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Abstract

Across multiple domains of social perception - including social categorization, emotion
perception, impression formation, and mentalizing - multivariate pattern analysis (MVPA) of
fMRI data has permitted a more detailed understanding of how social information is processed
and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social
perception initially relied on broad structure-function associations derived from univariate fMRI
analysis to map neural regions involved in these processes. In this review, we trace the ways that
social neuroscience studies using MVPA have built on these neuroanatomical associations to
better characterize the computational relevance of different brain regions, and how MVPA
allows explicit tests of the correspondence between psychological models and the neural
representation of social information. We also describe current and future advances in
methodological approaches to multivariate fMRI data and their theoretical value for the

neuroscience of social perception.
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Computational approaches to the neuroscience of social perception

Other people are tremendously complex, and humans must navigate their relationships
and interactions with others under conditions of high uncertainty. Whether meeting a stranger,
reading a description of someone, or trying to determine how a friend is feeling, we rely on a set
of perceptions and inferences about the person to determine our behavior. Understanding how we
form impressions about others has been a central focus in social psychology for decades, and
more recently the topic has proven to be well-suited to methods from computational
neuroscience, which can readily leverage the inherently high-dimensional nature of
neuroimaging data alongside behavioral measures of social perception. In this article, we review
recent advances in computational approaches to the neuroscience of social perception. We focus
particularly on multivariate analyses of fMRI data, but computational analyses of behavioral data
used in conjunction with fMRI, such as using fMRI and behavioral responses to estimate
parameters of computational models, is an increasingly popular approach as well and is reviewed
elsewhere (e.g., Cheong et al., 2017; Gonzalez & Chang, 2019; Hackel & Amodio, 2018).

As in other areas of social neuroscience, early fMRI studies on social perception generally
focused on univariate activation-based analyses to associate relevant social cognitive processes
with particular brain regions, which continues to be a valuable mainstay. This research described
a number of regions important for social perception, such as the primacy of the fusiform gyrus
(FG) in face processing (Haxby et al., 2000; 2002; Kanwisher et al., 1997); superior temporal
sulcus (STS) in dynamic face and body perception (Grossman et al., 2000; Haxby et al., 2000;
Said et al., 2010); and regions such as the medial prefrontal cortex (MPFC; Amodio & Frith,
2006; Mitchell, 2008) and temporo-parietal junction (TPJ; Saxe & Kanwisher, 2003) in thinking
about others and representing their mental states (“mentalizing”). Multivariate pattern analysis
(MVPA) was first introduced to neuroimaging research by Haxby and colleagues (2001),
expanding the conceptual and methodological toolkit of neuroimaging researchers by providing a
different way to conceptualize the patterns of activation that emerge in fMRI data. In the present
review, we first briefly introduce MVPA techniques and discuss their theoretical basis as well as
some related advantages and limitations. We then review in turn three domains of social
perception research where these techniques have proven highly valuable: perceiving social group
memberships, perceiving identity and associated traits and person knowledge, and perceiving

others’ emotional states.
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MVPA Approaches

Univariate approaches primarily seek to relate the overall level of activation in a region to
task conditions or experimental variables, which can provide neuroanatomical associations with
those conditions or variables and their related psychological processes (although with exceptions,
e.g., adaptation paradigms). However, neural regions assessed via fMRI do not only vary in their
mean level of activation, but also in the spatial patterns of activation distributed across voxels.
MVPA methods are sensitive to fine-grained differences in these spatial patterns of activation,
whereas mass univariate testing treats each voxel individually, almost always ignoring the level
of activation in contiguous voxels in statistical tests. This sensitivity enables MVPA to
differentiate experimental conditions even in cases where mere differences in mean activation of
a voxel cannot (Haxby et al., 2001; 2014).

A key assumption often made about MVPA and influencing how MVPA analyses are
generally interpreted is that neural response patterns inherently contain information about an
associated cognitive state (Davis et al., 2014; Haynes, 2015; Lewis-Peacock & Norman, 2014;
Popov et al., 2018). Researchers can thus probe condition response patterns to see how they may
differ between brain regions, revealing the involvement of different regions in processing
information or representing states relevant for a given task. Thus, multivariate analyses often
target regions already known to be involved in specific tasks to specify how that region is
representing information throughout the task and what computational processes that region may
support. Neuronal recordings in nonhuman primates have long shown that the aggregate activity
of an assembly of neurons can provide a ‘code’ for various kinds of sensory and abstract
cognitive information in the brain (i.e., a “population code”’; Averbeck et al., 2006). Although
fMRI voxels are far too large to be sensitive to individual neurons, neurons belonging to
different neuronal assemblies (e.g., related to state 1 vs. state 2) may be distributed in different
ways such that the precise assembly of neurons related to each state may vary across voxels. This
could thereby give rise to distinct fMRI multi-voxel patterns associated with distinct states,
despite a lack of sensitivity to individual neurons (Logothetis, 2008; Chaimow et al., 2011). In
this way, MVPA provides a way to extend the population coding approach from systems
neuroscience to the macro-scale populations measured with fMRI (Haynes, 2015; Haxby et al.,
2001; 2014; Lewis-Peacock & Norman, 2014; but see the Conclusions section for a discussion of

related limitations).
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In its original application, Haxby and colleagues (2001) used MVPA to demonstrate that
ventral temporal cortex shows spatially distributed response patterns to visual object categories
that can be discriminated from the region’s face response pattern using a classifier. Importantly,
this included the fusiform face area (FFA), a region of fusiform gyrus (FG) that reliably shows
higher mean activations for faces compared to other visual categories (Kanwisher, 1997). This
approach demonstrated that regions which show selectivity in univariate signal for one category
also can hold (perhaps even equivalent amounts of) information about other categories. Such a
classification (or “decoding”) analysis enables researchers to use neural response patterns to
predict an associated cognitive state or stimulus condition (Lewis-Peacock & Norman, 2014). A
classifier is typically trained on one set of the data and tested on at least one other held-out set.
By training a classifier to discriminate between any given experimental factors (i.e., conditions
or stimulus characteristics), testing the classifier on held-out data can reveal which regions are
involved in representing those conditions or characteristics of the stimuli. Another common way
to interpret the results of a classifier is that categorical boundaries between stimuli are
“computationally relevant” in a given brain region if that region shows high classification
accuracy for that category boundary. This interpretation assumes that if a brain region’s patterns
of activity discriminate between two stimulus categories, information about that category
boundary is retained in that region’s spatial response patterns because it is relevant for whatever
computation that region is performing in that particular cognitive context.

In addition to being used to classify brain states by experimental conditions or stimulus
categories, multi-voxel patterns associated with different conditions can be directly compared by
measuring pairwise similarities in their response patterns. While sometimes quite illuminating in
and of itself (showing, for example, that White individuals with a strong pro-White bias have
more dissimilar neural response patterns for the Black and White race categories; Brosch et al.,
2013), similarity between neural patterns can also be leveraged to test explicit theories about
how the brain represents information. This technique, called Representational Similarity
Analysis (RSA; Kriegeskorte et al., 2008), provides a shared framework for testing and
comparing diverse models of neural computation (computational, theoretical, behavioral) by
examining their second-order isomorphisms (i.e., similarities in the structure of their similarity
spaces). This technique was developed by computational neuroscientists who have used it to

assess how well the representational structure of the ventral-visual stream corresponds with
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various computer vision models (Kriegeskorte et al., 2008; Khaligh-Razavi & Kriegeskorte,
2014; Jozwik et al., 2017).

Assuming that multi-voxel response patterns contain information about certain cognitive
factors, RSA starts by computing how similar (or dissimilar) each condition or category is from
each other in their neural response patterns throughout the brain. The resulting similarity space
can be directly compared with any other second-order similarity space, most commonly those
derived from computational models or behavioral task responses. Thus, while decoding and
classification approaches can reveal which regions contain or process information about
cognitive dimensions, RSA is able to directly test hypotheses about how that information is
organized and represented, which can in turn address questions about which psychological or
stimulus dimensions are computationally relevant in a given brain region (Kriegeskorte et al.,
2008; Popal et al., 2019). Despite its explanatory power, RSA is highly computationally tractable
and thus broadly approachable for researchers. RSA is especially relevant for social and affective
neuroscience due to the large number of models proposed in the literature describing how social
groups, emotion categories, and traits relate to one another along dimensions such as stereotype
content, facial cues, and affective properties (e.g., Fiske et al., 2002; 2007; Oosterhof &
Todorov, 2008; Russell, 1980). RSA allows researchers to specifically adjudicate between such
models, testing competing and complementary explanations for how the brain represents and
computes social information. We now turn our attention to specific areas of social perception

research where MVPA and RSA have been leveraged to make important new insights.

Social Categories and Groups

An illustrative example of the contrast between univariate and multivariate fMRI
analyses in the domain of social categorization comes from a set of papers that used both
techniques to analyze the same dataset. In the experiment, participants were assigned to one of
two arbitrarily defined mixed-race groups and then had to categorize faces from the two groups
along either in-group vs. out-group or Black vs. White dimensions. The first paper (Van Bavel et
al., 2011) reported an in-group selectivity effect in the FFA, such that a univariate in-group vs.
out-group contrast showed greater mean activity in response to in-group vs. out-group members,
despite the fact that both groups were mixed-race. However, a follow-up report showed that,

despite the overall difference in activation in response to in-group members, the race of the faces
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could still be discriminated by a multivariate pattern classifier (Ratner, Kaul, & Van Bavel,
2013). These results indicated that the race of the faces was still computationally relevant in the
FFA, regardless of the difference in mean activation driven by the social context and current
processing goals.

Many studies examining univariate social category responses in regions such as the
FG/FFA interpreted greater activation for one category vs. another as enhanced processing of or
greater attention to the target category in the contrast (Golby et al., 2001; Lieberman et al.,
2005). Some have interpreted such results as providing a neural basis for long-standing out-
group deficit effects in social psychology, such as better memory for in-group vs. out-group
faces along a number of dimensions (Hugenberg et al., 2010; Meissner & Brigham, 2001).
Multivariate decoding approaches simultaneously challenge and complement these results by
demonstrating that even if a brain region does not show univariate selectivity for a given
category, it still might represent and process information about that category.

Still, to date, relatively few studies have used multivariate decoding on social category
responses. In one of the earliest applications of MVPA to social categorization, Kaul et al. (2011)
found that face gender could be reliably decoded from an array of brain regions commonly
associated with various levels of face processing. Classifier performance was highest in the
medial orbitofrontal cortex (mOFC), FG, and inferior occipital gyrus (I0G). Contreras and
colleagues (2013) showed that both face gender and race could be decoded from neural response
patterns in a social categorization task, but after controlling for low-level differences in the
stimuli from each category, the only region that showed accurate decoding was the FFA, further
distinguishing the importance of this region in representing faces at the level of social categories.
In a study that aimed to decode multi-voxel patterns associated with the broadest social group
distinction possible (i.e., “us” vs. “them”), classification was used to show that the dorsal
anterior cingulate cortex/middle cingulate cortex (AACC/MCC) and anterior insula (Al) contain
high-level information about group boundaries ranging from arbitrarily-defined “minimal”
groups to political groups (Cikara et al., 2017).

Reconciling and integrating findings from univariate and multivariate fMRI is an
important ongoing task across all fields that use neuroimaging (Davis et al., 2014). RSA has
recently proven quite useful for these purposes, since it can not only help reveal which brain

regions represent social category-relevant information, but also the nature and organization of
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those representations. In social psychology, social categorization has traditionally been
considered an automatic and obligatory perceptual process that precedes any more “cognitive”
social processes such as stereotyping (Allport, 1954). However, alternative approaches
emphasize the idea that social-conceptual knowledge (i.e., stereotypical associations) and other
top-down social cognitive processes can weigh in on face processing before a percept has
solidified, thereby allowing implicit stereotypes to shape face perception (Freeman & Ambady,
2011; Freeman & Johnson, 2016). Recent work applying RSA has examined whether an
individual’s stereotypical associations are reflected in how the brain represents others’ faces, an
approach which can also reveal how “deeply” such top-down associations reach (i.e., regions that
would suggest perceptual vs. post-perceptual processing of faces). Stolier and Freeman (2016)
found that neural representations of faces’ social categories (e.g., Black, Female, Happy) in the
FG and orbitofrontal cortex (OFC) demonstrated a similarity structure that was predicted by a
subject’s own unique stereotype knowledge about those categories. That is, if someone held
more similar stereotypes about the categories ‘Male’ and ‘Anger’, the multi-voxel patterns
associated with those categories exhibited a greater similarity when subjects passively viewed
faces belonging to those categories (Figure 1).

These findings suggest that the way face category representations are organized in
regions important for face perception, such as the FG, is partially determined by stereotypes
about those categories. Moreover, the fact that this similarity structure was also observed in the
OFC suggests that domain-general perceptual processes associated with the OFC may be
involved in driving the impact of stereotypes on face perception (Freeman & Johnson, 2016). In
particular, the object recognition literature suggests that the OFC is recruited in perceptual
categorization tasks when incoming visual input matches a pre-existing visual association or
heuristic in memory (Bar, 2003; Bar et al., 2006; Summerfield & Egner, 2009). This effect is
strengthened when the visual input is ambiguous or impoverished, suggesting that the OFC is
involved in exerting visual predictions about category membership before those categorizations
have fully solidified. One possibility is that the OFC is involved in a similar predictive capacity
in perceiving social categories, supplying the FG with top-down visual predictions or
expectations about social categories. In this case, the use of RSA permits inferences about the
way social category representations are organized in visual processing regions as well as the

high-level regions that may be involved in providing top-down social information to them.
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It is sensible that visual face processing regions would partially depend on such rapid top-
down input, as there are a number of challenges faced in social categorization, particularly when
faces have atypical or ambiguous features. Any given facial feature can be more or less related to
any set of social categories at once, and faces naturally vary on featural continua related to
gender, race, and a host of other category dimensions. For example, a White face may not only
have more or less White category-associated cues but may bear partial cues related to the Black
category as well (Locke et al., 2005). Previous work suggests such multiple cues co-activate
multiple category representations regardless of the ultimate categorization (Freeman et al, 2008;
Freeman et al., 2010). MVPA has recently been used to investigate how the perceptual system is
guided towards a final categorization despite features that may initially activate multiple social
categories. Based on prior computational models of social categorization (Freeman & Ambady,
2011), Stolier and Freeman (2017) tested the possibility that initially the perceptual system co-
activates any categories associated with features on a face, which then must compete and resolve
over hundreds of milliseconds. They additionally examined whether cognitive monitoring
processes may be recruited help resolve the competition, either to flag more attentional resources
to be directed to the stimulus or perhaps to play an inhibitory role in the competition. For
example, a feminine male face may initially elicit simultaneous partial activation of the
categories Male and Female, then cognitive monitoring processes may help resolve the
competition such that one category (‘Male’) wins out and the other category is cleared from
processing (‘Female’). A likely candidate for such processes would be the pre-supplementary
motor area/dorsal anterior cingulate cortex (pre-SMA/dACC), a region central to cognitive
monitoring and competition between decisions in tasks (Dosenbach et al., 2007).

In the study, subjects were presented with faces manipulated to vary in the typicality of
their gender or race features, such that one category (e.g., Male or White) could have features
more or less related to the alternate category (e.g., Female or Black). To measure perceivers’ co-
activation of multiple categories while viewing each face, participants performed a mouse-
tracking task in the scanner, in which they made speeded face categorization decisions with a
computer mouse while the trajectories of their mouse movements were recorded. The deviation
of mouse trajectories toward unselected categories has been well-validated as a measure of
multiple category co-activation during perception (Freeman, 2018; Freeman & Ambady, 2010).

For instance, a mouse trajectory that deviated towards the ‘Male’ response option en route to a

http://mc.manuscr%tcentral.com/scan



oNOYTULT D WN =

Manuscripts submitted to Social Cognitive and Affective Neuroscience

categorization of ‘Female’ putatively reflects co-activation of the Male category despite a final
categorization of ‘Female’. To measure how brain regions involved in face perception held
information pertaining to both competing categories during the mouse-tracking task, the FG
multivariate response pattern to each individual trial’s face (e.g., ‘Male’) for one category was
compared to the mean response pattern to the alternate category (e.g., ‘Female’). The results
showed that, during trials in which mouse trajectories showed greater category co-activation (i.e.,
deviation toward the alternate category), multivariate response patterns in the FG for those trials
showed a greater similarity to the mean response pattern for the alternate category. For instance,
when subjects steered the mouse towards the ‘Female’ response option en route to ‘Male’ for a
given face, the FG multi-voxel pattern in response to that face was more similar to the average
multi-voxel response pattern for ‘Female’. To explore how cognitive monitoring may assist
perceivers in converging on their ultimate percept, the researchers also examined univariate
activation in the pre-SMA/dACC. They found that, on trials where mouse-tracking showed more
category co-activation (and overlapping neural response patterns), the pre-SMA/dACC became
additionally engaged, suggesting a recruitment of conflict resolution processes to help the FG
converge on a stable percept of a face. These findings suggest that other people’s complex and
sometimes ambiguous facial cues lead the FG to temporarily co-represent multiple categories,
which through the help of the pre-SMA/dACC rapidly resolve over time to drive the stable

categorization of other people.

Traits, identity, and person knowledge

Perhaps more than in any other domain of social neuroscience, enormous effort has been
invested in determining which brain regions are most involved in thinking about other minds
(i.e., mentalizing and theory of mind). This research has identified a set of brain regions that are
reliably engaged by storing, retrieving, and updating knowledge about others, such as the medial
prefrontal cortex (MPFC), temporo-parietal junction (TPJ), precuneus, and posterior cingulate
cortex (PCC). The MPFC has been a particular focus in social neuroscience for its frequent
associations with inferences about other minds, both in terms of fairly stable qualities like
personality traits and more fleeting or situational mental states.

Our ability to recognize and tailor our behavior toward numerous personally familiar

individuals would be computationally intractable without an extremely efficient coding scheme
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in brain regions associated with thinking about others. Univariate fMRI approaches have shown
that individual identities can activate associated person knowledge in regions such as the MPFC
(Cloutier et al., 2011; Todorov et al., 2007), but that does not necessarily mean that the brain
stores individual representations for each known identity. Recently, multivariate approaches have
extended this work by demonstrating the complexity and flexibility of these identity
representations. MVPA and RSA have been particularly well-suited to studying representations
of personality and identity due to the multitude of theories in social psychology about the
dimensions underlying our representations of others. In particular, RSA allows explicit tests of
how well such dimensional theories of personality predict the brain’s representational structure
during social perception or mentalizing tasks (e.g., Tamir et al., 2016; Thornton & Mitchell,
2018). Due to the highly consistent set of regions associated with high-level social cognition in
the univariate fMRI literature (i.e., MPFC, TPJ, PCC/precuneus; see Figure 2), MVPA
investigations in this domain have had a well-defined set of a priori regions of interest to explore.
Research using classification and RSA approaches has begun targeted assessments of the
representational structure in these regions, revealing the granularity or discriminability of
identity or personality representations, which category boundaries seem to be relevant for
processing in these regions, and which aspects of social cognition each region is most
computationally relevant for.

For example, research using a searchlight-based classification approach showed that
multi-voxel response patterns in the MPFC, TPJ, and precuneus could discriminate between
personally familiar and unfamiliar individuals, and further, that neural patterns in the MPFC
could distinguish individual identities from both the familiar and unfamiliar conditions,
potentially reflecting rapid encoding of coarse personality representations of the unfamiliar
identities during the course of the experiment (Castello et al., 2017). Research introducing
biographical information about novel targets found such information rapidly shapes multivoxel
patterns in response to their faces in the bilateral FG, where face representations were grouped
by the amount of biographical information participants learned about each individual (Verosky,
Todorov, & Turke-Browne, 2013). Thornton and Mitchell (2017) similarly found that identity
and person knowledge about personally familiar others are represented in discriminable patterns
of neural activity in regions such as the MPFC, TPJ, and precuneus, but the task involved

imagining these individuals in various contexts rather than looking at their faces. Subjects in this
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experiment also made judgments about how accurate and vivid they felt their mental simulations
were, and these judgments were predicted by how typical (for that target individual) the neural
response pattern in the medial parietal cortex/precuneus was on the relevant trial. Moreover, the
medial parietal cortex/precuneus was the only region that reliably encoded information about the
situational context of the mental simulation in addition to information about the individual
imagined in the simulation. While speculative, this possibly indicates the different computational
roles of these regions, such that the MPFC stores and organizes person knowledge, but medial
parietal regions are more involved in integrating person knowledge into social-cognitive
judgments and contextual aspects of mental prospection.

But what are the nature of these representations of other minds, and how are they
organized? While a comprehensive answer to this question remains elusive, recent work has used
RSA to characterize the organization of person knowledge, indicating a number of complex yet
efficient ways for organizing knowledge about numerous individuals along shared dimensions.
Building off the extensive history of dimensional models in the person perception literature (e.g.,
Fiske et al., 2002; 2007; Oosterhof & Todorov, 2008), Tamir and colleagues (2016) tested how
well a large set of hypothesized social-cognitive dimensions from the literature explained the
representational space of multi-voxel patterns elicited when subjects thought abstractly about
mental states such as “awe” and “self-consciousness”. Using principal components analysis, the
researchers found that a smaller set of three dimensions explained a majority of the variance in
mental state representations: rationality, social impact, and valence. Complementary work used
RSA to test how well four specific models of person perception (including the big five factor
model of personality traits and warmth-competence model of social cognition) predicted the
neural representational space of response patterns during mentalizing (Thornton & Mitchell,
2018). The researchers found that all the four models significantly predicted the brain’s
representational structure, but not as well as a synthetic model derived from a combination of all
four candidate models. Thus, while there may be a low-dimensional space that largely explains
how we represent information about others, ultimately our understanding of the nature of these
representations is only emerging. Related work recently found neural representations of others
hold information pertaining to the mental states most attributed to each individual, with those
mental states weighted more strongly in a given target’s multi-voxel response patterns (Thornton

et al., 2019a; see Figure 2).
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One particularly informative approach for mental state and trait representation
researchers has been to compare representations of self and other, and of many familiar others,
within naturalistic groups of friends or acquaintances. Recently, Thornton and colleagues (2019)
examined the relationship between a given individual’s representation of their own self-
knowledge with the neural representations of others’ mental states. The researchers used RSA to
show that the neural patterns associated with one’s own self-concept are more distinct or
discriminable than those associated with knowledge about others, as reflected in regions such as
MPEFC, TPJ, and dorsolateral prefrontal cortex (DLPFC). Other work employed a round-robin
design in an fMRI study on a sample of close friends, finding that multi-voxel representations of
a given individual’s self-concept in the MPFC were correlated with their friend’s MPFC
representations of their personality (Chavez & Wagner, 2020). The strength of this relationship
was associated with how similar trait ratings were between the target individual (rating their own
traits) and the friend in question, suggesting that one factor driving “accuracy” in personality
judgments is how well our mental models of an individual’s personality match their own self-
assessments.

Another fMRI study on a group of familiar individuals used a large sample drawn from a
cohort of first-year MBA students (Parkinson et al., 2017), using RSA to show that
representations of familiar others are organized along social network dimensions. Multiple social
network attributes — including distance (number of intermediate paths between any given two
people in the network) and eigenvector centrality (generally characterizing how well connected a
given person is within their network) — were used to construct dissimilarity matrices reflecting
pairwise relationships between each individual in the social network on these metrics. These
network characteristics were found to predict the representational structure of neural response
patterns in regions such as the MPFC, superior temporal cortex (STC), inferior parietal lobule
(IPL), and precuneus/PCC when subjects viewed videos of their classmates introducing
themselves in the scanner. This work suggests that representations of familiar others are
organized in a manner partly determined by the overall structure of the social network in which
an individual is embedded.

The brain’s representational structure of identity and personality concepts is consistent
with a number of different models of high-level social cognition that predict how different minds

relate to one another. Together, these studies demonstrate that person representations (identity,
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traits, personality) in the brain are highly structured, with high-level social dimensions such as
personality similarity and social network position partly organizing neural response patterns. It is
likely that a smaller set of underlying social cognitive dimensions explain most of the variance in
pattern response in brain regions such as MPFC and TPJ, rather than representations in these
regions being simultaneously constrained by several different psychological models of
personality and behavior. However, research investigating any such low-dimensional

representational space is only emerging.

Emotion Perception

Understanding how others are feeling is an important tool for navigating the social world
safely and effectively, and understanding which emotion categories perceivers can successfully
“recognize” in others has been a central focus of the literature on emotion perception. Early,
seminal models of face perception (Bruce & Young, 1986) emphasized a processing dissociation
between static and dynamic facial cues, and since facial emotion is often categorized based on
dynamic facial movements, it has largely been treated separately in the literature from
dimensions of social perception that have categorical boundaries defined by static cues (e.g., race
and sex). The particular neuroanatomical dissociation is between the fusiform gyrus (FG),
thought to be more important in processing configurations of static facial cues, and the superior
temporal sulcus (STS), known to be involved in processing dynamic facial actions as well as
socially relevant actions more broadly, such as body movements (Haxby et al., 2000; 2002). The
neuroimaging literature on emotion perception has been further complicated by studies that
aimed to isolate regions most involved in perception of specific discrete emotions, for example
by showing participants facial expressions typically categorized as Angry, Disgusted, and
Neutral, and computing univariate Angry > Neutral and Disgusted > Neutral contrasts to
determine which regions are preferentially engaged by Angry and Disgusted facial expressions,
respectively. Numerous studies associated different possible brain regions with different specific
emotions, most famously strongly associating the amygdala with perceiving fear (Adolphs et al.,
1995; Adolphs, 2008), although neuroimaging meta-analyses have been unable to find specific
associations that are consistent across the literature (Lindquist et al., 2012).

In an analogous manner to the fMRI literature on social categorization, multivariate

approaches have helped shift the neuroscientific study of emotion perception from a focus on
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associating brain regions with emotion categories to a greater understanding of the relevant
information different regions process. As with the study of traits and identity, this makes MVPA
particularly beneficial to the study of emotion perception because of the degree of debate in the
field surrounding different candidate models of emotion perception. The core of this debate
concerns how to specify the relationship between emotion categories (e.g., Anger) and facial
actions, with some assuming that specific facial expressions map directly onto corresponding
emotion categories and others assuming a more context- and perceiver-dependent relationship
(Barrett et al., 2019). Not only can diverse candidate models be directly tested against each other
using RSA, classification and decoding approaches can demonstrate which aspects of emotion
expressions determine boundaries between emotion categories and perceiver impressions,
addressing theoretical predictions about the determinants of emotion percepts.

Multivariate classification approaches demonstrate that facial emotion categories can be
decoded in regions such as early visual cortex (V1; Petro et al., 2013), the posterior superior
temporal sulcus (pSTS; Said et al. 2010), and the fusiform gyrus (FG; Harry et al., 2013;
Wegrzyn et al., 2015a). For static images of facial expressions, Wegrzyn et al. (2015a) compared
classification performance in multiple brain regions, finding that classification performance was
highest in the FG, indicating that this region contains and processes emotion category-relevant
information. This is consistent with work showing that facial emotion categories exhibit category
selectivity effects in a manner consistent with social category perceptions (Calder et al., 1996; de
Gelder et al., 1997; Etcoff et al., 1992; Wegrzyn et al., 2015b). A recent study further challenged
the common FG/STS distinction by showing that emotion category representations in response to
dynamic facial movements could be decoded in the FG, and that emotion category
representations in response to static facial expressions could be decoded in the STS (Liang et al.,
2017). However, in studies characterizing the representation of fine-grained facial movements
associated with emotion, the pSTS seems to be the most computationally relevant region (Deen
& Saxe, 2019; Srinivasan et al., 2016).

As in the domain of perceiving social categories and groups, the idea that social cognitive
processes and semantic representations of emotion categories may shape face processing has
become important in understanding facial emotion perception. Classic categorical approaches
such as basic emotion theory would predict a neural representational space in which different

categories are primarily represented on the basis of their differences in facial cues. In a recent
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study using RSA, we measured the neural representational space of emotion categories from a
task in which subjects passively viewed emotional facial expressions, and also measured each
subject’s conceptual space of emotion categories (Brooks et al. 2019). We found that each
individual’s unique conceptual model of emotion categories was reflected in multi-voxel pattern
structure in the FG when viewing faces belonging to those categories, even when acknowledging
intrinsic visual differences in the emotion expressions themselves. Specifically, when an
individual believed any given pair of emotions (e.g., Angry and Sad) were more conceptually
similar, there was a corresponding similarity in the multi-voxel response patterns in the FG to
faces belonging to those categories (see Figure 1¢). Of relevance for comparing conceptually-
shaped models of emotion perception with more categorical models, these results emerged even
when controlling for three different models of similarity between categories in their displayed
facial cues and low-level visual properties, strengthening the claim of conceptually-structured
representations in the FG. These findings suggest that individual differences in conceptual
understanding of what different emotions mean may impact the visual representation of facial
expressions commonly associated with those categories.

Beyond using RSA to assess the correspondence between idiosyncratic conceptual
structure and neural pattern structure in FG, RSA has also proven useful in adjudicating between
different theoretical models of emotion in terms of how well they predict the brain’s
representational structure of emotion categories. In the domain of emotion perception, the
dominant models have been the categorical “basic emotion” model and a dimensional
“circumplex” model. Basic emotion theory posits a small set of psychologically distinct emotion
categories thought to yield associated facial expressions that are universally recognized in a
categorical fashion (Ekman, 1993; Ekman et al., 1969; Ekman & Friesen, 1971; 1976). The
circumplex model emphasizes two underlying dimensions of valence (positive vs. negative) and
arousal (high vs. low physiological activation or perceived intensity) that all emotion judgments
map onto (Russell, 1980; 2003).

In a study using RSA to explicitly compare how well these models fit representations of
20 emotion categories inferred from reading stories about individuals, Skerry and Saxe (2015)
found that neither model fit multi-voxel representations in the “theory of mind network™
(including multiple sub-regions of MPFC as well as the rTPJ) as well as a higher-dimensional

model generated from behavioral responses. This model contained 38 dimensions describing
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various contextual and situational factors that constrain perceiver appraisals. While these brain
regions, more often associated with mentalizing and theory of mind, have not been extensively
studied in the context of emotion perception, it is of course true that emotion perception is
fundamentally a case of mental state attribution, as with mentalizing. Indeed, an additional study
(Skerry & Saxe, 2014) showed that the representational space of emotion categories in the
MPFC was shared across situational inferences and facial emotion perception, indicating that
these regions implicated in theory of mind may represent and compute high-level aspects of
emotion perception across multiple modalities. Given that valence has also been found to partly
organize the brain’s mental state representations (Tamir et al., 2016), future work is needed to
disentangle the representations and possibly shared underlying dimensions of emotion and

mental state representations.

Conclusions

Across multiple domains of social perception, multivariate analyses of fMRI data have
permitted a more fine-grained understanding of how social information is processed and
represented in the brain, and an increased understanding of the computational relevance of
specific brain regions in social-perceptual processes. Such an approach is equally informative
from neuroscientific and psychological perspectives, better characterizing the computational
characteristics of specific brain regions as well as allowing explicit tests of how well
psychological models fit the brain’s representational structure of social information. It is
important to note that this review was relatively limited to classification and RSA approaches,
but there are a number of other data-driven methods and advanced analysis techniques that have
been similarly useful in moving the field past localization approaches (see Wagner et al., 2019
for a relevant review). Additional methodological tools are rapidly accumulating and gaining
sophistication. For example, some recent work has expanded the use of multivariate pattern
classifiers to include multivariate patterns of connectivity between brain regions, which can also
be leveraged to make stronger causal claims about the relationships between distant brain regions
in their representational spaces (Anzellotti et al., 2017). In the domain of social perception, this
has already been used to decode wide-scale patterns of connectivity associated with facial
emotion categories (Liang et al., 2018). Future work is needed to better understand the

relationship between these various approaches.
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While promising, these approaches are not without limitations. Notably, RSA is
inherently correlational and does not permit any causal inferences about determinants of neural
representational structure. Additionally, decoding approaches are sometimes particularly
sensitive to idiosyncratic factors such as the specific sample, stimuli, and task context (Davis et
al., 2014; Todd et al., 2013). For this reason, it is essential to test decoding models outside of the
original sample, and recent applications have made progress incorporating this level of rigor.
Large-scale openly shared fMRI datasets, and concurrent development of sophisticated tools to
analyze them, also serve to mitigate these issues. It is also important to note that MVPA analyses
are not immune to several issues faced by univariate fMRI. In particular, following a searchlight
or whole-brain MVPA analysis that maps representational similarity or classification accuracy at
each voxel in the brain, the resulting maps undergo voxelwise statistical tests, making MVPA
vulnerable to the same statistical correction and reporting pitfalls observed in univariate fMRI
research.

Another challenge of multivariate fMRI lies in interpreting MVPA results and using them
to inform and develop psychological theory. What does it really mean to be able to discriminate
patterns of fMRI signal along a cognitive dimension? Multi-voxel patterns associated with a
particular category are often reported as the neural representation of that particular category, but
this interpretation requires care. The precise relationship between neuronal activity and
differences in spatial distribution of fMRI signal is unknown (but see Haynes, 2015 for a
summary of existing knowledge about the relationship between multi-voxel patterns and the
activity of neurons). However, empirical and theoretical efforts are underway to better
characterize the nature of multi-voxel response patterns and their precise relationship with
underlying neural activity as well as the cognitive dimensions they seem to encode (Davis et al.,
2014; Grootswaters et al., 2018; Popov et al., 2018; Ritchie et al., 2019). The idiosyncrasies of
sample and stimuli can also introduce issues of interpretation. Researchers should take caution
when interpreting a classifier trained and tested on one sample as reflecting the “neural code” for
that cognitive dimension. As noted above, the interpretability and theoretical utility of decoding
models principally depends on their generalizability out of sample (Kriegeskorte & Douglas,
2019). Increased use of RSA and related methods may elucidate some of these open questions
about the nature of representation in fMRI response patterns. In particular, while RSA does not

permit causal inferences, its ability to test the dimensionality and informational content of neural
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activation patterns in a targeted way affords stronger conclusions about how a given brain region
encodes information.

While more work is needed to address these and other questions, the field stands to
benefit from continued use of MVPA and related approaches. Techniques are constantly
evolving and improving, building an exciting set of new avenues for computational
neuroimaging research on social perception, such as MVPA in conjunction with naturalistic
stimuli and tasks such as movies and real-time interactions (Wagner et al., 2019). Future work
using RSA would benefit from choosing diverse candidate models to test at the level of neural
representation. Of particular relevance to social perception are the astoundingly rapid advances
in “deep” neural network models of computer vision, which approach or approximate human
performance in a number of object recognition and categorization tasks (Goodfellow et al., 2016;
Hassabis et al., 2017; Kriegeskorte & Golan, 2019). Comparing internal representations from
advanced computer vision models to neural and behavioral category representations has already
proven useful in the object recognition literature (Jozwik et al., 2017; Kriegeskorte & Golan,
2019; Storrs et al., 2017), and could benefit the neuroscientific study of visual social perception
as well. These approaches, and other theoretical and methodological advancements, show
promise in improving our understanding of how visual input from another person’s face and

body is transformed into a socially relevant category representation in the brain.
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Figure Legends

Figure 1. MVPA shows that stereotypes and emotion concepts shape representations of
other people’s faces in the FG. Stolier and Freeman (2016) used multiple regression RSA on
fMRI data from a task in which subjects viewed faces, showing that stereotypes partially
structure how face’s social categories are represented in regions important for face perception
such as the FG. a) An example pair of corresponding dissimilarity matrices (DMs), depicting the
corresponding representational structures of social categories in both stereotypes and subjective
face perception. b) Results from a whole-brain searchlight analysis which performed multiple
regression RSA at each searchlight sphere, measuring the correspondence between the subjective
perceptual and neural DMs while controlling for three models of visual similarity. This analysis
revealed that the right fusiform gyrus (rFG) and orbitofrontal cortex (OFC) represent social
categories in a manner consistent with the influence of stereotypes on processing of faces’ social
categories. ¢) Similar results are shown from Brooks and colleagues (2019), which reported an
fMRI study in which subjects passively viewed faces varying in emotion expression. The
researchers also measured subjects’ conceptual similarity between the emotion categories Anger,
Disgust, Fear, Happiness, Sadness, and Surprise (corresponding to the facial expressions shown
in the scanner). The correspondence between this idiosyncratic conceptual DM and the brain’s
representational structure (neural DM) was measured using multiple regression RSA in a whole-
brain searchlight analysis, also controlling for three visual similarity models. This analysis
revealed that the rFG represents facial emotion categories in a manner consistent with the
influence of a perceiver’s conceptual knowledge on processing of facial emotion. Figure adapted
from Stolier and Freeman (2016) and Brooks and colleagues (2019).

Figure 2. MVPA sheds new light on how “social brain network” regions represent other
people. The “social brain network”, including regions such as the medial prefrontal cortex
(MPFC), precuneus/posterior cingulate cortex (PCC), anterior temporal lobe (ATL), and
temporoparietal junction (TPJ), has long been known to be involved in social cognition and
person perception. MVPA and RSA have been important tools in recent progress made in
understanding how this network of regions specifically represents and computes social
information. In a study by Thornton and colleagues (2019a), RSA was used to show that these
regions represent individual identities in a manner consistent with the sum of a person's mental
state representations. Other studies have found that person and identity representations in these
regions are structured by high-level social cognitive factors such as social network characteristics
(Parkinson et al., 2017). In separate lines of work, MVPA and RSA have also proven helpful in
disentangling the computational roles of these regions, e.g. suggesting that the MPFC is involved
in representing information about individual people, while medial parietal regions such as the
precuneus/PCC are more involved in representing information about the social context (Thornton
& Mitchell, 2017). Figure adapted from Thornton and colleagues (2019a).
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45 Figure 1. MVPA shows that stereotypes and emotion concepts shape representations of other people’s faces

46 in the FG. Stolier and Freeman (2016) used multiple regression RSA on fMRI data from a task in which

47 subjects viewed faces, showing that stereotypes partially structure how face’s social categories are

48 represented in regions important for face perception such as the FG. a) An example pair of corresponding
dissimilarity matrices (DMs), depicting the corresponding representational structures of social categories in

49 both stereotypes and subjective face perception. b) Results from a whole-brain searchlight analysis which

50 performed multiple regression RSA at each searchlight sphere, measuring the correspondence between the

51 subjective perceptual and neural DMs while controlling for three models of visual similarity. This analysis

52 revealed that the right fusiform gyrus (rFG) and orbitofrontal cortex (OFC) represent social categories in a

53 manner consistent with the influence of stereotypes on processing of faces’ social categories. c) Similar

54 results are shown from Brooks and colleagues (2019), which reported an fMRI study in which subjects
passively viewed faces varying in emotion expression. The researchers also measured subjects’ conceptual

55 similarity between the emotion categories Anger, Disgust, Fear, Happiness, Sadness, and Surprise

56 (corresponding to the facial expressions shown in the scanner). The correspondence between this

57

58
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idiosyncratic conceptual DM and the brain’s representational structure (neural DM) was measured using
multiple regression RSA in a whole-brain searchlight analysis, also controlling for three visual similarity
models. This analysis revealed that the rFG represents facial emotion categories in a manner consistent with
the influence of a perceiver’s conceptual knowledge on processing of facial emotion. Figure adapted from
Stolier and Freeman (2016) and Brooks and colleagues (2019).
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Figure 2. MVPA sheds new light on how “social brain network” regions represent other people. The “social
brain network”, including regions such as the medial prefrontal cortex (MPFC), precuneus/posterior cingulate
cortex (PCC), anterior temporal lobe (ATL), and temporoparietal junction (TPJ), has long been known to be
involved in social cognition and person perception. MVPA and RSA have been important tools in recent
progress made in understanding how this network of regions specifically represents and computes social
information. In a study by Thornton and colleagues (2019), RSA was used to show that these regions
represent individual identities in a manner consistent with the sum of a person's mental state
representations. Other studies have found that person and identity representations in these regions are
structured by high-level social cognitive factors such as social network characteristics (Parkinson et al.,
2017). In separate lines of work, MVPA and RSA have also proven helpful in disentangling the computational
roles of these regions, e.g. suggesting that the MPFC is involved in representing information about individual
people, while medial parietal regions such as the precuneus/PCC are more involved in representing
information about the social context (Thornton & Mitchell, 2017). Figure adapted from Thornton and
colleagues (2019).
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