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Abstract
Random graphs with latent geometric structure are popular models of social and bio-
logical networks, with applications ranging from network user profiling to circuit
design. These graphs are also of purely theoretical interest within computer science,
probability and statistics. A fundamental initial question regarding these models is:
when are these random graphs affected by their latent geometry and when are they
indistinguishable from simpler models without latent structure, such as the Erdős–
Rényi graph G(n, p)? We address this question for two of the most well-studied
models of random graphs with latent geometry—the random intersection and ran-
dom geometric graph. Our results are as follows: (a) The random intersection graph
is defined by sampling n random sets S1, S2, . . . , Sn by including each element of
a set of size d in each Si independently with probability δ, and including the edge
{i, j} if Si ∩ S j �= ∅. We prove that the random intersection graph converges in total
variation to an Erdős–Rényi graph if d = ω̃(n3), and does not if d = o(n3), for both
dense and sparse edge densities p. This resolves an open problem in Fill et al. (Ran-
domStruct Algorithms 16(2):156–176, 2000), Rybarczyk (RandomStruct Algorithms
38(1–2):205–234, 2011) and Kim et al. (Random Struct Algorithms 52(4):662–679,
2018). The same result was obtained simultaneously and independently by Bubeck
et al. (When random intersection graphs lose geometry. Manuscript, 2019). (b) We
strengthen the preceding argument to show that the matrix of random intersection
sizes |Si ∩ S j | converges in total variation to a symmetric matrix with independent
Poisson entries. This yields the first total variation convergence result for τ -random
intersection graphs, where the edge {i, j} is included if |Si ∩ S j | ≥ τ . More precisely,
our results imply that, if p is bounded away from 1, then the τ -random intersection
graph with edge density p converges to G(n, p) if d = ω(τ 3n3). (c) The random geo-
metric graph on S

d−1 is defined by sampling X1, X2, . . . , Xn uniformly at random
from S

d−1 and including the edge {i, j} if ‖Xi − X j‖2 ≤ τ . A result of Bubeck et al.
(Random Struct Algorithms 49:503–532, 2016) showed that this model converges to
G(n, p) in total variation, where p is chosen so that the models have matching edge
densities, as long as d = ω(n3). It was conjectured in Bubeck et al. (2016) that this
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threshold decreases drastically for p small. We make the first progress towards this
conjecture by showing convergence if d = ω̃

(
min{pn3, p2n7/2}). Our proofs are a

hybrid of combinatorial arguments, direct couplings and applications of information
inequalities. Previous upper bounds on the total variation distance between random
graphs with latent geometry and G(n, p) have typically not been both combinatorial
and information-theoretic, while this interplay is essential to the sharpness of our
bounds.
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1 Introduction

Random graphs have emerged as ubiquitous objects of interest in a variety of fields.
The topic of inference on random graphs encompasses a number of important statis-
tical problems with applications ranging from social, genetic and biological networks
to network user profiling and circuit design. Random graphs are also primary com-
binatorial objects of interest within the computer science, probability and statistics
communities. Many contemporary random graphs in applications arise as models of
pairwise relationships between latent points X1, X2, . . . , Xn drawn at random from a
high-dimensional feature space. This feature space is referred to as the social space
in random models of social networks [33]. In these models with latent structure, the
points Xi capture the underlying attributes of nodes in the network that determine
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the formation of edges. The underlying geometry of the feature space influences the
emergent properties of the network, often leading to desirable properties of real-world
networks such as the small-world phenomenon and clustering.

An initial fundamental question regarding thesemodels is: when are random graphs
with latent geometric structure actually influenced by their geometry? In other words,
when are these models capturing more than simpler models without any latent struc-
ture? As the dimension d of the latent feature space increases, it is often the case
that the numerous degrees of freedom in the points Xi cause the connections in the
graph to appear less correlated and more independent. In the high-dimensional limit
d → ∞, these models begin to resemble the simplest random graph without latent
structure, the Erdős–Rényi graph G(n, p), wherein each edge is included indepen-
dently with probability p. This leads to the following precise reformulation of our
general question.

Question 1.1 Given a random graph model with n nodes, latent geometry in dimen-
sion d = d(n) and edge density p = p(n), for what triples (n, d, p) is the model
indistinguishable from G(n, p)?

We address this question for two of the most popular models of random graphs
with latent geometry—the random intersection and random geometric graph. The
random intersection graph G is defined by sampling n random sets S1, S2, . . . , Sn by
including each element of a set of size d in each Si independently with probability δ,
and including the edge {i, j} in G if Si and S j have nonempty intersection. Random
intersection graphs were introduced in [41]. A long line of research has examined
the combinatorial properties of random intersection graphs, including their diameter,
connectivity and large components [10,51], independent sets [45], degree distribution
[18,36,56] and threshold functions [53]. Random intersection graphs have also found a
range of applications, including to epidemics [9,23], circuit design [41], network user
profiling [42], the security of wireless sensor networks [16], key predistribution [58]
and cluster analysis [29]. A line of work directly relevant to our question of focus has
examined common properties between random intersection and Erdős–Rényi graphs
[28,39,52]. For a more extensive survey of properties and applications of random
intersection graphs, see Chapter 12 of [27] or [12,13]. A more general model is the
τ -random intersection graph, where each edge {i, j} is included if |Si ∩ S j | ≥ τ . The
τ -random intersection graph was introduced in [29] and its clique number has recently
been examined in [17]. For τ > 1, this model is analytically more difficult than the
ordinary random intersection graph and the question of its convergence to G(n, p) in
total variation has not yet been studied.

The random geometric graph on Sd−1 is defined by sampling X1, X2, . . . , Xn uni-
formly at random from S

d−1 and including the edge {i, j} if ‖Xi − X j‖2 ≤ τ . A large
body of literature has been devoted to studying the properties of low-dimensional ran-
dom geometric graphs, and a survey of this literature can be found in the monograph
[47]. Random geometric graphs have many well-studied applications, including to
wireless networks [32,54], gossip algorithms [14] and optimal planning [38]. In this
work, we focus on the high-dimensional setting where the dimension d of the latent
space S

d−1 grows as a function of n. A recent line of work has studied properties
of high-dimensional random geometric graphs, including their clique number [1,25],
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edge and triangle statistics [8,30], convergence to Erdős–Rényi graphs in total vari-
ation [8,25,26,49] and birthday inequalities [48]. This prior work as it relates to our
question is discussed in Sect. 1.1. In [8], it was shown that random geometric graphs
on Sd−1 with marginal edge density p converge to G(n, p) in total variation as long as
d = ω(n3). It was conjectured that if p decays as a function of n, this threshold should
also decrease from O(n3). However, as will be discussed in Sect. 1.1, the techniques
in [8] rely on a coupling of random matrices that fails if d = O(n3). We make the
first progress towards the conjecture of [8] by showing that the threshold of O(n3)
decreases substantially for small p.

Our main results and the overall structure of the paper are as follows:

• We prove in Sect. 3 that the random intersection graph converges in total variation
to an Erdős–Rényi graph if d = ω̃(n3). Furthermore, we show in the dense and
sparse regimes of p, that these two random graphs have total variation 1− o(1) if
d = o(n3). This resolves an open problem in [28,39,52].

• In Sect. 4, we strengthen our argument for random intersection graphs to show
that the matrix of random intersection sizes |Si ∩ S j | converges in total variation to
a symmetric matrix with independent Poisson entries. This implies the first total
variation convergence result for τ -random intersection graphs.More precisely, our
results show that the τ -random intersection graph with edge density p converges
to G(n, p) if d = ω(τ 3n3), if p is bounded away from 1.

• In Sect. 5, we prove that if d = ω̃
(
min{pn3, p2n7/2}), then the random geometric

graph on S
d−1 and edge density p converges in total variation to G(n, p). This

marks the first progress towards the conjecture of [8] that the threshold d = ω(n3)
decreases drastically for p polynomially small with respect to n.

Thefirst result abovewasobtained simultaneously byBubecket al. [22].Whileworking
on the convergence of sparse random geometric graphs to Erdős–Rényi graphs, we
were informed by Racz that they had solved the problem for the random intersection
graphs.We then found an alternative proof for this result during ourwork on the random
geometric graphs, and extended our techniques to random intersection matrices and
τ -random intersection graphs. We have not seen any portion of their arguments so our
solution is independent of theirs.

In Sect. 1.1, we discuss work related to our question for random intersection and
geometric graphs. In Sect. 2,we formally introduce themodelswe consider, our results,
the techniques used to prove these results and several problems that remain open. Our
proofs are a hybrid of combinatorial arguments, direct couplings and applications of
information inequalities, which is novel to this problem. Previous upper bounds on the
total variation distance between random graphs with latent geometry and G(n, p) have
typically not been both combinatorial and information-theoretic, while this interplay
is essential to the sharpness of our bounds.

1.1 Related work

The question of convergence of random intersection graphs to Erdős–Rényi random
graphs in total variation was first examined in [28]. In [28], it was shown that if d = nα

where α > 6, then the two graphs converge in total variation. In the recent paper [39],
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this result was improved to show that convergence occurs as long as d 
 n4. In [52],
a weaker property than convergence in total variation was shown to hold as long as
d = nα where α > 3. In particular, [52] shows that, for any monotone propertyA, the
probabilities P[G ∈ A] are essentially the same regardless of whether G is sampled
from a random intersection graph or an Erdős–Rényi random graph at a matching
edge density. We remark that this result differs from convergence in total variation
because of the monotonicity requirement on A. The first main result of our work is
to strengthen these prior results by showing that total variation convergence occurs
as long as d = ω̃(n3), and that this is the best bound possible. We also extend our
techniques to show that this total variation convergence occurs when d = ω̃(τ 3n3) for
τ -random intersection graphs with edge density bounded away from 1, yielding the
first convergence result of this type for this model.

The convergence of high-dimensional random geometric graphs to Erdős–Rényi
random graphs in total variation was first examined in [25]. In [25], the authors
identified the clique number of random geometric graphs and showed an asymp-
totic convergence result through central limit theorem-based methods—specifically,
they proved that the two graphs converge in total variation if n is fixed and d → ∞.
[8] strengthened this result significantly, by showing that if d = ω(n3) then the two
graphs converge in total variation. Theirmain techniquewas to show that the adjacency
matrices of random geometric graphs and Erdős–Rényi graphs can be approximately
generated by thresholding the entries of an n × n Wishart matrix with d degrees of
freedom and an n × n goe matrix, respectively. By directly comparing their density
functions on the set of symmetric matrices inRn×n , [8] showed that these two random
matrix ensembles converge in total variation if d = ω(n3). [8] conjectured that, if
the marginal edge density p of the graphs tends to zero as a function of n, then the
threshold of d = ω(n3) should decrease drastically. Specifically, they conjectured
that if p = �(1/n), then random geometric graphs converge to Erdős–Rényi random
graphs in total variation as long as d = ω(log3 n).

We remark that the argument in [8] thresholding a pair of coupled Wishart and
goe matrices breaks down as soon as d = O(n3), since these two matrix ensembles
no longer converge in total variation. Our third main result overcomes this technical
difficulty, making the first progress towards the conjecture of [8] by showing that con-
vergence occurs as long as d = ω̃

(
min{pn3, p2n7/2}). The argument in [8] sparked a

line of research examining the total variation convergence of Wishart and goe matri-
ces [11,24,46,50]. Eldan andMikulincer [26] extended the Erdős–Rényi total variation
convergence result in [8] to anisotropic random geometric graphs. We also note that
the same result on Wishart and goe matrices as in [8] was obtained independently in
[37]. An exposition on some of these results on the convergence of random geometric
graphs and matrix ensembles can be found in [49].

The general topic of showing total variation convergence between high-dimensional
objects has emerged as a common technical problem in a number of areas. Janson [35]
provides some initial general results on showing total variation convergence for pairs of
random graph distributions. Total variation convergence often underlies information-
theoretic lower bounds for detection and estimation problems in statistics [2,19,21,
43]. The total variation convergence of high-dimensional objects also is the principal
technical content of average-case reductions between statistical problems [3–7,20,34,
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44,57]. The recent reduction in [4] between the planted clique problem and sparse
principal component analysis directly uses the random matrix ensemble convergence
of [8,37] to construct efficient reductions.

1.2 Notation

Throughout, we let G = ([n], E) be a simple graph on the vertex set [n] =
{1, 2, . . . , n}. All other quantities, unless stated otherwise, will be viewed as functions
ofn. For example, p = p(n) andd = d(n)will typically denote edge density and latent
dimension parameters associated with G. The asymptotic notation ωn(·), on(·),�n(·)
and On(·) refers to its standard meaning with all quantities that are not functions of n
viewed as constant. The notation ω̃n(·) and Õn(·) are shorthands for ωn(·) and On(·),
respectively, up to polylog(n) factors. The inequalities � and � will serve as short-
hands for on(·) and On(·), respectively. Throughout, equalities involving On(·) will
be used to denote two-sided estimates of error terms. More precisely, the statement
A = B + On(C) will be a shorthand for |A − B| = On(C). Given a random variable
X , we letL(X) denote its law. Given a measure ν over graphsG and edge e, we let ν∼e

denote the marginal measure of the graph restricted to edges other than e and we let
ν+∼e denote the measure of the rest of the graph conditioned on the event {e ∈ E(G)}.
We let 1(A) denote the indicator for an event A. Total variation, KL divergence and χ2

divergence are denoted as dTV(·, ·), KL(·‖·) and χ2(·, ·), respectively. Given measures
μ1, μ2, . . . , μn over ameasurable space (X ,B), thenμ = μ1⊗μ2⊗· · ·⊗μn denotes
the product measure with marginals μi .

2 Random graphs with latent geometry

Now, we formally introduce the models we consider and state our main results. We
remark that all of the graphs we consider—random intersection graphs, τ -random
intersection graphs and random geometric graphs on Sd−1—can be viewed as specific
instantiations of random inner product graphs. These are also referred to as dot product
graphs in the literature and are defined as follows.

Definition 2.1 (Random Inner Product Graphs). Let μ be a measure on a set H
equipped with a real-valued inner product 〈·, ·〉 and let X1, X2, . . . , Xn ∼i.i.d. μ.
The random inner product graph G over the vertex set [n] is then constructed by
connecting i and j if and only if 〈Xi , X j 〉 ≥ t for some threshold t ∈ R.

2.1 Random intersection graphs andmatrices

An intersection graph of a sequence of sets is defined as follows. We remark that
an intersection graph can be viewed as an inner product graph over the set {0, 1}d
equipped with the inner product on R

d by identifying a set with its corresponding
indicator vector.
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Definition 2.2 (Intersection Graph) Given finite sets S1, S2, . . . , Sn , let igτ (S1, S2,
. . . , Sn) denote the graph G on the vertex set [n] where {i, j} ∈ E(G) if and only if
|Si ∩ S j | ≥ τ .

This leads to a natural distribution of random intersection graphs formed by con-
structing n subsets of [d] where each element of [d] is included in each subset
independently with a fixed probability δ.

Definition 2.3 (Random Intersection Graph) Let rig(n, d, p) denote the distribution
of the graph ig1(S1, S2, . . . , Sn) where S1, S2, . . . , Sn are random subsets of [d] gen-
erated by including each element of [d] in each Si independently with probability δ

where p = 1 − (1 − δ2)d .

Here p = 1−(1−δ2)d corresponds to the marginal probability of an edge between
two vertices in rig(n, d, p). We remark that our notation differs from the standard
notation for random intersection graphs, which are typically parameterized directly
by δ rather than their marginal edge density p. We choose the latter for consistency
with our notation for random geometric graphs on S

d−1.
Below is our main theorem identifying conditions under which rig and G(n, p)

converge in total variation. This resolves an open problem in [28,39,52]. Bubeck et
al. independently proved the same result through alternate techniques simultaneous to
this work [22].

Theorem 2.1 Suppose p = p(n) ∈ (0, 1) and d satisfy that

d 
 n3
(
1 + min

{
log n, log(1 − p)−1

})3

Then it follows that

dTV (rig(n, d, p),G(n, p)) → 0 as n → ∞

For the sake of exposition, we first show that this theorem holds under the assump-
tion that 1− p = �n(n−1/2). The proof of the theorem under these conditions can be
found in Sect. 3. The theorem when 1− p = on(n−1/2) will be implied in Sect. 4 by a
later result on the convergence of random intersection matrices and Poisson matrices.
The main ideas in the proof are as follows. A Poissonization argument yields that
G ∼ rig(n, d, p) can approximately be generated as the union of independently cho-
sen cliques. Through the second-momentmethod, we obtain a tight upper bound on the
total variation distance induced by planting a small clique in G(n, p) to G(n, p′)where
p′ is chosen so that the twomodels have matching edge densities. Another Poissoniza-
tion step and then applying this bound inductively yields the desired convergence in
total variation. Making this argument rigorous requires a number of additional tech-
nical steps.

We also show that, in sparse and dense regimes of edge densities p, the condition
on the dimension d in Theorem 2.1 is the best that can be hoped for. This follows
by comparing the number of triangles and a signed variant of the number of triangles
in each of rig(n, d, p) and G(n, p). The signed triangle statistic we consider was
introduced in [8] to show a similar theorem for random geometric graphs.
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Theorem 2.2 Suppose p = p(n) satisfies that 1− p = �(1) and either p = �(1) or
p = �(1/n). It follows that if n2 � d � n3, then

dTV (rig(n, d, p),G(n, p)) → 1 as n → ∞

Our second main result extends the proof of Theorem 2.1 to directly couple the full
matrix of intersection sizes between the sets Si to a matrix with i.i.d. Poisson entries.
More precisely, consider the following pair of random matrices.

Definition 2.4 (Random Intersection Matrix) Let rim(n, d, δ) denote the distribution
of n × n matrices M with entries

Mi j =
{ |Si ∩ S j | if i �= j

0 otherwise

where S1, S2, . . . , Sn are random subsets of [d] generated by including each element
of [d] in each Si independently with probability δ.

Definition 2.5 (PoissonMatrix)Given λ ∈ R≥0, let poim(n, λ) denote the distribution
of symmetric n × n matrices M such that Mii = 0 for all 1 ≤ i ≤ n and Mi j are i.i.d.
Poisson(λ) for all 1 ≤ i < j ≤ n.

Our second main result coupling rim and poim can now be formally stated as
follows. Its proof can be found in Sect. 4.

Theorem 2.3 Suppose that δ = δ(n) ∈ (0, 1) and d satisfies that d 
 n3 and δ �
d−1/3n−1/2. Then it holds that

dTV
(
rim(n, d, δ), poim

(
n, dδ2

))
→ 0 as n → ∞

Applying the data-processing inequality to these matrices at τ > 1 now yields
a natural extension of Theorem 2.1 to random intersection graphs defined at higher
thresholds than 1. These graphs are formally defined as follows.

Definition 2.6 (Random Intersection Graphs at Higher τ ) Let rigτ (n, d, p) denote
the distribution of the graph igτ (S1, S2, . . . , Sn) where S1, S2, . . . , Sn are random
subsets of [d] generated by including each element of [d] in each Si independently
with probability δ where

1 − p =
τ−1∑

k=0

(
d

k

)
δ2k(1 − δ2)d−k

We obtain the following corollary of Theorem 2.3 yielding conditions for the con-
vergence of G(n, p) and rigτ (n, d, p) in total variation.
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Corollary 2.1 Suppose p = p(n) ∈ (0, 1), δ = δ(n) ∈ (0, 1), τ ∈ Z+ and d satisfy
that

1 − p =
τ−1∑

k=0

(
d

k

)
δ2k(1 − δ2)d−k

Furthermore suppose that

d 
 n3, δ � d−1/3n−1/2 and n2δ4 � p(1 − p)

Then it follows that

dTV (rigτ (n, d, p),G(n, p)) → 0 as n → ∞

When 1 − p is bounded below by a constant, this corollary can be restated with
the simple condition of d 
 τ 3n3 as shown below. This is our main result on the
convergence of G(n, p) and rigτ (n, d, p) in total variation.

Corollary 2.2 Suppose p = p(n) ∈ (0, 1) satisfies that 1 − p = �n(1) and d and
τ = τ(n) ∈ Z+ satisfy d 
 τ 3n3. Then it follows that

dTV (rigτ (n, d, p),G(n, p)) → 0 as n → ∞

Note that the condition d 
 τ 3n3 is more restrictive at larger τ . Qualitatively, this
arises because of the relation between p, τ and δ in Definition 2.6. If p remains fixed
and τ increases while satisfying that τ � d, then δ must also increase. This can be
seen by expressing the given relation as 1 − p = P[Binom(d, δ2) < τ ]. At larger δ,
the conditions for the underlying rim and poim matrices to converge in Theorem 2.3
are then stricter, leading to a more restrictive condition on d in Corollary 2.2. As we
will discuss further in Sect. 2.4, it is unclear if the conditions in Corollaries 2.1 and 2.2
are tight. Whether they can be improved or there is a statistic distinguishing between
rigτ and G(n, p) when these conditions are violated is a question left open by this
work.

2.2 Random geometric graphs on Sd−1

A geometric graph of a sequence of points in R
d is defined as follows.

Definition 2.7 (Geometric Graph)Given n points X1, X2, . . . , Xn ∈ R
d and a thresh-

old t ∈ R, let ggt (X1, X2, . . . , Xn) denote the graph G on the vertex set [n] where
{i, j} ∈ E(G) if and only if 〈Xi , X j 〉 ≥ t .

Note that when the points X1, X2, . . . , Xn are on the sphere Sd−1, the inner product
condition 〈Xi , X j 〉 ≥ t is equivalent to ‖Xi − X j‖22 ≤ τ = 2 − 2t , yielding the
standard definition of geometric graphs in which points close in �2 distance are joined
by an edge. This leads to a natural distribution of random geometric graphs by taking
X1, X2, . . . , Xn to be sampled independently and uniformly at random from the sphere
S
d−1.
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Definition 2.8 (RandomGeometricGraph)Letrgg(n, d, p) denote the distribution of
the graph ggtp,d (X1, X2, . . . , Xn) where X1, X2, . . . , Xn are sampled independently
from the Haar measure on Sd−1 and tp,d ∈ R is such that P[〈X1, X2〉 ≥ tp,d ] = p.

Our main result on random geometric graphs is the following theorem, yielding
the first progress towards a conjecture of [8] that the regime of parameters (n, d, p)
in which rgg(n, d, p) to G(n, p) converge in total variation increases quickly as p
decays with n. This theorem also tightly recovers the result of [8] on the total variation
convergence of rgg(n, d, p) to G(n, p) in the dense regime when p is constant.

Theorem 2.4 Suppose p = p(n) ∈ (0, 1/2] satisfies that p = �n(n−2 log n) and

d 
 min

{
pn3 log p−1, p2n7/2(log n)3

√
log p−1

}

where d also satisfies that d 
 n log4 n. Then it follows that

dTV (rgg(n, d, p),G(n, p)) → 0 as n → ∞

When p = �(n−α) where α ∈ [0, 1], this yields convergence in total variation
as long as d = ω̃(min{n3−α, n7/2−2α}), yielding the first improvement over the d =
ω(n3) result of [8]. In particular, when p = c/nwhere c > 0 is a constant, this theorem
shows convergence in total variation if d = ω̃(n3/2). We remark that our argument still
yields convergence results if p = on(n−2 log n). However, for the sake of maintaining
a simple main theorem statement, we relegate these results to the propositions in the
subsections of Sect. 5.

Themain ideas in the proof of Theorem 2.4 are as follows.We first reduce bounding
the total variation between rgg(n, d, p) andG(n, p) to bounding the expected value of
the χ2 divergence between the conditional distribution Q of an edge of rgg given the
rest of the graph and Bern(p). We then bound this χ2 divergence using two different
coupling arguments. The first directly couples X1, X2, . . . , Xn with a set of orthogonal
vectors and independent random variables, approximately expressing the conditional
distribution Q in terms of one of these variables. This argument yields tight bounds
in the regime of dense marginal edge probabilities p. The second argument reduces
bounding this χ2 divergence to bounding the total variation between rgg with the
edge {1, 2} marginalized out and rgg conditioned on the presence of {1, 2}. This is
then done by directly coupling to X1, X2, . . . , Xn to X1, X ′

2, . . . , Xn where X ′
2 is

conditioned to be such that the edge {1, 2} is present. This argument yields tighter
bounds in the regime of sparse marginal edge probabilities p.

2.3 Techniques and information inequalities

In this section, we briefly review the key properties of the f -divergences dTV(·, ·),
KL(·‖·) and χ2(·, ·) used in our arguments. Given two measures ν and μ on a measur-
able space (X ,B)where ν is absolutely continuouswith respect toμ, these divergences
are given by
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dTV (ν, μ) = 1

2
· Ex∼μ

∣∣
∣∣
dν

dμ
(x) − 1

∣∣
∣∣ ,

KL (ν‖μ) = Ex∼μ

[
dν

dμ
(x) · log dν

dμ
(x)

]
and

χ2 (ν, μ) = Ex∼μ

(
dν

dμ
(x) − 1

)2

where dν
dμ

: X → R≥0 denotes the Radon–Nikodym derivative of ν with respect to μ.
A key property of these divergences is that they satisfy data-processing inequalities.
Specifically, if K is a Markov transition from the measurable space (X ,B) to another
measurable space (X ′,B′), then dTV(Kν, Kμ) ≤ dTV(ν, μ). Analogous inequalities
hold for KL and χ2. The following inequalities also hold

2 · dTV (ν, μ)2 ≤ KL(ν‖μ) ≤ χ2(ν, μ)

Note that the first inequality is Pinsker’s inequality and the second is Cauchy–Schwarz.
A survey of these inequalities and the relationships between different probability
metrics can be found in [31]. These divergences have different characterizations and
properties that make them amenable to different contexts. Total variation satisfies the
triangle inequality and is symmetric, while KL(·‖·) and χ2(·, ·) are not. Furthermore,
total variation can alternatively be characterized in terms of couplings and differences
in event probabilities as

dTV (ν, μ) = sup
S∈B

∣∣Pν[S] − Pμ[S]∣∣ = inf
ρ∈C

P(X ,Y )∼ρ[X �= Y ]

where C is the set of couplings (X ,Y ) over the product space X × X where X ∼ ν

and Y ∼ μ. When X is a product set X = Sk and μ and ν are product measures with
ν = ν1 ⊗ ν2 ⊗ · · · ⊗ νk and μ = μ1 ⊗ μ2 ⊗ · · · ⊗ μk , then KL tensorizes with

KL (ν‖μ) =
k∑

i=1

KL(νi‖μi )

A similar property holds when ν is not necessarily a product distribution. Given a
measure ν on (X1, X2, . . . , Xk) ∈ Sk , let νi denote the marginal measure of Xi and
νi (·|x∼i ) denote the conditional measure of Xi given (X j : j �= i) = x∼i where
x∼i ∈ Sk−1. When μ, but not ν, is a product measure then KL satisfies the following
tensorization inequality,whichwill be a key part of our argument for randomgeometric
graphs.

Lemma 2.1 (See e.g. Lemma 3.4 in [40]) Suppose μ is a product measure on Sk with
μ = μ1 ⊗ μ2 ⊗ · · · ⊗ μk , then it holds that

KL(ν||μ) ≤
k∑

i=1

Ex∼ν

[
KL
(
νi (·|x∼i )

∣∣∣∣μi
)]
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The divergences also have important properties related to mixtures. Suppose that
ν = Es∼ρνs where ρ is a distribution on elements of a set T and {νs : s ∈ T } is a
collection ofmeasures on (X ,B) absolutely continuouswith respect toμ. Convexity of
the divergences yield that dTV(ν, μ) ≤ Es∼ρ[dTV(νs, μ)] and analogous inequalities
hold forKL andχ2.A particularly useful property ofχ2 divergence follows by applying
Fubini’s theorem to mixtures ν = Es∼ρνs as follows:

1 + χ2(ν, μ) = Ex∼μ

[

Es∼ρ

[
dνs

dμ
(x)

]2]

= E(s,s′)∼ρ⊗ρ

[
Ex∼μ

[
dνs

dμ
(x) · dνs′

dμ
(x)

]]

This is the main idea behind the second moment method and will be crucial in our
arguments for random intersection graphs andmatrices. Furthermore, ifμ = Es∼ρ′μs ,
then we have the following conditioning property of total variation

dTV(ν, μ) ≤ dTV(ρ, ρ′) + Es∼ρ[dTV(νs, μs)]

If E is an event on X and νE is the distribution of ν given E , then we also have the
conditioning property that dTV(νE , ν) = Pν[Ec]. A final useful property is that if the
Radon–Nikodym derivative is controlled, then all of these divergences can be bounded
from above in terms of one another. For example, if | dν

dμ
− 1| is upper bounded by C1

on an event E and is upper bounded by C2 in general, then it holds that

χ2(ν, μ) ≤ 2C1 · dTV(ν, μ) + C2
2 · Pμ[Ec]

This allowsχ2 to be upper bounded in terms of both concentration of dν
dμ

and a coupling
of ν and μ, which will be essential to our arguments for random geometric graphs in
the sparse case.

2.4 Open problems and conjectures

As previously mentioned, it is unclear if the conditions in Corollaries 2.1 and 2.2
are tight. Given the similarities between the proofs of Theorems 2.1 and 2.3, and the
fact that triangles and signed triangles certify that the conditions in Theorem 2.1 are
tight in certain regimes of p, it is possible that triangles and signed triangle identify
the optimal conditions on d needed for the convergence in Corollary 2.2. However,
analyzing these statistics for ordinary rig to prove the relatively simple Theorem 2.2
is even computationally involved. Carrying out similar computations for rigτ seems
as though it would be substantially more difficult.

Another outstanding problem related to Corollary 2.2 concerns the convergence of
τ -random intersection graphs and G(n, p) in the large τ regime. A limiting case of
our argument is when τ is set to be τ = �n(d1/3−κ), in which case our condition
reduces to d 
 n1/κ . In particular, our argument fails to show any convergence if
τ = �n(d1/3). This leads to the following question left open by this work.

123



Phase transitions for detecting latent geometry in random graphs 1227

Question 2.1 For what parameters (τ, n, d, p) do rigτ (n, d, p) andG(n, p) converge
in total variation if τ = �n(d1/3)?

We suspect that improving on the condition d 
 τ 3n3 in Corollary 2.2 would
require a substantially different argument for bounding the total variation between
rigτ and G(n, p). We conjecture that for τ = d/4 + On(

√
d log n) and δ = 1/2,

τ -random intersection graphs should behave approximately like random geometric
graphs on the sphere Sd−1. A direction for future work is to directly compare these
two models in total variation distance, showing that they can converge to one another
even when they are both far from Erdős–Rényi. Another open problem is the optimal
dependence on p in the phase transition for detecting geometry in random geometric
graphs on the sphere S

d−1. In particular, the following conjecture of [8] about this
dependence when p = �(1/n) remains open.

Conjecture 2.1 [8]. If c > 0 is a constant and d 
 log3 n, then it follows that

dTV (rgg(n, d, c/n),G(n, c/n)) → 0 as n → ∞

Even showing total variation convergence at any p = �n(1/n) for some d < n
seems like a technically challenging open problem, given that all known techniques
require that the Wishart matrix Wi j = 〈Xi , X j 〉 of the latent points X1, X2, . . . , Xn

is non-singular. A first question to answer is as follows.

Question 2.2 Is there a parameter d = d(n) � n such that rgg(n, d, c/n) and
G(n, c/n) converge in total variation for any constant c > 0?

3 Random intersection graphs

The purpose of this section is to identify the regime of parameters (n, d, p) in which
rig(n, d, p) converges in total variation to G(n, p). The following theorem identifies
the regime inwhich the two random graphs do not converge for themain edge densities
p of interest. This theorem is a restatement of Theorem 2.2 from the previous section.
Its proof involves analyzing the triangle and signed triangle counts in rig(n, d, p).
Further discussion of this result and its proof are in Sect. 3.3 and “Appendix A.1”.

Theorem 2.2 Suppose p = p(n) satisfies that 1− p = �(1) and either p = �(1) or
p = �(1/n). It follows that if n2 � d � n3, then

dTV (rig(n, d, p),G(n, p)) → 1 as n → ∞

The main purpose of this and the next two subsections is to prove the following
theorem, identifying conditions under which the two graph distributions converge in
total variation. This theorem is Theorem 2.1 in the case where 1 − p = �n(n−1/2),
which captures the main regime of interest. This theorem resolves an open problem
in [28,39,52]. Bubeck et al. independently proved the same result through alternate
techniques simultaneous to this work [22]. Subsequent sections will also introduce the
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1228 M. Brennan et al.

techniques we use to show the stronger equivalence of random intersection matrices
and random Poisson matrices with i.i.d. entries in the following section.

Theorem 3.1 Suppose p = p(n) ∈ (0, 1) satisfies 1− p = �n(n−1/2) and d satisfies
that

d 
 n3
(
1 + log(1 − p)−1

)3

Then it follows that

dTV (rig(n, d, p),G(n, p)) → 0 as n → ∞

The proof of this theorem will be extended in Sect. 4 to show that the entire random
matrix of intersection sizes |Si ∩ S j | converges to a Poisson matrix with independent
entries. This more general result will then imply an analogue of Theorem 3.1 for
random intersection graphs at higher thresholds τ . It will also complete the proof of
Theorem 2.1. Throughout the proof of this Theorem 3.1, let L = 1 + log(1 − p)−1

and note that 1 < L = On(log n). The proof approximately proceeds as follows:

1. The distribution rig(n, d, p) can be viewed as a union of cliques, each correspond-
ing to an element of [d]. A Poissonization argument yields that G ∼ rig(n, d, p)
can approximately be generated as the union of a Poisson number of independently
chosen cliques of small sizes.

2. We show that planting a triangle in an Erdős–Rényi graph of edge density p yields
a graph within total variation On(p−3/2n−3/2) of an Erdős–Rényi graph of an
appropriately updated edge density. The expected number of triangles planted in
the process described in the previous step is On(n3 p3/2L3/2d−1/2).

3. An inductionnowshows that adding in these triangles induces aOn(n3/2L3/2d−1/2)

= on(1) total variation distance from a mixture of Erdős–Rényi graphs. A simi-
lar argument applies to larger cliques, whose contribution to this total variation
distance ends up being smaller.

4. Directly comparing their edge counts shows that the resulting mixture of Erdős–
Rényi graphs is close to G(n, p), and the theorem then follows from the triangle
inequality.

However, making this argument rigorous requires a number of additional technical
steps. In the next section, we establish the bound in Step 2 above—we obtain tight
bounds on the optimal error probability of testing for a small planted clique in a density-
correctedErdős–Rényi graph. Thiswill serve as a key technical component in our proof
of Theorem 3.1. We remark that the fact that the triangles in Step 3 have the largest
contribution to the resulting total variation distance intuitively is consistent with the
fact that analyzing triangle and signed triangle counts suffices to prove Theorem 2.2.

3.1 Testing for planted cliques in density-corrected random graphs

We first observe that each element of [d] forces a clique on the vertices whose sets it
is a member of. Thus an alternative view of a random intersection graph is as a union
of d randomly chosen cliques. A precise description of this union and the numbers
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of cliques of each size is given later in this section. It is natural to consider whether
forcing a randomly chosen clique on an Erdős–Rényi random graph yields a graph
distribution close to some other Erdős–Rényi random graph. Obtaining a tight bound
on the total variation distance between the resulting distributions is the content of the
next lemma. Let G(n, t, q) denote the planted clique distribution, generated by:

1. Sampling a graph G ∼ G(n, q), and then
2. Choosing t vertices uniformly at random from [n] and inserting a clique on these

vertices.

A key component of our method is the following precise bound on the total variation
between G(n, t, q) and the Erdős–Rényi random graph with matching edge density,
which we obtain by a careful estimate of the corresponding χ2 divergence between
these two distributions through the second moment method.

Lemma 3.1 For any constant t ≥ 2 and q = q(n) ∈ (t4n−2, 1
)
, it holds that

dTV

(

G(n, t, q),G
(

n, q + (1 − q)

(
t

2

)(
n

2

)−1
))

= On

(
q−1/2n−3/2 + q−1n−2 + max

2<k≤t
q− 1

2 (
k
2)n−k/2

)

Proof Let τ = (1 − q)
(t
2

)(n
2

)−1 and p = q + τ . Observe that p − q = τ = On(n−2)

and hence that p = �n(q) since q > t4n−2. Furthermore, it follows that

1 <
1 − q

1 − p
= 1

1 − (t2
)(n

2

)−1 = 1 + On

(
n−2
)

(3.1)

and thus 1 − p = �n(1 − q). Given a set S ⊆ [n], let G(n, S, q) denote the graph
distribution formed by planting a clique on the vertices of S and including each other
edge independently with probability q. Let Ut denote the uniform distribution on the
size t subsets of [n] and note that G(n, t, q) =d ES∼UtG(n, S, q). Let Sn denote the
set of all simple undirected graphs on the labelled vertex set [n] and observe that

1 + χ2(G(n, t, q),G(n, p))

=
∑

G∈Sn

P[G(n, t, q) = G]2
P[G(n, p) = G] =

∑

G∈Sn

ES∼Ut [P[G(n, S, q) = G]]2
P[G(n, p) = G]

= ES,T∼Ut

⎡

⎣
∑

G∈Sn

P[G(n, S, q) = G] · P[G(n, T , q) = G]
P[G(n, p) = G]

⎤

⎦

where the last equality holds by linearity of expectation and because S and T are
independent. Since G(n, S, q), G(n, T , q) and G(n, p) are product distributions, the
above quantity is equal to
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ES,T∼Ut

⎡

⎢
⎣
∏

e∈([n]
2 )

(
P[e /∈ E(G(n, S, q))] · P[e /∈ E(G(n, T , q))]

P[e /∈ E(G(n, p))]

+P[e ∈ E(G(n, S, q))] · P[e ∈ E(G(n, T , q))]
P[e ∈ E(G(n, p))]

)]

= ES,T∼Ut

⎡

⎣p−(|S∩T |
2 )
(
q

p

)2(t2)−2(|S∩T |
2 ) ( (1 − q)2

1 − p
+ q2

p

)(n2)−2(t2)+(|S∩T |
2 )
⎤

⎦

= ES,T∼Ut

⎡

⎣p−(|S∩T |
2 )
(
1 − τ

p

)2(t2)−2(|S∩T |
2 ) (

1 + τ 2

p(1 − p)

)(n2)−2(t2)+(|S∩T |
2 )
⎤

⎦

(3.2)

Now fix two subsets S, T ⊆ [n] of size t and note that |S ∩ T | ≤ t = On(1). If
N1 = 2

(t
2

)− 2
(|S∩T |

2

)
, then

(
1 − τ

p

)N1

=
N1∑

k=0

(
N1

k

)
(−1)k

(
τ

p

)k

= 1 − N1τ

p
+ On(q

−2n−4)

= 1 −
(1 − p) ·

(
2
(t
2

)− 2
(|S∩T |

2

)) (t
2

)

p
(n
2

)

−
(p − q) ·

(
2
(t
2

)− 2
(|S∩T |

2

)) (t
2

)

p
(n
2

) + On(q
−2n−4)

= 1 −
(1 − p) ·

(
2
(t
2

)− 2
(|S∩T |

2

)) (t
2

)

p
(n
2

) + On(q
−2n−4) (3.3)

where the second equality follows from the fact that each summand with k ≥ 2 is
On(q−2n−4) since τ/p = On(q−1n−2) = On(1), and the sum has On(1) many
summands. Now let N2 = (n2

)− 2
(t
2

)+ (|S∩T |
2

) ≤ (n2
)
since |S ∩ T | ≤ t . Observe that

for sufficiently large n, we have that

(n
2

)
τ 2

p(1 − p)
= (1 − q)2

1 − p
·
(t
2

)2(n
2

)−1

p
≤
(
1 + On

(
n−2
))

·
(t
2

)2(n
2

)−1

q
<

1

2
(3.4)

by Eq. 3.1, the fact that q > t4n−2 and the fact that t = On(1). Furthermore, these
inequalities also show that this quantity is On(q−1n−2). Now note that

(
1 + τ 2

p(1 − p)

)N2

=
N2∑

k=0

(
N2

k

)(
τ 2

p(1 − p)

)k

= 1 + N2τ
2

p(1 − p)
+ On

(
q−2n−4

)
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= 1 + (1 − p) · (t2
)2

p
(n
2

) −
(1 − p) ·

(
2
(t
2

)− (|S∩T |
2

)) (t
2

)2

p
(n
2

)2

+
[
(1 − q)2 − (1 − p)2

] ·
((n

2

)− 2
(t
2

)+ (|S∩T |
2

)) (t
2

)2

p(1 − p)
(n
2

)2

+ On

(
q−2n−4

)

= 1 + (1 − p) · (t2
)2

p
(n
2

) + On

(
q−2n−4

)
(3.5)

where (1−q)2−(1− p)2 = 2τ(1−q)−τ 2 = On(n−2). The second equality follows
from the following inequality

0 <

N2∑

k=2

(
N2

k

)(
τ 2

p(1 − p)

)k

≤
N2∑

k=2

(
n

2

)k (
τ 2

p(1 − p)

)k

≤
( (n

2

)
τ 2

p(1 − p)

)2 [

1 −
( (n

2

)
τ 2

p(1 − p)

)]−1

= On

(
q−2n−4

)

where the third inequality above follows fromEq. 3.4.Multiplying the approximations
in Eqs. 3.3 and 3.5 and simplifying yields that

p−(|S∩T |
2 )
(
1 − τ

p

)2(t2)−2(|S∩T |
2 ) (

1 + τ 2

p(1 − p)

)(n2)−2(t2)+(|S∩T |
2 )

= p−(|S∩T |
2 )

⎛

⎝1 −
(1 − p) ·

((t
2

)− 2
(|S∩T |

2

)) (t
2

)

p
(n
2

)

⎞

⎠+ On

(
q−2−(|S∩T |

2 )n−4
)

(3.6)

since |S ∩ T | ≤ t = On(1). Now observe that if S, T ∼ Ut and are independent
then |S ∩ T | is distributed as Hypergeometric(n, t, t) and, in particular, it holds that
P[|S ∩ T | = k] = (t

k

)(n−t
t−k

)(n
t

)−1 = On(n−k). Furthermore, observe that the first

term above is On

(
q−(|S∩T |

2 )
)
since p = �n(n−2), p = �n(q) and |S ∩ T | = On(1).

Combining these estimates with the formula for χ2(G(n, t, q),G(n, p)) in Eq. 3.2
yields that

χ2(G(n, t, q),G(n, p))

=
t∑

k=0

(t
k

)(n−t
t−k

)

(n
t

)
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·
⎡

⎣p−(k2)

⎛

⎝1 −
(1 − p) ·

((t
2

)− 2
(k
2

)) (t
2

)

p
(n
2

)

⎞

⎠− 1 + On

(
q−2−(k2)n−4

)
⎤

⎦

=
2∑

k=0

(t
k

)(n−t
t−k

)

(n
t

) ·
⎡

⎣p−(k2)

⎛

⎝1 −
(1 − p) ·

((t
2

)− 2
(k
2

)) (t
2

)

p
(n
2

)

⎞

⎠− 1

⎤

⎦

+ On

(
q−2n−4

)

+ On

(
q−3n−6

)
+ On

((
1 + q−2n−4

)
max
2<k≤t

q−(k2)n−k
)

= −
[(n−t

t

)

(n
t

) + t
(n−t
t−1

)

(n
t

)

]

· (1 − p) · (t2
)2

p
(n
2

) +
(t
2

)(n−t
t−2

)

(n
t

)

·
[

p−1

(

1 − (1 − p) · ((t2
)− 2

) (t
2

)

p
(n
2

)

)

− 1

]

+ On

(
q−2n−4

)
+ On

(
max
2<k≤t

q−(k2)n−k
)

(3.7)

Note that the second equality holds since there are On(1) summands and the last
equality since q = �n(n−2). Now note that

(n−t
t

) + t
(n−t
t−1

) − (nt
) = On(nt−2) and

therefore

[(n−t
t

)

(n
t

) + t
(n−t
t−1

)

(n
t

)

]

· (1 − p) · (t2
)2

p
(n
2

) = (1 − p) · (t2
)2

p
(n
2

) + On

(
q−1n−4

)
(3.8)

Furthermore

(n−t
t−2

)

(n
t

) −
(t
2

)

(n
2

) =
(t
2

)

(n
2

) · (n−2)(n−3)···(n−t+1)
(n−t)(n−t−1)···(n−2t+3)

−
(t
2

)

(n
2

) = On(n
−3) (3.9)

Therefore it follows that

(t
2

)(n−t
t−2

)

(n
t

) ·
[

p−1

(

1 − (1 − p) · ((t2
)− 2

) (t
2

)

p
(n
2

)

)

− 1

]

=
(t
2

)(n−t
t−2

)

(n
t

) · (1 − p)

p
+ On

(
q−2n−4

)

= (1 − p) · (t2
)2

p
(n
2

) + On

(
q−1n−3 + q−2n−4

)
(3.10)
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Combining the estimates in Eqs. 3.7, 3.8 and 3.10 yields that

χ2(G(n, t, q),G(n, p)) = On

(
q−1n−3 + q−2n−4 + max

2<k≤t
q−(k2)n−k

)

Now applying Cauchy–Schwarz yields that

dTV(G(n, p),G(n, t, q)) ≤
√
1

2
· χ2(G(n, t, q),G(n, p))

= On

(
q−1/2n−3/2 + q−1n−2 + max

2<k≤t
q− 1

2 (
k
2)n−k/2

)

which completes the proof of the lemma. ��

3.2 Proof of Theorem 3.1

Having established the bound in Lemma 3.1, we now proceed to prove Theorem 3.1.
We first adapt a Poissonization argument from [39,52] in order to apply Lemma 3.1.
Observe that given some element i ∈ [d], the number of sets S j containing i is dis-
tributed as Bin(n, δ). In other words, the number of vertices in the clique forced by
element i is distributed independently asBin(n, δ) for each i . Furthermore, conditioned
on the number of vertices in the clique forced by i , this clique is distributed uniformly
at random over all subsets of [n] of that size. Now for each k ≤ n, let Mk denote the
number of i ∈ [d] with |{ j : i ∈ S j }| = k. It follows that (M0, M1, . . . , Mn) is dis-
tributed as a multinomial distribution with d trials and probabilities (p0, p1, . . . , pn)
where pk = P[|{ j : i ∈ S j }| = k] = (nk

)
δk(1− δ)n−k . This implies that the marginals

of the Mk are distributed as Bin(d, pk). This view yields the following alternative
procedure for generating a sample from rig(n, d, p):

1. Sample (M0, M1, . . . , Mn) ∼ Multinomial(d, p0, p1, . . . , pn) and initialize G to
be the empty graph with V (G) = [n]; and

2. For each 2 ≤ k ≤ n: independently sample a subset of size k from [n] a total of
Mk times and plant a clique in G on each of these subsets.

Consider insteadgenerating (M2, M3, . . . , Mn) as follows: sample X ∼ Poisson(d(1−
p0 − p1)) and then generating (M2, M3, . . . , Mn) ∼ Multinomial(X , γ p2, γ p3,
. . . , γ pn)where γ = (1− p0− p1)−1. Applying Step 2 to the tuple (M2, M3, . . . , Mn)

generated in this way induces a distribution rigP (n, d, p) on the generated graph G.
We now show that this distribution is close to rig(n, d, p). We remark that the next
proposition is only slightly different from Proposition 3.2 in [39] and Lemma 5 in
[52].

Proposition 3.1 If d 
 n2 log(1 − p)−1 as n → ∞, then it holds that

dTV (rig(n, d, p), rigP (n, d, p)) = On

(
n2 log(1 − p)−1

d

)
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Proof Observe that the marginal of (M0, M1, . . . , Mn) ∼ Multinomial(d, p0, p1,
. . . , pn) on the variables (M2, M3, . . . , Mn) can also be generated by first generating
Y ∼ Bin(d, 1 − p0 − p1) and then generating
(M2, M3, . . . , Mn) ∼ Multinomial(Y , γ p2, γ p3, . . . , γ pn). Since the distributions
of rig(n, d, p) conditioned on Y = z and rigP (n, d, p) conditioned on X = z are
equal for any 0 ≤ z ≤ d, it follows by the conditioning property of total variation that

dTV (rig(n, d, p), rigP (n, d, p))

= dTV (L(X),L(Y ))

= dTV (Poisson(d(1 − p0 − p1)),Bin(d, 1 − p0 − p1))

Now note that δ2 = 1 − (1 − p)1/d satisfies that

p

d
≤ δ2 = 1 − (1 − p)1/d ≤ log(1 − p)−1

d
(3.11)

The lower bound follows from Bernoulli’s inequality and the upper bound follows
from rearranging (1 − x/d)d ≤ e−x applied with x = log(1 − p)−1. Therefore

δ = On

(√
log(1 − p)−1/d

)
and thus n2δ2 � 1. Now by Theorem 2.1 in [15], we

have that

dTV (Poisson(d(1 − p0 − p1)),Bin(d, 1 − p0 − p1))

≤ 1 − p0 − p1 =
n∑

k=2

pk

=
n∑

k=2

(
n

k

)
δk(1 − δ)n−k ≤

n∑

k=2

nkδk = O(n2δ2)

which completes the proof of the proposition. ��
Let LP denote the law of the Mi used to generate rigP (n, d, p). In the remainder

of this section, we will let (M2, M3, . . . , Mn) denote a sample fromLP . Furthermore,
let G2 denote the graph G after Step 2 above has been applied with only k = 2 in
the process of generating rigP (n, d, p). In other words, G2 is generated by planting
edges on M2 randomly chosen edges. We now reap the benefits of this Poissonization
argument by applying Poisson splitting in two separate cases.

1. UnderLP ,wehave that (M2, M3, . . . , Mn) ∼ Multinomial(X , γ p2, γ p3, . . . , γ pn)
where X ∼ Poisson(d(1− p0− p1)). Poisson splitting implies thatMi is distributed
as Poisson(dpi ) and that M2, M3, . . . , Mn are independent.

2. Let X{i, j} denote the number of times the edge {i, j} is planted in G in the part
of Step 2 where k = 2. Then the Xi j are distributed as a multinomial distribution

with M2 trials and
(n
2

)
categories, each with a probability

(n
2

)−1 of success. Poisson
splitting implies that
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X{i, j} ∼i.i.d. Poisson

((
n

2

)−1

dp2

)

=d Poisson
(
dδ2(1 − δ)n−2

)

Now since E(G2) = {{i, j} : X{i, j} ≥ 1}, we have that G2 ∼ G(n, q) where

q = 1−e−dδ2(1−δ)n−2
. Since M2, M3, . . . , Mn are independent, it also follows that

G2, M3, M4, . . . , Mn are independent.

The second application of Poisson splitting above is especially important to this argu-
ment. Note that the number of edges in G2 is distributed as the number of coupons
collected among

(n
2

)
total coupons with M2 trials, a distribution that seems very dif-

ficult to work with directly in total variation. The Poisson splitting argument above
essentially shows that the coupon collector distribution with a Poisson number of trials
is binomially distributed.

Now let rigP (n, d, p,m3,m4, . . . ,mn) denote the law of rigP (n, d, p) condi-
tioned on the event that Mi = mi for each 3 ≤ i ≤ n. For notational convenience, we
letrigP (n, d, p,m3,m4, . . . ,mK )denoterigP (n, d, p,m3,m4, . . . ,mK , 0, 0, . . . , 0)
for K < n. We now will repeatedly apply Lemma 3.1 to bound the total varia-
tion between rigP (n, d, p,m3, . . . ,mn) and an Erdős–Rényi random graph with an
appropriately chosen edge density. We remark that we will only need this proposition
for K = 5, as cliques of size six or larger are sufficiently rare in rigP to have a
negligible contribution to the final total variation distance.

The proof of this proposition first carries out a straightforward induction to bound
the desired total variation distance as a sum of the upper bounds in Lemma 3.1, and
then bounds this sum directly. The latter bounding step involves some casework as
different ranges of the edge density p need to be handled separately to obtain the
desired bound.

Proposition 3.2 Let w = w(n) → ∞ as n → ∞ be such that w � n and d 

w2n3L3 as n → ∞. Let mi = mi (n) ≥ 0 satisfy that mi = On(wdpi ) for each 3 ≤
i ≤ K for some constant positive integer K . Let q(n, d, p,m3,m4, . . . ,mK ) ∈ (0, 1)
be given by

1 − q(n, d, p,m3,m4, . . . ,mK ) = e−dδ2(1−δ)n−2
K∏

i=3

(

1 −
(
i

2

)(
n

2

)−1
)mi

where p = 1 − (1 − δ2)d . Then it holds that

dTV (rigP (n, d, p,m3,m4, . . . ,mK ),G (n, q(n, d, p,m3,m4, . . . ,mK ))) = on(1)

Proof We begin by handling the case where p ≥ wn−2. Observe that if (m1,m2, . . . ,

mK ) ∈ Z
K≥0, then q(n, d, p,m1,m2, . . . ,mK ) ∈ [qmin, 1) where qmin = 1 −

e−dδ2(1−δ)n−2
. By Eq. 3.11, we have that

√
p/d ≤ δ ≤ 1 and therefore

qmin = 1 − e−dδ2(1−δ)n−2 ≥ dδ2(1 − δ)n−2

1 + dδ2(1 − δ)n−2 = �n(p) = ωn(n
−2)
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Suppose that n is sufficiently large so that qmin > K 4n−2. Now let

Ei = min

{
1,C

(
q−1/2
min n−3/2 + q−1

minn
−2 + max

2<k≤i
q

− 1
2 (

k
2)

min n−k/2
)}

for a large enough constant C > 0 such that Ei is an upper bound in Lemma 3.1 for
all cliques of size 3 ≤ i ≤ K and q ∈ [qmin, 1). We will prove by a routine induction
on m3 + m4 + · · · + mK that

dTV (rigP (n, d, p,m3,m4, . . . ,mK ),G (n, q(n, d, p,m3,m4, . . . ,mK )))

≤
K∑

i=3

mi Ei (3.12)

for all tuples (m3,m4, . . . ,mK ) ∈ Z
K≥0. Consider G ∼ rigP (n, d, p) generated as

described above. SinceG2, M3, . . . , Mn are independent,G conditioned on the events
Mi = 0 for 3 ≤ i ≤ n is distributed as G2 ∼ G(n, qmin). This completes the base
case of the induction. Now suppose that m3 + m4 + · · · + mK > 0 and 3 ≤ t ≤ K is
such thatmt ≥ 1. Letm′

i = mi if i �= t andm′
t = mt −1. For notational convenience,

let q = q(n, d, p,m3,m4, . . . ,mK ) and q ′ = q(n, d, p,m′
3,m

′
4, . . . ,m

′
K ). Since

q ′ ≥ qmin ≥ K 4n−2, Lemma 3.1 implies

dTV
(G(n, t, q ′),G (n, q)

) ≤ Et

Note that t ≤ K = On(1) and it holds by the definition of q(n, d, p,m3,m4, . . . ,mK )

that

q = q ′ + (1 − q ′)
(
t

2

)(
n

2

)−1

Now observe that the distributions rigP (n, d, p,m3,m4, . . . ,mK ) and G(n, t, q ′) are
both obtained by planting a uniformly at random chosen t-clique in samples from
rigP (n, d, p,m′

3,m
′
4, . . . ,m

′
K ) and G(n, q ′), respectively. It therefore follows by the

data-processing inequality that

dTV
(
rigP (n, d, p,m3,m4, . . . ,mK ),G(n, t, q ′)

)

≤ dTV
(
rigP (n, d, p,m′

3,m
′
4, . . . ,m

′
K ),G(n, q ′)

)

By the triangle inequality and induction hypothesis, we have that

dTV (rigP (n, d, p,m3,m4, . . . ,mK ),G (n, q))

≤ dTV
(
rigP (n, d, p,m3,m4, . . . ,mK ),G (n, t, q ′))

+ dTV
(G (n, t, q ′) ,G(n, q)

)

≤ dTV
(
rigP (n, d, p,m′

3,m
′
4, . . . ,m

′
K ),G(n, q ′)

)+ Et

≤ Et +
K∑

i=3

m′
i Ei =

K∑

i=3

mi Ei
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which completes the induction. Now observe that if 3 ≤ k ≤ K then Eq. 3.11 implies
that

dpk = d

(
n

k

)
δk(1 − δ)n−k ≤ dnk

(
log(1 − p)−1

d

)k/2

≤ dnk
(
pL

d

)k/2

(3.13)

The second inequality above follows from rearranging log(1 − p)−1 ≤ p/(1 − p) to
obtain log(1− p)−1 ≤ pL . Recall that L denotes L = 1+ log(1− p)−1. Note that if
k ≥ 6, then the fact that d 
 w2n3L3 implies thatwdpk ≤ wnk Lk/2/dk/2−1 = on(1)
and it also holds that wdpk Ek = on(1) since Ek ≤ 1. We now will bound wdpk Ek

for 3 ≤ k ≤ 5. Since qmin = �n(p), we have that

wdp3E3 � wdn3 ·
(
pL

d

)3/2

·
(
p−1/2n−3/2 + p−1n−2 + p− 1

2 (
3
2)n−3/2

)

� wn3/2L3/2

d1/2
+ wp1/2nL3/2

d1/2
= on(1)

Note that if p ≤ n−1/2, then it follows that

wdp4E4 ≤ wdp4 � wn4 p2L2

d
≤ wn3L2

d
= on(1) and

wdp5E5 ≤ wdp5 � wn5 p5/2L5/2

d3/2
≤ wn15/4L5/2

d3/2
= on(1)

If p > n−1/2, it follows that

wdp4E4 � wdn4 ·
(
pL

d

)2

·
(
p−1/2n−3/2 + p−1n−2 + p− 1

2 (
3
2)n−3/2 + p− 1

2 (
4
2)n−2

)

� wpn2L2

d
+ wp1/2n5/2L2

d
+ wp−1n2L2

d
= on(1)

since p = �n(n−1). Similarly, it follows that

wdp5E5 � wdn5 ·
(
pL

d

)5/2

·
(

p−1/2n−3/2 + p−1n−2 +
5∑

k=3

p− 1
2 (

k
2)n−k/2

)

� wp3/2n3L5/2

d3/2
+ wpn7/2L5/2

d3/2
+ wp−1/2n3L5/2

d3/2
+ wp−5/2n5/2L5/2

d3/2

= on(1)

since p = �n(n−1/2). In summary, we have that mkEk = On(wdpk Ek) = on(1) for
each 3 ≤ k ≤ K . Substituting this into Eq. 3.12 proves the proposition if p ≥ n−2.
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Now note that if p < wn−2, it follows that

wdpk ≤ wdnk ·
(
pL

d

)k/2

≤ wk/2+1Lk/2d−(k/2−1) = on(1)

for all 3 ≤ k ≤ K since d 
 w5L3. Thus it must follow that mk = 0 for sufficiently
large n and all 3 ≤ k ≤ K . This implies that rigP (n, d, p,m3,m4, . . . ,mK ) is
distributed as G2 ∼ G(n, qmin), in which case the proposition also holds. ��

Wenow are ready to complete the proof of Theorem 3.1.Wewill need the following
standard upper bound on the total variation between binomial distributions. This is a
corollary of Theorem 2.2 in [35] stated in [39].

Lemma 3.2 (Corollary 5.1 in [39]) For a positive integer N and 0 < p < q < 1, we
have that

dTV (Bin(N , p),Bin(N , q)) ≤ γ + 3γ 2

where γ = (q − p)
√

N
p(1−p) .

Suppose that |p − q| = o(N−1) and let f = f (N ) → ∞ as N → ∞ be such
that |p − q| ≤ f −1N−1. If f −1N−1 ≤ p ≤ 1 − f −1N−1 then it follows that
γ = O( f −1/2) = o(1). If p < f −1N−1, then it follows that both p, q = o(N−1)

and both Bin(N , p) and Bin(N , q) are zero with probability 1 − o(1). Similarly if
p > 1 − f −1N−1, both distributions are N with probability 1 − o(1). In summary,
we have that if |p − q| = o(N−1) then

dTV (Bin(N , p),Bin(N , q)) = o(1)

Combining this with the lemma above and the triangle inequality yields that if p, q
and γ are as in the lemma and q ′ = q + o(N−1), then

dTV
(
Bin(N , p),Bin(N , q ′)

) ≤ γ + 3γ 2 + o(1)

This is the form of the lemma we will apply in our proof of Theorem 3.1 below. The
remainder of the proof of Theorem 3.1 combines the results in this section, proceeding
as follows. We will apply the Poissonization argument above to reduce from consid-
ering rig to rigP . We then further reduce to rigP conditioned on a high probability
event E , over which each Mk lies in an appropriately chosen confidence interval. We
then will apply Proposition 3.2 to show that it suffices to bound the total variation
distance between G(n, p) and a mixture of Erdős–Rényi graphs. This can be upper
bounded by a supremum over distances between binomial distributions, and the proof
concludes by applying Lemma 3.2.

Proof of Theorem 3.1 We will assume throughout that n is sufficiently large. Fix some
w = w(n) → ∞ as n → ∞ such that d 
 w2n3L3 and w � n. We will show that

dTV (rigP (n, d, p),G(n, p)) = on(1)
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Combining this with Proposition 3.1 and the triangle inequality then implies Theo-
rem 3.1. Recall that (M2, M3, . . . , Mn) are a sample from LP , are independent and
satisfy that Mi ∼ Poisson(dpi ). Now let E be the event that all of the following
inequalities hold

dpk −√wdpk ≤ Mk ≤ dpk +√wdpk for k ≥ 3 with dpk > w−1/2

Mk = 0 for k ≥ 3 with dpk ≤ w−1/2

As in Eq. 3.13, if k ≥ 6 then

dpk � dnk ·
(
pL

d

)k/2

� nk Lk/2d−(k/2−1) = on(w
−1) (3.14)

and thus Mk = 0 for all k ≥ 6 on the event E , if n is sufficiently large. Since
Mk ∼ Poisson(dpk) under LP and thus Mk mean and variance dpk , Chebyshev’s
inequality implies that

PLP

[
|Mk − dpk | >

√
wdpk

]
≤ w−1

Now let A ⊆ {3, 4, 5} be the set of indices k such that dpk > w−1/2. A union bound
now implies

PLP

[
Ec] ≤

∑

k∈A

PLP

[
|Mk − dpk | >

√
wdpk

]
+
∑

k /∈A

PLP [Mk �= 0]

� 3w−1 +
∑

k∈Ac∩{3,4,5}
(1 − e−dpk ) +

n∑

k=6

(1 − e−dpk )

� 3w−1 + 3
(
1 − e−w−1/2

)
+

n∑

k=6

dpk

since 1 − e−x ≤ x for all x ≥ 0. Substituting the bounds from Eq. 3.14 yields

PLP

[
Ec] � 3w−1 + 3w−1/2 +

n∑

k=6

d

(
nL1/2

d1/2

)k

� 3w−1 + 3w−1/2 + n6L3d−2

1 − nL1/2

d1/2

= on(1) (3.15)

Now let rigE (n, d, p) and LE denote the distributions of rigP (n, d, p) and LP ,
respectively, conditioned on the event E holding. Since LP is a product distribution
and E is the intersection of events over each of the Mk , it follows that LE is also a
product distribution. Observe that

rigE (n, d, p) = E(m3,m4,m5)∼LE rigP (n, d, p,m3,m4,m5)
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Note that dpk + √
wdpk = On(wdpk) if k ∈ A since dpk > w−1/2. Proposition 3.2

applied with K = 5 and the conditioning property of total variation yield that

dTV
(
rigE (n, d, p),E(m3,m4,m5)∼LE G(n, q(n, d, p,m3,m4,m5))

) = on(1)

Now observe that

dTV (rigE (n, d, p), rigP (n, d, p)) ≤ PLP

[
Ec] = on(1)

By the triangle inequality, it now suffices to show that

dTV
(G(n, p),E(m3,m4,m5)∼LE G(n, q(n, d, p,m3,m4,m5))

) = on(1)

Note that both of these distributions are uniformly distributed conditioned on their
edge counts. This implies that

dTV
(G(n, p),E(m3,m4,m5)∼LE G(n, q(n, d, p,m3,m4,m5))

)

= dTV
(
Bin(N , p),E(m3,m4,m5)∼LE Bin(N , q(n, d, p,m3,m4,m5))

)

≤ sup
(m3,m4,m5)∼supp(LE )

dTV (Bin(N , p),Bin(N , q(n, d, p,m3,m4,m5)))

where N = (n
2

)
. The remainder of the proof applies the constraints defining E to

deduce that the two binomial distributions in the dTV expression above are close. Let
p1, p2 ∈ (0, 1) be such that

1 − p1 = e−dδ2(1−δ)n−2 ∏

k∈A

(

1 −
(
k

2

)(
n

2

)−1
)dpk

1 − p2 = e−dδ2(1−δ)n−2
5∏

k=3

(

1 −
(
k

2

)(
n

2

)−1
)dpk

First note that

|log(1 − p1) − log(1 − p2)| = −
∑

k∈Ac∩{3,4,5}
dpk log

(

1 −
(
k

2

)(
n

2

)−1
)

� w−1/2n−2

since dpk < w−1/2 if k /∈ A. Now note that since p = 1 − (1 − δ2)d , we have that

1

d
(log(1 − p) − log(1 − p2))

= log(1 − δ2) + δ2(1 − δ)n−2 −
5∑

k=3

pk log

(

1 −
(
k

2

)(
n

2

)−1
)

123



Phase transitions for detecting latent geometry in random graphs 1241

= −δ2 + On(δ
4) + δ2(1 − δ)n−2 +

5∑

k=3

[

pk

(
k

2

)(
n

2

)−1

+ On

(
pkn

−4
)]

This quantity can be further simplified to

− δ2 + δ2 ·
(

(1 − δ)n−2 +
(
n

3

)(
3

2

)(
n

2

)−1

δ(1 − δ)n−3

+
(
n

4

)(
4

2

)(
n

2

)−1

δ2(1 − δ)n−4

+
(
n

5

)(
5

2

)(
n

2

)−1

δ3(1 − δ)n−5

)

+ On(L
2d−2) + On

(
n−1L3/2d−3/2

)

= −δ2 + δ2 ·
(

1 −
n∑

t=4

(
n − 2

t

)
δt (1 − δ)n−t

)

+ On

(
n−1L3/2d−3/2

)

= On(n
4δ6) + On

(
n−1L3/2d−3/2

)

= On

(
n4L3 p3d−3 + n−1L3/2d−3/2

)

The first equality holds from the binomial theorem and since
(n
k

)(k
2

)(n
2

)−1 = (n−2
k−2

)
.

Here, we also have combined Eqs. 3.11 and 3.13 to obtain

δ = On

(√
pL

d

)

= On(L
1/2d−1/2) = on(n

−3/2)

and pk = (nk
)
δk(1− δ)n−k = On(nkδk) = On(n3L3/2d−3/2) for each 3 ≤ k ≤ 5. The

second last equality above follows from

0 <

n∑

t=4

(
n − 2

t

)
δt (1 − δ)n−t ≤

n∑

t=4

ntδt = On(n
4δ4)

since nδ = on(1). Finally, also observe that if (m3,m4,m5) ∈ supp(LE ), then it
follows that

|log(1 − p1) − log(1 − q(n, d, p,m3,m4,m5))|

≤ −
∑

k∈A

|mk − dpk | · log
(

1 −
(
k

2

)(
n

2

)−1
)

�
5∑

k=3

n−2 ·√wdpk � p3/4w1/2L3/4

n1/2d1/4
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Combining these three inequalities with the fact that d 
 n3L3 yields that

|log(1 − p) − log(1 − q(n, d, p,m3,m4,m5))|

� w−1/2n−2 + n4L3 p3d−2 + n−1L3/2d−1/2 + p3/4w1/2L3/4

n1/2d1/4

� w−1/2n−2 + p3/4w1/2L3/4

n1/2d1/4

for all (m3,m4,m5) ∈ supp(LE ). Observe that since the upper bound on the right
hand side above tends to zero as n → ∞, it follows that 1−q(n, d, p,m3,m4,m5) =
�n(1− p). Now note that, since ex is 1-Lipschitz for x ≤ 0, the inequality above also
implies that

|p − q(n, d, p,m3,m4,m5))| � w−1/2n−2 + p3/4w1/2L3/4

n1/2d1/4

Note that the first term is on(n−2) = on(N−1) and let

γ = p3/4w1/2L3/4

n1/2d1/4
·
√

N

p(1 − p)
� p1/4n1/2w1/2L3/4

(1 − p)1/2d1/4
� n3/4w1/2L3/4

d1/4
= on(1)

since 1 − p = �n(n−1/2) and d 
 w2n3L3. As argued above, we have 1 −
q(n, d, p,m3,m4,m5) = �n(1 − p) and that q(n, d, p,m3,m4,m5) = �n(p) for
all (m3,m4,m5) ∈ supp(LE ). Applying the previous lemma on the total variation
between binomial distributions now yields that

sup
(m3,m4,m5)∈supp(LE )

dTV (Bin(N , p),Bin(N , q(n, d, p,m3,m4,m5))) = on(1)

which completes the proof of the theorem. ��

3.3 Signed triangle count in RIG(n, d, p)

The purpose of this section is to prove Theorem 2.2. We first establish some notation
that will be used throughout this section. Given a simple graph G on the vertex set
[n], let ei j = 1({i, j} ∈ E(G)) for each 1 ≤ i < j ≤ n. Let Ts(G) denote the signed
triangle count of a graph G given by

Ts(G) =
∑

1≤i< j<k≤n

(ei j − p)(eik − p)(e jk − p)

This statistic was introduced in [8] to show an analogue of Theorem 2.2 for random
geometric graphs on S

d−1. Let T (G) denote the ordinary triangle count of G. Also
recall that Eq. 3.11 states that
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p

d
≤ δ2 ≤ log(1 − p)−1

d

Therefore the condition that 1 − p = �n(1) implies that δ = On(d−1/2). In order
to establish Theorem 2.2, we will need the following results on the distribution of
Ts(G) and T (G) for G ∼ rig(n, d, p) and G ∼ G(n, p). Recall that the statement
A = B + On(C) is a shorthand for the two-sided estimate |A − B| = On(C).

Lemma 3.3 If G ∼ rig(n, d, p) where 1 − p = (1 − δ2)d = �n(1), then

E [Ts(G)] =
(
n

3

)
· (1 − p)3 ·

[
dδ3 + On

(
dδ4
)]

Lemma 3.4 If G ∼ rig(n, d, p) where 1 − p = (1 − δ2)d = �n(1), then

Var[Ts(G)] =
(
n

3

)
· p3(1 − p)3 + On

(
n4dδ3 + n5dδ4

)

Lemma 3.5 If n � d � n3 and G ∼ rig(n, d, p) where p = �(1/n), then it follows

that T (G) ≥ n3
12 ·√p3/d with probability 1 − on(1).

The following lemma summarizes analogous calculations for G(n, p). These cal-
culations are elementary and can be found in Section 3 of [8].

Lemma 3.6 If G ∼ G(n, p), then it follows that

E[Ts(G)] = 0 E[T (G)] =
(
n

3

)
· p3 Var[Ts(G)] =

(
n

3

)
· p3(1 − p)3

Given these lemmas, the proof of Theorem 2.2 is a straightforward consequence of
the definition of total variation.

Proof of Theorem 2.2 First consider the case in which 1 − p = �(1), p = �(1) and
n2 � d � n3. Equation 3.11 implies that δ = �(d−1/2) = o(1/n). Combining
this with Lemma 3.4 yields that Var[Ts(G)] = (1 + on(1))

(n
3

) · p3(1 − p)3 if G ∼
rig(n, d, p). Therefore it follows that

E [Ts(G)]√
Var[Ts(G)] = (1 + on(1)) dδ3 ·

√

p−3(1 − p)3
(
n

3

)
� d−1/2n3/2 = ωn(1)

Therefore if E is the event

E =
{
Ts(G) ≥ 1

2

(
n

3

)
· (1 − p)3 · dδ3

}

then it follows by Chebyshev’s inequality that PG∼rig(n,d,p)[E] = 1 − on(1). Now
consider the case where G ∼ G(n, p). Lemma 3.6 implies that E[Ts(G)] = 0
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and Var[Ts(G)] = (n
3

) · p3(1 − p)3. Chebyshev’s inequality now implies that
PG∼G(n,p)[E] = on(1). The definition of total variation implies that

dTV (rig(n, d, p),G(n, p)) ≥ ∣∣PG∼rig(n,d,p)[E] − PG∼G(n,p)[E]∣∣ = 1 − on(1)

which completes the proof of the theorem if p = �(1). Now consider the case inwhich
p = �(1/n) and assume that n � d � n3. Lemma 3.5 yields PG∼rig(n,d,p)[E ′] =
1 − on(1) where

E ′ =
⎧
⎨

⎩
T (G) ≥ n3

12
·
√

p3

d

⎫
⎬

⎭

Note that T (G) ≥ 0 and thus Markov’s inequality implies that

PG∼G(n,p)[E ′] ≤ EG∼G(n,p)[T (G)]
n3
12 ·

√
p3

d

�
√
dp3 = on(1)

sinceEG∼G(n,p)[T (G)] = (n3
)· p3 by Lemma 3.6, d � n3 and p = �(1/n). Similarly,

this implies that dTV (rig(n, d, p),G(n, p)) = 1 − on(1), proving the theorem. ��
We remark that the proof above more generally shows that the two graphs do not

converge in total variation if p−3n2 � d � n3 or if p = �(1/n) and n � d � n3.
These extended conditions are omitted from Theorem 2.2 for simplicity.

In the rest of this section, we prove Lemmas 3.3 and 3.5. We now present the proof
of Lemma 3.3, which computes the expectation of Ts(G) for G ∼ rig(n, d, p). This
expectation is

(n
3

)
times the expected value of a single signed triangle, which a priori

is a fairly intractable combinatorial sum. Our main trick is to write this expectation
as the linear combination of the probabilities of subsets of edges being omitted from
G. These probabilities are products over the elements of the base set [d], from which
we obtain a fairly simple explicit expression for the desired expectation. The proof
of Lemma 3.4 uses similar ideas but is considerably more computationally involved.
This proof is deferred to “Appendix A.1”. In “Appendix A.1”, we also show how to
adapt the method below to compute E[T (G)] for G ∼ rig(n, d, p).

Proof of Lemma 3.3 First observe that linearity of expectation and symmetry yields
that

E [Ts(G)] =
∑

1≤i< j<k≤n

E[(ei j − p)(eik − p)(e jk − p)]

=
(
n

3

)
· E[(e12 − p)(e13 − p)(e23 − p)] (3.16)

For each x ∈ {0, 1}3, let P(x1, x2, x3) denote the probability that e12 = x1, e13 = x2
and e23 = x3. Now define Q : {0, 1}3 → [0, 1] as

Q(x1, x2, x3) =
∑

y⊆x

P(y1, y2, y3)
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Note that Q(x1, x2, x3) is the probability that edges among {1, 2}, {1, 3} and {2, 3}
that are present in G form a subset of the support of (x1, x2, x3). Therefore we have
that

Q(x1, x2, x3) = E

⎡

⎣
∏

{i, j}∈C(x)

(1 − ei j )

⎤

⎦ (3.17)

where C(x) is the set of edges among {1, 2}, {1, 3}, {2, 3} with corresponding indi-
cators among x1, x2, x3 equal to zero. We now compute Q(x) for each x ∈ {0, 1}3.
Note that P(0, 0, 0) = Q(0, 0, 0) is the probability that none of these three edges is
present. If S1, S2 and S3 are the latent sets for vertices 1, 2 and 3, respectively, then
this is the same as the event that each i ∈ [d] is present in at most one of S1, S2 and
S3 for each i . Note that these events are independent for different i . The probability
that any given i ∈ [d] is in at most one of S1, S2 and S3 is

P [i is in at most one of S1, S2, S3] = (1 − δ)3 + 3δ(1 − δ)2 = (1 + 2δ)(1 − δ)2

Independence for different i now implies that

P(0, 0, 0) = Q(0, 0, 0) =
d∏

i=1

P [i is in at most one of S1, S2, S3] = (1 + 2δ)d(1 − δ)2d

Note that Q(1, 0, 0) is the probability that each i ∈ [d] is either in at most one of
S1, S2, S3 or is in both of S1 and S2. Thus

Q(1, 0, 0) =
[
(1 − δ)3 + 3δ(1 − δ)2 + δ2(1 − δ)

]d = (1 − δ)d(1 + δ − δ2)d

Generalizing this to other x ∈ {0, 1}3 implies that

Q(x1, x2, x3) = (1 − δ)d(1 + δ − δ2)d

if |x | = x1 + x2 + x3 = 1. By a similar argument, if |x | = x1 + x2 + x3 = 2, then

Q(x1, x2, x3) =
[
(1 − δ)3 + 3δ(1 − δ)2 + 2δ2(1 − δ)

]d = (1 − δ)d(1 + δ)d

Note that Q(1, 1, 1) = 1. Now using Eq. 3.17, we have that

E[(e12 − p)(e13 − p)(e23 − p)]
= −E [((1 − e12) − (1 − p)) ((1 − e13) − (1 − p)) ((1 − e23) − (1 − p))]

= −
∑

x∈{0,1}3
(−1)|x |(1 − p)|x | · Q(x1, x2, x3)
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Directly expanding the Q(x1, x2, x3) and the fact that 1 − p = (1 − δ2)d simplifies
this quantity to

(1 − p)3 − 3(1 − p)2(1 − δ)d(1 + δ)d

+ 3(1 − p)(1 − δ)d(1 + δ − δ2)d − (1 + 2δ)d(1 − δ)2d

= (1 − p)3 ·
[

−2 + 3(1 − δ2)−d
(
1 − δ2

1 + δ

)d

− (1 − δ2)−d
(
1 − δ2

(1 + δ)2

)d
]

= (1 − p)3 ·
[

−2 + 3

(
1 + δ3

(1 − δ2)(1 + δ)

)d

−
(
1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d
]

(3.18)

Now let

�1 = δ3

(1 − δ2)(1 + δ)
and �2 = 2δ3 + δ4

(1 − δ2)(1 + δ)2

Since δ = On(d−1/2), it follows that d�1, d�2 = On(dδ3) = on(1). Therefore we
have that for sufficiently large d,

∣∣∣∣∣
3

(
1 + δ3

(1 − δ2)(1 + δ)

)d

− 3 − 3dδ3

∣∣∣∣∣
≤ 3

∣∣∣d�1 − dδ3
∣∣∣

+ 3
d∑

k=2

(
d

k

)
�k

1(1 − �1)
d−k

≤ 3 ·
∣∣∣
∣∣
d(δ4 − δ5 − δ6)

(1 − δ2)(1 + δ)

∣∣∣
∣∣
+ 3

d∑

k=2

dk�k
1

≤ 3d(δ4 + δ5 + δ6)

(1 − δ2)(1 + δ)
+ 3d2�2

1

1 − d�1

� dδ4 + d2�2
1

� dδ4

Therefore it follows that

3

(
1 + δ3

(1 − δ2)(1 + δ)

)d

− 3 = 3dδ3 + On

(
dδ4
)

(3.19)

By a similar computation, it follows that

(
1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

− 1 = 2dδ3 + On

(
dδ4
)

(3.20)
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Substituting these bounds into Eq. 3.18, we have that

E[(e12 − p)(e13 − p)(e23 − p)] = (1 − p)3 ·
[
dδ3 + On(dδ4)

]

Now combining this with Eq. 3.16 completes the proof of the lemma. ��
We conclude this section by proving Lemma 3.5. This is a simple consequence of

the planting cliques view of rig(n, d, p) in Sect. 3.1.

Proof of Lemma 3.5 We use the same notation as in the proof of Theorem 3.1. Observe
that T (G) ≥ M3 where M3 is the number of 3-cliques planted in the construction of
G. Furthermore, M3 ∼ Bin(d, p3) where p3 = (n3

)
δ3(1− δ)n−3. Now note that since

p = �(1/n), it follows that

p

d
≤ δ2 ≤ log(1 − p)−1

d
= p

d
+ On

(
p2

d

)

Thus δ = �n(1/
√
nd) = on(1/n), which implies that (1 − δ)n−3 = 1 − on(1).

Therefore

dp3 = d

(
n

3

)
δ3(1 − δ)n−3 = (1 + on(1)) · n

3

6
·
√

p3

d
= ωn(1)

since p = �(1/n). Since dp3 → ∞, standard concentration inequalities for the
binomial distribution then imply that M3 ≥ 3dp3/4 with probability 1− on(1) where
3dp3/4 ≥ n3

12 ·√p3/d for sufficiently large n. This completes the proof of the lemma.
��

4 Random intersectionmatrices and higher thresholds �

In this section, we extend the approach used to prove Theorem 3.1 to directly couple
the full matrix of intersection sizes between the sets Si to a matrix with i.i.d. Poisson
entries and prove Theorem 2.3. Applying the data-processing inequality to threshold-
ing this matrix at τ > 1 will then yield a natural extension of Theorem 2.1 to random
intersection graphs defined at higher thresholds than 1 and prove Corollary 2.1.

Themain results of this section areTheorem2.3 andCorollary 2.1 identifying triples
of (n, d, δ) for which rim and poim converge and quadruples of (n, d, p, τ ) for which
rigτ and G(n, p) converge, respectively. These are restated here for convenience.

Theorem 2.3 Suppose that δ = δ(n) ∈ (0, 1) and d satisfies that d 
 n3 and δ �
d−1/3n−1/2. Then it holds that

dTV
(
rim(n, d, δ), poim

(
n, dδ2

))
→ 0 as n → ∞
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Corollary 2.1 Suppose p = p(n) ∈ (0, 1), δ = δ(n) ∈ (0, 1), τ ∈ Z+ and d satisfy
that

1 − p =
τ−1∑

k=0

(
d

k

)
δ2k(1 − δ2)d−k

Furthermore suppose that

d 
 n3, δ � d−1/3n−1/2 and n2δ4 � p(1 − p)

Then it follows that

dTV (rigτ (n, d, p),G(n, p)) → 0 as n → ∞

The proof of Theorem 2.3 proceeds in analogous steps to those in the proof of
Theorem3.1.Akey ingredient is a sharp analysis of the total variation distance between
planted and non-planted Poisson matrices, an intermediary object defined below that
will appear in our argument.

Definition 4.1 (Planted Poisson Matrix) Given λ ∈ R≥0 and a positive integer t ≥ 2,
let poimP (n, t, λ) denote the distribution of symmetric n × n matrices M generated
in the steps:

1. select a subset S ⊆ [n] of size |S| = t uniformly at random; and
2. form the symmetric matrix M with Mii = 0 for 1 ≤ i ≤ n and entries Mi j with

1 ≤ i < j ≤ n conditionally independent given S and distributed as

Mi j ∼
{
1 + Poisson(λ) if i, j ∈ S
Poisson(λ) otherwise

The next lemma is an analogue of Lemma 3.1 for random intersection matrices. Its
proof is deferred to “Appendix A.2”.

Lemma 4.1 Let t ≥ 3 be a constant positive integer and λ = λ(n) ∈ R≥0 be such that
λ = ωn(n−2). Then it follows that

dTV

(

poimP (n, t, λ) , poim

(

n, λ +
(
t

2

)(
n

2

)−1
))

= On

(

(1 + λ−1)n−2 + max
2<k≤t

n−k/2
(
1 + λ−1

) 1
2 (

k
2)
)

Using this lemma, the proof of Theorem 2.3 follows the same steps as the proof of
Theorem 3.1—it applies the above lemma inductively for elements of [d] in at least
three sets after several Poissonization steps. The full details of the remainder of the
proof of Theorem 2.3 can be found in “Appendix A.3”. Now, by thresholding instances
of rim and applying the data-processing inequality, we can use Theorem 2.3 to prove
Corollary 2.1.
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Proof of Corollary 2.1 First note that if p = on(n−2), then a union bound yields that
both rigτ (n, d, p) and G(n, p) are the empty graph with probability 1 − on(1). In
this case, the corollary follows. Similarly, if 1 − p = on(n−2) then both graphs are
complete with probability 1 − on(1) and the corollary also follows. In particular, we
may assume that min(p, 1 − p) 
 n−3.

Consider the graph G with an adjacency matrix formed by thresholding the entries
of a matrix X ∈ Mn each at τ , or in other words with {i, j} ∈ E(G) if and only if
Xi j ≥ τ . If X ∼ rim(n, d, δ), then G ∼ rigτ (n, d, p) by definition. Furthermore, if
X ∼ poim(n, dδ2), then it follows that G ∼ G(n, p′) where p′ ∈ (0, 1) is given by

p′ = P

[
Poisson(dδ2) ≥ τ

]

The data processing inequality together with Theorem 2.3 yield that

dTV
(
rigτ (n, d, p),G(n, p′)

) ≤ dTV
(
rim(n, d, δ), poim

(
n, dδ2

))
= on(1) (4.1)

Now observe that p = P
[
Binom(d, δ2) ≥ τ

]
. By Theorem 2.1 in [15], it follows that

|p − p′| =
∣∣∣P
[
Binom(d, δ2) ≥ τ

]
− P

[
Poisson(dδ2) ≥ τ

]∣∣∣

≤ dTV
(
Binom(d, δ2),Poisson(dδ2)

)
≤ δ2 (4.2)

Let N = (n2
)
. Since the distribution of any G(n, q) is the same conditioned on its total

edge count, it follows that

dTV
(G(n, p),G(n, p′)

) = dTV
(
Binom(N , p),Binom(N , p′)

)
(4.3)

Lemma 3.2 now applies with γ upper bounded by

γ ≤ |p − p′| ·
√

N

min(p, p′)(1 − max(p, p′))
� nδ2
√

(p − δ2)(1 − p − δ2)

� nδ2√
p(1 − p)

= on(1)

The third inequality follows since δ2 � d−2/3n−1 � n−3 which is both on(p) and
on(1− p). This implies that (p−δ2)(1− p−δ2) = �n(p(1− p)). The last inequality
follows since n2δ4 � p(1− p) by assumption. Lemma 3.2 therefore implies that the
total variation in Eq. 4.3 is on(1). Combining this with the triangle inequality and
Eq. 4.1 proves the corollary. ��

We now apply Corollary 2.1 to different parameter regimes of p and τ . If τ = 1,
then Corollary 2.1 recovers and slightly extends the result in Theorem 3.1. Observe
that if τ = 1, then 1 − p = (1 − δ2)d and
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p

d
≤ δ2 ≤ log(1 − p)−1

d

as in Eq. 3.11. Given these bounds, the conditions in Corollary 2.1 are satisfied when
d 
 n3

log(1 − p)−1

d
� d−2/3n−1 and n · log(1 − p)−1

d
� √

p(1 − p)

The first condition is the threshold in Theorem 3.1. The left-hand side in the second
condition is on(n−2), which is always on(

√
p(1 − p)) unless one of p or 1 − p is

on(n−4). However, in this case, rig(n, d, p) and G(n, p) are either both empty or
complete with probability 1−on(1) and still converge in total variation. Thus we have
the following corollary extending Theorem 3.1.

Corollary 4.1 Suppose p = p(n) ∈ (0, 1) satisfies 1− p = On(n−1/2) and d satisfies
that d 
 n3 log3 n. Then it follows that

dTV (rig(n, d, p),G(n, p)) → 0 as n → ∞

Corollary 2.1 also applies to other p and τ . If τ is constant and 1− p = �n(1), then
it follows that dδ2 = On(1) and the conditions in Corollary 2.1 reduce to d 
 n3. If
τ = τ(n) is growing and 1 − p = �n(1), then the central limit theorem applied to
Binom(d, δ2) implies that dδ2 = On(τ ). In this case, the conditions in Corollary 2.1
are satisfied when d 
 n3

τ

d
� d−2/3n−1 and

nτ

d
� √

p(1 − p)

By the same argument as in the case when τ = 1, the first condition subsumes the
second. Thus Corollary 2.1 holds when d 
 τ 3n3 if 1 − p = �n(1). This is stated
formally in the following corollary, which is Corollary 2.2 reproduced from Sect. 2.

Corollary 2.2 Suppose p = p(n) ∈ (0, 1) satisfies that 1 − p = �n(1) and d and
τ = τ(n) ∈ Z+ satisfy d 
 τ 3n3. Then it follows that

dTV (rigτ (n, d, p),G(n, p)) → 0 as n → ∞

5 Random geometric graphs on S
d−1

The main purpose of this section is to prove Theorem 2.4, yielding the first
progress towards a conjecture of [8] that the regime of parameters (n, d, p) in which
rgg(n, d, p) to G(n, p) converge in total variation increases quickly as p decays with
n. This theorem is restated below for convenience.
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Theorem 2.4 Suppose p = p(n) ∈ (0, 1/2] satisfies that p = �n(n−2 log n) and

d 
 min

{
pn3 log p−1, p2n7/2(log n)3

√
log p−1

}

where d also satisfies that d 
 n log4 n. Then it follows that

dTV (rgg(n, d, p),G(n, p)) → 0 as n → ∞

We remark that our argument still yields convergence results if p = on(n−2 log n).
However, for the sake of maintaining a simple main theorem statement, we relegate
these results to the propositions in the next subsections. We begin this section with
somepreliminary observations and then proceed to themain arguments to establish this
theorem in the two subsequent subsections. More precisely, the proof of Theorem 2.4
will roughly proceed as follows:

1. We reduce bounding the total variation betweenrgg(n, d, p) andG(n, p) to bound-
ing the expected value of the χ2 divergence between the conditional distribution
Q of an edge of rgg given the rest of the graph and Bern(p).

2. We introduce a coupling of the variables X1, X2, . . . , Xn with a collection
of random vectors and variables (Y1,Y2, . . . ,Yn, �2, . . . , �n) with the follow-
ing properties. The vectors Y1,Y2, . . . ,Yn are an orthonormal basis of the
span span(X1, X2, . . . , Xn) and �2, �3, . . . , �n are i.i.d. real-valued coefficients,
derived from expressing the Xi over this basis, such that the conditional distribu-
tion of the edge {1, 2} in rgg given the rest of the graph can approximately be
captured by �2. Bounding the χ2 of the conditional distribution Q then reduces
to large deviation principles for �2. This leads to a proof that the theorem holds if
d 
 pn3 log p−1.

3. We refine the bounds obtained in the preceding argument by introducing an
alternate coupling between the distribution of rgg given the presence of edge
{1, 2} and the distribution of rgg marginalizing out the presence of {1, 2}. This
refines our total variation bound in the sparse case, proving the theorem holds if
d 
 p2n7/2(log n)3

√
log p−1.

Before proceeding to the proof of Theorem 2.4, we make several remarks on the
tightness of our argument. As shown by the results in [8], Theorem 2.4 is sharp when
p ∈ (0, 1) is a constant. However, the resulting bound in the case when p = c/n is a
factor of p3/2 off from Conjecture 2.1. We believe that this difference may arise at any
one of several parts of our argument: the use of of Pinsker’s inequality to upper bound
TV with KL divergence, the application of tensorization of KL divergence in Eq. 5.1
or when Jensen’s inequality is used to replace Q with Q0 in Eqs. 5.4 and 5.5. We also
believe that the key technical Lemmas 5.5 and 5.6 in the proof of Theorem 2.4, which
bound the deviation of Q0 from its mean, are tight up to logarithmic factors.

We now carry out Step 1 outlined above. We first establish some notation that will
be carried forward throughout this section:

• Let N = (n2
)
and X1, X2, . . . , Xn be sampled uniformly at random from the Haar

measure on Sd−1 and let Xi j denote the j th coordinate of Xi for each 1 ≤ j ≤ d.
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1252 M. Brennan et al.

• Let Grgg = ggtp,d (X1, X2, . . . , Xn) and let νrgg denote the probability mass
function of the graph Grgg ∼ rgg(n, d, p). Let the probability mass function of
G(n, p) be μ. Let e0 denote the edge {1, 2} and, given an edge e, let Grgg∼e denote
the set of edges in Grgg other than e.

• Let ψd denote the marginal density of a coordinate X11 of the Haar measure on
S
d−1. Let �d(x) = ∫ 1

x ψd(t)dt denote the tail function of ψd . Furthermore, let
the standard normal tail function be given by �̄(x) = P[N (0, 1) ≥ x].
We now define a key random variable in our proof—the probability Q that a

specific edge is included in the graph given the rest of the graph. Define the σ(Grgg∼e0)-
measurable random variable Q taking values in [0, 1] as

Q = P
[
e0 ∈ E(Grgg)

∣∣Grgg∼e0

] = E
[
1(e0 ∈ E(Grgg))

∣∣σ(Grgg∼e0)
]

We will show that this value is approximately p with high probability when d grows
fast enough as a function of n. We first reduce the total variation convergence of
rgg(n, d, p) and G(n, p) to showing this. Applying Lemma 2.1, we can upper bound
KL by an expected KL of marginal distributions and then by χ2 as follows:

KL
(
νrgg

∣∣∣∣μ
) ≤

∑

1≤i< j≤n

E

[
KL
(
L
(
1({i, j} ∈ E(Grgg))

∣∣σ
(
Grgg

∼{i, j}
)) ∣∣∣∣Bern(p)

)]

= N · E [KL (L (1(e0 ∈ E(Grgg))
∣∣σ(Grgg∼e0)

) ∣∣∣∣Bern(p)
)]

≤ N · E
[
χ2 (L (1(e0 ∈ E(Grgg))

∣∣σ(Grgg∼e0)
)
, Bern(p)

)]

= N · E
[
(Q − p)2

p(1 − p)

]
(5.1)

By Pinsker’s inequality, it suffices to show the right hand side in Eq. 5.1 is on(1). The
two subsequent subsections give arguments to establish this. Before proceeding, we
note some useful estimates for ψd and �d in the following two lemmas. The first item
in the following lemma is discussed in Section 2 of [8] and shown in Section 2 of [55].
The second item is Lemma 2 in Section 2 of [8]. The proofs of the other three items
in the lemma are provided in “Appendix B.1”.

Lemma 5.1 (Estimates for ψd and tp,d ) The marginal ψd and tp,d satisfy the proper-
ties:

1. For all x ∈ [−1, 1],

ψd(x) = �
( d
2

)

�
( d−1

2

)√
π

(1 − x2)
d−3
2

ψd(x) is symmetric about x = 0 and strictly decreasing for x ∈ [0, 1].
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2. For every 0 < p ≤ 1
2 and an absolute constant C we have

min

⎛

⎝1

2
,C−1

(
1

2
− p

)√
log p−1

d

⎞

⎠ ≤ tp,d ≤ C

√
log p−1

d

3. Let 0 ≤ t ≤ 1
2 and 0 ≤ δ ≤ t . Then,

ψd(t − δ)

ψd(t)
≤ e2tdδ

4. For every 0 < p ≤ 1
2 , there is an absolute constant C1 > 0 such that

ψd(tp,d) ≤ C1 p · max
{√

d, dtp,d
}

5. Let T ∼ ψd . Then, for any 0 < p ≤ 1
2 and some constant C > 0

P

⎛

⎝|T | > C

√
log p−1

d

⎞

⎠ ≤ 2p

The following distributional approximation result is proven by Sodin [55] and stated
in [8]. We remark that our definition of �d is scaled compared to the definition in [8].

Lemma 5.2 There exist strictly positive universal constants Cest,C1,C2 and a
sequence εd = O

(
d−1

)
such that the following inequalities hold for every 0 ≤

t < Cest:

(1 − εd) · �̄
(
t
√
d
)

· e−C1t4d ≤ �d(t) ≤ (1 + εd) · �̄
(
t
√
d
)

· e−C2t4d

5.1 Coupling X1, X2, . . . , Xn to isolate the edge {1, 2}

In this section, we give a coupling argument to upper bound the χ2 divergence on the
right-hand side of Eq. 5.1. Let X2, X3, . . . , Xn be independently and randomly chosen
from the Haar measure on Sd−1. We nowwill describe a coupling giving an alternative
way of generating X1 that will give a direct description of 1(e0 ∈ E(G)) in terms of
random variables introduced in the coupling. As in the statement of Theorem 2.4, we
assume that d ≥ n. Note that this implies span(X2, X3, . . . , Xi ) is a measure-zero
subset of Sd−1 for each 1 ≤ i ≤ n − 1. Thus the vectors X2, X3, . . . , Xn are linearly
independent almost surely. We now define the key random variables underlying our
coupling.

• Let Y2,Y3, . . . ,Yn be orthonormal vectors obtained by applying Gram-Schmidt
to the vectors X2, X3, . . . , Xn such that

Yn = Xn and
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Yk = Xk −∑n
m=k+1 ProjYm (Xk)∥

∥Xk −∑n
m=k+1 ProjYm (Xk)

∥
∥
2

for all 2 ≤ k ≤ n − 1 (5.2)

Note that this implies

Yn = Xn, Yn−1 ∈ span{Xn−1, Xn}, . . . , Y2 ∈ span{X2, . . . , Xn}

• Let �2, �3, . . . , �n be independent random variables and independent of σ(X2,

X3, . . . , Xn) such that �i ∼ ψd−n+i for each 2 ≤ i ≤ n.
• Let T1, T2, . . . , Tn be functions of �2, �3, . . . , �n given by

Ti = �i ·
n∏

j=i+1

√
1 − �2

j

for each 2 ≤ i ≤ n and

T1 =
n∏

j=2

√
1 − �2

j

• Let Sd−n denote the unit sphere in the (d−n+1)-dimensional subspace orthogonal
to span(Y2,Y3, . . . ,Yn). Let Y1 be sampled from the Haar measure on Sd−n ,
independently of σ(�2, . . . , �n, X2, . . . , Xn), and set

X1 =
n∑

i=1

TiYi

A straightforward induction shows that

j∑

i=1

T 2
i =

n∏

i= j+1

(
1 − �2

i

)

for each 1 ≤ j ≤ n. In particular, it holds that
∑n

i=1 T
2
i = 1. We now will establish

several key distributional properties of this coupling in the following two propositions.

Proposition 5.1 The random variables in the coupling satisfy that

1. X1 is independent of σ(X2, . . . , Xn) and is uniformly distributed on S
d−1.

2. Ti ∼ ψd for each 2 ≤ i ≤ n.
3. 〈X2,Y j 〉 ∼ ψd for 3 ≤ j ≤ n.

In order to prove this proposition, we will make use of the following lemma. The
proof of this lemma is in “Appendix B.2”.

Lemma 5.3 The following two statements hold for the uniform distribution over unit
spheres.
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1. Let a ∈ S
d−1, let a⊥ be the (d − 1)-dimensional space orthogonal to a and let

S
a⊥

be the unit sphere embedded in a⊥. Let T be a random variable taking values
almost surely in [−1, 1] and let Y be a random vector in a⊥. Then, the random
vector X = Ta + √

1 − T 2 · Y is uniformly distributed over Sd−1 if and only if
T ∼ ψd , Y is uniformly distributed over Sa

⊥
and T is independent of Y .

2. Let m be a positive integer satisfying m ≤ d and Z1, Z2, . . . , Zm be a random set
of orthonormal vectors sampled according to the Haar measure on the orthogonal
group. Let X ∼ unif(Sd−1) be independent of Z1, Z2, . . . , Zm and let ξ ∈ R

m

be such that ξi = 〈X , Zi 〉 for each 1 ≤ i ≤ m. Then it holds that ξ/‖ξ‖2 ∼
unif(Sm−1).

Proof of Proposition 5.1 We prove the three items in the proposition separately as fol-
lows.

1. For each 1 ≤ m ≤ n, define the intermediate variables

Tm
i = �i ·

m∏

j=i+1

√
1 − �2

j for 2 ≤ i ≤ m and Tm
1 =

m∏

j=2

√
1 − �2

j

and let Xm
1 be

Xm
1 =

m∑

i=1

Tm
i Yi

Let Sd−n+m−1 denote the unit sphere in the (d − n + m)-dimensional subspace
orthogonal to span(Ym+1,Ym+2, . . . ,Yn). We will show by induction on m that
Xm
1 ∼ unif(Sd−n+m−1) conditioned on any event in σ(X2, . . . , Xn). By definition,

this holds if m = 1 since T 1
1 = 1. Now observe that since Tm+1

m+1 = �m+1 and

Tm+1
i = Tm

i ·
√
1 − �2

m+1 for all m ≥ 1 and i ≤ m, we have that

Xm+1
1 =

m+1∑

i=1

Tm+1
i Yi = �m+1Ym+1 +

√
1 − �2

m+1 ·
m∑

i=1

Tm
i Yi

= �m+1Ym+1 +
√
1 − �2

m+1 · Xm
1

for each 1 ≤ m ≤ n − 1. The induction hypothesis implies that Xm
1 ∼

unif(Sd−n+m−1). Since �m+1 ∼ ψd−n+m+1 and �m+1 is independent of
Xm
1 ∈ σ(X1, . . . , Xm, �1, . . . , �m), item 1 in Lemma 5.3 implies that Xm+1

1 ∼
unif(Sd−n+m), completing the induction. Now settingm = n yields the result since
Xn
1 = X1.

2. Observe that Ti = 〈X1,Yi 〉 for 2 ≤ i ≤ n. Note that Yi ∈ σ(X2, . . . , Xn) for each
2 ≤ i ≤ n and hence independent of X1 by the previous item in the proposition.
Since ‖Yi‖2 = 1 almost surely, it follows by the definition of ψd and the rotational
invariance of unif(Sd−1) that Ti ∼ ψd for each 2 ≤ i ≤ n.

3. This follows from the rotational invariance of unif(Sd−1) and the fact that Y j ∈
σ(X3, . . . , Xn) for each 3 ≤ j ≤ n and thus independent of X2.
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This completes the proof of the proposition. ��
Let F denote the σ -algebra F = σ(�3, . . . , �n, X2, . . . , Xn). The second distri-

butional property of our coupling that we establish is that the graph other than the
edge {1, 2} is determined by F .

Proposition 5.2 It holds that σ(Grgg∼e0) ⊆ F .

Proof It suffices to show thatGrgg∼e0 is a deterministic functionof�3, . . . , �n, X2, . . . , Xn .
Note that the events {i, j} ∈ E(Grgg∼e0) for 2 ≤ i < j ≤ n and the random variables
Y2, . . . ,Yn are determined by thresholding 〈Xi , X j 〉 and Gram-Schmidt orthogonal-
ization, respectively, both of which are deterministic functions of X2, . . . , Xn . By
definition T3, . . . , Tn are deterministic functions of �3, . . . , �n . Furthermore, the
Xi can be expressed as Xi = ∑n

j=i ai j Y j for coefficients ai j , which are deter-
mined by X2, . . . , Xn in Gram-Schmidt orthogonalization. Therefore, it holds that
〈X1, Xi 〉 = ∑n

j=i ai j Tj and hence the events {1, i} ∈ E(Grgg∼e0) are in F for all
3 ≤ i ≤ n. This completes the proof of the proposition. ��

We now define the random variable

Q0 = E
[
1(e0 ∈ E(Grgg))

∣∣F]

Note that Proposition 5.2 implies that Q = E
[
Q0
∣∣σ
(
Grgg∼e0

)]
. The remainder of this

section is devoted to showing that Q0 concentrates near p. By definition, we have
that 1(e0 ∈ E(Grgg)) = 1

(〈X1, X2〉 ≥ tp,d
)
. Furthermore, there are coefficients

a2 j ∈ σ(X2, . . . , Xn) for 2 ≤ j ≤ n such that X2 = ∑n
j=2 a2 j Y j . It follows that

〈X1, X2〉 =∑n
j=2 a2 j Tj and that we can rewrite Q0 as

Q0 = P

⎡

⎣
n∑

j=2

a2 j Tj ≥ tp,d

∣∣∣
∣F
⎤

⎦

Rearranging Eq. 5.2 yields that

a2 j = 〈X2,Y j 〉 for all 3 ≤ j ≤ n, and

a22 =
∥∥
∥∥∥∥
X2 −

n∑

j=3

ProjY j
(X2)

∥∥
∥∥∥∥
2

=
√√√
√1 −

n∑

j=3

〈X2,Y j 〉2

In particular, this implies that a22 is positive almost surely. As will be shown in the
lemmas later in this section, it holds that a22 ≈ 1 and a2 j ≈ 1√

d
for 3 ≤ j ≤ n with

high probability. Rearranging now yields that

Q0 = P

[
�2 ≥ t ′p,d

∣∣∣∣F
]

where t ′p,d = tp,d −∑n
j=3 a2 j Tj

a22 ·∏n
j=3

√
1 − �2

j

(5.3)
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Observe that t ′p,d is a F-measurable random variable since a2 j ∈ σ(X2, . . . , Xn) for
2 ≤ j ≤ n. We now will analyze a typical instance of our F-measurable random
variables. In particular, we will show that the random threshold t ′p,d is close to the
true threshold tp,d with high probability. The next three lemmas primarily consist of
concentration results and bounding. Their proofs can be found in “Appendix B.2”.

Lemma 5.4 Suppose that d 
 n log n and let s ∈ (0,∞) be fixed. There exists a
fixed constant Cs depending only on s such that the following events all hold with
probability at least 1 − 1

ns for sufficiently large n:

1.

∣
∣∣∣
∑n

j=3 a2 j Tj

∣
∣∣∣ ≤ Cs

√
n log3/2 n
d ;

2. a22 ≥
√
1 − Csn log n

d ; and

3. |�i | ≤ Cs

√
log n
d for every 3 ≤ i ≤ n.

Lemma 5.5 Suppose that d 
 n log4 n and p 
 n−3. Let Cs be as in Lemma 5.4 and
let Erem be the event that all the three events in the statement of Lemma 5.4 hold. We
have the following two bounds on |Q0 − p| · 1(Erem)

|Q0 − p| · 1(Erem) ≤ On

( pn
d

log p−1
)

+ Csψd
(
tp,d
) ·∣∣t ′p,d − tp,d

∣
∣

|Q0 − p| · 1(Erem) ≤ On

( pn
d

log p−1
)

+ On

⎛

⎝p

√
n log p−1

d
· log3/2 n

⎞

⎠

Lemma 5.6 Suppose that d 
 n log4 n and p ∈ (0, 1/2] satisfies that p 
 n−3. Then
we have that

E

[∣∣t ′p,d − tp,d
∣∣2 · 1(Erem)

]
= On

(
n2 log3 n

d3

)
+ On

( n

d2

)

With these lemmas, we now proceed to directly bound KL(νrgg||μ). Applying con-
ditional Jensen’s inequality to Eq. 5.1 yields that

KL(νrgg||μ) ≤ N

p(1 − p)
· E|Q − p|2 ≤ N

p(1 − p)
· E|Q0 − p|2 (5.4)

We now estimate the right-hand side above using the results in Lemma 5.5. Applying
the bounds in the above three lemmas yields that

KL(νrgg||μ) ≤ N

p(1 − p)
· E|Q0 − p|2

= N

p(1 − p)
· E
[
|Q0 − p|2 · 1(Erem)

]

+ N

p(1 − p)
· E
[
|Q0 − p|2 · 1(Ec

rem)
]
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� N

p
· E
[( pn

d
· log p−1 + Csψd

(
tp,d
) ·∣∣t ′p,d − tp,d

∣
∣
)2

1(Erem)

]

+ N

pns

� n4 p

d2
log2 p−1 + n2

p
· E
[
ψ2
d

(
tp,d
) ·∣∣t ′p,d − tp,d

∣
∣2 · 1(Erem)

]

+ 1

pns−2

Note that in the second inequality, we used the fact that 1 − p = �n(1), and in the
last inequality, we used the fact that (x + y)2 ≤ 2x2 + 2y2. Applying Lemma 5.1, we
have that p ∈ (0, 1/2] implies that ψd(tp,d) ≤ Cp

√
d log p−1. Combining this with

Lemma 5.6 now yields that

KL(νrgg||μ) � n4 p

d2
log2 p−1 + n2 pd log p−1 · E

[∣∣t ′p,d − tp,d
∣∣2 · 1(Erem)

]

+ 1

pns−2

� n4 p

d2
log2 p−1 + n4 p log p−1 log3 n

d2
+ n3 p log p−1

d
+ 1

pns−2

� n3 p log p−1

d
+ 1

pns−2

where the last inequality follows from the fact that d 
 n log4 n, log p−1 = O(log n)

and p = �n(n−2 log n). Taking s = 5 yields that KL(νrgg||μ) → 0 if d 

n3 p log p−1.

5.2 Sharper bounds in the sparse case

In this section, we prove the conclusion of Theorem 2.4 under the condition d 

p2n7/2(log n)3

√
log p−1, which is tighter in the sparse case. The argument reduces

bounding E|Q − p|2 to bounding the total variation between Grgg∼e0 and Grgg∼e0 condi-
tioned on the event e0 ∈ E(G). This quantity is then upper bounded by an explicit
coupling on the vectors Xi .

We begin by observing that Q = E
[
Q0
∣∣σ
(
Grgg∼e0

)]
implies by Jensen’s inequality

that

|Q − p| ≤ E
[|Q0 − p| ∣∣σ (Grgg∼e0

)]
(5.5)

Since Q is σ
(
Grgg∼e0

)
-measurable, we have that

|Q − p|2 ≤ E
[|Q0 − p| · |Q − p| ∣∣σ (Grgg∼e0

)]
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Substituting this and the definition of Erem into Eq. 5.1 now yields that

KL
(
νrgg

∣∣∣∣μ
) ≤ N

p(1 − p)
· E
[
|Q − p|2

]

� n2

p
· E [|Q − p| · |Q0 − p|]

= n2

p
· E [|Q − p| · |Q0 − p| · 1(Erem)]

+ n2

p
· E [|Q − p| · |Q0 − p| · 1(Ec

rem)
]

≤ n2

p
· E [|Q − p| · |Q0 − p| · 1(Erem)] + 1

pns−2

Note that the last inequality follows from the upper bound on P[Ec
rem] in Lemma 5.4.

Applying the second bound in Lemma 5.5 now yields that

KL
(
νrgg

∣∣∣∣μ
)

�

⎛

⎝n3 log p−1

d
+ n5/2 log3/2(n)

√
log p−1

d

⎞

⎠ · E [|Q − p|]

+ 1

pns−2 (5.6)

It suffices to upper bound E|Q − p|. Recall that νrgg denotes the probability mass
function of Grgg and e0 denotes the edge {1, 2}. Let ν

rgg∼e0 denote the marginal distri-
bution of Grgg restricted to all edges that are not {1, 2}, and let (ν

rgg∼e0)
+ denote the

distribution of Grgg conditioned on the event e0 ∈ E(Grgg). We now make a simple
but essential observation that will allow us to upper bound E|Q − p| by constructing
a coupling between ν

rgg∼e0 and (ν
rgg∼e0)

+.

Proposition 5.3 It holds that

E[|Q − p|] = 2p · dTV
((

ν
rgg∼e0

)+
, ν

rgg∼e0

)

Proof Let�∼e0 denote the set of simple graphs on the vertex set [n] that do not include
the edge {1, 2}. Note that Q can be written as Q = ν

rgg
e0 (1|Grgg∼e0) where ν

rgg
e0 denotes

the probability mass function of 1(e0 ∈ E(Grgg)) conditioned on Grgg∼e0 . We now have
that

E[|Q − p|] = EGrgg∼νrgg
[∣∣νrgge0 (1|Grgg∼e0) − p

∣∣]

=
∑

Grgg∼e0∈�∼e0

ν
rgg∼e0(G

rgg∼e0)·
∣∣p − ν

rgg
e0 (1|Grgg∼e0)

∣∣

=
∑

Grgg∼e0∈�∼e0

p·
∣∣∣∣ν

rgg∼e0(G
rgg∼e0) − ν

rgg
e0 (1|Grgg∼e0) · ν

rgg∼e0(G
rgg∼e0)

p

∣∣∣∣
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=
∑

Grgg∼e0∈�∼e0

p·
∣∣
∣∣ν

rgg∼e0(G
rgg∼e0) − (ν

rgg∼e0)
+(Grgg∼e0)

∣∣
∣∣

= 2p · dTV
((

ν
rgg∼e0

)+
, ν

rgg∼e0

)

which proves the proposition. ��
Wenowwill construct a coupling between ν

rgg∼e0 and (ν
rgg∼e0)

+. Note that the collection
of variables 〈Xi , X j 〉 for 1 ≤ i < j ≤ n is invariant to orthogonal rotations of the vec-
tors Xi . Therefore we may assume without loss of generality that X1 = (1, 0, . . . , 0)
and X2, . . . , Xn are sampled i.i.d. from the Haar measure on S

d−1. Now let ψ+
d,p

denote the density of Z ∼ ψd conditioned on the event Z ≥ tp,d . In other words, let

ψ+
d,p(x) = 1(x ≥ tp,d) · ψd(x)

p

for each x ∈ R. Now let X ′
2 be given by

X ′
2 = (τ, γ X22, γ X23, . . . , γ X2d) where γ =

√
1 − τ 2

1 − X2
21

and τ ∼ ψ+
d,p

andwhere τ is independent of σ(X1, X2, . . . , Xn). Note that γ is such that ‖X ′
2‖2 = 1.

Let gg∼e0
tp,d (X1, X2, . . . , Xn) denote ggtp,d (X1, X2, . . . , Xn) without the edge {1, 2}.

By definition, we have that gg∼e0
tp,d (X1, X2, . . . , Xn) ∼ ν

rgg∼e0 . Now observe that

gg∼e0
tp,d (X1, X

′
2, . . . , Xn) ∼ (ν

rgg∼e0)
+

This holds since L(X1, X ′
2, . . . , Xn) is by construction the law of X1, X2, . . . , Xn

conditioned on the event that {X21 ≥ tp,d}. Furthermore the event {X21 ≥ tp,d}
exactly coincides with the event {e0 ∈ E(G)} where G = ggtp,d (X1, X2, . . . , Xn).
The coupling characterization of total variation now implies that

dTV
((

ν
rgg∼e0

)+
, ν

rgg∼e0

)

≤ P

[
gg∼e0

tp,d (X1, X
′
2, . . . , Xn) �= gg∼e0

tp,d (X1, X2, . . . , Xn)
]

(5.7)

Let C > 0 be a fixed constant and define the event

Ecoup =
{
|τ | ≤ C

√
log n

d
and |Xi1| ≤ C

√
log n

d
for all 2 ≤ i ≤ n

}

Now observe that for any fixed x > 0, it holds that P[|τ | > x] ≤ p−1 · �d(x) �
n2 ·�d(x), as τ ∼ ψ+

d,p and p−1 = On(n2/ log n). Since we also have that Xi1 ∼ ψd

for each 2 ≤ i ≤ n, Lemma 5.2 and a union bound imply that we can choose C large
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enough so that P[Ecoup] ≥ 1−n−s for some fixed s > 0.We now observe that the two
graphs gg∼e0

tp,d (X1, X ′
2, . . . , Xn) and gg∼e0

tp,d (X1, X2, . . . , Xn) can only differ in edges
of the form {2, i} where 3 ≤ i ≤ n. Furthermore, they differ in the edge {2, i} exactly
when 1(〈X ′

2, Xi 〉 ≥ tp,d) �= 1(〈X2, Xi 〉 ≥ tp,d). Now note that

〈X ′
2, Xi 〉 = τ Xi1 + γ

d∑

j=2

X2 j Xi j = τ Xi1 +
√

1 − τ 2

1 − X2
21

· (〈X2, Xi 〉 − X21Xi1)

It therefore follows that if Ecoup holds then

∣∣〈X ′
2, Xi 〉 − 〈X2, Xi 〉

∣∣ ≤ |τ | · |Xi1| +
√

1 − τ 2

1 − X2
21

· |X21| · |Xi1| +
∣∣∣
∣∣

√
1 − τ 2

1 − X2
21

− 1

∣∣∣
∣∣

= On

(
log n

d

)

where here we used the fact that |〈X2, Xi 〉| ≤ ‖X2‖2 · ‖Xi‖2 = 1 by Cauchy–
Schwarz. Let δ denote the upper bound in the above inequality. Observe that if Ecoup
holds then the only way that 1(〈X ′

2, Xi 〉 ≥ tp,d) �= 1(〈X2, Xi 〉 ≥ tp,d) can hold is if
|〈X2, Xi 〉− tp,d | ≤ δ. Combining these observations with the fact that 〈X2, Xi 〉 ∼ ψd

now yields that

P
[{
1(〈X ′

2, Xi 〉 ≥ tp,d) �= 1(〈X2, Xi 〉 ≥ tp,d)
} ∩ Ecoup

] ≤ P
[|〈X2, Xi 〉 − tp,d | ≤ δ

]

=
∫ tp,d+δ

tp,d−δ

ψd(x)dx

≤ 2δ · sup
|x−tp,d |≤δ

ψd(x)

By (3) in Lemma 5.1, it follows that

sup
|x−tp,d |≤δ

ψd(x) ≤ ψd(tp,d) · e3tp,ddδ = ψd(tp,d) · (1 + on(1)) = On

(
p
√
d log n

)

where the second and third bounds follow since tp,d = On

(√
log n
d

)
, δ = On

(
log n
d

)

and d 
 log3 n. Putting this all together with Proposition 5.3 and Eq. 5.7 now yields
that

E[|Q − p|] ≤ 2p · P
[
gg∼e0

tp,d (X1, X
′
2, . . . , Xn) �= gg∼e0

tp,d (X1, X2, . . . , Xn)
]

≤ 2p · P
[
Ec
coup

]

+ 2p ·
n∑

i=3

P
[{
1(〈X ′

2, Xi 〉 ≥ tp,d) �= 1(〈X2, Xi 〉 ≥ tp,d)
} ∩ Ecoup

]
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� 2pn−s + 2p · (n − 3) · 2δ · p√d log n

� pn−s + p2n log3/2 n

d1/2

where the second inequality follows from a union bound. Substituting this bound into
Eq. (5.6) now yields that

KL
(
νrgg

∣∣∣∣μ
)

� n4 p2 log p−1 log3/2 n

d3/2
+ n7/2 p2 log3(n)

√
log p−1

d

+ 1

pns−2 + pn−s ·
⎛

⎝n3 log p−1

d
+ n5/2 log3/2(n)

√
log p−1

d

⎞

⎠

Varying s only changes the constant with which the� above holds. Picking s > 4 thus
yields that KL

(
νrgg

∣∣∣∣μ
) → 0 as n → ∞ if d 
 p2n7/2(log n)3

√
log p−1 and p =

�n(n−2 log n). Applying Pinsker’s inequality completes the proof of Theorem 2.4.
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A Appendix: Random Intersection Graphs andMatrices

A.1 Variance of the Signed Triangle Count inRIG(n, d, p)

The main purpose of this section is to prove Lemma 3.4, which computes the variance
of Ts(G) for G ∼ rig(n, d, p). The proof follows a similar structure to the proof of
Lemma 3.3 but is more computationally involved.

Proof of Lemma 3.4 Let τi jk = (ei j−p)(eik−p)(e jk−p) for each1 ≤ i < j < k ≤ n.
It holds that

Var[Ts(G)] =
∑

1≤i< j<k≤n

∑

1≤i ′< j ′<k′≤n

Cov
[
τi jk, τi ′ j ′k′

]

=
(
n

3

)
· Var[τ123] + 4!

2! · 2! ·
(
n

4

)
· Cov [τ123, τ124]

+ 5!
2! · 2! ·

(
n

5

)
· Cov [τ123, τ145] (A.1)

The second equality follows by symmetry among vertex labels and the fact that if
{i, j, k} ∩ {i ′, j ′, k′} = ∅ then τi jk and τi ′ j ′k′ are independent. Note that the second
coefficient is the number of ways to choose two sets of three vertices that intersect in
two elements and the third coefficient is the number of ways to choose these sets so
that they intersect in one element. By Lemma 3.3, we have that
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q = E[τ123 = 1] = (1 − p)3 ·
[
dδ3 + On(dδ4)

]

Now note that

Var[τ123] = E[τ 2123] − q2, Cov [τ123, τ124] = E[τ123τ124] − q2 and

Cov [τ123, τ145] = E[τ123τ145 = 1] − q2

We will begin by computing E[τ 2123]. Let P and Q be as in Lemma 3.3. Now note that

E[τ 2123] = E

[
(e12 − p)2(e13 − p)2(e23 − p)2

]

= E

⎡

⎣
∏

{i, j}={1,2},{1,3},{2,3}

[
(1 − p)2 − (1 − 2p)(1 − ei j )

]
⎤

⎦

= −
∑

x∈{0,1}3
(1 − p)2|x |(−1)|x |(1 − 2p)3−|x | · Q(x1, x2, x3)

= (1 − p)6 − 3(1 − p)4(1 − 2p)(1 − δ)d(1 + δ)d

+ 3(1 − p)2(1 − 2p)2(1 − δ)d(1 + δ − δ2)d

− (1 − 2p)3(1 + 2δ)d(1 − δ)2d

where the last two equalities follow from the expressions for Q in Lemma 3.3. Further
simplifying and applying the estimates in Eqs. 3.19 and 3.20 yields that the above
quantity is equal to

(1 − p)6 − 3(1 − p)5(1 − 2p) + 3(1 − p)4(1 − 2p)2 ·
(
1 + δ3

(1 − δ2)(1 + δ)

)d

− (1 − 2p)3(1 − p)3 ·
(
1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

= (1 − p)3 · [(1 − p) − (1 − 2p)]3 + 3(1 − p)4(1 − 2p)2

·
[(

1 + δ3

(1 − δ2)(1 + δ)

)d

− 1

]

− (1 − 2p)3(1 − p)3 ·
[(

1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

− 1

]

= p3(1 − p)3 + 3(1 − p)4(1 − 2p)2dδ3 − (1 − 2p)3(1 − p)3dδ3 + On(dδ4)

= p3(1 − p)3 + (2 − p)(1 − p)3(1 − 2p)2dδ3 + On(dδ4)

We now will estimate E[τ123τ124] using a similar method to Lemma 3.3. Let P ′ :
{0, 1}5 → [0, 1] be such that P ′(x1, x2, x3, x4, x5) is the probability that e12 = x1,
e13 = x2, e14 = x3, e23 = x4 and e24 = x5. Define Q′ : {0, 1}5 → [0, 1] as
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Q′(x1, x2, x3, x4, x5) =
∑

y⊆x

P ′(y1, y2, y3, y4, y5)

As in Lemma A.1, the events whose probabilities are given by the values of Q′ are
each the product of events over the individual elements of [d]. For no edges to be
present in the triangles {1, 2, 3} or {1, 2, 4}, each i ∈ [d] must be in at most one of
S1, S2, S3, S4 or is in both of S3 and S4. Thus

P ′(0, 0, 0, 0, 0) = Q′(0, 0, 0, 0, 0) =
[
(1 − δ)4 + 4δ(1 − δ)3 + δ2(1 − δ)2

]d

=
(
1 + 2δ − 2δ2

)d
(1 − δ)2d

Similarly, if |x | = x1 + x2 + x3 + x4 + x5 = 1, then

Q′(x1, x2, x3, x4, x5) =
[
(1 − δ)4 + 4δ(1 − δ)3 + 2δ2(1 − δ)2

]d

=
(
1 + 2δ − δ2

)d
(1 − δ)2d

If |x | = 2 and x �= (0, 1, 1, 0, 0), (0, 0, 0, 1, 1), then it follows that

Q′(x1, x2, x3, x4, x5) =
[
(1 − δ)4 + 4δ(1 − δ)3 + 3δ2(1 − δ)2

]d

= (1 + 2δ)d (1 − δ)2d

If x = (0, 1, 1, 0, 0), (0, 0, 0, 1, 1), then each i ∈ [d] can also possibly be in the three
sets S1, S3, S4 and S2, S3, S4, respectively. Therefore

Q′(0, 1, 1, 0, 0) = Q′(0, 0, 0, 1, 1)

=
[
(1 − δ)4 + 4δ(1 − δ)3 + 3δ2(1 − δ)2 + δ3(1 − δ)

]d

=
(
1 + δ − 2δ2 + δ3

)d
(1 − δ)d

Wenowconsider the caseswhere |x | = 3.When |x | = 3, there are always four allowed
pairs of sets that any i ∈ [d] can be in—the three edges of x and {3, 4}. However,
the number of allowed triples varies with x . If x = (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), then
there are no allowed triples and

Q′(1, 1, 0, 0, 1) = Q′(1, 0, 1, 1, 0) =
[
(1 − δ)4 + 4δ(1 − δ)3 + 4δ2(1 − δ)2

]d

= (1 + δ)2d(1 − δ)2d

If |x | = 3 and x �= (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), then there is one allowed triple and

Q′(x1, x2, x3, x4, x5) =
[
(1 − δ)4 + 4δ(1 − δ)3 + 4δ2(1 − δ)2 + δ3(1 − δ)

]d
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=
(
1 + δ − δ2

)d
(1 − δ)d

If |x | = 4, then there is one forbidden pair of sets and two forbidden triples. Therefore

Q′(x1, x2, x3, x4, x5) =
[
(1 − δ)4 + 4δ(1 − δ)3 + 5δ2(1 − δ)2 + 2δ3(1 − δ)

]d

= (1 + δ)d (1 − δ)d

Furthermore Q′(1, 1, 1, 1, 1) = 1. Now we have that

E[τ123τ124] = E

[
(e12 − p)2(e13 − p)(e14 − p)(e23 − p)(e24 − p)

]

= E

[[
(1 − p)2 − (1 − 2p)(1 − e12)

]

×
∏

{i, j}={1,3},{1,4},{2,3},{2,4}

[
(1 − p) − (1 − ei j )

]
⎤

⎦

= −
∑

x∈{0,1}5
(−1)|x |(1 − p)2x1(1 − 2p)1−x1(1 − p)x2+x3+x4+x5

· Q′(x1, x2, x3, x4, x5)
= (1 − p)6 − (1 − p)4 · [4(1 − p) + (1 − 2p)] · (1 + δ)d (1 − δ)d

+ (1 − p)3 · [4(1 − p) + 4(1 − 2p)] ·
(
1 + δ − δ2

)d
(1 − δ)d

+ 2(1 − p)4 · (1 + δ)2d(1 − δ)2d

− (1 − p)2 · [4(1 − p) + 4(1 − 2p)] · (1 + 2δ)d (1 − δ)2d

− 2(1 − p)2(1 − 2p) ·
(
1 + δ − 2δ2 + δ3

)d
(1 − δ)d

+ (1 − p) · [(1 − p) + 4(1 − 2p)] ·
(
1 + 2δ − δ2

)d
(1 − δ)2d

− (1 − 2p)
(
1 + 2δ − 2δ2

)d
(1 − δ)2d

This quantity can be rewritten as the following expression which is more convenient
to estimate.

(1 − p)6 − (1 − p)5(5 − 6p) + 4(1 − p)5(2 − 3p) ·
(
1 + δ3

(1 + δ)(1 − δ2)

)d

+ 2(1 − p)6 − 4(1 − p)5(2 − 3p) ·
(
1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

− 2(1 − p)5(1 − 2p) ·
(

1 + δ3 − δ4 − δ5

(1 − δ2)2(1 + δ)

)d
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+ (1 − p)5(5 − 9p) ·
(

1 + 4δ3 + δ4 − 2δ5 − δ6

(1 − δ2)2(1 + δ)2

)d

− (1 − p)5(1 − 2p)

(

1 + 6δ3 − 6δ5 − 2δ6 + 2δ7 + δ8

(1 − δ2)3(1 + δ)2

)d

= 4(1 − p)5(2 − 3p) · dδ3 − 4(1 − p)5(2 − 3p)

· 2dδ3 − 2(1 − p)5(1 − 2p) · 2δ3
+ (1 − p)5(5 − 9p) · 4dδ3 − (1 − p)5(1 − 2p) · 6dδ3 + On(dδ4)

= 2(1 − p)5(1 − 2p)dδ3 + On(dδ4)

The second last equality follows from substituting estimates of the form

(
1 + δ3

(1 + δ)(1 − δ2)

)d

= 1 + dδ3 + On(dδ4)

and analogous estimates for the other dth powers in the expression. These estimates
can be established using similar bounds to those used to derive Eqs. 3.19 and 3.20.
Observe that the terms that are not multiples of dδ3 after substituting these estimates
sum to zero.

We now will estimate E[τ123τ145] using a slightly different method. Note that τ123
is σ(S1, S2, S3)-measurable and τ145 is σ(S1, S4, S5)-measurable. Thus conditioned
on S1, the random variables τ123 and τ145 are independent. Furthermore, because
of symmetry among the elements in [d], τ123 and τ145 are independent conditioned
on |S1|. Let τm123 = E

[
τ123

∣∣|S1| = m
]
and observe that conditional independence

yields that E[τ123τ145] = Em∼L(|S1|)
[
(τm123)

2
]
. We now will compute τm123. Let Pm :

{0, 1}3 → [0, 1] be such that Pm(x1, x2, x3) is the probability that e12 = x1, e13 = x2
and e23 = x3 given |S1| = m. Define Qm : {0, 1}3 → [0, 1] to be

Qm(x1, x2, x3) =
∑

y⊆x

Pm(x1, x2, x3)

For no edges in triangle {1, 2, 3} to be present, each of the m elements of S1 cannot
be in either S2 or S3 and each of the d −m remaining elements must be in at most one
of S2 or S3. Therefore

Qm(0, 0, 0) = (1 − δ)2m(1 − δ2)d−m

For either no edges or just the edge {1, 2} to be present, each element in S1 must not
be in S3 and each of the d − m remaining elements must be in at most one of S2 or
S3. Similar conditions hold when {1, 2} is replaced by {1, 3} and thus

Qm(1, 0, 0) = Qm(0, 1, 0) = (1 − δ)m(1 − δ2)d−m
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For at most the edge {2, 3} to be present, each element of S1 cannot be in S2 or S3 and
thus

Qm(0, 0, 1) = (1 − δ)2m

For just the edge {1, 2} to not be present, each element of S1 cannot be in S2. Similar
conditions hold when {1, 2} is replaced by {1, 3} and thus

Qm(0, 1, 1) = Qm(1, 0, 1) = (1 − δ)m

For {2, 3} to not be present, it must hold that each of the d −m elements not in S1 are
in one of S2 or S3. Thus

Qm(1, 1, 0) = (1 − δ2)d−m

Furthermore Qm(1, 1, 1) = 1. Now we have that

τm123 = −E
[
((1 − e12) − (1 − p)) ((1 − e13) − (1 − p)) ((1 − e23) − (1 − p))

∣∣|S1| = m
]

= −
∑

x∈{0,1}3
(−1)|x |(1 − p)|x | · Qm(x1, x2, x3)

= (1 − p)3 − 2(1 − p)2(1 − δ)m − (1 − p)2(1 − δ2)d−m

+ 2(1 − p) · (1 − δ)m(1 − δ2)d−m

+ (1 − p)(1 − δ)2m − (1 − δ)2m(1 − δ2)d−m

Now note that |S1| ∼ Bin(d, δ) and thus Em∼L(|S1|)
[
xm
] = (1 − δ + δx)d for any

x > 0, by the form of the moment generating function of the binomial distribution.
Expanding (τm123)

2 and applying this identity now yields that

Em∼L(|S1|)
[
(τm123)

2
]

= (1 − p)6 − 4(1 − p)5(1 − δ2)d − 2(1 − p)5(1 − δ2)d

(
1 − δ + δ

1 − δ2

)d

+ 6(1 − p)4(1 − 2δ2 + δ3)d + (1 − p)4(1 − δ2)2d

(
1 − δ + δ

(1 − δ2)2

)d

+ 8(1 − p)4(1 − δ2)d
(
1 − δ + δ(1 − δ)

1 − δ2

)d

− 12(1 − p)3(1 − δ2)d
(
1 − δ + δ(1 − δ)2

1 − δ2

)d

− 4(1 − p)3(1 − 3δ2 + 3δ3 − δ4)d

− 4(1 − p)3(1 − δ2)2d
(
1 − δ + δ(1 − δ)

(1 − δ2)2

)d
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+ 6(1 − p)2(1 − δ2)2d
(
1 − δ + δ(1 − δ)2

(1 − δ2)2

)d

+ (1 − p)2(1 − 4δ2 + 6δ3 − 4δ4 + δ5)d

+ 8(1 − p)2(1 − δ2)d
(
1 − δ + δ(1 − δ)3

1 − δ2

)d

− 4(1 − p)(1 − δ2)2d
(
1 − δ + δ(1 − δ)3

(1 − δ2)2

)d

− 2(1 − p)(1 − δ2)d
(
1 − δ + δ(1 − δ)4

1 − δ2

)d

+ (1 − δ2)2d
(
1 − δ + δ(1 − δ)4

(1 − δ2)2

)d

This quantity can be rewritten as the following expression which is more convenient
to estimate.

(1 − p)6 − 4(1 − p)6 − 2(1 − p)6
(
1 + δ3

1 − δ2

)d

+ 14(1 − p)6
(
1 + δ3

(1 − δ2)(1 + δ)

)d

+ (1 − p)6
(

1 + 2δ3 − δ5

(1 − δ2)2

)d

− 16(1 − p)6
(
1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

− 4(1 − p)6
(

1 + 3δ3 − δ4 − δ5

(1 − δ2)2(1 + δ)

)d

+ 6(1 − p)6
(

1 + 3δ3 + δ4 − 2δ5 − δ6

(1 − δ2)2(1 + δ)2

)d

+ (1 − p)6
(

1 + 6δ3 − 4δ4 − 3δ5 + δ6 + δ7

(1 − δ2)3(1 + δ)

)d

+ 8(1 − p)6
(

1 + 4δ3 + δ4 − 2δ5 − δ6

(1 − δ2)2(1 + δ)2

)d

− 4(1 − p)6
(

1 + 5δ3 + 5δ4 − δ5 − 3δ6 − δ7

(1 − δ2)2(1 + δ)3

)d

− 2(1 − p)6
(

1 + 7δ3 − 6δ4 − 2δ5 + 2δ7 + δ8

(1 − δ2)3(1 + δ)2

)d
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+ (1 − p)6
(

1 + 8δ3 + 6δ4 − 6δ5 − 8δ7 + 3δ8 + δ9

(1 − δ2)3(1 + δ)3

)d

Now substitute estimates for each of the dth powers of the form 1+ cdδ3 + On(dδ4)

for constants c varying per term. For example, the first power can be estimated to be

(
1 + δ3

1 − δ2

)d

= 1 + dδ3 + On(dδ4)

These estimates can be established using the same bounding argument used to derive
Eqs. 3.19 and 3.20. Observe that the sum of the constant terms and the multi-
ples of dδ3 are zero after substituting these estimates into the expression above for
Em∼L(|S1|)

[
(τm123)

2
]
. Thus we obtain that

Em∼L(|S1|)
[
(τm123)

2
]

= On(dδ4)

Now note that q = On(dδ3) and therefore we have that

Var[τ123] = E[τ 2123] − q2 = p3(1 − p)3 + On(dδ3)

Cov [τ123, τ124] = E[τ123τ124] − q2 = On(dδ3)

Cov [τ123, τ145] = E[τ123τ145 = 1] − q2 = On(dδ4)

since dδ2 = On(1). Substituting into Eq. A.1 completes the proof of the lemma. ��
For the sake of completeness, we show how to apply the approach in Lemma 3.3

to compute E[T (G)] where G ∼ rig(n, d, p) in the following lemma.

Lemma A.1 If G ∼ rig(n, d, p) where 1 − p = (1 − δ2)d = �n(1), then it follows
that

E [T (G)] =
(
n

3

)
·
[
p3 + dδ3(1 + 2p)(1 − p)2 + On

(
dδ4
)]

Proof Given three distinct vertices in i, j, k ∈ [n], let Ti jk denote the indicator for the
event that i, j and k form a triangle in G. Linearity of expectation yields that

E [T (G)] =
∑

1≤i< j<k≤n

E[Ti jk] =
(
n

3

)
· P[T123 = 1] (A.2)

where the second equality holds by symmetry. Let P and Q be as in Lemma 3.3. The
principle of inclusion-exclusion now yields that

P[T123 = 1] = P(1, 1, 1) =
∑

x∈{0,1}3
(−1)3−|x | · Q(x1, x2, x3)

= 1 − 3(1 − δ)d(1 + δ)d + 3(1 − δ)d(1 + δ − δ2)d

123



1270 M. Brennan et al.

− (1 + 2δ)d(1 − δ)2d

=
(
1 − (1 − δ2)d

)3 + 3
(
1 − 2δ2 + δ3

)d −
(
1 − 3δ2 + 2δ3

)d

− 3(1 − δ2)2d + (1 − δ2)3d

since p = 1 − (1 − δ2)d . Now observe that

3
(
1 − 2δ2 + δ3

)d − 3(1 − δ2)2d = 3(1 − δ2)2d ·
[(

1 + δ3

(1 − δ2)(1 + δ)

)d

− 1

]

(
1 − 3δ2 + 2δ3

)d −
(
1 − δ2

)3d = (1 − δ2)3d ·
[(

1 + 2δ3 + δ4

(1 − δ2)(1 + δ)2

)d

− 1

]

(A.3)

The same bounds as in Lemma 3.3 now yield that

3
(
1 − 2δ2 + δ3

)d − 3(1 − δ2)2d = 3dδ3(1 − δ2)2d + On

(
dδ4(1 − δ2)2d

)

(
1 − 3δ2 + 2δ3

)d −
(
1 − δ2

)3d = 2dδ3
(
1 − δ2

)3d + On

(
dδ4

(
1 − δ2

)3d)

Substituting 1 − p = (1 − δ2)d and these bounds into Eq. A.3, we have that

P[T123 = 1] =
(
1 − (1 − δ2)d

)3 + 3dδ3
(
1 − δ2

)2d − 2dδ3
(
1 − δ2

)3d

+ On

(
dδ4(1 − δ2)2d

)

= p3 + 3dδ3
(
1 − δ2

)2d − 2dδ3
(
1 − δ2

)3d + On

(
dδ4(1 − p)2

)

= p3 + dδ3(1 + 2p)(1 − p)2 + On

(
dδ4
)

Substituting this into Eq. A.2 now completes the proof of the lemma. ��

A.2 Testing for Planted PoissonMatrices

In this section, we prove Lemma 4.1. The proof uses a similar second moment method
computation of χ2 divergence as in the proof of Lemma 3.1.

Proof of Lemma 4.1 Let τ = (t2
)(n

2

)−1. We first carry out several preliminary computa-
tions with the laws of Poisson(λ) and Poisson(λ+τ) that will be useful in simplifying
subsequent χ2 divergences. Observe that the following sum has a simple closed form
expression.

∞∑

k=0

P [Poisson(λ) = k − 1]2

P [Poisson(λ + τ) = k]
= λ−2e−λ+τ

∞∑

k=1

k

(k − 1)!
(

λ2

λ + τ

)k
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= e−λ+τ

λ + τ

∞∑

k=1

1

(k − 1)!
(

λ2

λ + τ

)k−1

+ λ2e−λ+τ

(λ + τ)2

∞∑

k=2

1

(k − 2)!
(

λ2

λ + τ

)k−2

= e−λ+τ

λ + τ
· e λ2

λ+τ + λ2e−λ+τ

(λ + τ)2
· e λ2

λ+τ

= e
τ2

λ+τ · λ2 + λ + τ

(λ + τ)2
(A.4)

The following two sums can be evaluated similarly.

∞∑

k=0

P [Poisson(λ) = k − 1] · P [Poisson(λ) = k]

P [Poisson(λ + τ) = k]

= λ−1e−λ+τ
∞∑

k=1

1

(k − 1)!
(

λ2

λ + τ

)k

= λ

λ + τ
· e−λ+τ · e λ2

λ+τ = e
τ2

λ+τ · λ

λ + τ
(A.5)

∞∑

k=0

P [Poisson(λ) = k]2

P [Poisson(λ + τ) = k]

= e−λ+τ
∞∑

k=1

1

k!
(

λ2

λ + τ

)k

= e−λ+τ · e λ2
λ+τ = e

τ2
λ+τ (A.6)

Given a fixed set S′ ⊆ [n] of size t , let poimP
(
n, S′, λ

)
denote the distribution

of poimP (n, t, λ) conditioned on the event S = S′. If Ut denotes the uniform
distribution on the size t subsets of [n], then in particular poimP (n, t, λ) =d

ES∼Ut poimP (n, S, λ). LetMn denote the set of all symmetric matrices in Zn×n
≥0 with

diagonal entries equal to zero and X denote an arbitrary X ∈ Mn . Let PS , P and Q
be shorthands for poimP (n, S, λ), poimP (n, t, λ) and poim (n, λ + τ), respectively.
Observe that these are each product distributions. Following a similar second moment
method computation as in Lemma 3.1, we have that

1 + χ2 (poimP (n, t, λ) , poim (n, λ + τ))

=
∑

X∈Mn

PP [X ]2
PQ[X ] = ES,T∼Ut

⎡

⎣
∑

X∈Mn

PPS [X ] · PPT [X ]
PQ[X ]

⎤

⎦

= ES,T∼Ut

⎡

⎣
∏

1≤i< j≤n

( ∞∑

k=0

PPS [Xi j = k] · PPT [Xi j = k]
PQ[Xi j = k]

)⎤

⎦
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The second equality holds by linearity of expectation and because S and T are inde-
pendent. The marginal distributions of PS,PT and Q combined with Eqs. A.4, A.5
and A.6 now imply that

1 + χ2 (poimP (n, t, λ) , poim (n, λ + τ))

= ES,T∼Ut⎡

⎣
(
e

τ2
λ+τ · λ2 + λ + τ

(λ + τ)2

)(|S∩T |
2 ) (

e
τ2

λ+τ · λ

λ + τ

)2(t2)−(|S∩T |
2 )

(
e

τ2
λ+τ

)(n2)−2(t2)+(|S∩T |
2 )
]

= e(
n
2)· τ2

λ+τ · ES,T∼Ut

⎡

⎣
(

λ2 + λ + τ

(λ + τ)2

)(|S∩T |
2 ) (

λ

λ + τ

)2(t2)−(|S∩T |
2 )
⎤

⎦

= e(
n
2)· τ2

λ+τ ·
(

λ

λ + τ

)2(t2) · ES,T∼Ut

⎡

⎣
(

λ2 + λ + τ

λ2 + λτ

)(|S∩T |
2 )
⎤

⎦ (A.7)

Now fix two subsets S, T ⊆ [n] of size t and note that |S ∩ T | ≤ t = On(1). Note

that e(
n
2)· τ2

λ+τ = e(
t
2)· τ

λ+τ ≤ e(
t
2) = On(1). As in Lemma 3.1, |S ∩ T | is distributed as

Hypergeometric(n, t, t) since S, T ∼ Ut are independent. Furthermore, P[|S ∩ T | =
k] = (tk

)(n−t
t−k

)(n
t

)−1 = On(n−k). Observe that

t∑

k=3

P[|S ∩ T | = k] · e(n2)· τ2
λ+τ ·

(
λ

λ + τ

)2(t2) ·
(

λ2 + λ + τ

λ2 + λτ

)(k2)

≤
t∑

k=3

e(
t
2) ·
(
t

k

)(
n − t

t − k

)(
n

t

)−1 (
λ2 + λ + τ

λ2 + λτ

)(k2)

= On

⎛

⎝ max
2<k≤t

n−k ·
(

λ2 + λ + τ

λ2 + λτ

)(k2)
⎞

⎠ (A.8)

since t = On(1). Also observe that

2∑

k=0

P[|S ∩ T | = k] · e(n2)· τ2
λ+τ ·

(
λ

λ + τ

)2(t2) ·
(

λ2 + λ + τ

λ2 + λτ

)(k2)

= e(
t
2)· τ

λ+τ ·
(

λ

λ + τ

)2(t2)

·
[(

n − t

t

)(
n

t

)−1

+ t

(
n − t

t − 1

)(
n

t

)−1

+
(
t

2

)(
n − t

t − 2

)(
n

t

)−1 (
λ2 + λ + τ

λ2 + λτ

)]

123



Phase transitions for detecting latent geometry in random graphs 1273

Using the fact that
∑t

�=0

(t
�

)(n−t
t−�

)(n
t

)−1 = 1, this quantity simplifies to

e(
t
2)· τ

λ+τ ·
(

λ

λ + τ

)2(t2)

·
[

1 +
(
t

2

)(
n − t

t − 2

)(
n

t

)−1 (
λ2 + λ + τ

λ2 + λτ
− 1

)
−

t∑

�=3

(
t

�

)(
n − t

t − �

)(
n

t

)−1
]

= e(
t
2)· τ

λ+τ ·
(

λ

λ + τ

)2(t2)

·
[

1 +
(
t

2

)2(n
2

)−1 (
λ2 + λ + τ

λ2 + λτ
− 1

)
+ On

(
(1 + λ−1)n−3

)
]

(A.9)

The equality above follows from: (1)
(n−t
t−2

)(n
t

)−1 = (t2
)(n

2

)−1+On(n−3), as established

in Eq. 3.9; (2) from the fact that λ2+λ+τ
λ2+λτ

≤ 1 + λ−1; and (3) from
(t
�

)(n−t
t−�

)(n
t

)−1 =
On(n−3) for each 3 ≤ � ≤ t and the fact that the sum contains t − 2 = On(1) terms.
Note that λ = ωn(n−2) and thus τ

λ+τ
= on(1). Since 2

(t
2

) = On(1), we have by
Taylor expanding that

e(
t
2)· τ

λ+τ

(
λ

λ + τ

)2(t2) = e(
t
2)· τ

λ+τ

(
1 − τ

λ + τ

)2(t2)

=
[
1 +

(
t

2

)
· τ

λ + τ
+ On

(
τ 2

(λ + τ)2

)]

[
1 − 2

(
t

2

)
· τ

λ + τ
+ On

(
τ 2

(λ + τ)2

)]

= 1 −
(
t

2

)
· τ

λ + τ
+ On

(
τ 2

(λ + τ)2

)

= 1 −
(
t

2

)
· τ

λ + τ
+ On

(
λ−2n−4

)
(A.10)

Substituting τ = (t2
)(n

2

)−1 and the estimate in Eq. A.10 into Eq. A.9 yields that

2∑

k=0

P[|S ∩ T | = k] · e(n2)· τ2
λ+τ ·

(
λ

λ + τ

)2(t2) ·
(

λ2 + λ + τ

λ2 + λτ

)(k2)

=
[
1 −

(
t

2

)
· τ

λ + τ
+ On

(
λ−2n−4

)]

[
1 +

(
t

2

)
τ ·
(

λ2 + λ + τ

λ2 + λτ
− 1

)
+ On

(
(1 + λ−1)n−3

)]

= 1 −
(
t

2

)
· τ

λ + τ
+
(
t

2

)
τ ·
(

λ2 + λ + τ

λ2 + λτ
− 1

)
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+ On

(
λ−2n−4

)
+ On

(
(1 + λ−1)n−3

)

= 1 +
(
t

2

)
· τ 2(1 − λ)

λ2 + λτ
+ On

(
λ−2n−4

)
+ On

(
(1 + λ−1)n−3

)

= 1 + On

(
(1 + λ−2)n−4

)
+ On

(
(1 + λ−1)n−3

)
(A.11)

Substituting Eqs. A.11 and A.8 into Eq. A.7 now yields that

χ2 (poimP (n, t, λ) , poim (n, λ + τ)) = On

(
(1 + λ−2)n−4

)
+ On

(
(1 + λ−1)n−3

)

+ On

⎛

⎝ max
2<k≤t

n−k ·
(

λ2 + λ + τ

λ2 + λτ

)(k2)
⎞

⎠

Observe that λ2+λ+τ
λ2+λτ

= λ
λ+τ

+λ−1 ≤ 1+λ−1 and, when k = 3 in the third term above,

the bound is n−3 ·
(

λ2+λ+τ
λ2+λτ

)3 = �n
(
(1 + λ−1)n−3

)
. Now applying Cauchy–Schwarz

as in Lemma 3.1 completes the proof of the lemma. ��

A.3 Total Variation Convergence of RIM and POIM

In this section, we complete the proof of Theorem 2.3. We first deduce the follow-
ing elementary upper bound on the total variation between two univariate Poisson
distributions using some of the calculations in Lemma 4.1.

Lemma A.2 If λ1 ≥ λ2 > 0, then it follows that

dTV (Poisson(λ1),Poisson(λ2)) ≤
√
1

2

(
eλ−1

1 (λ1−λ2)2 − 1
)

which is O
(
λ−1
1 (λ1 − λ2)

2
)
if (λ1 − λ2)

2 ≤ λ1.

Proof By the same computation in Eq. A.6, we have that

1 + χ2 (Poisson(λ2),Poisson(λ1)) =
∞∑

k=0

P [Poisson(λ2) = k]2

P [Poisson(λ1) = k]

= eλ1−2λ2
∞∑

k=0

1

k!

(
λ22

λ1

)k

= eλ−1
1 (λ1−λ2)

2

Applying Cauchy–Schwarz to obtain dTV ≤
√

1
2 · χ2 now proves the lemma. ��
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Observe that λ1 ≥ 1
4

(√
λ1 + √

λ2
)2
, from which we obtain that

dTV (Poisson(λ1),Poisson(λ2)) ≤
√
1

2

(
e4(

√
λ1−√

λ2)2 − 1
)

This implies that if |λ1 − λ2| = o(1), then dTV (Poisson(λ1),Poisson(λ2)) = o(1).
Applying the triangle inequality now yields that dTV (Poisson(λ1),Poisson(λ2)) =
o(1) if λ2 = λ′

2 + o(1) and (λ1 − λ′
2)

2 � λ1. We will use this fact in the proof of
Theorem 2.3.

We now will prove Theorem 2.3, referencing parts of the proof of Theorem 3.1
where details are identical or similar.

Proof of Theorem 2.3 First observe that nδ � n1/2d−1/3 � 1. We first summarize
several observations and definitions from Theorem 3.1 as they apply to random inter-
section matrices.

• Let pk = P[|{ j : i ∈ S j }| = k] = (nk
)
δk(1−δ)n−k be the probability some i ∈ [d]

is in k sets S j and let Mk be the number of i ∈ [d] in exactly k sets Sk . Note that
(M0, M1, . . . , Mn) ∼ Multinomial(d, p0, p1, . . . , pn).

• A random matrix X ∼ rim(n, d, δ) can now be generated through the procedure
Pgen by first setting all entries of X to be zero, sampling (M0, M1, . . . , Mn) ∼
Multinomial(d, p0, p1, . . . , pn) and then, for each 2 ≤ k ≤ n, independently
sampling a subset S of size k from [n] uniformly at a random a total of Mk times
and increasing Xi j by 1 for each i, j ∈ S.

• Let LP denote the distribution on (M0, M1, . . . , Mn) where the Mk are mutually
independent and Mk ∼ Poisson(dpk). Let rimP (n, d, δ) be the distribution on
matrices X generated through Pgen, generating (M0, M1, . . . , Mn) ∼ LP instead
of from a multinomial distribution.

• Poisson splitting implies that, after sampling (M0, M1, M2) fromLP and applying

Pgen for k = 2, the resulting matrix X2 is distributed as poim
(
n,
(n
2

)−1
dp2
)
.

• LetrimP (n, d, δ,m3,m4, . . . ,mK ) denoterimP (n, d, δ) conditioned on the event
that Mk = mk for 3 ≤ k ≤ K and Mk = 0 for K < k ≤ n. Note that

X ∼ rimP (n, d, δ,m3,m4, . . . ,mK ) is distributed as poim
(
n,
(n
2

)−1
dp2
)
with

mk random planted increased subsets of size k for each 3 ≤ k ≤ K as in Pgen.

The argument in Proposition 3.1 implies that if nδ � 1, then

dTV (rim(n, d, δ), rimP (n, d, δ)) = On

(
n2δ2

)
(A.12)

as n → ∞. Now let

Et = min
{
1,Ct

((
1 + d−1δ−2(1 − δ)2−n

)
n−2

+ max
2<k≤t

n−k/2
(
1 + d−1δ−2(1 − δ)2−n

) 1
2 (

k
2)
)}
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for a sufficiently large constant Ct > 0 so that Et is an upper bound in Lemma 4.1
when λ = (n

2

)−1
dp2 = dδ2(1 − δ)n−2. As observed above, we have that X

after the step of Pgen with k = 2 is distributed as rimP (n, d, δ, 0, 0, . . . , 0) ∼
poim

(
n, dδ2(1 − δ)n−2

)
. The same induction as in Proposition 3.2 yields that

dTV (rimP (n, d, δ,m3,m4, . . . ,mK ), poim (n, λ(n, d, δ,m3,m4, . . . ,mK )))

≤
K∑

t=3

mt Et (A.13)

for each K ≥ 1 and (m3,m4, . . . ,mK ) ∈ Z
K≥0, where λ(n, d, δ,m3,m4, . . . ,mK ) is

given by

λ(n, d, δ,m3,m4, . . . ,mK ) = dδ2(1 − δ)n−2 +
K∑

t=3

mt

(
t

2

)(
n

2

)−1

We now apply the bounding argument from the end of Proposition 3.2 and the condi-
tioning argument in the beginning of Theorem 3.1 to reduce the proof to comparing
a poim to a mixture of poim distributions. Fix some function w = w(n) → ∞
as n → ∞ such that d 
 w2n3 and wδ � d−1/3n−1/2. Let E be the event that
(M3, M4, . . . , Mn) ∼ LP satisfy all of the following inequalities

dpk −√wdpk ≤ Mk ≤ dpk +√wdpk for k ≥ 3 with dpk > w−1/2

Mk = 0 for k ≥ 3 with dpk ≤ w−1/2

Now note that if k ≥ 6, since wδ � d−1/3n−1/2 and d 
 n3, it follows that

dpk = d

(
n

k

)
δk(1 − δ)n−k ≤ dnkδk � nk/2

w6dk/3−1 = on
(
w−1

)

Repeating the concentration inequalities and bounds used to establish Eq. 3.15, we
have that

PLP

[
Ec] � 3w−1 + 3w−1/2 +

n∑

k=6

dpk

≤ 3w−1 + 3w−1/2 +
n∑

k=6

dnkδk

= 3w−1 + 3w−1/2 + dn6δ6

1 − nδ
= on(1)

We now bound wdpk Ek for 3 ≤ k ≤ 5 in a similar way to Proposition 3.2. First
consider the case where dδ2 ≥ 1. Note that since nδ � 1, it follows that (1− δ)n−2 ≥
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1 − (n − 2)δ = 1 − on(1). Therefore it follows that d−1δ−2(1 − δ)2−n = On(1) and
hence Ek = On(n−3/2) for each 3 ≤ k ≤ 5. Therefore since nδ � 1, we have that

wdpk Ek ≤ wd · (nδ)k · n−3/2 � wd · (nδ)3 · n−3/2 = on(w
−2)

for each 3 ≤ k ≤ 5, since wδ � d−1/3n−1/2. Now consider the case where dδ2 < 1
and let δ = γ /

√
d where γ < 1. It follows that 1 + d−1δ−2(1 − δ)2−n = On(γ

−2)

and thus for 3 ≤ t ≤ 5, we have that

wdpt Et � w · min

{

dntδt ,
t∑

k=3

dntδt · n−k/2γ −(k2)

}

= w · min

{

d1−t/2ntγ t ,

t∑

k=3

d1−t/2nt−k/2γ t−(k2)

}

Since 2
t−1 ∈ (0, 1] if 3 ≤ t ≤ 5, we have that

wdpt Et � w ·
t∑

k=3

(
d1−t/2ntγ t

) t−3
t−1
(
d1−t/2nt−k/2γ t−(k2)

) 2
t−1

= w ·
t∑

k=3

d1−t/2nt−
k

t−1 γ t− 2
t−1 ·(k2)

≤ w ·
t∑

k=3

d1−t/2nt−
k

t−1

where the last inequality follows from γ < 1 and t − 2
t−1 · (k2

) ≥ 0 if k ≤ t . Hence,

wdp3E3 � wd−1/2n3/2 = on(1)

wdp4E4 � wd−1n3 + wd−1n8/3 = on(w
−1)

wdp5E5 � wd−3/2n17/4 + wd−3/2n4 + wd−3/2n15/4 = on(w
−3/2)

since d 
 w2n3. In summary, wdpk Ek = on(1) for each 3 ≤ k ≤ 5.
Now let rimE (n, d, δ) and LE denote the distributions of rim(n, d, δ) and LP

conditioned on the event E holding. Note that if E holds, then it follows that Mk ≤
dpk + √

wdpk = On(wdpk) for each 3 ≤ k ≤ 5 with Mk �= 0 and Mk = 0 for all
other k ≥ 3. Combining Eq. A.13, the conditioning property of total variation, the
triangle inequality and wdpk Ek = on(1) for 3 ≤ k ≤ 5 yields that

dTV
(
rimP (n, d, δ),E(m3,m4,m5)∼LE poim (n, λ(n, d, δ,m3,m4,m5))

)

≤ P
[
Ec]+ dTV

(
rimE (n, d, δ),E(m3,m4,m5)∼LE poim (n, λ(n, d, δ,m3,m4,m5))

)
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≤ P
[
Ec]+ sup

(m3,m4,m5)∈supp(LE )

dTV

(rimE (n, d, δ,m3,m4,m5), poim (n, λ(n, d, δ,m3,m4,m5)))

≤ P
[
Ec]+ sup

(m3,m4,m5)∈supp(LE )

5∑

k=3

mkEk

� P
[
Ec]+

5∑

k=3

wdpk Ek = on(1)

The triangle inequality and Eq. A.12 now imply that it suffices to show

dTV
(
poim(n, dδ2),E(m3,m4,m5)∼LE poim (n, λ(n, d, δ,m3,m4,m5))

)

= on(1) (A.14)

Now consider a matrix X sampled from either E(m3,m4,m5)∼LE poim
(n, λ(n, d, δ,m3,m4,m5)) or poim(n, dδ2). Conditioned on the event s =∑1≤i< j≤n
Xi j , the entries (Xi j : 1 ≤ i < j ≤ n) are distributed according to

Multinomial
(
s,
(n
2

)−1
)

under either distribution, by Poisson splitting. To show

Eq. A.14, the conditioning property of total variation thus implies that it suffices
to bound the total variation between

∑
1≤i< j≤n Xi j under the two distributions. In

other words, it suffices to show the following total variation bound

dTV

(
Poisson

((
n

2

)
dδ2
)

,E(m3,m4,m5)∼LE Poisson

((
n

2

)
λ(n, d, δ,m3,m4,m5)

))

= on(1) (A.15)

As in the proof of Theorem 3.1, let A ⊆ {3, 4, 5} be the set of indices k such that
dpk > w−1/2 and define

λ1 = dδ2(1 − δ)n−2 +
∑

k∈A

dpk

(
k

2

)(
n

2

)−1

and

λ2 = dδ2(1 − δ)n−2 +
5∑

k=3

dpk

(
k

2

)(
n

2

)−1

Observe that

|λ1 − λ2| =
∑

k∈Ac∩{3,4,5}
dpk

(
k

2

)(
n

2

)−1

≤ 3w−1/2n−2
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Also note that

λ2 = dδ2(1 − δ)n−2 +
5∑

k=3

d

(
n

k

)(
k

2

)(
n

2

)−1

δk(1 − δ)n−k

= dδ2

[

(1 − δ)n−2 +
5∑

k=3

(
n − 2

k − 2

)
δk−2(1 − δ)n−k−2

]

= dδ2

[

1 −
n−2∑

�=4

(
n − 2

�

)
δ�(1 − δ)n−2−�

]

Since nδ � 1 and δ � w−1d−1/3n−1/2, it therefore follows that

∣∣∣dδ2 − λ2

∣∣∣ = dδ2
n−2∑

�=4

(
n − 2

�

)
δ�(1 − δ)n−2−� ≤

∞∑

�=4

n�δ� � dn4δ6 � n

w6d

Finally note that if (m3,m4,m5) ∈ supp(LE ), then the triangle inequality yields that

|λ1 − λ(n, d, δ,m3,m4,m5)| ≤
∑

k∈A

|mk − dpk | ·
(
k

2

)(
n

2

)−1

≤
5∑

k=3

√
wdpk ·

(
k

2

)(
n

2

)−1

�
5∑

k=3

w1/2d1/2nk/2−2δk/2 � w1/2d1/2n−1/2δ3/2

since nδ � 1. The triangle inequality now yields that

∣∣∣∣

(
n

2

)
dδ2 −

(
n

2

)
λ(n, d, δ,m3,m4,m5)

∣∣∣∣ � w−1/2 + n3

w6d
+ w1/2d1/2n3/2δ3/2

= on(1) + w1/2d1/2n3/2δ3/2

Furthermore note that

(
w1/2d1/2n3/2δ3/2

)2
(n
2

)
dδ2

� wnδ � 1

Thus by the earlier remark on total variation distances between Poisson distributions,
it follows that

dTV

(
Poisson

((
n

2

)
dδ2
)

,Poisson

((
n

2

)
λ(n, d, δ,m3,m4,m5)

))
= on(1)
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for any (m3,m4,m5) ∈ supp(LE ). The conditioning property of total variation then
implies Eq. A.15, completing the proof of the theorem. ��

B Appendix: RandomGeometric Graphs on S
d−1

B.1 Estimates forÃd

In this section, we prove Lemma 5.1 which gives key estimates for quantities in terms
of ψd and tp,d in our analysis of random geometric graphs.

Proof of Lemma 5.1 As mentioned previously, first item is shown in Section 2 of [55]
and the second item is Lemma 2 in Section 2 of [8]. We now prove the remaining three
items.

3. From the first item in this lemma, we have that

ψd(t − δ)

ψd(t)
=
(
1 − (t − δ)2

1 − t2

) d−3
2

=
(
1 + 2tδ − δ2

1 − t2

) d−3
2

≤
(
1 + 8tδ

3

) d−3
2 ≤ e2tdδ

4. Let δ1 = min
{

1√
d
, 1
dtp,d

}
. Since ψd is decreasing, we have that

p =
∫ 1

tp,d
ψd(x)dx ≥

∫ tp,d+δ1

tp,d
ψd(x)dx ≥ δ1ψd(tp,d + δ1)

≥ δ1ψd(tp,d)e
−2d(tp,d+δ1)δ1

Note 2d(tp,d + δ1)δ1 ≤ C for some universal constant C > 0, from which the
result follows.

5. Since ψd is symmetric, we have that P (|T | ≥ t) = 2�d(t). Combining the facts

that �d(tp,d) = p, there is a constant C > 0 such that tp,d ≤ C
√

log p−1

d and the

fact that �d is a decreasing function, we now have �d

(
C
√

log p−1

d

)
≤ p. Taking

t = C
√

log p−1

d in P (|T | ≥ t) = 2�d(t), the result follows.

This completes the proof of the lemma. ��

B.2 Deferred Proofs from the Coupling Argument

In this section, we prove Lemmas 5.3, 5.4, 5.5 and 5.6 deferred from our coupling
argument analysis of random geometric graphs on Sd−1.

Proof of Lemma 5.3 We prove the two items of the lemma separately.
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1. We will show this item in the case where a = (1, 0, 0, . . . , 0). The statement
for any other unit vector a ∈ S

d−1 will follow after applying a rotation to the
a = (1, 0, 0, . . . , 0) case. The isotropy of the d-dimensional Gaussian distribution
implies that a random vector W ∼ unif(Sd−1) can be generated as W = Z/‖Z‖2
where Z = (Z1, Z2, . . . , Zd) ∼ N (0, Id). Now let Z∼1 = (0, Z2, Z3, . . . , Zd)

and note that

W = Z1

‖Z‖2 · a +
√

1 − Z2
1

‖Z‖22
· Z∼1

‖Z∼1‖2
Note that Z∼1 ∼ N (0, Id−1) by definition. The rotational invariance ofN (0, Id−1)

implies that Z∼1/‖Z∼1‖2 and ‖Z∼1‖2 are independent. Now note that Z1/‖Z‖2 =
Z1/

√
Z2
1 + ‖Z∼1‖22 is in the σ -algebra σ(Z1, ‖Z∼1‖2) and thus independent of

Z∼1/‖Z∼1‖2. Furthermore, by definition we have that Z1/‖Z‖2 = W1 ∼ ψd and
the isotropy of N (0, Id−1) implies that Z∼1/‖Z∼1‖2 ∼ unif(Sa

⊥
). This implies

that W is equal in distribution to

W =d T a +
√
1 − T 2 · Y

where T ∼ ψd , Y ∼ unif(Sa
⊥
) and T and Y are independent. This proves the if

direction of the item of the lemma. We now prove the only if direction. If X =
Ta + √

1 − T 2 · Y is uniformly distributed on S
d−1, then it can be coupled to

(Z1, Z2, . . . , Zd) ∼ N (0, Id) so that X = Z/‖Z‖2. Now note that T and Y are
deterministic functions of X with T = X1 = Z1/‖Z‖2 and Y = X∼1/‖X∼1‖2 =
Z∼1/‖Z∼1‖2. The discussion above now shows that (T ,Y ) satisfy the three desired
conditions.

2. Note that Z1, Z2 . . . , Zm canbe completed to anorthonormal basis Z1, Z2, . . . , Zd .
Fix a procedure to do this as a deterministic function of Z1, Z2, . . . , Zm . Let αi =
〈X , Zi 〉 and note that X =∑d

i=1 αi Zi . Now consider conditioning on Z1, . . . , Zm .
Given this conditioning, we have that X is uniformly distributed on S

d−1 and, by
rotational invariance, also that (α1, . . . , αd) ∼ unif(Sd−1). The result now follows
by repeatedly applying the first item of this lemma with the last d −m coordinates
of (α1, . . . , αd) as the choices of a.

This completes the proof of the lemma. ��
Proof of Lemma 5.4 We again proceed item by item.

1. Let ξ = (a23, a24, . . . , a2n) ∈ R
n−2 and let ξ̂ = ξ/‖ξ‖2. By item 2 in Lemma 5.3,

we have that ξ̂ is uniformly distributed overSn−3. Similarly, let ζ = (T3, T4 . . . , Tn)
and ζ̂ = ζ/‖ζ‖2. Observe that

n∑

j=3

a2 j Tj = 〈ξ, ζ 〉 = ‖ξ‖2 · ‖ζ‖2 · 〈ξ̂ , ζ̂ 〉 (B.1)

Note that ξ is in σ(X2, X3, . . . , Xn) and ζ is in σ(�3, �4, . . . , �n), which implies
that ξ and ζ are independent. Therefore, it holds that 〈ξ̂ , ζ̂ 〉 ∼ ψn−2. By item 5 in
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Lemma 5.1, there is a constant C1 > 0 depending only on s such that

P

[∣∣∣〈ξ̂ , ζ̂ 〉
∣∣∣ ≤ C1

√
log n

n − 2

]

≥ 1 − 1

9ns

Since a2 j = 〈X2,Y j 〉, it follows that a2 j ∼ ψd for each 3 ≤ j ≤ n. Thus for some
for some constant C2 > 0 depending only on s, item 5 of Lemma 5.1 again implies
that

P

[

a22 j >
C2
2 log n

d

]

≤ 1

9ns+1

for each 3 ≤ j ≤ n. Since ‖ξ‖22 = ∑n
j=3 a

2
2 j , if ‖ξ‖2 >

√
(n−2) log n

d , then it must

follow that a22 j > C2
2 · log n

d for some j . A union bound now yields that

P

[

‖ξ‖2 > C2

√
(n − 2) log n

d

]

≤
n∑

j=3

P

[

a22 j >
C2
2 log n

d

]

≤ 1

9ns
(B.2)

By item 2 of Proposition 5.1, we have that Tj ∼ ψd for each 3 ≤ j ≤ n. Repeating
the same union bound argument above yields that there is a constant C3 > 0
depending only on s such that

P

[

‖ζ‖2 > C3

√
(n − 2) log n

d

]

≤ 1

9ns

Therefore each of the following events have probability at least 1 − 1
9ns for some

constants C1,C2 and C3 which depend only on s.

{∣∣∣〈ξ̂ , ζ̂ 〉
∣∣∣ ≤ C1

√
log n

n − 2

}

,

{

‖ξ‖2 ≤ C2

√
(n − 2) log n

d

}

and

{

‖ζ‖2 ≤ C3

√
(n − 2) log n

d

}

The result follows fromunion bound and combining these inequalitieswith Eq. B.1.

2. By the definition of a22, we have that a22 =
√
1 − ‖ξ‖22. If C2 is as in Eq. B.2,

then the two events

{
a22 >

√
1 − C2

2 · (n−2) log n
d

}
and

{
‖ξ‖2 ≤ C2

√
(n−2) log n

d

}

coincide. The result now follows from Eq. B.2.
3. By definition, we have that �i ∼ ψd−n+i . Item 5 of Lemma 5.1 implies that

P

[

|�i | > C4

√
log n

d − n + i

]

≤ 1

3ns+1 .
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Using the fact that d 
 n log n and a union bound, we conclude the result.

Now taking Cs = max(C1C2C3,C2
2 ,C4) completes the proof of the lemma. ��

Proof of Lemma 5.5 From Eq. 5.3, we have that

Q0 = P

[
�2 ≥ t ′p,d

∣
∣∣∣F
]

where t ′p,d = tp,d −∑n
j=3 a2 j Tj

a22 ·∏n
j=3

√
1 − �2

j

Since �2 is independent of F and t ′p,d is F-measurable, we conclude by Fubini’s
theorem that

Q0 = �d−n+2

(
t ′p,d
)

Note that by definition, p = �d(tp,d). By the triangle inequality, we have that

|Q0 − p| ≤
∣∣∣�d−n+2

(
t ′p,d
)

− �d−n+2(tp,d)
∣∣∣

+ ∣∣�d−n+2(tp,d) − �d(tp,d)
∣∣ (B.3)

We first will apply Lemma 5.2 to bound
∣∣�d−n+2(tp,d) − �d(tp,d)

∣∣. Bymonotonicity,
we have �̄(t

√
d) ≤ �̄(t

√
d − n + 2). Now observe that

�̄
(
t
√
d − n + 2

)
= �̄

(
t
√
d
)

+ 1√
2π

∫ t
√
d

t
√
d−n+2

e− x2
2 dx

≤ �̄
(
t
√
d
)

+ 1√
2π

· t
(√

d − √
d − n + 2

)
· e− (d−n+2)t2

2

≤ �̄
(
t
√
d
)

+ C1nt√
d

· e− t2(d−n)
2 (B.4)

Here, we have used the fact that d 
 n log3 n. Applying the standard estimate for the

Gaussian CDF when x ≥ 1 given by �̄(x) ≥ 1√
2π

(
1
x − 1

x3

)
e− x2

2 , we now have that

�̄
(
t
√
d
)

≥
⎧
⎨

⎩

�̄(2) if t
√
d ≤ 2

1
2t

√
2πd

· e− dt2
2 otherwise

Combining these inequalities with Eq. B.4 and the fact that d 
 n yields

1 ≤ �̄
(
t
√
d − n + 2

)

�̄
(
t
√
d
) ≤

{
1 + Cn

d if t
√
d ≤ 2

1 + Cnt2 · e nt2
2 otherwise

(B.5)

for an absolute constant C > 0. Let Cest be the positive constant given in Lemma 5.2.
Since p 
 n−3 and d 
 n log n, we have that tp,d < Cest for sufficiently large n by
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item 2 of Lemma 5.1. Using the distributional approximation in Lemma 5.2, we can
bound �d and �d−n+2 as follows in terms of �̄. Since p = �d(tp,d), we have

∣∣�d−n+2(tp,d) − �d(tp,d)
∣∣

= p ·
∣∣∣
∣
�d−n+2(tp,d)

�d(tp,d)
− 1

∣∣∣
∣

= p ·
∣∣∣∣∣
∣

(
1 + On(d

−1)
)

· eOn(dt4p,d ) · �̄
(
tp,d

√
d − n + 2

)

�̄
(
tp,d

√
d
) − 1

∣∣∣∣∣
∣

= p ·
∣∣∣
(
1 + On(d

−1)
)

· eOn(dt4p,d ) ·
(
1 + On

(
nt2p,d

))
− 1
∣∣∣

= On

(
pdt4p,d + pnt2p,d + p

d

)
(B.6)

We now will bound the term |�d−n+2(t ′p,d) − �d−n+2(tp,d)| by approximating the
density ψd−n+2 in the neighborhood of tp,d . First observe that combining the items
in Lemma 5.4 with d 
 n log n implies that

a22 ·
n∏

j=3

√
1 − �2

j = 1 − On

(
n log n

d

)
(B.7)

on the event Erem. Combining this bound with the expression for t ′p,d , the fact that

p 
 n−3 and the bounds in item 2 of Lemma 5.1 now yields that

|tp,d − t ′p,d | · 1(Erem) = On

(√
n log3/2 n

d

)
(B.8)

Observe that this difference is On

(√
log n
d

)
on the event Erem since d 
 n log2 n.

Let
u = argmin

x∈
[
tp,d ,t ′p,d

] |x |

Note that u = On

(√
log n
d

)
conditioned on Erem. Thus given Erem holds,

∣∣�d−n+2

(
t ′p,d
)

− �d−n+2(tp,d)
∣∣ =

∣∣∣∣∣

∫ t ′p,d

tp,d
ψd−n+2(x)dx

∣∣∣∣∣

≤ ψd−n+2 (u) ·
∣∣
∣t ′p,d − tp,d

∣∣
∣

= ψd−n+2 (u)

ψd(u)
· ψd(u)

ψd(tp,d)
· ψd(tp,d) ·

∣∣∣t ′p,d − tp,d
∣∣∣
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where the inequality follows from the fact thatψd−n+2(t) is monotonically decreasing
in |t |. Furthermore, we have that

∣∣�d−n+2

(
t ′p,d
)

− �d−n+2(tp,d)
∣∣

�
(√

d − n + 2

d
·
(
1 − u2

)−n/2
)

e2dtp,d |u−tp,d | · ψd(tp,d) ·
∣∣
∣t ′p,d − tp,d

∣∣
∣

�
√
d − n

d
·
(
1 + On

(
n log n

d

))
e2dtp,d |t ′p,d−tp,d | · ψd(tp,d) ·

∣∣
∣t ′p,d − tp,d

∣∣
∣

=
(
1 + On

(
n log n

d

))
exp

⎛

⎝On

⎛

⎝d ·
√
log p−1

d
·
√
n log3/2 n

d

⎞

⎠

⎞

⎠

· ψd(tp,d) ·
∣
∣∣t ′p,d − tp,d

∣
∣∣

=
⎛

⎝1 + On

⎛

⎝n log n

d
+
√
n log4 n

d

⎞

⎠

⎞

⎠ · ψd(tp,d) ·
∣∣
∣t ′p,d − tp,d

∣∣
∣

= (1 + on(1)) · ψd(tp,d) ·
∣∣∣t ′p,d − tp,d

∣∣∣

The second inequality follows from items 1 and 3 of Lemma 5.1 and using
�
( d
2

)
/�
( d−1

2

)√
π = �(

√
d). The third inequality follows from the fact that

Bernoulli’s inequality implies that (1 − u2)−n/2 ≤ 1 + nu2 if nu2 ≤ 1. The third
last equality follows from item 2 of Lemma 5.1, the fact that p 
 n−3 and Eq. B.8.
The final estimate follows from the fact that d 
 n log4 n. Let C > 0 be the constant
in the � above. Substituting this bound into Eq. B.3, we have

|Q0−p|·1(Erem) ≤ On

(
pdt4p,d + pnt2p,d + p

d

)
+C(1+on(1))·ψd

(
tp,d
) ·∣∣t ′p,d−tp,d

∣∣

Now note that
pdt4p,d + pnt2p,d + p

d
= On

( pn
d

log p−1
)

Therefore we have that for sufficiently large n,

|Q0 − p| · 1(Erem) ≤ On

( pn
d

log p−1
)

+ 2Cψd
(
tp,d
) ·∣∣t ′p,d − tp,d

∣∣

This proves the first claim in the lemma. Using the fact thatψd(tp,d) ≤ Cp
√
d log p−1

and Eq. B.8, we conclude that

|Q0 − p| · 1(Erem) ≤ On

( pn
d

log p−1
)

+ On

⎛

⎝p

√
n log p−1

d
· log3/2 n

⎞

⎠

which proves the second claim in the lemma. ��
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Proof of Lemma 5.6 Given the event Erem, Eq. B.7 and the expression for t ′p,d imply
that

∣∣t ′p,d − tp,d
∣∣ · 1(Erem) ≤ On

(
tp,d · n log n

d

)
+ (1 + on(1)) ·

∣
∣∣∣∣∣

n∑

j=3

Tja2 j

∣
∣∣∣∣∣

≤ On

(

n

(
log n

d

) 3
2
)

+ (1 + on(1)) ·
∣
∣∣∣∣∣

n∑

j=3

Tja2 j

∣
∣∣∣∣∣

using the upper bound on tp,d in item 2 of Lemma 5.1. The inequality (x + y)2 ≤
2x2 + 2y2 yields

E

[∣∣t ′p,d − tp,d
∣∣2 · 1(Erem)

]
� n2

(
log n

d

)3

+ E

⎡

⎢
⎣

∣∣∣∣∣
∣

n∑

j=3

Tja2 j

∣∣∣∣∣
∣

2
⎤

⎥
⎦ (B.9)

Now recall that Y j is a unit norm random vector in the σ -algebra σ(X j , . . . , Xn).
Therefore, for j ≥ 3, Y j is independent of X2. Also note that a2 j = 〈X2,Y j 〉.
Furthermore, the Tj are independent of X2, . . . , Xn and, since the random vari-
able Tj Tk is symmetric about zero, we have that E[Tj Tk] = 0 for k �= j . Thus
E[Tj Tka2 j a2k] = E[Tj Tk] · E[a2 j a2k] = 0 if j �= k, and hence

E

⎡

⎢
⎣

∣∣∣∣∣
∣

n∑

j=3

Tja2 j

∣∣∣∣∣
∣

2
⎤

⎥
⎦ =

n∑

j=3

E

[
T 2
j a

2
2 j

]
=

n∑

j=3

E

[
T 2
j

]
· E
[
a22 j

]
= n − 2

d2
≤ n

d2

Where the equality holds because E

[
a22 j

]
= E

[
T 2
j

]
= 1

d for 3 ≤ j ≤ n, since

a2 j , Tj ∼ ψd by item 2 in Proposition 5.1. Substituting this into Eq. B.9 completes
the proof of the lemma. ��
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