On the other hand,
if the data streams come continually without stopping, it
becomes infeasible to store and update G which consumes
huge space resources.

To save the computational cost and resources, we implement
G using a nested hashmap, so that we do not need to initialize
I, at each iteration; Instead, we can retrieve Gr from G, and
update Gr directly. The idea of our retrieval strategy is to reuse
@; of x; if x; has already been observed before. For any new
feature x; carried by x;, we first build the out-edges between x
and the others, representing the relatednesses among features.
By doing this, the feature relatednesses are fully captured
without being affected by the data scale—indeed, the big-
O complexity of GLSC is reduced from O(d? x |U;]?) to
O(d? x th)).

We now analyze the running time complexity of the three
algorithms that we will conduct comparative experiments with
(see Section VI), i.e., OCO, OLSF, and FESL. For OLSF
and FESL, we are not able to adapt them to work for
capricious data streams. To make the complexity comparison
meaningful, we first analyze their complexities in their own
settings, namely, OLSF in trapezoidal data streams and FESL
in feature evolvable streams. After this, we discuss the com-
plexity of GLSC when adapted to these settings. For simplicity,
we assume the matrices are invertible when the inversion
operations are needed (for the singular matrices, we compute
their Moore—Penrose pseudo-inverse instead).

The complexity for OCO, the most naive OCO algorithm,
is well known as O(D?) for a fixed D-dimensional feature
space [42]. Adapting OCO to handle capricious data streams
requires to update a model whose number of parameters is
U, in order to handle each appeared feature. As a result, the
time complexity of OCO is O(|U;|?), which is worse than
that of GLSC when |Uf| > d,z. However, OCO uses sparse
model representations in which coefficients corresponding to
unobservable features are simply set to zeros at each iteration.
Thus, in practice, OCO is faster than GLSC since sparse
matrices are handled more efficiently at the architectural level
of the machine. We will present more details in Section VI-D.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH 7

OLSF improves OCO by initializing model parameters of
the new features using the principle of margin-maximum rather
than padding zeros. Since the complexity of the initialization
is linearly bounded by the number of new features, the time
complexity of OLSF in the context of trapezoidal data streams
is still O(Ji4;]?). When GLSC is adapted to handle trapezoidal
data streams, instead of calculating the feature mappings
amongst all universal features, only the feature mapping from
the old features to the new features is calculated. Thus, the
complexity of GLSC is reduced to (Q(a’tz_l x Ad;), where
Ad, = |U;| — d,_, denotes the number of new features. We
can observe that the complexity of GLSC is lower than that
of OLSF when |U;| > d? | and is higher otherwise. In all the
evaluated data sets, GLSC takes about 20% more runtime than
OLSEF, with details in Section VI-D.

For FESL, the most complex part is computing feature
space mapping that involves a matrix inversion. Since the
complexity of this part is O(d, x (Ad;)?), so is the complexity
of FESL itself. Note, for OCO, OLSF, and GLSC, the time
complexity with 7 iterations can be obtained by multiplying
the single iteration complexity with 7. However, for FESL,
the T iterations complexity is O(d; x (Ad;)> x B), where B
denotes the number of instances that carry all features in ;.
If we adapt GLSC to work for feature evolvable streams, the
complexity of GLSC for T iterations is O(d? x [U;| x B).
In practice, FESL usually sets d;, to be close to Ad,, so
the complexity of GLSC is slightly worse than FESL and is
bounded by the ratio of (Ad;)/d;.

V. THEORETICAL ANALYSIS

In this section, we borrow the idea of regret from online
learning [41] to measure the performance of GLSC. We derive
a cumulative loss bound and show that, over T iterations, our
approach guarantees a lower cumulative loss than approaches
that do not make use of the recovered feature space. To save
space, the proofs for theorems in this section are provided in
Section II of the Supplementary Material.

Theorem 1: Let Ly = Zthl {(y;, 9;) denote the overall
cumulative loss of GLSC over T iterations. Ly with parameter
n=8(1/InT)"? satisfies

: obs rec r In2
Ly <min{L7”, L7} + m—i— g ~InT.

Remark 1: This theorem indicates that the cumulative loss
L7 is the lower of L™ and L%° bounded by the scalar
A=T/(InT)"?>+ (n2/8)(In T)'/?, which is sublinear to the
number of iterations. The recovered feature space improves
model accuracy when W, is better than w, such that the relation
L™ — L% > A is satisfied. In this case, it is easy to verify
that L7y < L‘}bs, indicating that the learner trained with the
assistance of the recovered feature space yields a strictly lower
cumulative loss than those without the assistance.

Furthermore, we have the following theorem.

Theorem 2: If w, is better than w; over T iterations, then
L7 is bounded as

Lr <L +C

where C is a constant, and C < A.

Remark 2: This theorem states that the cumulative loss Ly
of GLSC is comparable to L™ and is bounded by a constant.
Note that the assumption of this theorem is very weak since
it assumes €% < ¢ for all iterations. In other words, the
arriving instances always lie in a feature space that is more
informative than the unobservable feature space. In practice,
it is very likely that x, carries very few features or x, carries
noisy features, making w, worse than w, in some iteration.
Therefore, Theorem 2 indeed gives an upper bound of the
cumulative loss of GLSC over T iterations. In practice, GLSC
enjoys lower cumulative losses.

Theorems 1 and 2 offer our learning algorithm a nice
property as follows.

Corollary 1: The learning performance is improved by
making use of the recovered universal feature space.

Proof: On the one hand, when w, is better than w, over
T iterations, Theorem 2 tells that the cumulative loss Ly of
GLSC is comparable to LS and is bounded to a constant. On
the other hand, when w; is better than w, over T iterations,
it is obvious that the recovered unobservable feature space is
helpful. Furthermore, if W, is better than w, to certain degree,
satisfying L9 — LX¢ > A, it is easy to verify that Ly < L.
To conclude, the learner with assistance from the universal
feature space achieves better performance than that without
the assistance. 0

VI. EXPERIMENTS

In this section, we first introduce the data sets used in
this article along with the general settings (see Section VI-A).
One data set is collected by ourselves as learning from
capricious data streams has not been well explored and few
well-established data sets are widely available. Section VI-B
presents the experimental results, comparing GLSC with the
state-of-the-art algorithms. Section VI-C investigates the help-
fulness of constructing a universal feature space by comparing
GLSC with its two variants, namely, GLSC-o(bservable) and
GLSC-r(econstructed). Section VI-D presents the efficiency
of relevant algorithms. We carry out an ablation study on
parameters «, f;, and S, of (10) in Section VI-E.

A. Data Sets and General Settings

We perform the experiments on 16 data sets consisting of
14 UCI data sets [43] and two real data sets—one is the IMDB
data set [44], the other is our collected Communities that Care
Youth Survey (CCYS) data set. The statistics of the used data
sets are summarized in Table I.

The UCI data sets are randomly selected, spanning a broad
range of applications such as economy, genetic research,
medical science, etc. We synthesize capricious data streams
by randomly removing features from each arriving instance
X,;. The ratio of the maximal removed features is denoted as
VI. For example, VI = 0.5 means that at most 50% of features
in x, are randomly removed. The default value of VI is 0.5 in
our experiments.

The task in the IMDB data set is to classify the movie
reviews into positive and negative sentiments. Each word in
the reviews is considered as a feature. Since the words used in

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
CHARACTERISTICS OF THE STUDIED DATA SETS

Dataset # Inst. # Feat. Dataset # Inst. # Feat
wpbc 198 33 german 1,000 20
ionosphere 351 34 svmguide3 1,284 21
wdbc 569 30 splice 3,190 60
australian 690 14 kr-vs-kp 3,196 36
credit-a 690 15 HAPT 10,929 561
wbc 699 9 magic04 19,020 10
diabetes 768 8 IMDB 25,000 7,500
dna 949 180 CCYS 33,000 355

each and every review could be different, we formulate the task
as learning from a varying feature space. Each movie review is
treated as a word vector comprising a bag of words. For those
words that do not appear in the current review, we treat them
as unobservable features. In OCO, the value of unobservable
features in the word vector are simply set as zeros. As such,
the OCO is equivalent to the 1-g bag-of-word (BOG) model
known in the NLP tasks. The comparison between GLSC and
OCO in the IMDB data set carries over to the comparison
between GLSC and the 1-g BOG model.

We collected the real data set during the research project
called the CCYS, which is administered and funded by
the Louisiana government. The data are collected from
79988 U-12 students enrolled in public schools throughout
the State of Louisiana. In total, 355 features are designed
and collected through questionnaires provided by eight inde-
pendent agencies. These questionnaires assess the students’
exposure to a set of risk and protective factors (e.g., fam-
ily, neighborhood, school, etc.) which have impacts on the
students’ social behavior. For example, students who live in
disorganized, crime-ridden neighborhoods are more likely to
become involved in crime and drug abuse than those who
live in safe ones. The students are not obligated to answer
all the questionnaires, and in practice, they only answer the
partial questions that they are interested, thus the feature space
describing different students varies. Our task is to predict the
students’ involvement in anti-social behaviors (the original
CCYS data are multilabeled, but in this article, we only focus
on one label and delete the instances that are not associated
with this label; after the deletion, we keep 33 000 instances).

To find the best settings of the parameters «, £, and S»,
we use grid searches ranging from 107> to 1. For efficiency
purpose, we let || < 150 by setting y in different data
sets. For more detailed settings, refer to the Supplementary
Material.

B. Comparisons With State-of-the-Arts

Table II presents the results of performance comparison in
terms of classification accuracy. Three baseline algorithms,
OLSF [4], FESL [5], and OCO [1], as well as the proposed
GLSC algorithm are evaluated in this section. In particular,
OLSF can only handle trapezoidal data streams where the
feature space monotonically augments as data flow in, while
FESL can only handle feature evolvable streams where feature

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

space batchly evolves by following an explicit pattern—both
new and old features exist in an overlapping time period. The
trapezoidal and feature evolvable data streams are the special
cases of capricious data streams, and we simulate these two
kinds of data streams by following the methods provided in
the respective work. We compare GLSC with OLSF and FESL
on trapezoidal data streams and feature evolvable streams,
respectively. On capricious data streams, GLSC is compared
with OCO, which, as mentioned in Section I, is a naive
online learning algorithm that makes a prediction based on
the observable feature space only.

On trapezoidal data streams, the average accuracy values of
GLSC and OLSF are 86.69% and 75.40%, respectively, and
GLSC statistically achieves better results on 13 out of 16 data
sets. Moreover, on 12 out of 16 data sets, the classification
variances of GLSC are smaller than those of OLSF. The
main reason is that GLSC considers the feature relatednesses
in model penalty while OLSF does not, and therefore the
classification accuracy of GLSC is more robust.

On feature evolvable streams, GLSC and FESL achieve
87.98% and 77.12% accuracy on average, respectively, and
GLSC outperforms FESL on 11 data sets. This is because
FESL trains a learner mainly with the help of the time period
in which old and new features exist simultaneously, while
GLSC can keep updating the learned reconstructive mapping
over all iterations. The way that GLSC learns the mapping
suggests that the classification accuracy could be improved
when a large number of instances flow in, and the results
support it. For example, we observe that the average accuracy
of GLSC is 19.78% higher than that of FESL on large-scale
data sets such as splice and HAPT.

On capricious data streams, the average accuracy of GLSC
is 91.02%, while that of OCO is only 65.44%. In addition,
GLSC wins over OCO on 15 data sets. We also find out that
the classification result of GLSC is stable across different data
sets. The results indicate that GLSC could effectively handle
arbitrarily varying feature spaces.

Note, if we fix the feature space (i.e., no removed fea-
tures), our proposed GLSC degrades to OCO with a spectral
regularizer [45], [46]. Therefore, the performance of GLSC
in handling a varying feature space is upper bounded by its
performance in a fixed feature space. We show such upper
bound performance in the rightmost column in Table II.

C. Impact of Universal Feature Space

In this section, we compare GLSC with three approaches.
One is OCO, which could work on capricious data streams,
as a baseline algorithm. The other two are the vari-
ants of GLSC, namely, GLSC-o(bservable) and GLSC-
r(econstructed), respectively. Their difference is that, when
making a prediction, GLSC-o uses the observable features
while GLSC-r uses the reconstructed features. To investigate
the impact of universal feature space, we aim to answer the
following three questions:

Q1. How effectively can the universal feature space capture
feature relatednesses?

The smaller reconstruction error the universal feature space
has, the better the feature relatednesses are captured. In

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH 9

TABLE II

EXPERIMENTAL RESULTS (MEAN ACCURACY + STANDARD DEVIATION) ON 16 DATA SETS IN THE SETTINGS OF TRAPEZOIDAL DATA STREAMS,
FEATURE EVOLVABLE STREAMS, CAPRICIOUS DATA STREAMS, AND FIXED FEATURE SPACE. WE APPLY A RANDOM PERMUTATION TO EACH
DATA SET AND REPEAT THE EXPERIMENT TEN TIMES. THE BEST RESULTS ARE BOLD. e INDICATES GLSC HAS A STATISTICALLY
SIGNIFICANT BETTER PERFORMANCE THAN THE COMPARED ALGORITHMS (HYPOTHESIS SUPPORTED BY PAIRED T-TESTS AT 95%
SIGNIFICANCE LEVEL). THE WIN/TIE/L0OSS COUNTS FOR GLSC ARE SUMMARIZED IN THE LAST ROW

| Trapezoidal Data Streams |

Feature Evolvable Streams \

Capricious Data Streams \ Fixed Feature Space

Dataset ‘ OLSF GLsc ‘ FESL GLsc ‘ 0co GLscC ‘ Upper Bound
wpbc 586 +.040 ¢ .790+.014 | .7194+.010 e .768 £.005 | .510+.033 ¢ .813+.024 872+ .021
ionosphere .856 +.018 ¢ .891 +.003 | .833+.016 ¢ .865+.007 | .638+.018 e .906 + .014 937 £.032
wdbc 932 +.012 .945 4+ .005 | .953 +.022 968 +.003 | .919 + .063 .951 4+ .009 977 £ .015
australian 739+ .014 o .888 £.002 .849 4+ .009 o .892 £+ .004 .804 + .007 o 922 £+ .011 951 + .036
credit-a 729+ .011e .859+.004 | .831+£.009e¢ .888+.004 | .783+.010e .926+.014 .933 £+ .004
wbc .951 + .009 .968 +.002 | .927 £+ .071 972+ .001 | .616+£.002 e .939 +.005 .970 £ .006
diabetes 679+ .004 o 797 £.004 .652 4 .009 o .817 £+ .005 672 1 .009 o .892 +.017 931 + .010
dna 713+.004 ¢ .893+.002 | .692+.021 ¢ .940 £+ .005 | .549 +.006 ¢ .960 + .003 977 £+ .002
german 682+ .007 ¢ .8284+.004 | .703+.004 ¢ .751+.004 | .627+.001 ¢ .827 +.021 .873 £.025
svmguide3 7224+ .013 o .854 £.007 | .779 £.010 .804 £+ .012 654+ .017 o .882 £.018 .897 + .081
splice 773 +.002 e .847+.003 | .612+.022e .895+.003 | .491+.004 e .934+.003 1962 £+ .027
kr-vs-kp 621 £.005 ¢ .860+.007 | .630+.016 ¢ .938+.002 | .666+.008 ¢ .912+ .006 .975 £ .008
HAPT .980 £+ .003 .989 £ .050 749 4 .026 o .908 £+ .016 .811 +.002 o .968 £ .002 .997 + .000
magic04 .6924+.004 ¢ .826 +.005 | .806 £ .003 .848 +.019 | .717+.006 ¢ .886 +.013 .904 £+ .002
IMDB 695 + .023 o .813 £.019 | .860 + .004 .883 +.007 562+ .025 e .891 £ .006 933 + .012
CCYS 714+ .022 ¢ .823+.008 | .744+ .013 e .851+.005 | .652+.004 e .738+.005 .802 £+ .007
GLsC: w1 | 137370 — | 11/5/0 — | 15/1/0 — —

1.0 14 A 2.0y \
09 1.2 \‘ A\A\ 1.5 X
L SRS Ak A‘n Abdaaka,
»0.8 " A-d kA AA 015 " " A*AFA“““*
3 ‘..\ 3 1.0 8 . Aa g schkhAhAddiAhddna 8 Akhasayl
—0.7 ‘\‘““*‘"‘**Aiu - M)) Lo »
el YT S
0'6L"‘*'M OISM " (K‘“' A o
0.5 200 400 600 0'900 400 600 250 500 750 0.5 500 1000
of Iterations # of Iterations # of Iterations # of Iterations
(@) (b) (© (d)
3.0 C
5 R YT
4 OCO
n 2.0 0
15 * § G LSC'O
: Ahyaadhdhbhdhibdiada]
1.0 —e— GLSC-r
0.0 5000 10000 0 10000 20000 05 10000 20000 30000 —¥— GLSC
of Iterations # of Iterations # of Iterations
(e) () (2 legend

Fig. 2.
(f) IMDB. (g) CCYS.

addition, due to the bi-convexity of our objective optimization
function (10), the reconstruction error is positively correlated
with the prediction loss. Therefore, the prediction loss could
be used in turn to measure the accuracy of the captured feature
relatednesses.

Here, we present the trend of average cumulative loss
(acl) in Fig. 2. At the iteration 7, acl= Ly /T. Based on
the results, we find that although the curve of GLSC-r may
increase during the beginning iterations, it decreases as more
data flow in and eventually converges. This intuitively makes
sense because the more arriving instances the learner receives,

Trends of average cumulative losses of GLSC and three baseline algorithms. (a) Australian. (b) Credit-a. (¢) German. (d) Svmguide3. (e¢) HAPT.

the better the feature relatednesses are learned, reducing the
value of acl. Moreover, the average cumulative losses of
GLSC and GLSC-r both drop to small values after conver-
gence. Thus, the reconstruction error in general is small,
which suggests that the feature relatednesses are captured
accurately.

Q2. Can the universal feature space help improve learning
performance?

From Fig. 2, we make the following observations.

1) After convergence, the average cumulative loss of GLSC

is significantly smaller than that of OCO. GLSC enjoys

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

1.0 1.0 1.0 1.0
0 0.8 0 0.8 0 0.8 0 0.8
p=} =) > >
© © © ©
> > > >
20.6 20.6 20.6 20.6
0'40 200 400 600 0'40 200 400 600 0'40 250 500 750 0'40 500 1000
of Iterations # of Iterations # of Iterations # of Iterations
(@) (b) (©) (d)
1.0 1.0 1.0 1.0
0 0.8 0 0.8 0 0.8 0 0.8
p=} > > >
© © © ©
> > > >
20.6 20.6 20.6 20.6
0.40 5000 10000 0'40 5000 10000 15000 0'40 10000 20000 0'40 10000 20000 30000
of Iterations # of Iterations # of Iterations # of Iterations
(e) () (8 (h)
Fig. 3. Trends of p values in the ensemble prediction. (a) Australian. (b) Credit-a. (¢c) German. (d) Svmguide3. (e) HAPT. (f) Magic04. (g) IMDB.

(h) CCYS.

better performance because the universal feature space
can provide more information.

2) OCO may surpass GLSC-o when the number of
instances is small, but the average cumulative loss of
GLSC-o becomes smaller than that of OCO after con-
vergence. This means that a better learner is obtained
based on the universal feature space.

3) The average cumulative loss of GLSC is comparable to
the best of GLSC-o and GLSC-r, and is smaller than
them when the number of instances is large. The result
validates Corollary 1 in Section V.

Q3. Can the ensemble prediction cancel the noise caused
by the inaccurate feature space recovery?

It is intuitive to use the original and reconstructed features
together in a single term, and give them the same importance.
However, in the initial iterations during training, the recon-
structed features are most likely to contain noise as few data
instances have been seen, degrading the learning performance
of GLSC. As such, we in (13) present an ensemble strategy
to cancel the noise caused by the inaccurately reconstructed
features. A self-adaptive parameter p is introduced to decide
the significances of the original features (first term) and the
reconstructed features (second term) in making predictions.
Thus, it is interesting to know what values of p are learned
during the learning process.

Fig. 3 illustrates the trends of the p values in the experi-
ments on eight data sets. We start by setting p = 0.5, hoping
that they contribute equally. Afterward, we observe: 1) the val-
ues of first p rise, meaning that the impact of the reconstructed
features is negatively rewarded by our learning system, which
validates that these reconstructed features contain noise in
initial iterations as few data instances have been seen and 2)
the values of the p drop, revealing that the larger the number of
data instances feed to our learning system, the more precise the
reconstructed features become. In most data sets, p converges

TABLE III
COMPARISON OF RUNTIME PERFORMANCE (IN Seconds)

‘ Runtime (sec)

Dataset ‘ OCO OLSF FESL GLSC
wpbc 2.38 4.76 3.08 5.24
ionosphere 3.21 7.30 5.35 8.03
wdbc 4.55 9.87 8.46 11.84
australian 3.76 8.47 9.35 10.16
credit-a 3.61 8.73 9.73 10.83
wbc 6.01 6.27 6.42 6.52
diabetes 6.43 6.63 6.63 6.89
dna 98.46 166.63 144.41 216.62
german 13.41 34.14 23.47 37.55
svmguide3 9.92 15.59 13.64 21.83
splice 63.54 158.84 136.15 190.61
kr-vs-kp 27.33 56.61 52.84 79.25
HAPT 462.50 925.01 751.57 1202.51
magic04 74.18 179.77 188.47 207.71
IMDB 118296 2001.93 1626.57 2602.51
CCYS 290.58 670.57 512.79 871.75

to about 0.5, representing an ideal case where reconstructed
and original features contribute equally. In other data sets, it is
in [0.4, 0.7], depending on the shape and noise in individual
data sets.

D. Comparisons on Computational Efficiency

In addition to the theoretical analysis of the time complexity
provided in Section IV-E, a summary of the runtime perfor-
mance for GLSC and the compared algorithms is reported in
Table III, exhibiting the answer to the question.

Q4. At what cost do we achieve a specific increase in
prediction accuracy?

For the data sets with a small number of features, e.g.,
WBC, diabetes, and magic04, the dimensions of the universal

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH

S
90~
)
8028
3
” 700
1558%'— <
3,050 7.02.0,
V805 10805080802
2 2V 192-00:%e.050502
'Oe‘0$~04 03(1 3
(@) (b)
S X
90 903
80g 808
cod 703 cod o3
15080 < 580 2
Gl 1,620 3050 1,020
2805 1 05.05.98.98-05 & 12800 5 109.0598.68-0
> 759577 05.0a:96.08-05 02 2 759577 03.08:90.08-0502 92
0e:0504703, 3 08380503] 3

(e) ®

Fig. 4.
(c) German. (d) Svmguide3. (e) HAPT. (f) Magic04. (g) IMDB. (h) CCYS.

feature spaces constructed on these data sets are also small.
GLSC correspondingly has similar runtimes with the com-
pared algorithms. For the data sets with a large number of
features, e.g., HAPT, IMDB, and CCYS, though the maximum
dimension of the universal feature space is bounded in imple-
menting algorithms, GLSC still takes more runtime than the
others. Overall, the larger the total number of features owned
by a data set, the higher the probability that arriving instances
have large dimensions, and thus the longer the runtime that
GLSC takes. For other data sets, the slowdowns are within a
factor of 3 when compared with OCO, and within a factor of
1.5 when compared with OLSF and FESL.

E. Ablation Study

The objective function of GLSC is governed by three para-
meters a, f1, and f,. To investigate the impact of parameter
values on the accuracy of our model, we have conducted an
ablation study. This section provides the details of this article.

The parameter o controls how strongly the reconstruction

function preserves the values of the original, observable
feature. To investigate how it affects the prediction
performance of GLSC as its value varies, we measure
the performance as a is given each value from the set
{le—4, 5e—4, .001, .005, .01, .05, .1, .25, .5, .75, 1}. The
other two parameters f; and f, encourage the classifier
w, to have sparse weight coefficients. The relationship
between f; and f, is that f, = 24 — 2f;, which means
that, when A is fixed, the larger the value of f;, the smaller
the value of f,. To grid-search the optimal values for
p1 and f,, we let 1 range over {.0001,.001, .01, .1}. For
each 1 value, we consider three f; values. Specifically, the
corresponding values of f; to 4 are {1.5e—5, 5e—35, 8.5¢—5},
{1.5e—4,5e—4,8.5e—4}, {1.5e—3,5¢—3,8.5e—3}, and
{.015,.05,.085}. As an example, when A = 0.0001, the
values for f; are {1.5e—5, 5e—5, 8.5e—5}. The value for S,
can be computed based on the aforementioned relationship.

2 o
80{%\ 85{?
of 15 153
[} (9]
< s0e2 <
1,020 8,252 1.02.0
1.09.05:968-380 &°126e0 1.09.05:968-380
1. 09.05:08.98-05 0292 5 50877 15,04 00:88-05 0292
Os.. 03‘0 g 03(1 3 Og.. 0$~0 g 030 3
© (@)
90a 70>
800 602
3 3
-0 70U e (9]
%8‘%%'8— \ 5.04.02:0 < 588%%'8' y 5.04.02:0 %
P \5 eV s 1.020e.98050 P \5 eV s 102 098050
2 2V 1.02:08:%95-0502 2 2V 102089950502
0e.05:04703, 3 08380503] 3
(@ (h)

Accuracy of GLSC with respect to different a’s and f;’s. The darker the color, the higher the model accuracy. (a) Australian. (b) Credit-a.

Performance variance results are presented in Fig. 4. From
the results, we can observe that the optimal value of «
on different data sets is around 0.5 (the right-most tick on
the a-axis). Thus, we can adopt such an empirical value
in practice. Similar to other graph-based feature selection
methods, the optimal value of f; (and f,) in GLSC varies
on different data sets. Making regularization parameters (/)
and S, in our scenario) self-adaptive is under active research
but remains an open issue [45], [47], [48]. We plan to address
it in the future.

VII. CONCLUSION

In this article, we focus on a general and challenging
setting—Ilearning from a varying feature space. By utilizing
the relatednesses among features, we learn a mapping from
the observable feature space to a universal feature space in
which both old and new features can be used for prediction. A
learner is trained on the universal feature space, and theoretical
results show that it can achieve better performance with strong
guarantees. We carry out extensive experiments and the results
demonstrate that our approach is effective.

ACKNOWLEDGMENT

The shorter version of this article, titled “Online Learning
From Capricious Data Streams: A Generative Approach,’
was presented at the 28th International Joint Conference on
Artificial Intelligence (IJCAI, 2019). The authors would like
to thank anonymous IJCAI and TNNLS reviewers, whose
reviews have improved both the content and the presentation

of this article.

REFERENCES

[1] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proc. ICML, 2003, pp. 928-936.

[2] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” J. Mach. Learn. Res., vol. 7,
pp- 551-585, Dec. 2006.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T. D. Nguyen, T. Le, H. Bui, and D. Phung, “Large-scale online kernel
learning with random feature reparameterization,” in Proc. 26th Int. Joint
Conf. Artif. Intell., Aug. 2017, pp. 2543-2549.

Q. Zhang, P. Zhang, G. Long, W. Ding, C. Zhang, and X. Wu, “Online
learning from trapezoidal data streams,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 10, pp. 2709-2723, Oct. 2016.

B.-J. Hou, L. Zhang, and Z.-H. Zhou, “Learning with feature evolvable
streams,” in Proc. NeurIPS, 2017, pp. 1417-1427.

M. M. Baig and H. Gholamhosseini, “Smart health monitoring systems:
An overview of design and modeling,” J. Med. Syst., vol. 37, no. 2,
p. 9898, Apr. 2013.

R. Haux, “Health information systems—past, present, future,” Int. J. Med.
Inform., vol. 75, nos. 3—4, pp. 268-281, 2006.

S. B. Baker, W. Xiang, and I. Atkinson, “Internet of Things for smart
healthcare: Technologies, challenges, and opportunities,” IEEE Access,
vol. 5, pp. 26521-26544, 2017.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Hoboken,
NJ, USA: Wiley, 2012.

W. Zhang, W. Feng, and J. Wang, “Integrating semantic relatedness and
words’ intrinsic features for keyword extraction,” in Proc. IJCAI, 2013,
pp. 2225-2231.

X. Zhang, X. Zhang, and H. Liu, “Self-adapted multi-task clustering,”
in Proc. IJCAI, 2016, pp. 2357-2363.

J. Chen, D. Ji, C. L. Tan, and Z. Niu, “Unsupervised feature selection
for relation extraction,” in Proc. CVPR, 2005, pp. 262-267.

J. Gama and P. P. Rodrigues, “An overview on mining data streams,”
in Foundations of Computational, Intelligence, vol. 6. Berlin, Germany:
Springer, 2009, pp. 29-45.

G. Zhou, K. Sohn, and H. Lee, “Online incremental feature learning
with denoising autoencoders,” in Proc. AISTATS, 2012, pp. 1453-1461.
M. M. Masud et al., “Classification and adaptive novel class detection of
feature-evolving data streams,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 7, pp. 1484-1497, Jul. 2013.

E. Beyazit, J. Alagurajah, and X. Wu, “Online learning from data streams
with varying feature spaces,” Proc. AAAI Conf. Artif. Intell., vol. 33,
Jul. 2019, pp. 3232-3239.

C. Boutsidis, M. W. Mahoney, and P. Drineas, “Unsupervised fea-
ture selection for principal components analysis,” in Proc. 14th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2008,
pp. 61-69.

A. K. Farahat, A. Ghodsi, and M. S. Kamel, “An efficient greedy method
for unsupervised feature selection,” in Proc. IEEE 11th Int. Conf. Data
Mining, Dec. 2011, pp. 161-170.

J. Li, J. Tang, and H. Liu, “Reconstruction-based unsupervised feature
selection: An embedded approach,” in Proc. 26th Int. Joint Conf. Artif.
Intell., Aug. 2017, pp. 2159-2165.

S.-J. Huang, M. Xu, M.-K. Xie, M. Sugiyama, G. Niu, and S. Chen,
“Active feature acquisition with supervised matrix completion,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 1571-1579.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML),
2009, pp. 689-696.

P. Ruvolo and E. Eaton, “Online multi-task learning via sparse dictionary
optimization,” in Proc. AAAI, 2014, pp. 2062-2068.

R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Proc.
AISTATS, 2009, pp. 448-455.

D. Chen, J. Lv, and Z. Yi, “Graph regularized restricted Boltzmann
machine,” [EEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6,
pp- 2651-2659, Jun. 2018.

H. D. Nguyen and I. A. Wood, “Asymptotic normality of the maximum
pseudolikelihood estimator for fully visible Boltzmann machines,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 897-902, Apr. 2016.
L. Shao, D. Wu, and X. Li, “Learning deep and wide: A spectral method
for learning deep networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 12, pp. 2303-2308, Dec. 2014.

J. Xu, “An extended one-versus-rest support vector machine for multi-
label classification,” Neurocomputing, vol. 74, no. 17, pp. 3114-3124,
Oct. 2011.

J. A. Sdez, M. Galar, J. Luengo, and F. Herrera, “Analyzing the presence
of noise in multi-class problems: Alleviating its influence with the one-
vs-one decomposition,” Knowl. Inf. Syst., vol. 38, no. 1, pp. 179-206,
Jan. 2014.

L. Liu, C. Shen, L. Wang, A. Van Den Hengel, and C. Wang, “Encoding
high dimensional local features by sparse coding based Fisher vectors,”
in Proc. NeurIPS, 2014, pp. 1143-1151.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[30]

(31]

[32]

[33]

[34]
[35]

[36]

(371

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

H. J. Park and T. W. Lee, “Modeling nonlinear dependencies in natural
images using mixture of Laplacian distribution,” in Proc. NeurIPS, 2005,
pp. 1041-1048.

Z. Xu, B. Liu, S. Zhe, H. Bai, Z. Wang, and J. Neville, “Variational
random function model for network modeling,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 1, pp. 318-324, Jan. 2019.

D. Wu et al., “Deep dynamic neural networks for multimodal gesture
segmentation and recognition,” /IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 8, pp. 1583-1597, Aug. 2016.

M. V. Gerven, B. Cseke, R. Oostenveld, and T. Heskes, “Bayesian source
localization with the multivariate Laplace prior,” in Proc. NeurIPS, 2009,
pp. 1901-1909.

S. Jialin Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

S. Sun, “A survey of multi-view machine learning,” Neural Comput.
Appl., vol. 23, nos. 7-8, pp. 2031-2038, Dec. 2013.

J. T. Zhou, I. W. Tsang, S. J. Pan, and M. Tan, “Heterogeneous
domain adaptation for multiple classes,” in Proc. AISTATS, 2014,
pp- 1095-1103.

A. Das, A. V. Rao, and A. Gersho, “Variable-dimension vector quantiza-
tion,” IEEE Signal Process. Lett., vol. 3, no. 7, pp. 200-202, Jul. 1996.
P. Tseng and S. Yun, “A coordinate gradient descent method for
nonsmooth separable minimization,” Math. Program., vol. 117, nos. 1-2,
pp. 387423, Mar. 2009.

Z. Lu and L. Xiao, “On the complexity analysis of randomized block-
coordinate descent methods,” Math. Program., vol. 152, nos. 1-2,
pp. 615-642, Aug. 2015.

D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. NeurIPS, 2001, pp. 556-562.

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

E. Hazan, “Introduction to online convex optimization,” Found. Trends.
Optim., vol. 2, nos. 3—4, pp. 157-325, 2016.

D. Dua and E. K. Taniskidou. (2017). UCI Machine Learning Reposi-
tory. [Online]. Available: http://archive.ics.uci.edu/ml

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in Proc. ACL,
Portland, Oregon, USA, Jun. 2011, pp. 142-150. [Online]. Available:
http://www.aclweb.org/anthology/P11-1015

J. Ye and J. Liu, “Sparse methods for biomedical data,” ACM SIGKDD
Explor. Newslett., vol. 14, no. 1, pp. 4-15, Dec. 2012.

Z. Zhao, X. He, D. Cai, L. Zhang, W. Ng, and Y. Zhuang, “Graph
regularized feature selection with data reconstruction,” IEEE Trans.
Knowl. Data Eng., vol. 28, no. 3, pp. 689-700, Mar. 2016.

Z. Zha et al., “Compressed sensing image reconstruction via adap-
tive sparse nonlocal regularization,” Vis. Comput., vol. 34, no. 1,
pp. 117-137, Jan. 2018.

R. Zhang, F. Nie, Y. Wang, and X. Li, “Unsupervised feature selection
via adaptive multimeasure fusion,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 9, pp. 28862892, Sep. 2019.

Yi He received the B.E. degree from the Harbin
Institute of Technology, Harbin, China, in 2013, and
the M.S. degree from the University of Louisiana at
Lafayette, Lafayette, LA, USA, in 2017, where he is
currently pursuing the Ph.D. degree with the Center
for Advanced Computer Studies.

His research interests include data mining,
machine learning, and optimization.

Baijun Wu received the B.S. and M.S. degrees
in computer science from Sichuan University,
Chengdu, China, in 2008 and 2011, respectively.
He is currently pursuing the Ph.D. degree in com-
puter science with the Center for Advanced Com-
puter Studies, University of Louisiana at Lafayette,
Lafayette, LA, USA.

He was a Software Engineer at Ericsson, Chengdu,
from 2011 to 2012 and he worked for TP-LINK,
Shenzhen, from 2012 to 2013. His current research
interests include software engineering and machine
learning.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Di Wu received the B.S. degree in applied physics
from the Nanjing University of Science and Tech-
nology, Nanjing, China, in 2009, the M.S. degree
in optical engineering from Chongqing University,
Chongqing, China, in 2012, and the Ph.D. degree in
computer science from the Chongging Institute of
Green and Intelligent Technology, Chinese Academy
of Sciences, Beijing, China, in 2019.

His research interests include data mining and
machine learning.

Ege Beyazit received the bachelor’s degree from
the Izmir University of Economics, Izmir, Turkey,
in July 2016. He is currently pursuing the Ph.D.
degree with the Center for Advanced Computer
Studies, University of Louisiana at Lafayette,
Lafayette, LA, USA.

His research interests include online learning and
deep learning.

Mr. Beyazit has served as a Reviewer for
ICANN-18 and KDD-19.

HE et al.: TOWARD MINING CAPRICIOUS DATA STREAMS: GENERATIVE APPROACH 13

Sheng Chen received the bachelor’s degree in
information technology from the Xi’an University
of Technology, Xi’an, China, in 2005, the mas-
ter’s degree in software technology from Xidian
University, Xi’an, in 2008, and the Ph.D. degree
in computer science from Oregon State University,
Corvallis, OR, USA, in 2015.

He is currently an Assistant Professor with the
School of Computing and Informatics, University
of Louisiana at Lafayette, Lafayette, LA, USA. His
research interests include programming languages,
software engineering, and applying machine learning in these areas.

Dr. Chen received the NSF CAREER Award in 2017.

Xindong Wu (Fellow, IEEE) received the Ph.D.
degree in artificial intelligence from The University
of Edinburgh, Edinburgh, U.K., in 1993.

He is currently the President of the Mininglamp
Academy of Sciences, Mininglamp Technology, Bei-
jing, China. He is also a Professor with the Key
Laboratory of Knowledge Engineering with Big
Data, Ministry of Education, Hefei University of
Technology, Hefei, China. His research interests
include data mining and knowledge engineering.

Dr. Wu is a fellow of the Association for American
Association for the Advancement of Science (AAAS). He is also the Editor-
in-Chief of Knowledge and Information Systems and Advanced Information
and Knowledge Processing (Springer book series).

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on February 01,2021 at 06:23:28 UTC from IEEE Xplore. Restrictions apply.

