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Toward Mining Capricious Data Streams:

A Generative Approach
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Abstract— Learning with streaming data has received extensive
attention during the past few years. Existing approaches assume
that the feature space is fixed or changes by following explicit
regularities, limiting their applicability in real-time applications.
For example, in a smart healthcare platform, the feature space of
the patient data varies when different medical service providers
use nonidentical feature sets to describe the patients’ symptoms.
To fill the gap, we in this article propose a novel learning para-
digm, namely, Generative Learning With Streaming Capricious
(GLSC) data, which does not make any assumption on the feature
space dynamics. In other words, GLSC handles the data streams
with a varying feature space, where each arriving data instance
can arbitrarily carry new features and/or stop carrying partial
old features. Specifically, GLSC trains a learner on a universal
feature space that establishes relationships between old and new
features, so that the patterns learned in the old feature space can
be used in the new feature space. The universal feature space is
constructed by leveraging the relatednesses among features. We
propose a generative graphical model to model the construction
process, and show that learning from the universal feature
space can effectively improve the performance with theoretical
guarantees. The experimental results demonstrate that GLSC
achieves conspicuous performance on both synthetic and real
data sets.

Index Terms— Biconvex optimization, capricious data streams,
graphical model, online learning.

NOMENCLATURE

t t ∈ [1, 2, . . . , T ], current iteration number.

T T ∈ N+, total number of data instances.

R
dt Observable feature space of data instance xt .
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R
|Ut | Hypothesis space of learner wt .

Ut Universal feature space at the tth iteration.

ψ Reconstructive mapping: R
dt 7→ Ut .

G G = (V, E), generative graph that embeds ψ .

V Vertices in G, each of which represents a feature

in Ut .

E Edges in G, each of which represents a

relatedness between two vertices.

Gi, j Out-edge from vertex i to j .

8i 8i = [Gi,1, Gi,2, . . . , Gi,|Ut |]> ∈ R
|Ut |, vertex

approximator corresponding to vertex i .

G G = [81,82, . . . ,8|Ut |]> ∈ R
|Ut |×|Ut |, concrete

matrix representation of G.

L Laplacian matrix corresponding to G.

It It ∈ R
dt ×|Ut |, indicator matrix indicating which

features in Ut are carried by xt .

5Rn (·) Orthogonal projection operator. For any vector b,

its orthogonal projection onto an R
n space is

5Rn (b) = arg mina∈Rn ka − bk2.

Gr Gr = It G, concrete matrix representation of ψ .

xt xt = [f1, f2, . . . , fdt
]> ∈ R

dt , arriving data

instance carrying observable features.

ψ(xt ) ψ(xt ) = [f̃1, f̃2, . . . , f̃|Ut |]> ∈ Ut , reconstructed

data instance carrying universal features.

x̃t x̃t = [f̃dt+1
, . . . , f̃|Ut |]> ∈ Ut \ R

dt , reconstructed

data instance carrying unobservable features.

ut ut = [xt , x̃t ]> ∈ R
|Ut |, recovery of data instance

xt in the universal feature space.

wt wt = [w1, w2, . . . , w|Ut |]> ∈ R
|Ut |, learner built at

tth iteration.

w̄t w̄t = [w1, w2, . . . , wdt
]> ∈ R

dt , weight

coefficients in learner wt corresponding to xt .

w̃t w̃t = [wdt+1
, . . . , w|Ut |]> ∈ R

|Ut |−dt , weight

coefficients in learner wt corresponding to x̃t .

hw̄t , xti Confidence degree of predicting xt with respect

to w̄t .

hw̃t , x̃ti Confidence degree of predicting x̃t with respect

to w̃t .

yt Groundtruth label of data instance xt .

ŷt Predicted label of data instance xt .

`(yt , ŷt) Instantaneous loss reflecting the discrepancy

between the prediction and the groundtruth.

Lobs
T Lobs

T =
�T

t=1 `(yt , hw̄t , xti), cumulative loss

suffered by making predictions on xt over T

iterations.
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L rec
T L rec

T =
�T

t=1 `(yt , hw̃t , x̃t i), cumulative loss

suffered by making predictions on x̃t over T

iterations.

I. INTRODUCTION

TO DATE, many online learning approaches have been

developed to handle streaming data [1]–[3]. Most of them

assume that each data stream has a fixed feature space. Only

a few recent studies have explored to learn from a dynamic

feature space, yet they all make strong assumptions on the

feature space dynamics, such as monotonically increasing,

where the later data instances should include increasingly more

features [4], or batchly evolving, where a few consecutive

data instances must include all possible features from the

feature space [5]. Unfortunately, these assumptions do not

always hold in real applications. For example, in a smart

healthcare platform [6]–[8], features describing the symptoms

of patients can vary across the IoT devices (thermometers,

pulse monitors, respiratory sensors, etc.) and medical service

providers (hospitals, labs, insurance companies, etc.). This

means that the patient data are streaming with an arbitrarily

varying feature space. We refer to such data streams as

capricious data streams.

At first glance, one may think to adapt existing algorithms,

such as online convex optimization (OCO) [1], for handling

capricious data streams. Fig. 1 depicts such a learning para-

digm. The learner is trained on an observable feature space

which only comprises the features carried by an arriving

instance at the tth iteration. Therefore, this approach does not

work well and is limited in two aspects. First, although the new

features (e.g., features 2 and 3 at the second iteration in Fig. 1)

enlarge the dimension of the learner’s hypothesis set, they may

not be described by a sufficient number of instances, leading

to the curse of dimensionality [9]. Second, when the features

that have been observed by the learner become unavailable in

latter iterations, the learned patterns regarding these features

are ignored. As a result, the learner does not exert the full

power to achieve the best prediction performance.

To overcome these limitations, we in this article propose

the Generative Learning With Streaming Capricious (GLSC)

data algorithm by training a learner based on a universal

feature space that includes the features appeared at each

iteration. Introducing a universal feature space provides several

advantages over an observable feature space. In the training

phase, since the newly appeared features at the tth iteration

are maintained in the universal feature space in all following

iterations, the learner could benefit from being continuously

provided information from them. In the predicting phase, the

universal feature space is wider than the observable one, con-

veying additional information, so that the learner’s prediction

performance is improved.

The question, then, is how to obtain the universal feature

space. On capricious data streams, an instance may not carry

some features that are already included in the universal feature

space. Taking the second iteration in Fig. 1 as an example,

the universal feature 1 is missing in the arriving instance.

We call such missing features unobservable features, and the

problem of obtaining the universal feature space is thus recast

as reconstructing them.

Fig. 1. Naïve way of learning from a varying feature space. The weight
coefficient wi (marked in dark gray) of the corresponding new feature is
initialized as zero.

We build upon a key insight that enables GLSC to infer

unobservable features from observable ones: in practice there

exist relatednesses among features [10]–[12]. Specifically,

GLSC uses a graph to capture feature relatednesses. Each

vertex in the graph denotes a feature in the universal feature

space, and all out-edges of a vertex together represent the

relationship between the corresponding feature and the others.

We embed the graph learning process into the online learning

task. The effectiveness of GLSC is validated in three scenarios:

trapezoidal data streams [4], feature evolvable streams [5], and

capricious data streams.

Specific contributions of this article are summarized as

follows.

1) This is the first work to learn with capricious data

streams where data come with an arbitrarily varying

feature space. We want to emphasize that our learning

task does not make any assumption on the feature space

dynamics, which is different from existing studies.

2) We introduce a generative graphical model, which takes

the observable feature space as the input and outputs

a universal feature space. We analyze the performance

bound of GLSC and prove that the obtained universal

feature space can effectively improve the learning per-

formance.

3) Extensive experiments on both synthetic and real-world

data sets demonstrate the superiority of GLSC.

The remainder of this article is organized as follows.

Section II discusses related work. Section III introduces pre-

liminaries. Section IV presents the building blocks of GLSC.

Section V analyzes the performance bound of our approach.

Section VI reports experimental results. We conclude the work

in Section VII. Due to the page limitation, we put the detailed

derivations and proofs, time complexity analysis, and complete

experimental results in the Supplementary Material.1

II. RELATED WORK

In this article, we focus on learning data streams from a

varying feature space, which is closely related to the following

literatures. It is worth pointing out that though concept-drift

happens in streaming data where the underlying data distrib-

ution keeps changing [13], the number of features carried by

each instance is fixed in concept-drift, which is different from

our learning task.

1bit.ly/3aAzDJF
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A. Online Learning

The works that are most related to our learning task include

online learning from a fixed feature space [1], [3], from an

incremental feature space [4], [14], and from an evolvable

feature space [5], [15]. Those approaches tackling the stream-

ing data problem under different settings, however, rely on

the assumptions that the feature space is fixed or changes by

following explicit regularities. Thus, they cannot handle an

arbitrarily varying feature space. A recent work in [16] lifted

these assumptions, but it makes an implicit assumption that

there are overlapping features among arriving instances. Our

work makes no such assumption and thus has its technical

challenges and solutions.

B. Feature Reconstruction Learning

The key idea of GLSC is to learn reconstructive mapping

by exploiting feature relatednesses. As such, our work is also

related to the feature space reconstruction-based approaches.

Specifically, Boutsidis et al. [17], Farahat et al. [18], and

Tang and Liu [19] use the capability of features to approx-

imate original data as a novel criterion for unsupervised

feature selection. They assume that the most informa-

tive subset of features can reconstruct the whole feature

space with few reconstruction errors. Similarly, Huang et

al. [20] considers that, in completing a highly sparse matrix,

one can actively query the missing features that have the

strongest capability to recover the other features. Moreover,

Mairal et al. [21] and Ruvolo and Eaton [22] propose to

learn sparse representations of data streams via reconstruct-

ing original features from extracted latent features. How-

ever, these methods mainly focus on feature selection and

extraction, and to the best of our knowledge, none of them

consider the varying of feature space during the learning

process.

C. Graphical Models

Our proposed graphical model can also be viewed as a

type of Markov random field and is thus related to other

graphical models such as the Boltzmann machines [23]–[26].

At the structural level, our graphical model and the Boltzmann

machine both have visible (observable) and hidden (unobserv-

able) vertices. The main difference is how vertex visibility

is determined. In the Boltzmann machine, hidden vertices

are predefined and fixed and are independent of the data. In

our graph, however, the status of vertices are determined by

the arriving data in a stochastic manner. The vertices corre-

sponding to features in the arriving data turn to observable

and all other vertices remain unobservable. At the algorithm

level, training a Boltzmann machine in general does not entail

label information, which is more similar to feature extraction

or dimension reduction rather than supervised learning. To

see this, we can deem hidden vertices as latent features.

Instead, our graphical model is trained jointly with the learner,

serving directly for the purpose of supervised learning, and

the label information, in turn, contributes to a better-trained

graph.

III. PRELIMINARIES

In this article, we focus on binary classification. Multiclass

problems could be decomposed to multiple binary classifica-

tion subproblems, using One-Versus-Rest [27] or One-Versus-

One [28] strategies.

A. Learning Task Setup

Let {(xt , yt)|t = 1, 2, . . . , T } denote a sequence of arriving

data instances with labels, where xt = [f1, f2, . . . , fdt
]> ∈ R

dt

is a dt -dimensional vector and yt ∈ {−1,+1} represents

the class label. At the tth iteration, the learner observes the

instance xt and then returns its prediction. The true label yt

is revealed thereafter, and the learner suffers an instantaneous

loss reflecting the discrepancy between the prediction and the

groundtruth.

We define feature space as a set of features. Let Ut =
{Rd1 ∪ R

d2 ∪ · · · ∪ R
dt } denote the universal feature space

at the tth iteration where the features of x1, x2, · · · , xt are

included. Note that |Ut | ≤ d1 + d2 + . . . + dt as we treat

the feature shared by multiple instances as a single feature.

For example, in Fig. 1, U1 = { f1}, U2 = { f1, f2, f3}, and

U3 = { f1, f2, f3, f4, f5}.
For simplicity, we denote a linear classifier by wt , a vector

of weight coefficients. If new features appear in xt , their

corresponding weight coefficients in wt can be initialized as

small scalars (or zeros). As a result, the dimension of wt

matches that of Ut , namely, wt ∈ R
|Ut |.

B. Generative Graphical Model

A generative graph is to embed a reconstructive mapping

ψ: R
dt 7→ Ut . Let G denote the graph whose vertices represent

the features in Ut . The weight of each edge in G encodes a

feature-wise relatedness. In this article, we have Gi, j > 0 if

feature i and feature j are related, and Gi, j = 0 otherwise.

We define vertex approximator 8i as a vector containing the

weights of all out-edges of a vertex i . The adjacency matrix of

G can thus be viewed as a matrix whose column vectors are

the vertex approximators, namely, G = [81, . . . ,8|Ut |]> ∈
R

|Ut |×|Ut |. Viewing G as a gathering of vertex approximators

instead of an adjacency matrix facilitates the understanding of

the later derivations.

We define the desired reconstruction of xt in the universal

feature space as ut = [f1, . . . , fdt
, f̃dt+1

, . . . , f̃|Ut |]> ∈ R
|Ut |,

where fi and f̃ j represent an original observable feature and a

reconstructed unobservable feature, respectively. We infer ut

by maximizing a log-likelihood function

Q =
dt

�

i=1

log P(ut |fi ,8i ). (1)

The features in Ut are inferred by given a vertex i and the

corresponding 8i as follows:

P(ut |fi ,8i) =
|Ut |
�

j=1

P(u j |fi ,8i ) (2)

where u j denotes the j th universal feature in ut . Note,

although universal features are inferred independently in (2),
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the values of the inferred universal features are indeed related,

and are determined by values of the observable features

(e.g., fi ) and the vertex approximators (e.g., 8i ). When a

different fi is observed, 8i will be updated correspondingly,

resulting in different values of the inferred universal features.

In this sense, the relatednesses among universal features are

captured via observable features that are used in the recon-

struction.

For the sake of simplicity of mathematical expression and

without loss of generality, assume P(u j |fi ,8i) follows a

Laplacian distribution [29], [30]. We can also choose, for

example, Gaussian distribution prior to the data distribution

to handle data from different sources [26], [31], [32]

P(u j |fi ,8i ) =
1

2σ
exp

�

−
|u j − E(u j)|

σ

�

(3)

where σ is a fixed variance [33], and E(u j ) is approximated

based on ψ given fi and 8i (see Section IV-A).

IV. OUR PROPOSED APPROACH

The objective function of GLSC takes the form

min
wt ,ψ

1

T

T
�

t=1

�

L
�

yt , w>
t ψ(xt )

�

+ α H + λ �(wt , ψ)
�

(4)

where the first term as a supervised loss function is minimized

for classification purpose. The second term, a reconstruction

error function, indicates the approximation between the desired

ut and the reconstructed ψ(xt ). The third term �(wt , ψ)

is a model regularizer (penalty function), which on the one

hand penalizes the model if it becomes too complex to avoid

over-fitting and on the other hand encourages a sparse model

representation to bound the maximal dimension of the model

parameters. α and λ are the tradeoff parameters for controlling

the significance of the second and third terms, respectively.

In the rest of this section, we begin by presenting the

building blocks of GLSC (such as H and �(wt , ψ) in the

objective function). The updating rules and the prediction

strategy are thereafter scrutinized. We end by analyzing the

complexity of our proposal.

A. Learning From Reconstruction Error

In capricious data streams, the feature spaces between any

two consecutive instances could be different, leading to a

highly dynamic environment. Learning a complex reconstruc-

tive mapping based on existing methods [34], [35] is thus

unrealistic. We restrict our interest in finding a linear mapping

relationship between two features. As a motivating example

to justify the appropriateness of using a linear mapping, we

consider an online text classification task where the universal

features are vocabularies from multiple languages [36]. Typi-

cally, when the word “Sano” (SP) is unobservable, it can be

reconstructed with a linear combination of its related words,

such as “Saine” (FR), “Great” (EN), and “Wholesome” (EN),

through an equation of “Sano” = 0.4 × “Saine” + 0.4 ×
“Great” + 0.2 × “Wholesome.” The coefficient of the related

words (i.e., “Saine,” “Great,” and “Wholesome”) indicates the

relatedness between “Sano” and each of these words—the

larger the value, the higher the relatedness. The non-related

words (e.g., “Awful,” whose semantic meaning is opposite to

“Sano”) are thus assigned zero-valued coefficients, and shall

not be involved in the reconstruction of “Sano.”

Specifically, we define E(u j ) = Gi, j fi in (3), where Gi, j ≥
0 represents the weight of the out-edge from vertex i to j .

Accordingly, the log-likelihood maximization problem in (1)

can be rewritten as

maxQ =
dt

�

i=1

log

� |Ut |
�

j=1

P(u j |fi ,8i)

�

=
dt

�

i=1

|Ut |
�

j=1

�

−
|u j − Gi, j fi |

σ
+ log

1

2σ

�

. (5)

Evidently, maximizing (5) is equivalent to minimizing the

following optimization problem with respect to G:

minH =
dt

�

i=1

|Ut |
�

j=1

|u j − Gi, j fi | =
	

	

	

	

ut − 1

dt

Gr>xt

	

	

	

	

2

2

(6)

where k · k2 is an `2-norm. Here, Gr denotes [81, . . . ,8dt
]>,

where the vertex approximator 8i is selected according to

the features fi in xt . The use of Gr enables us to update G

more efficiently. In particular, instead of updating the whole

G, we update only Gr, which is a part of G, determined by

the features carried by xt .

Optimizing (6) requires the knowledge of the unknown part

of ut (the x̃t part). To make (6) optimizable, we orthogonally

project both ut and Gr>xt onto the R
dt feature space, trans-

forming the (6) into the following:

min

	

	

	

	

5Rdt

�

ut − 1

dt

Gr>xt

�
	

	

	

	

2

2

= min

	

	

	

	

5Rdt (ut) −
1

dt

5Rdt (Gr>xt)

	

	

	

	

2

2

.

The aforementioned transformation is realized by distributing

the orthogonal projection operator over the minus operation.

By the definition of ut , we have 5Rdt (ut) = xt , allowing us

to simplify the aforementioned equation to the following:

min

	

	

	

	

xt − 1

dt

5Rdt (Gr>xt)

	

	

	

	

2

2

. (7)

Surprisingly, we can tell from (7) that the reconstruction

error is minimized if the reconstructive mapping is defined

as ψ(xt ) = (1/dt)(Gr>xt). Alternatively, we can understand

the minimization problem in (7) as follows. Suppose there is

an accurate mapping ψ that can reconstruct xt in Ut without

any noise, then the values of the observable features in the

reconstructed xt should be numerically identical to those in

the original xt .

It is worth noting that, since Gr is a discrete variable

determined by xt , the problem in (7) is an integer program

and it is difficult to solve. We introduce an indicator matrix

It ∈ R
dt ×|Ut | to represent which features in Ut are carried

by xt . Such kind of indicator matrix is also known as binary

selector matrix [37], whose nonzero entries are pointers to

the universal features carried by xt . For example, having an
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arriving xt = [f1, f3, f6]> and Ut = { f1, f2, f3, f4, f5, f6}, we

construct It as

It =

f1 f2 f3 f4 f5 f6
⎡

⎣

⎤

⎦

1 0 0 0 0 0 f1

0 0 1 0 0 0 f3

0 0 0 0 0 1 f6

which satisfies Gr = It G and 5Rdt (Gr>xt) = It (Gr>xt).

As such, the optimization problem in (7) with respect to G

is tightly relaxed and becomes differentiable, which provides

great convenience for our further derivation.

B. Learning From Supervised Loss

The accuracy of the universal feature space recovered by

minimizing (7) may be affected when xt does not convey suf-

ficient information, for example, xt only carries new features

or the number of features in xt is few. In this case, there

could exist arbitrarily many possible reconstruction choices of

ψ(xt ) that perfectly match xi on the observable entries, among

which searching the optimal one requires external information.

To address this issue, we utilize the class label, an abstract

representation of the reconstructed features, to provide extra

supervised information for learning a better mapping ψ .

We train the learner by minimizing the supervised loss

jointly along with the reconstruction error. With ψ(xt ) =
(1/dt)(Gr>xt), in this article, the supervised loss function is

implemented with the squared loss

L
�

yt , w>
t ψ(xt )

�

=
�

yt − w>
t ψ(xt )

�2

=
�

yt − 1

dt

w>
t Gr>xt

�2

. (8)

Model Sparsity: The dimension of wt will go infinite as

the data keep streaming with new features. To bound the

maximum dimension, penalizing the learning model with an

`1-norm regularizer is a common choice. This is because it

encourages a sparse solution of wt in which the values of

many weight coefficients are forced to be small or even zero.

The dimension of wt could thus be bounded by truncating the

smallest weight coefficients, with a ratio of γ .

Unfortunately, directly adopting the `1-norm regularizer for

dealing with capricious data streams faces the following issue.

The issue is, since the feature space of capricious data streams

varies arbitrarily, the features are described by the different

numbers of data instances as data streams flow in. The smaller

the number of instances describing a feature, the more biased

the distribution is learned regarding this feature. Such biases

may escalate with an increasing number of features being

described by few instances, rendering the `1-norm regularizer

to be.

1) Ineffective: In real applications, the dimension of the

universal feature space can increase rapidly, asking for

timely truncation. The `1-norm regularizer, in this case,

is inefficient since it may require a very large number

of learning iterations between two truncations to offset

the biases.

2) Invalid: When a new feature just appears, it is a conven-

tion to initialize its weight coefficient as a small scalar as

we do not have any prior knowledge about this feature.

If one iteration concurrently involves features-appearing

and learner-truncating, the weight coefficients of these

newly appeared features are truncated by coincident,

among which we may miss the important features. In

this case, the `1-norm regularizer becomes functionally

invalid, as it is sensitive to the sequence of arriving

instances.

To address the aforementioned drawback, we take the struc-

ture of graph G, which represents the relationship between

features, into consideration. When a pair of features show

strong relatedness, the weight of the edge between them, i.e.,

Gi, j , is large, and their feature coefficients, i.e., wi and w j ,

should be similar. To achieve this, we draw insights from graph

spectral analysis to design a graph regularizer onto `1-norm.

The regularization term in (4) is finally defined as

�(wt , ψ) = βkwtk1 + (1 − β)

|Ut |
�

i=1

|Ut |
�

j=1

Gi, j (wi − w j)
2

= βkwtk1 + 2(1 − β) Tr
�

w>
t Lwt

�

(9)

where L is the graph Laplacian of G and β is a tradeoff

parameter.

C. Updating Rules

By plugging (7), (8), and (9) into (4), our learning task is

reduced to solve the empirical risk minimization problem as

follows:

arg min
wt ,G

1

T

T
�

t=1

��

yt −
1

dt

w>
t (It G)>xt

�2

+ αkxt − 1

dt

5Rdt (It G)>xtk2
2

+ β1kwtk1 + β2 Tr
�

w>
t Lwt

�

�

(10)

where β1 = λβ, and β2 = 2λ(1 − β). We prove that the

main function (denoted by F ) in (10) is bi-convex, providing a

theoretical guarantee for convergence (see Section I in the Sup-

plementary Material for details). To solve (10), we follow the

common steps of solving a bi-convex optimization problem:

1) we divide (10) into two convex optimization subproblems,

which are with respect to wt and G, respectively, and 2) the

two subproblems are simultaneously solved at each iteration.

In this article, we use block-coordinate gradient

descent [38], [39] to optimize the subproblems. For

updating wt , we simply employ the first-order gradient

descent as wt+1 = wt − τ∇wt
F . For updating G, to

guarantee its nonnegativity, we follow the spirit in [40] to

use the multiplicative updating rules in a generic form as:

G = G ◦ (∇−
GF)/(∇+

GF), where we put all the negative terms

of the gradient in the numerator ∇−
GF and all the positive

terms in the denominator ∇+
GF . ◦ denotes the Hadamard

(element-wise) product. In implementing algorithms, any
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negative value appears in G is set to zero. The gradients of

F with respect to wt and G are

∇wt
F = −(2/dt)

�

yt − (1/dt)w
>
t (It G)>xt

�

(It G)>xt

+ β1∂kwtk1 + β2(L + L>)wt (11)

∇GF = (−2/dt)
�

yt − (1/dt)w
>
t (It G)>xt

�

I>
t xt w

>
t

− (2α/dt)I
>
t xt

�

xt − (1/dt)It (It G)>xt

�>
It . (12)

D. Ensemble Prediction

Given ψ(xt ) and the corresponding learner wt , conven-

tionally the prediction is defined in an inner product form,

namely, hwt , ψ(xt )i. To further improve the prediction per-

formance, we can combine two base predictions based on

xt , which contains the original observable features, and x̃t =
[f̃dt +1, . . . , f̃|Ut |]> ∈ R

|Ut |−dt , which contains the reconstructed

unobservable features

ŷt = phw̄t , xt i + (1 − p)hw̃t , x̃ti (13)

where w̄t and w̃t , together forming wt , are the weight coef-

ficients of xt and x̃t , respectively. The value of p decides

the impact of xt and x̃t in making predictions. Such an

ensemble prediction can eliminate the prediction errors caused

by potential noises in the reconstructed observable features,

which is likely to happen in the initial iterations when few

data instances have been seen.

The prediction loss function `(·) is convex in its first argu-

ment. In the implementation, we choose logistic loss for classi-

fication task, namely, `(y, ŷ) = (1/ ln 2) ln(1+exp(−y ŷ)). Let

Lobs
T =

�T
t=1 `(yt, hw̄t , xti) and L rec

T =
�T

t=1 `(yt , hw̃t , x̃t i)
denote the cumulative losses suffered by making predictions

on xt and x̃t over T iterations, respectively. At the iteration

T +1, we update the parameter p in (13) based on exponential

of the cumulative loss [41]

p =
exp

�

− ηLobs
T

�

exp
�

− ηLobs
T

�

+ exp
�

− ηL rec
T

� (14)

where η is a tuned parameter and its value assignment is

discussed in Section V. The intuition behind such ensemble

prediction strategy is that, when Lobs
T (or L rec

T ) is larger than

L rec
T (or Lobs

T ), the impact of xt (or x̃t ) is negatively rewarded

by our learning system.

E. Complexity Analysis

The details of GLSC are presented in Algorithm 1. A

step-by-step running time complexity analysis is provided

in Section III of the Supplementary Material. It is worth

noting that the largest number of operations occurs at step 7,

where the gradients in (11) and (12) are calculated, and

correspondingly, the worst running time complexity is O(d3
t ×

|Ut |2). Clearly, such complexity is unacceptable when the

data streams flow in with high dimensionality. In response,

this section analyzes the main causes of the poor efficiency

and introduces a retrieval strategy used in the implementation

which effectively improves the efficiency of GLSC.

The poor efficiency of GLSC is mainly caused by the

inappropriate treatments in handling Gr and G. We in (7)

Algorithm 1 GLSC Algorithm

Initialize: w1 = [0, . . . , 0]> ∈ R
d1 , Ut = ∅, G = ∅,

p = 0.5, and Lobs
T = L rec

T = 0.

1 for t = 1, . . . , T do

2 Receive instance xt , and Ut = Ut−1 ∪ R
dt ;

3 Retrieve Gr from G;

4 Predict the label as sign(ŷt) using (13);

5 Lobs
T += `(yt , hw̄t , xti), L rec

T += `(yt , hw̃t , x̃ti);
6 Reweight the parameter p using (14), where

η = 8
√

1/ ln T ;

7 Update wt+1 and G using (11) and (12), respectively;

8 Truncate wt+1 based on γ ;

introduce It to relax the discreteness of the optimization

problem. However, such a treatment brings more inner product

operations, making GLSC less efficient. On the other hand,

if the data streams come continually without stopping, it

becomes infeasible to store and update G which consumes

huge space resources.

To save the computational cost and resources, we implement

G using a nested hashmap, so that we do not need to initialize

It at each iteration; Instead, we can retrieve Gr from G, and

update Gr directly. The idea of our retrieval strategy is to reuse

8i of xi if xi has already been observed before. For any new

feature x j carried by xt , we first build the out-edges between x j

and the others, representing the relatednesses among features.

By doing this, the feature relatednesses are fully captured

without being affected by the data scale—indeed, the big-

O complexity of GLSC is reduced from O(d3
t × |Ut |2) to

O(d2
t × |Ut |).

We now analyze the running time complexity of the three

algorithms that we will conduct comparative experiments with

(see Section VI), i.e., OCO, OLSF, and FESL. For OLSF

and FESL, we are not able to adapt them to work for

capricious data streams. To make the complexity comparison

meaningful, we first analyze their complexities in their own

settings, namely, OLSF in trapezoidal data streams and FESL

in feature evolvable streams. After this, we discuss the com-

plexity of GLSC when adapted to these settings. For simplicity,

we assume the matrices are invertible when the inversion

operations are needed (for the singular matrices, we compute

their Moore–Penrose pseudo-inverse instead).

The complexity for OCO, the most naïve OCO algorithm,

is well known as O(D2) for a fixed D-dimensional feature

space [42]. Adapting OCO to handle capricious data streams

requires to update a model whose number of parameters is

Ut in order to handle each appeared feature. As a result, the

time complexity of OCO is O(|Ut |2), which is worse than

that of GLSC when |Ut | > d2
t . However, OCO uses sparse

model representations in which coefficients corresponding to

unobservable features are simply set to zeros at each iteration.

Thus, in practice, OCO is faster than GLSC since sparse

matrices are handled more efficiently at the architectural level

of the machine. We will present more details in Section VI-D.
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OLSF improves OCO by initializing model parameters of

the new features using the principle of margin-maximum rather

than padding zeros. Since the complexity of the initialization

is linearly bounded by the number of new features, the time

complexity of OLSF in the context of trapezoidal data streams

is still O(|Ut |2). When GLSC is adapted to handle trapezoidal

data streams, instead of calculating the feature mappings

amongst all universal features, only the feature mapping from

the old features to the new features is calculated. Thus, the

complexity of GLSC is reduced to O(d2
t−1 × 1dt), where

1dt = |Ut | − dt−1 denotes the number of new features. We

can observe that the complexity of GLSC is lower than that

of OLSF when |Ut | > d2
t−1 and is higher otherwise. In all the

evaluated data sets, GLSC takes about 20% more runtime than

OLSF, with details in Section VI-D.

For FESL, the most complex part is computing feature

space mapping that involves a matrix inversion. Since the

complexity of this part is O(dt ×(1dt)
2), so is the complexity

of FESL itself. Note, for OCO, OLSF, and GLSC, the time

complexity with T iterations can be obtained by multiplying

the single iteration complexity with T . However, for FESL,

the T iterations complexity is O(dt × (1dt)
2 × B), where B

denotes the number of instances that carry all features in Ut .

If we adapt GLSC to work for feature evolvable streams, the

complexity of GLSC for T iterations is O(d2
t × |Ut | × B).

In practice, FESL usually sets dt to be close to 1dt , so

the complexity of GLSC is slightly worse than FESL and is

bounded by the ratio of (1dt)/dt .

V. THEORETICAL ANALYSIS

In this section, we borrow the idea of regret from online

learning [41] to measure the performance of GLSC. We derive

a cumulative loss bound and show that, over T iterations, our

approach guarantees a lower cumulative loss than approaches

that do not make use of the recovered feature space. To save

space, the proofs for theorems in this section are provided in

Section II of the Supplementary Material.

Theorem 1: Let LT =
�T

t=1 `(yt , ŷt) denote the overall

cumulative loss of GLSC over T iterations. LT with parameter

η = 8(1/ ln T )1/2 satisfies

LT ≤ min{Lobs
T , L rec

T } + T
√

ln T
+ ln 2

8

√
ln T .

Remark 1: This theorem indicates that the cumulative loss

LT is the lower of Lobs
T and L rec

T bounded by the scalar

1 = T/(ln T )1/2 + (ln 2/8)(ln T )1/2, which is sublinear to the

number of iterations. The recovered feature space improves

model accuracy when w̃t is better than w̄t such that the relation

Lobs
T − L rec

T > 1 is satisfied. In this case, it is easy to verify

that LT < Lobs
T , indicating that the learner trained with the

assistance of the recovered feature space yields a strictly lower

cumulative loss than those without the assistance.

Furthermore, we have the following theorem.

Theorem 2: If w̄t is better than w̃t over T iterations, then

LT is bounded as

LT < Lobs
T + C

where C is a constant, and C � 1.

Remark 2: This theorem states that the cumulative loss LT

of GLSC is comparable to Lobs
T and is bounded by a constant.

Note that the assumption of this theorem is very weak since

it assumes `obs
t < `rec

t for all iterations. In other words, the

arriving instances always lie in a feature space that is more

informative than the unobservable feature space. In practice,

it is very likely that xt carries very few features or xt carries

noisy features, making w̄t worse than w̃t in some iteration.

Therefore, Theorem 2 indeed gives an upper bound of the

cumulative loss of GLSC over T iterations. In practice, GLSC

enjoys lower cumulative losses.

Theorems 1 and 2 offer our learning algorithm a nice

property as follows.

Corollary 1: The learning performance is improved by

making use of the recovered universal feature space.

Proof: On the one hand, when w̄t is better than w̃t over

T iterations, Theorem 2 tells that the cumulative loss LT of

GLSC is comparable to Lobs
T and is bounded to a constant. On

the other hand, when w̃t is better than w̄t over T iterations,

it is obvious that the recovered unobservable feature space is

helpful. Furthermore, if w̃t is better than w̄t to certain degree,

satisfying Lobs
T − L rec

T > 1, it is easy to verify that LT < Lobs
T .

To conclude, the learner with assistance from the universal

feature space achieves better performance than that without

the assistance. �

VI. EXPERIMENTS

In this section, we first introduce the data sets used in

this article along with the general settings (see Section VI-A).

One data set is collected by ourselves as learning from

capricious data streams has not been well explored and few

well-established data sets are widely available. Section VI-B

presents the experimental results, comparing GLSC with the

state-of-the-art algorithms. Section VI-C investigates the help-

fulness of constructing a universal feature space by comparing

GLSC with its two variants, namely, GLSC-o(bservable) and

GLSC-r(econstructed). Section VI-D presents the efficiency

of relevant algorithms. We carry out an ablation study on

parameters α, β1, and β2 of (10) in Section VI-E.

A. Data Sets and General Settings

We perform the experiments on 16 data sets consisting of

14 UCI data sets [43] and two real data sets—one is the IMDB

data set [44], the other is our collected Communities that Care

Youth Survey (CCYS) data set. The statistics of the used data

sets are summarized in Table I.

The UCI data sets are randomly selected, spanning a broad

range of applications such as economy, genetic research,

medical science, etc. We synthesize capricious data streams

by randomly removing features from each arriving instance

xt . The ratio of the maximal removed features is denoted as

VI. For example, VI = 0.5 means that at most 50% of features

in xt are randomly removed. The default value of VI is 0.5 in

our experiments.

The task in the IMDB data set is to classify the movie

reviews into positive and negative sentiments. Each word in

the reviews is considered as a feature. Since the words used in
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TABLE I

CHARACTERISTICS OF THE STUDIED DATA SETS

each and every review could be different, we formulate the task

as learning from a varying feature space. Each movie review is

treated as a word vector comprising a bag of words. For those

words that do not appear in the current review, we treat them

as unobservable features. In OCO, the value of unobservable

features in the word vector are simply set as zeros. As such,

the OCO is equivalent to the 1-g bag-of-word (BOG) model

known in the NLP tasks. The comparison between GLSC and

OCO in the IMDB data set carries over to the comparison

between GLSC and the 1-g BOG model.

We collected the real data set during the research project

called the CCYS, which is administered and funded by

the Louisiana government. The data are collected from

79 988 U-12 students enrolled in public schools throughout

the State of Louisiana. In total, 355 features are designed

and collected through questionnaires provided by eight inde-

pendent agencies. These questionnaires assess the students’

exposure to a set of risk and protective factors (e.g., fam-

ily, neighborhood, school, etc.) which have impacts on the

students’ social behavior. For example, students who live in

disorganized, crime-ridden neighborhoods are more likely to

become involved in crime and drug abuse than those who

live in safe ones. The students are not obligated to answer

all the questionnaires, and in practice, they only answer the

partial questions that they are interested, thus the feature space

describing different students varies. Our task is to predict the

students’ involvement in anti-social behaviors (the original

CCYS data are multilabeled, but in this article, we only focus

on one label and delete the instances that are not associated

with this label; after the deletion, we keep 33 000 instances).

To find the best settings of the parameters α, β1, and β2,

we use grid searches ranging from 10−5 to 1. For efficiency

purpose, we let |Ut | ≤ 150 by setting γ in different data

sets. For more detailed settings, refer to the Supplementary

Material.

B. Comparisons With State-of-the-Arts

Table II presents the results of performance comparison in

terms of classification accuracy. Three baseline algorithms,

OLSF [4], FESL [5], and OCO [1], as well as the proposed

GLSC algorithm are evaluated in this section. In particular,

OLSF can only handle trapezoidal data streams where the

feature space monotonically augments as data flow in, while

FESL can only handle feature evolvable streams where feature

space batchly evolves by following an explicit pattern—both

new and old features exist in an overlapping time period. The

trapezoidal and feature evolvable data streams are the special

cases of capricious data streams, and we simulate these two

kinds of data streams by following the methods provided in

the respective work. We compare GLSC with OLSF and FESL

on trapezoidal data streams and feature evolvable streams,

respectively. On capricious data streams, GLSC is compared

with OCO, which, as mentioned in Section I, is a naïve

online learning algorithm that makes a prediction based on

the observable feature space only.

On trapezoidal data streams, the average accuracy values of

GLSC and OLSF are 86.69% and 75.40%, respectively, and

GLSC statistically achieves better results on 13 out of 16 data

sets. Moreover, on 12 out of 16 data sets, the classification

variances of GLSC are smaller than those of OLSF. The

main reason is that GLSC considers the feature relatednesses

in model penalty while OLSF does not, and therefore the

classification accuracy of GLSC is more robust.

On feature evolvable streams, GLSC and FESL achieve

87.98% and 77.12% accuracy on average, respectively, and

GLSC outperforms FESL on 11 data sets. This is because

FESL trains a learner mainly with the help of the time period

in which old and new features exist simultaneously, while

GLSC can keep updating the learned reconstructive mapping

over all iterations. The way that GLSC learns the mapping

suggests that the classification accuracy could be improved

when a large number of instances flow in, and the results

support it. For example, we observe that the average accuracy

of GLSC is 19.78% higher than that of FESL on large-scale

data sets such as splice and HAPT.

On capricious data streams, the average accuracy of GLSC

is 91.02%, while that of OCO is only 65.44%. In addition,

GLSC wins over OCO on 15 data sets. We also find out that

the classification result of GLSC is stable across different data

sets. The results indicate that GLSC could effectively handle

arbitrarily varying feature spaces.

Note, if we fix the feature space (i.e., no removed fea-

tures), our proposed GLSC degrades to OCO with a spectral

regularizer [45], [46]. Therefore, the performance of GLSC

in handling a varying feature space is upper bounded by its

performance in a fixed feature space. We show such upper

bound performance in the rightmost column in Table II.

C. Impact of Universal Feature Space

In this section, we compare GLSC with three approaches.

One is OCO, which could work on capricious data streams,

as a baseline algorithm. The other two are the vari-

ants of GLSC, namely, GLSC-o(bservable) and GLSC-

r(econstructed), respectively. Their difference is that, when

making a prediction, GLSC-o uses the observable features

while GLSC-r uses the reconstructed features. To investigate

the impact of universal feature space, we aim to answer the

following three questions:

Q1. How effectively can the universal feature space capture

feature relatednesses?

The smaller reconstruction error the universal feature space

has, the better the feature relatednesses are captured. In
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TABLE II

EXPERIMENTAL RESULTS (MEAN ACCURACY ± STANDARD DEVIATION) ON 16 DATA SETS IN THE SETTINGS OF TRAPEZOIDAL DATA STREAMS,
FEATURE EVOLVABLE STREAMS, CAPRICIOUS DATA STREAMS, AND FIXED FEATURE SPACE. WE APPLY A RANDOM PERMUTATION TO EACH

DATA SET AND REPEAT THE EXPERIMENT TEN TIMES. THE BEST RESULTS ARE BOLD. • INDICATES GLSC HAS A STATISTICALLY

SIGNIFICANT BETTER PERFORMANCE THAN THE COMPARED ALGORITHMS (HYPOTHESIS SUPPORTED BY PAIRED T-TESTS AT 95%
SIGNIFICANCE LEVEL). THE WIN/TIE/LOSS COUNTS FOR GLSC ARE SUMMARIZED IN THE LAST ROW

Fig. 2. Trends of average cumulative losses of GLSC and three baseline algorithms. (a) Australian. (b) Credit-a. (c) German. (d) Svmguide3. (e) HAPT.
(f) IMDB. (g) CCYS.

addition, due to the bi-convexity of our objective optimization

function (10), the reconstruction error is positively correlated

with the prediction loss. Therefore, the prediction loss could

be used in turn to measure the accuracy of the captured feature

relatednesses.

Here, we present the trend of average cumulative loss

(acl) in Fig. 2. At the iteration T , acl= LT /T . Based on

the results, we find that although the curve of GLSC-r may

increase during the beginning iterations, it decreases as more

data flow in and eventually converges. This intuitively makes

sense because the more arriving instances the learner receives,

the better the feature relatednesses are learned, reducing the

value of acl. Moreover, the average cumulative losses of

GLSC and GLSC-r both drop to small values after conver-

gence. Thus, the reconstruction error in general is small,

which suggests that the feature relatednesses are captured

accurately.

Q2. Can the universal feature space help improve learning

performance?

From Fig. 2, we make the following observations.

1) After convergence, the average cumulative loss of GLSC

is significantly smaller than that of OCO. GLSC enjoys
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Fig. 3. Trends of p values in the ensemble prediction. (a) Australian. (b) Credit-a. (c) German. (d) Svmguide3. (e) HAPT. (f) Magic04. (g) IMDB.
(h) CCYS.

better performance because the universal feature space

can provide more information.

2) OCO may surpass GLSC-o when the number of

instances is small, but the average cumulative loss of

GLSC-o becomes smaller than that of OCO after con-

vergence. This means that a better learner is obtained

based on the universal feature space.

3) The average cumulative loss of GLSC is comparable to

the best of GLSC-o and GLSC-r, and is smaller than

them when the number of instances is large. The result

validates Corollary 1 in Section V.

Q3. Can the ensemble prediction cancel the noise caused

by the inaccurate feature space recovery?

It is intuitive to use the original and reconstructed features

together in a single term, and give them the same importance.

However, in the initial iterations during training, the recon-

structed features are most likely to contain noise as few data

instances have been seen, degrading the learning performance

of GLSC. As such, we in (13) present an ensemble strategy

to cancel the noise caused by the inaccurately reconstructed

features. A self-adaptive parameter p is introduced to decide

the significances of the original features (first term) and the

reconstructed features (second term) in making predictions.

Thus, it is interesting to know what values of p are learned

during the learning process.

Fig. 3 illustrates the trends of the p values in the experi-

ments on eight data sets. We start by setting p = 0.5, hoping

that they contribute equally. Afterward, we observe: 1) the val-

ues of first p rise, meaning that the impact of the reconstructed

features is negatively rewarded by our learning system, which

validates that these reconstructed features contain noise in

initial iterations as few data instances have been seen and 2)

the values of the p drop, revealing that the larger the number of

data instances feed to our learning system, the more precise the

reconstructed features become. In most data sets, p converges

TABLE III

COMPARISON OF RUNTIME PERFORMANCE (IN Seconds)

to about 0.5, representing an ideal case where reconstructed

and original features contribute equally. In other data sets, it is

in [0.4, 0.7], depending on the shape and noise in individual

data sets.

D. Comparisons on Computational Efficiency

In addition to the theoretical analysis of the time complexity

provided in Section IV-E, a summary of the runtime perfor-

mance for GLSC and the compared algorithms is reported in

Table III, exhibiting the answer to the question.

Q4. At what cost do we achieve a specific increase in

prediction accuracy?

For the data sets with a small number of features, e.g.,

WBC, diabetes, and magic04, the dimensions of the universal
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Fig. 4. Accuracy of GLSC with respect to different α’s and β1’s. The darker the color, the higher the model accuracy. (a) Australian. (b) Credit-a.
(c) German. (d) Svmguide3. (e) HAPT. (f) Magic04. (g) IMDB. (h) CCYS.

feature spaces constructed on these data sets are also small.

GLSC correspondingly has similar runtimes with the com-

pared algorithms. For the data sets with a large number of

features, e.g., HAPT, IMDB, and CCYS, though the maximum

dimension of the universal feature space is bounded in imple-

menting algorithms, GLSC still takes more runtime than the

others. Overall, the larger the total number of features owned

by a data set, the higher the probability that arriving instances

have large dimensions, and thus the longer the runtime that

GLSC takes. For other data sets, the slowdowns are within a

factor of 3 when compared with OCO, and within a factor of

1.5 when compared with OLSF and FESL.

E. Ablation Study

The objective function of GLSC is governed by three para-

meters α, β1, and β2. To investigate the impact of parameter

values on the accuracy of our model, we have conducted an

ablation study. This section provides the details of this article.

The parameter α controls how strongly the reconstruction

function preserves the values of the original, observable

feature. To investigate how it affects the prediction

performance of GLSC as its value varies, we measure

the performance as α is given each value from the set

{1e−4, 5e−4, .001, .005, .01, .05, .1, .25, .5, .75, 1}. The

other two parameters β1 and β2 encourage the classifier

wt to have sparse weight coefficients. The relationship

between β1 and β2 is that β2 = 2λ − 2β1, which means

that, when λ is fixed, the larger the value of β1, the smaller

the value of β2. To grid-search the optimal values for

β1 and β2, we let λ range over {.0001, .001, .01, .1}. For

each λ value, we consider three β1 values. Specifically, the

corresponding values of β1 to λ are {1.5e−5, 5e−5, 8.5e−5},
{1.5e−4, 5e−4, 8.5e−4}, {1.5e−3, 5e−3, 8.5e−3}, and

{.015, .05, .085}. As an example, when λ = 0.0001, the

values for β1 are {1.5e−5, 5e−5, 8.5e−5}. The value for β2

can be computed based on the aforementioned relationship.

Performance variance results are presented in Fig. 4. From

the results, we can observe that the optimal value of α

on different data sets is around 0.5 (the right-most tick on

the α-axis). Thus, we can adopt such an empirical value

in practice. Similar to other graph-based feature selection

methods, the optimal value of β1 (and β2) in GLSC varies

on different data sets. Making regularization parameters (β1

and β2 in our scenario) self-adaptive is under active research

but remains an open issue [45], [47], [48]. We plan to address

it in the future.

VII. CONCLUSION

In this article, we focus on a general and challenging

setting—learning from a varying feature space. By utilizing

the relatednesses among features, we learn a mapping from

the observable feature space to a universal feature space in

which both old and new features can be used for prediction. A

learner is trained on the universal feature space, and theoretical

results show that it can achieve better performance with strong

guarantees. We carry out extensive experiments and the results

demonstrate that our approach is effective.
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