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Abstract

Across multiple domains of social perception - including social categorization, emotion 

perception, impression formation, and mentalizing - multivariate pattern analysis (MVPA) of 

fMRI data has permitted a more detailed understanding of how social information is processed 

and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social 

perception initially relied on broad structure-function associations derived from univariate fMRI 

analysis to map neural regions involved in these processes. In this review, we trace the ways that 

social neuroscience studies using MVPA have built on these neuroanatomical associations to 

better characterize the computational relevance of different brain regions, and how MVPA 

allows explicit tests of the correspondence between psychological models and the neural 

representation of social information. We also describe current and future advances in 

methodological approaches to multivariate fMRI data and their theoretical value for the 

neuroscience of social perception.
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 Computational approaches to the neuroscience of social perception

Other people are tremendously complex, and humans must navigate their relationships 

and interactions with others under conditions of high uncertainty. Whether meeting a stranger, 

reading a description of someone, or trying to determine how a friend is feeling, we rely on a set 

of perceptions and inferences about the person to determine our behavior. Understanding how we 

form impressions about others has been a central focus in social psychology for decades, and 

more recently the topic has proven to be well-suited to methods from computational 

neuroscience, which can readily leverage the inherently high-dimensional nature of 

neuroimaging data alongside behavioral measures of social perception. In this article, we review 

recent advances in computational approaches to the neuroscience of social perception. We focus 

particularly on multivariate analyses of fMRI data, but computational analyses of behavioral data 

used in conjunction with fMRI, such as using fMRI and behavioral responses to estimate 

parameters of computational models, is an increasingly popular approach as well and is reviewed 

elsewhere (e.g., Cheong et al., 2017; Gonzalez & Chang, 2019; Hackel & Amodio, 2018).

        As in other areas of social neuroscience, early fMRI studies on social perception generally 

focused on univariate activation-based analyses to associate relevant social cognitive processes 

with particular brain regions, which continues to be a valuable mainstay. This research described 

a number of regions important for social perception, such as the primacy of the fusiform gyrus 

(FG) in face processing (Haxby et al., 2000; 2002; Kanwisher et al., 1997); superior temporal 

sulcus (STS) in dynamic face and body perception (Grossman et al., 2000; Haxby et al., 2000; 

Said et al., 2010); and regions such as the medial prefrontal cortex (MPFC; Amodio & Frith, 

2006; Mitchell, 2008) and temporo-parietal junction (TPJ; Saxe & Kanwisher, 2003) in thinking 

about others and representing their mental states (“mentalizing”). Multivariate pattern analysis 

(MVPA) was first introduced to neuroimaging research by Haxby and colleagues (2001), 

expanding the conceptual and methodological toolkit of neuroimaging researchers by providing a 

different way to conceptualize the patterns of activation that emerge in fMRI data. In the present 

review, we first briefly introduce MVPA techniques and discuss their theoretical basis as well as 

some related advantages and limitations. We then review in turn three domains of social 

perception research where these techniques have proven highly valuable: perceiving social group 

memberships, perceiving identity and associated traits and person knowledge, and perceiving 

others’ emotional states.
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 MVPA Approaches

Univariate approaches primarily seek to relate the overall level of activation in a region to 

task conditions or experimental variables, which can provide neuroanatomical associations with 

those conditions or variables and their related psychological processes (although with exceptions, 

e.g., adaptation paradigms). However, neural regions assessed via fMRI do not only vary in their 

mean level of activation, but also in the spatial patterns of activation distributed across voxels. 

MVPA methods are sensitive to fine-grained differences in these spatial patterns of activation, 

whereas mass univariate testing treats each voxel individually, almost always ignoring the level 

of activation in contiguous voxels in statistical tests. This sensitivity enables MVPA to 

differentiate experimental conditions even in cases where mere differences in mean activation of 

a voxel cannot (Haxby et al., 2001; 2014). 

A key assumption often made about MVPA and influencing how MVPA analyses are 

generally interpreted is that neural response patterns inherently contain information about an 

associated cognitive state (Davis et al., 2014; Haynes, 2015; Lewis-Peacock & Norman, 2014; 

Popov et al., 2018). Researchers can thus probe condition response patterns to see how they may 

differ between brain regions, revealing the involvement of different regions in processing 

information or representing states relevant for a given task. Thus, multivariate analyses often 

target regions already known to be involved in specific tasks to specify how that region is 

representing information throughout the task and what computational processes that region may 

support. Neuronal recordings in nonhuman primates have long shown that the aggregate activity 

of an assembly of neurons can provide a ‘code’ for various kinds of sensory and abstract 

cognitive information in the brain (i.e., a “population code”; Averbeck et al., 2006). Although 

fMRI voxels are far too large to be sensitive to individual neurons, neurons belonging to 

different neuronal assemblies (e.g., related to state 1 vs. state 2) may be distributed in different 

ways such that the precise assembly of neurons related to each state may vary across voxels. This 

could thereby give rise to distinct fMRI multi-voxel patterns associated with distinct states, 

despite a lack of sensitivity to individual neurons (Logothetis, 2008; Chaimow et al., 2011). In 

this way, MVPA provides a way to extend the population coding approach from systems 

neuroscience to the macro-scale populations measured with fMRI (Haynes, 2015; Haxby et al., 

2001; 2014; Lewis-Peacock & Norman, 2014; but see the Conclusions section for a discussion of 

related limitations).
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In its original application, Haxby and colleagues (2001) used MVPA to demonstrate that 

ventral temporal cortex shows spatially distributed response patterns to visual object categories 

that can be discriminated from the region’s face response pattern using a classifier. Importantly, 

this included the fusiform face area (FFA), a region of fusiform gyrus (FG) that reliably shows 

higher mean activations for faces compared to other visual categories (Kanwisher, 1997). This 

approach demonstrated that regions which show selectivity in univariate signal for one category 

also can hold (perhaps even equivalent amounts of) information about other categories. Such a 

classification (or “decoding”) analysis enables researchers to use neural response patterns to 

predict an associated cognitive state or stimulus condition (Lewis-Peacock & Norman, 2014). A 

classifier is typically trained on one set of the data and tested on at least one other held-out set. 

By training a classifier to discriminate between any given experimental factors (i.e., conditions 

or stimulus characteristics), testing the classifier on held-out data can reveal which regions are 

involved in representing those conditions or characteristics of the stimuli. Another common way 

to interpret the results of a classifier is that categorical boundaries between stimuli are 

“computationally relevant” in a given brain region if that region shows high classification 

accuracy for that category boundary. This interpretation assumes that if a brain region’s patterns 

of activity discriminate between two stimulus categories, information about that category 

boundary is retained in that region’s spatial response patterns because it is relevant for whatever 

computation that region is performing in that particular cognitive context.       

In addition to being used to classify brain states by experimental conditions or stimulus 

categories, multi-voxel patterns associated with different conditions can be directly compared by 

measuring pairwise similarities in their response patterns. While sometimes quite illuminating in 

and of itself (showing, for example, that White individuals with a strong pro-White bias have 

more dissimilar neural response patterns for the Black and White race categories; Brosch et al., 

2013), similarity between neural patterns can also be leveraged to test explicit theories about 

how the brain represents information. This technique, called Representational Similarity 

Analysis (RSA; Kriegeskorte et al., 2008), provides a shared framework for testing and 

comparing diverse models of neural computation (computational, theoretical, behavioral) by 

examining their second-order isomorphisms (i.e., similarities in the structure of their similarity 

spaces). This technique was developed by computational neuroscientists who have used it to 

assess how well the representational structure of the ventral-visual stream corresponds with 
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various computer vision models (Kriegeskorte et al., 2008; Khaligh-Razavi & Kriegeskorte, 

2014; Jozwik et al., 2017). 

Assuming that multi-voxel response patterns contain information about certain cognitive 

factors, RSA starts by computing how similar (or dissimilar) each condition or category is from 

each other in their neural response patterns throughout the brain. The resulting similarity space 

can be directly compared with any other second-order similarity space, most commonly those 

derived from computational models or behavioral task responses. Thus, while decoding and 

classification approaches can reveal which regions contain or process information about 

cognitive dimensions, RSA is able to directly test hypotheses about how that information is 

organized and represented, which can in turn address questions about which psychological or 

stimulus dimensions are computationally relevant in a given brain region (Kriegeskorte et al., 

2008; Popal et al., 2019). Despite its explanatory power, RSA is highly computationally tractable 

and thus broadly approachable for researchers. RSA is especially relevant for social and affective 

neuroscience due to the large number of models proposed in the literature describing how social 

groups, emotion categories, and traits relate to one another along dimensions such as stereotype 

content, facial cues, and affective properties (e.g., Fiske et al., 2002; 2007; Oosterhof & 

Todorov, 2008; Russell, 1980). RSA allows researchers to specifically adjudicate between such 

models, testing competing and complementary explanations for how the brain represents and 

computes social information. We now turn our attention to specific areas of social perception 

research where MVPA and RSA have been leveraged to make important new insights.  

Social Categories and Groups

An illustrative example of the contrast between univariate and multivariate fMRI 

analyses in the domain of social categorization comes from a set of papers that used both 

techniques to analyze the same dataset. In the experiment, participants were assigned to one of 

two arbitrarily defined mixed-race groups and then had to categorize faces from the two groups 

along either in-group vs. out-group or Black vs. White dimensions. The first paper (Van Bavel et 

al., 2011) reported an in-group selectivity effect in the FFA, such that a univariate in-group vs. 

out-group contrast showed greater mean activity in response to in-group vs. out-group members, 

despite the fact that both groups were mixed-race. However, a follow-up report showed that, 

despite the overall difference in activation in response to in-group members, the race of the faces 
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could still be discriminated by a multivariate pattern classifier (Ratner, Kaul, & Van Bavel, 

2013). These results indicated that the race of the faces was still computationally relevant in the 

FFA, regardless of the difference in mean activation driven by the social context and current 

processing goals.

Many studies examining univariate social category responses in regions such as the 

FG/FFA interpreted greater activation for one category vs. another as enhanced processing of or 

greater attention to the target category in the contrast (Golby et al., 2001; Lieberman et al., 

2005). Some have interpreted such results as providing a neural basis for long-standing out-

group deficit effects in social psychology, such as better memory for in-group vs. out-group 

faces along a number of dimensions (Hugenberg et al., 2010; Meissner & Brigham, 2001). 

Multivariate decoding approaches simultaneously challenge and complement these results by 

demonstrating that even if a brain region does not show univariate selectivity for a given 

category, it still might represent and process information about that category. 

Still, to date, relatively few studies have used multivariate decoding on social category 

responses. In one of the earliest applications of MVPA to social categorization, Kaul et al. (2011) 

found that face gender could be reliably decoded from an array of brain regions commonly 

associated with various levels of face processing. Classifier performance was highest in the 

medial orbitofrontal cortex (mOFC), FG, and inferior occipital gyrus (IOG). Contreras and 

colleagues (2013) showed that both face gender and race could be decoded from neural response 

patterns in a social categorization task, but after controlling for low-level differences in the 

stimuli from each category, the only region that showed accurate decoding was the FFA, further 

distinguishing the importance of this region in representing faces at the level of social categories. 

In a study that aimed to decode multi-voxel patterns associated with the broadest social group 

distinction possible (i.e., “us” vs. “them”), classification was used to show that the dorsal 

anterior cingulate cortex/middle cingulate cortex (dACC/MCC) and anterior insula (AI) contain 

high-level information about group boundaries ranging from arbitrarily-defined “minimal” 

groups to political groups (Cikara et al., 2017).

Reconciling and integrating findings from univariate and multivariate fMRI is an 

important ongoing task across all fields that use neuroimaging (Davis et al., 2014). RSA has 

recently proven quite useful for these purposes, since it can not only help reveal which brain 

regions represent social category-relevant information, but also the nature and organization of 
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those representations. In social psychology, social categorization has traditionally been 

considered an automatic and obligatory perceptual process that precedes any more “cognitive” 

social processes such as stereotyping (Allport, 1954). However, alternative approaches 

emphasize the idea that social-conceptual knowledge (i.e., stereotypical associations) and other 

top-down social cognitive processes can weigh in on face processing before a percept has 

solidified, thereby allowing implicit stereotypes to shape face perception (Freeman & Ambady, 

2011; Freeman & Johnson, 2016). Recent work applying RSA has examined whether an 

individual’s stereotypical associations are reflected in how the brain represents others’ faces, an 

approach which can also reveal how “deeply” such top-down associations reach (i.e., regions that 

would suggest perceptual vs. post-perceptual processing of faces). Stolier and Freeman (2016) 

found that neural representations of faces’ social categories (e.g., Black, Female, Happy) in the 

FG and orbitofrontal cortex (OFC) demonstrated a similarity structure that was predicted by a 

subject’s own unique stereotype knowledge about those categories. That is, if someone held 

more similar stereotypes about the categories ‘Male’ and ‘Anger’, the multi-voxel patterns 

associated with those categories exhibited a greater similarity when subjects passively viewed 

faces belonging to those categories (Figure 1). 

These findings suggest that the way face category representations are organized in 

regions important for face perception, such as the FG, is partially determined by stereotypes 

about those categories. Moreover, the fact that this similarity structure was also observed in the 

OFC suggests that domain-general perceptual processes associated with the OFC may be 

involved in driving the impact of stereotypes on face perception (Freeman & Johnson, 2016). In 

particular, the object recognition literature suggests that the OFC is recruited in perceptual 

categorization tasks when incoming visual input matches a pre-existing visual association or 

heuristic in memory (Bar, 2003; Bar et al., 2006; Summerfield & Egner, 2009). This effect is 

strengthened when the visual input is ambiguous or impoverished, suggesting that the OFC is 

involved in exerting visual predictions about category membership before those categorizations 

have fully solidified. One possibility is that the OFC is involved in a similar predictive capacity 

in perceiving social categories, supplying the FG with top-down visual predictions or 

expectations about social categories. In this case, the use of RSA permits inferences about the 

way social category representations are organized in visual processing regions as well as the 

high-level regions that may be involved in providing top-down social information to them.
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It is sensible that visual face processing regions would partially depend on such rapid top-

down input, as there are a number of challenges faced in social categorization, particularly when 

faces have atypical or ambiguous features. Any given facial feature can be more or less related to 

any set of social categories at once, and faces naturally vary on featural continua related to 

gender, race, and a host of other category dimensions. For example, a White face may not only 

have more or less White category-associated cues but may bear partial cues related to the Black 

category as well (Locke et al., 2005). Previous work suggests such multiple cues co-activate 

multiple category representations regardless of the ultimate categorization (Freeman et al, 2008; 

Freeman et al., 2010). MVPA has recently been used to investigate how the perceptual system is 

guided towards a final categorization despite features that may initially activate multiple social 

categories. Based on prior computational models of social categorization (Freeman & Ambady, 

2011), Stolier and Freeman (2017) tested the possibility that initially the perceptual system co-

activates any categories associated with features on a face, which then must compete and resolve 

over hundreds of milliseconds. They additionally examined whether cognitive monitoring 

processes may be recruited help resolve the competition, either to flag more attentional resources 

to be directed to the stimulus or perhaps to play an inhibitory role in the competition. For 

example, a feminine male face may initially elicit simultaneous partial activation of the 

categories Male and Female, then cognitive monitoring processes may help resolve the 

competition such that one category (‘Male’) wins out and the other category is cleared from 

processing (‘Female’). A likely candidate for such processes would be the pre-supplementary 

motor area/dorsal anterior cingulate cortex (pre-SMA/dACC), a region central to cognitive 

monitoring and competition between decisions in tasks (Dosenbach et al., 2007).

In the study, subjects were presented with faces manipulated to vary in the typicality of 

their gender or race features, such that one category (e.g., Male or White) could have features 

more or less related to the alternate category (e.g., Female or Black). To measure perceivers’ co-

activation of multiple categories while viewing each face, participants performed a mouse-

tracking task in the scanner, in which they made speeded face categorization decisions with a 

computer mouse while the trajectories of their mouse movements were recorded. The deviation 

of mouse trajectories toward unselected categories has been well-validated as a measure of 

multiple category co-activation during perception (Freeman, 2018; Freeman & Ambady, 2010). 

For instance, a mouse trajectory that deviated towards the ‘Male’ response option en route to a 
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categorization of ‘Female’ putatively reflects co-activation of the Male category despite a final 

categorization of ‘Female’. To measure how brain regions involved in face perception held 

information pertaining to both competing categories during the mouse-tracking task, the FG 

multivariate response pattern to each individual trial’s face (e.g., ‘Male’) for one category was 

compared to the mean response pattern to the alternate category (e.g., ‘Female’). The results 

showed that, during trials in which mouse trajectories showed greater category co-activation (i.e., 

deviation toward the alternate category), multivariate response patterns in the FG for those trials 

showed a greater similarity to the mean response pattern for the alternate category. For instance, 

when subjects steered the mouse towards the ‘Female’ response option en route to ‘Male’ for a 

given face, the FG multi-voxel pattern in response to that face was more similar to the average 

multi-voxel response pattern for ‘Female’. To explore how cognitive monitoring may assist 

perceivers in converging on their ultimate percept, the researchers also examined univariate 

activation in the pre-SMA/dACC. They found that, on trials where mouse-tracking showed more 

category co-activation (and overlapping neural response patterns), the pre-SMA/dACC became 

additionally engaged, suggesting a recruitment of conflict resolution processes to help the FG 

converge on a stable percept of a face. These findings suggest that other people’s complex and 

sometimes ambiguous facial cues lead the FG to temporarily co-represent multiple categories, 

which through the help of the pre-SMA/dACC rapidly resolve over time to drive the stable 

categorization of other people.

  

Traits, identity, and person knowledge

Perhaps more than in any other domain of social neuroscience, enormous effort has been 

invested in determining which brain regions are most involved in thinking about other minds 

(i.e., mentalizing and theory of mind). This research has identified a set of brain regions that are 

reliably engaged by storing, retrieving, and updating knowledge about others, such as the medial 

prefrontal cortex (MPFC), temporo-parietal junction (TPJ), precuneus, and posterior cingulate 

cortex (PCC). The MPFC has been a particular focus in social neuroscience for its frequent 

associations with inferences about other minds, both in terms of fairly stable qualities like 

personality traits and more fleeting or situational mental states.

Our ability to recognize and tailor our behavior toward numerous personally familiar 

individuals would be computationally intractable without an extremely efficient coding scheme 
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in brain regions associated with thinking about others. Univariate fMRI approaches have shown 

that individual identities can activate associated person knowledge in regions such as the MPFC 

(Cloutier et al., 2011; Todorov et al., 2007), but that does not necessarily mean that the brain 

stores individual representations for each known identity. Recently, multivariate approaches have 

extended this work by demonstrating the complexity and flexibility of these identity 

representations. MVPA and RSA have been particularly well-suited to studying representations 

of personality and identity due to the multitude of theories in social psychology about the 

dimensions underlying our representations of others. In particular, RSA allows explicit tests of 

how well such dimensional theories of personality predict the brain’s representational structure 

during social perception or mentalizing tasks (e.g., Tamir et al., 2016; Thornton & Mitchell, 

2018). Due to the highly consistent set of regions associated with high-level social cognition in 

the univariate fMRI literature (i.e., MPFC, TPJ, PCC/precuneus; see Figure 2), MVPA 

investigations in this domain have had a well-defined set of a priori regions of interest to explore. 

Research using classification and RSA approaches has begun targeted assessments of the 

representational structure in these regions, revealing the granularity or discriminability of 

identity or personality representations, which category boundaries seem to be relevant for 

processing in these regions, and which aspects of social cognition each region is most 

computationally relevant for. 

For example, research using a searchlight-based classification approach showed that 

multi-voxel response patterns in the MPFC, TPJ, and precuneus could discriminate between 

personally familiar and unfamiliar individuals, and further, that neural patterns in the MPFC 

could distinguish individual identities from both the familiar and unfamiliar conditions, 

potentially reflecting rapid encoding of coarse personality representations of the unfamiliar 

identities during the course of the experiment (Castello et al., 2017). Research introducing 

biographical information about novel targets found such information rapidly shapes multivoxel 

patterns in response to their faces in the bilateral FG, where face representations were grouped 

by the amount of biographical information participants learned about each individual (Verosky, 

Todorov, & Turke-Browne, 2013). Thornton and Mitchell (2017) similarly found that identity 

and person knowledge about personally familiar others are represented in discriminable patterns 

of neural activity in regions such as the MPFC, TPJ, and precuneus, but the task involved 

imagining these individuals in various contexts rather than looking at their faces. Subjects in this 
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experiment also made judgments about how accurate and vivid they felt their mental simulations 

were, and these judgments were predicted by how typical (for that target individual) the neural 

response pattern in the medial parietal cortex/precuneus was on the relevant trial. Moreover, the 

medial parietal cortex/precuneus was the only region that reliably encoded information about the 

situational context of the mental simulation in addition to information about the individual 

imagined in the simulation. While speculative, this possibly indicates the different computational 

roles of these regions, such that the MPFC stores and organizes person knowledge, but medial 

parietal regions are more involved in integrating person knowledge into social-cognitive 

judgments and contextual aspects of mental prospection.

But what are the nature of these representations of other minds, and how are they 

organized? While a comprehensive answer to this question remains elusive, recent work has used 

RSA to characterize the organization of person knowledge, indicating a number of complex yet 

efficient ways for organizing knowledge about numerous individuals along shared dimensions. 

Building off the extensive history of dimensional models in the person perception literature (e.g., 

Fiske et al., 2002; 2007; Oosterhof & Todorov, 2008), Tamir and colleagues (2016) tested how 

well a large set of hypothesized social-cognitive dimensions from the literature explained the 

representational space of multi-voxel patterns elicited when subjects thought abstractly about 

mental states such as “awe” and “self-consciousness”. Using principal components analysis, the 

researchers found that a smaller set of three dimensions explained a majority of the variance in 

mental state representations: rationality, social impact, and valence. Complementary work used 

RSA to test how well four specific models of person perception (including the big five factor 

model of personality traits and warmth-competence model of social cognition) predicted the 

neural representational space of response patterns during mentalizing (Thornton & Mitchell, 

2018). The researchers found that all the four models significantly predicted the brain’s 

representational structure, but not as well as a synthetic model derived from a combination of all 

four candidate models. Thus, while there may be a low-dimensional space that largely explains 

how we represent information about others, ultimately our understanding of the nature of these 

representations is only emerging. Related work recently found neural representations of others 

hold information pertaining to the mental states most attributed to each individual, with those 

mental states weighted more strongly in a given target’s multi-voxel response patterns (Thornton 

et al., 2019a; see Figure 2). 
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One particularly informative approach for mental state and trait representation 

researchers has been to compare representations of self and other, and of many familiar others, 

within naturalistic groups of friends or acquaintances. Recently, Thornton and colleagues (2019) 

examined the relationship between a given individual’s representation of their own self-

knowledge with the neural representations of others’ mental states. The researchers used RSA to 

show that the neural patterns associated with one’s own self-concept are more distinct or 

discriminable than those associated with knowledge about others, as reflected in regions such as 

MPFC, TPJ, and dorsolateral prefrontal cortex (DLPFC). Other work employed a round-robin 

design in an fMRI study on a sample of close friends, finding that multi-voxel representations of 

a given individual’s self-concept in the MPFC were correlated with their friend’s MPFC 

representations of their personality (Chavez & Wagner, 2020). The strength of this relationship 

was associated with how similar trait ratings were between the target individual (rating their own 

traits) and the friend in question, suggesting that one factor driving “accuracy” in personality 

judgments is how well our mental models of an individual’s personality match their own self-

assessments. 

Another fMRI study on a group of familiar individuals used a large sample drawn from a 

cohort of first-year MBA students (Parkinson et al., 2017), using RSA to show that 

representations of familiar others are organized along social network dimensions. Multiple social 

network attributes – including distance (number of intermediate paths between any given two 

people in the network) and eigenvector centrality (generally characterizing how well connected a 

given person is within their network) – were used to construct dissimilarity matrices reflecting 

pairwise relationships between each individual in the social network on these metrics. These 

network characteristics were found to predict the representational structure of neural response 

patterns in regions such as the MPFC, superior temporal cortex (STC), inferior parietal lobule 

(IPL), and precuneus/PCC when subjects viewed videos of their classmates introducing 

themselves in the scanner. This work suggests that representations of familiar others are 

organized in a manner partly determined by the overall structure of the social network in which 

an individual is embedded. 

The brain’s representational structure of identity and personality concepts is consistent 

with a number of different models of high-level social cognition that predict how different minds 

relate to one another. Together, these studies demonstrate that person representations (identity, 
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traits, personality) in the brain are highly structured, with high-level social dimensions such as 

personality similarity and social network position partly organizing neural response patterns. It is 

likely that a smaller set of underlying social cognitive dimensions explain most of the variance in 

pattern response in brain regions such as MPFC and TPJ, rather than representations in these 

regions being simultaneously constrained by several different psychological models of 

personality and behavior. However, research investigating any such low-dimensional 

representational space is only emerging.

 

Emotion Perception

Understanding how others are feeling is an important tool for navigating the social world 

safely and effectively, and understanding which emotion categories perceivers can successfully 

“recognize” in others has been a central focus of the literature on emotion perception. Early, 

seminal models of face perception (Bruce & Young, 1986) emphasized a processing dissociation 

between static and dynamic facial cues, and since facial emotion is often categorized based on 

dynamic facial movements, it has largely been treated separately in the literature from 

dimensions of social perception that have categorical boundaries defined by static cues (e.g., race 

and sex). The particular neuroanatomical dissociation is between the fusiform gyrus (FG), 

thought to be more important in processing configurations of static facial cues, and the superior 

temporal sulcus (STS), known to be involved in processing dynamic facial actions as well as 

socially relevant actions more broadly, such as body movements (Haxby et al., 2000; 2002). The 

neuroimaging literature on emotion perception has been further complicated by studies that 

aimed to isolate regions most involved in perception of specific discrete emotions, for example 

by showing participants facial expressions typically categorized as Angry, Disgusted, and 

Neutral, and computing univariate Angry > Neutral and Disgusted > Neutral contrasts to 

determine which regions are preferentially engaged by Angry and Disgusted facial expressions, 

respectively. Numerous studies associated different possible brain regions with different specific 

emotions, most famously strongly associating the amygdala with perceiving fear (Adolphs et al., 

1995; Adolphs, 2008), although neuroimaging meta-analyses have been unable to find specific 

associations that are consistent across the literature (Lindquist et al., 2012).

In an analogous manner to the fMRI literature on social categorization, multivariate 

approaches have helped shift the neuroscientific study of emotion perception from a focus on 
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associating brain regions with emotion categories to a greater understanding of the relevant 

information different regions process. As with the study of traits and identity, this makes MVPA 

particularly beneficial to the study of emotion perception because of the degree of debate in the 

field surrounding different candidate models of emotion perception. The core of this debate 

concerns how to specify the relationship between emotion categories (e.g., Anger) and facial 

actions, with some assuming that specific facial expressions map directly onto corresponding 

emotion categories and others assuming a more context- and perceiver-dependent relationship 

(Barrett et al., 2019). Not only can diverse candidate models be directly tested against each other 

using RSA, classification and decoding approaches can demonstrate which aspects of emotion 

expressions determine boundaries between emotion categories and perceiver impressions, 

addressing theoretical predictions about the determinants of emotion percepts.

Multivariate classification approaches demonstrate that facial emotion categories can be 

decoded in regions such as early visual cortex (V1; Petro et al., 2013), the posterior superior 

temporal sulcus (pSTS; Said et al. 2010), and the fusiform gyrus (FG; Harry et al., 2013; 

Wegrzyn et al., 2015a). For static images of facial expressions, Wegrzyn et al. (2015a) compared 

classification performance in multiple brain regions, finding that classification performance was 

highest in the FG, indicating that this region contains and processes emotion category-relevant 

information. This is consistent with work showing that facial emotion categories exhibit category 

selectivity effects in a manner consistent with social category perceptions (Calder et al., 1996; de 

Gelder et al., 1997; Etcoff et al., 1992; Wegrzyn et al., 2015b). A recent study further challenged 

the common FG/STS distinction by showing that emotion category representations in response to 

dynamic facial movements could be decoded in the FG, and that emotion category 

representations in response to static facial expressions could be decoded in the STS (Liang et al., 

2017). However, in studies characterizing the representation of fine-grained facial movements 

associated with emotion, the pSTS seems to be the most computationally relevant region (Deen 

& Saxe, 2019; Srinivasan et al., 2016).

As in the domain of perceiving social categories and groups, the idea that social cognitive 

processes and semantic representations of emotion categories may shape face processing has 

become important in understanding facial emotion perception. Classic categorical approaches 

such as basic emotion theory would predict a neural representational space in which different 

categories are primarily represented on the basis of their differences in facial cues. In a recent 

Page 15 of 32

http://mc.manuscriptcentral.com/scan

Manuscripts submitted to Social Cognitive and Affective Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16

study using RSA, we measured the neural representational space of emotion categories from a 

task in which subjects passively viewed emotional facial expressions, and also measured each 

subject’s conceptual space of emotion categories (Brooks et al. 2019). We found that each 

individual’s unique conceptual model of emotion categories was reflected in multi-voxel pattern 

structure in the FG when viewing faces belonging to those categories, even when acknowledging 

intrinsic visual differences in the emotion expressions themselves. Specifically, when an 

individual believed any given pair of emotions (e.g., Angry and Sad) were more conceptually 

similar, there was a corresponding similarity in the multi-voxel response patterns in the FG to 

faces belonging to those categories (see Figure 1c). Of relevance for comparing conceptually-

shaped models of emotion perception with more categorical models, these results emerged even 

when controlling for three different models of similarity between categories in their displayed 

facial cues and low-level visual properties, strengthening the claim of conceptually-structured 

representations in the FG. These findings suggest that individual differences in conceptual 

understanding of what different emotions mean may impact the visual representation of facial 

expressions commonly associated with those categories.

        Beyond using RSA to assess the correspondence between idiosyncratic conceptual 

structure and neural pattern structure in FG, RSA has also proven useful in adjudicating between 

different theoretical models of emotion in terms of how well they predict the brain’s 

representational structure of emotion categories. In the domain of emotion perception, the 

dominant models have been the categorical “basic emotion” model and a dimensional 

“circumplex” model. Basic emotion theory posits a small set of psychologically distinct emotion 

categories thought to yield associated facial expressions that are universally recognized in a 

categorical fashion (Ekman, 1993; Ekman et al., 1969; Ekman & Friesen, 1971; 1976). The 

circumplex model emphasizes two underlying dimensions of valence (positive vs. negative) and 

arousal (high vs. low physiological activation or perceived intensity) that all emotion judgments 

map onto (Russell, 1980; 2003). 

In a study using RSA to explicitly compare how well these models fit representations of 

20 emotion categories inferred from reading stories about individuals, Skerry and Saxe (2015) 

found that neither model fit multi-voxel representations in the “theory of mind network” 

(including multiple sub-regions of MPFC as well as the rTPJ) as well as a higher-dimensional 

model generated from behavioral responses. This model contained 38 dimensions describing 

Page 16 of 32

http://mc.manuscriptcentral.com/scan

Manuscripts submitted to Social Cognitive and Affective Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17

various contextual and situational factors that constrain perceiver appraisals. While these brain 

regions, more often associated with mentalizing and theory of mind, have not been extensively 

studied in the context of emotion perception, it is of course true that emotion perception is 

fundamentally a case of mental state attribution, as with mentalizing. Indeed, an additional study 

(Skerry & Saxe, 2014) showed that the representational space of emotion categories in the 

MPFC was shared across situational inferences and facial emotion perception, indicating that 

these regions implicated in theory of mind may represent and compute high-level aspects of 

emotion perception across multiple modalities. Given that valence has also been found to partly 

organize the brain’s mental state representations (Tamir et al., 2016), future work is needed to 

disentangle the representations and possibly shared underlying dimensions of emotion and 

mental state representations.

Conclusions

Across multiple domains of social perception, multivariate analyses of fMRI data have 

permitted a more fine-grained understanding of how social information is processed and 

represented in the brain, and an increased understanding of the computational relevance of 

specific brain regions in social-perceptual processes. Such an approach is equally informative 

from neuroscientific and psychological perspectives, better characterizing the computational 

characteristics of specific brain regions as well as allowing explicit tests of how well 

psychological models fit the brain’s representational structure of social information. It is 

important to note that this review was relatively limited to classification and RSA approaches, 

but there are a number of other data-driven methods and advanced analysis techniques that have 

been similarly useful in moving the field past localization approaches (see Wagner et al., 2019 

for a relevant review). Additional methodological tools are rapidly accumulating and gaining 

sophistication. For example, some recent work has expanded the use of multivariate pattern 

classifiers to include multivariate patterns of connectivity between brain regions, which can also 

be leveraged to make stronger causal claims about the relationships between distant brain regions 

in their representational spaces (Anzellotti et al., 2017). In the domain of social perception, this 

has already been used to decode wide-scale patterns of connectivity associated with facial 

emotion categories (Liang et al., 2018). Future work is needed to better understand the 

relationship between these various approaches.
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While promising, these approaches are not without limitations. Notably, RSA is 

inherently correlational and does not permit any causal inferences about determinants of neural 

representational structure. Additionally, decoding approaches are sometimes particularly 

sensitive to idiosyncratic factors such as the specific sample, stimuli, and task context (Davis et 

al., 2014; Todd et al., 2013). For this reason, it is essential to test decoding models outside of the 

original sample, and recent applications have made progress incorporating this level of rigor. 

Large-scale openly shared fMRI datasets, and concurrent development of sophisticated tools to 

analyze them, also serve to mitigate these issues. It is also important to note that MVPA analyses 

are not immune to several issues faced by univariate fMRI. In particular, following a searchlight 

or whole-brain MVPA analysis that maps representational similarity or classification accuracy at 

each voxel in the brain, the resulting maps undergo voxelwise statistical tests, making MVPA 

vulnerable to the same statistical correction and reporting pitfalls observed in univariate fMRI 

research. 

Another challenge of multivariate fMRI lies in interpreting MVPA results and using them 

to inform and develop psychological theory. What does it really mean to be able to discriminate 

patterns of fMRI signal along a cognitive dimension? Multi-voxel patterns associated with a 

particular category are often reported as the neural representation of that particular category, but 

this interpretation requires care. The precise relationship between neuronal activity and 

differences in spatial distribution of fMRI signal is unknown (but see Haynes, 2015 for a 

summary of existing knowledge about the relationship between multi-voxel patterns and the 

activity of neurons). However, empirical and theoretical efforts are underway to better 

characterize the nature of multi-voxel response patterns and their precise relationship with 

underlying neural activity as well as the cognitive dimensions they seem to encode (Davis et al., 

2014; Grootswaters et al., 2018; Popov et al., 2018; Ritchie et al., 2019). The idiosyncrasies of 

sample and stimuli can also introduce issues of interpretation. Researchers should take caution 

when interpreting a classifier trained and tested on one sample as reflecting the “neural code” for 

that cognitive dimension. As noted above, the interpretability and theoretical utility of decoding 

models principally depends on their generalizability out of sample (Kriegeskorte & Douglas, 

2019). Increased use of RSA and related methods may elucidate some of these open questions 

about the nature of representation in fMRI response patterns. In particular, while RSA does not 

permit causal inferences, its ability to test the dimensionality and informational content of neural 
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activation patterns in a targeted way affords stronger conclusions about how a given brain region 

encodes information.

While more work is needed to address these and other questions, the field stands to 

benefit from continued use of MVPA and related approaches. Techniques are constantly 

evolving and improving, building an exciting set of new avenues for computational 

neuroimaging research on social perception, such as MVPA in conjunction with naturalistic 

stimuli and tasks such as movies and real-time interactions (Wagner et al., 2019). Future work 

using RSA would benefit from choosing diverse candidate models to test at the level of neural 

representation. Of particular relevance to social perception are the astoundingly rapid advances 

in “deep” neural network models of computer vision, which approach or approximate human 

performance in a number of object recognition and categorization tasks (Goodfellow et al., 2016; 

Hassabis et al., 2017; Kriegeskorte & Golan, 2019). Comparing internal representations from 

advanced computer vision models to neural and behavioral category representations has already 

proven useful in the object recognition literature (Jozwik et al., 2017; Kriegeskorte & Golan, 

2019; Storrs et al., 2017), and could benefit the neuroscientific study of visual social perception 

as well. These approaches, and other theoretical and methodological advancements, show 

promise in improving our understanding of how visual input from another person’s face and 

body is transformed into a socially relevant category representation in the brain. 
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Figure Legends

Figure 1. MVPA shows that stereotypes and emotion concepts shape representations of 
other people’s faces in the FG. Stolier and Freeman (2016) used multiple regression RSA on 
fMRI data from a task in which subjects viewed faces, showing that stereotypes partially 
structure how face’s social categories are represented in regions important for face perception 
such as the FG. a) An example pair of corresponding dissimilarity matrices (DMs), depicting the 
corresponding representational structures of social categories in both stereotypes and subjective 
face perception. b) Results from a whole-brain searchlight analysis which performed multiple 
regression RSA at each searchlight sphere, measuring the correspondence between the subjective 
perceptual and neural DMs while controlling for three models of visual similarity. This analysis 
revealed that the right fusiform gyrus (rFG) and orbitofrontal cortex (OFC) represent social 
categories in a manner consistent with the influence of stereotypes on processing of faces’ social 
categories. c) Similar results are shown from Brooks and colleagues (2019), which reported an 
fMRI study in which subjects passively viewed faces varying in emotion expression. The 
researchers also measured subjects’ conceptual similarity between the emotion categories Anger, 
Disgust, Fear, Happiness, Sadness, and Surprise (corresponding to the facial expressions shown 
in the scanner). The correspondence between this idiosyncratic conceptual DM and the brain’s 
representational structure (neural DM) was measured using multiple regression RSA in a whole-
brain searchlight analysis, also controlling for three visual similarity models. This analysis 
revealed that the rFG represents facial emotion categories in a manner consistent with the 
influence of a perceiver’s conceptual knowledge on processing of facial emotion. Figure adapted 
from Stolier and Freeman (2016) and Brooks and colleagues (2019).

Figure 2. MVPA sheds new light on how “social brain network” regions represent other 
people. The “social brain network”, including regions such as the medial prefrontal cortex 
(MPFC), precuneus/posterior cingulate cortex (PCC), anterior temporal lobe (ATL), and 
temporoparietal junction (TPJ), has long been known to be involved in social cognition and 
person perception.  MVPA and RSA have been important tools in recent progress made in 
understanding how this network of regions specifically represents and computes social 
information. In a study by Thornton and colleagues (2019a), RSA was used to show that these 
regions represent individual identities in a manner consistent with the sum of a person's mental 
state representations. Other studies have found that person and identity representations in these 
regions are structured by high-level social cognitive factors such as social network characteristics 
(Parkinson et al., 2017). In separate lines of work, MVPA and RSA have also proven helpful in 
disentangling the computational roles of these regions, e.g. suggesting that the MPFC is involved 
in representing information about individual people, while medial parietal regions such as the 
precuneus/PCC are more involved in representing information about the social context (Thornton 
& Mitchell, 2017). Figure adapted from Thornton and colleagues (2019a).
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Figure 1. MVPA shows that stereotypes and emotion concepts shape representations of other people’s faces 
in the FG. Stolier and Freeman (2016) used multiple regression RSA on fMRI data from a task in which 

subjects viewed faces, showing that stereotypes partially structure how face’s social categories are 
represented in regions important for face perception such as the FG. a) An example pair of corresponding 
dissimilarity matrices (DMs), depicting the corresponding representational structures of social categories in 
both stereotypes and subjective face perception. b) Results from a whole-brain searchlight analysis which 

performed multiple regression RSA at each searchlight sphere, measuring the correspondence between the 
subjective perceptual and neural DMs while controlling for three models of visual similarity. This analysis 

revealed that the right fusiform gyrus (rFG) and orbitofrontal cortex (OFC) represent social categories in a 
manner consistent with the influence of stereotypes on processing of faces’ social categories. c) Similar 
results are shown from Brooks and colleagues (2019), which reported an fMRI study in which subjects 

passively viewed faces varying in emotion expression. The researchers also measured subjects’ conceptual 
similarity between the emotion categories Anger, Disgust, Fear, Happiness, Sadness, and Surprise 
(corresponding to the facial expressions shown in the scanner). The correspondence between this 
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idiosyncratic conceptual DM and the brain’s representational structure (neural DM) was measured using 
multiple regression RSA in a whole-brain searchlight analysis, also controlling for three visual similarity 

models. This analysis revealed that the rFG represents facial emotion categories in a manner consistent with 
the influence of a perceiver’s conceptual knowledge on processing of facial emotion. Figure adapted from 

Stolier and Freeman (2016) and Brooks and colleagues (2019). 

Page 32 of 32

http://mc.manuscriptcentral.com/scan

Manuscripts submitted to Social Cognitive and Affective Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 2. MVPA sheds new light on how “social brain network” regions represent other people. The “social 
brain network”, including regions such as the medial prefrontal cortex (MPFC), precuneus/posterior cingulate 
cortex (PCC), anterior temporal lobe (ATL), and temporoparietal junction (TPJ), has long been known to be 

involved in social cognition and person perception. MVPA and RSA have been important tools in recent 
progress made in understanding how this network of regions specifically represents and computes social 

information. In a study by Thornton and colleagues (2019), RSA was used to show that these regions 
represent individual identities in a manner consistent with the sum of a person's mental state 

representations. Other studies have found that person and identity representations in these regions are 
structured by high-level social cognitive factors such as social network characteristics (Parkinson et al., 

2017). In separate lines of work, MVPA and RSA have also proven helpful in disentangling the computational 
roles of these regions, e.g. suggesting that the MPFC is involved in representing information about individual 

people, while medial parietal regions such as the precuneus/PCC are more involved in representing 
information about the social context (Thornton & Mitchell, 2017). Figure adapted from Thornton and 

colleagues (2019). 
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