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ABSTRACT

Inkjet 3D printing has broad applications in areas such as
health and energy due to its capability to precisely deposit micro-
droplets of multi-functional materials. However, the droplet of
the inkjet printing has different jetting behaviors including drop
initiation, thinning, necking, pinching and flying, and they are
vulnerable to disturbance from vibration, material inhomogene-
ity, etc. Such issues make it challenging to yield a consistent
printing process and a defect-free final product with desired
properties. Therefore, timely recognition of the droplet behav-
ior is critical for inkjet printing quality assessment. In-situ video
monitoring of the printing process paves a way for such recog-
nition. In this paper, a novel feature identification framework is
presented to recognize the spatiotemporal feature of in-situ mon-
itoring videos for inkjet printing. Specifically, a spatiotemporal
fusion network is used for droplet printing behavior classifica-
tion. The categories are based on inkjet printability, which is
related to both the static features (ligament, satellite, and menis-
cus) and dynamic features (ligament thinning, droplet pinch off,
meniscus oscillation). For the recorded droplet jetting video
data, two streams of networks, the frames sampled from video in
spatial domain (associated with static features) and the optical
flow in temporal domain (associated with dynamic features), are
fused in different ways to recognize the droplet evolving behav-
ior. Experiments results show that the proposed fusion network
can recognize the droplet jetting behavior in the complex print-
ing process and identify its printability with learned knowledge,
which can ultimately enable the real-time inkjet printing quality

control and further provide guidance to design optimal parame-
ter settings for the inkjet printing process.
Keywords: Inkjet Printing, Spatiotemporal Fusion Network, Pro-
cess Monitoring

1 Introduction
Inkjet printing is a direct depositing technique that is real-

ized by ejecting liquid-phase materials (i.e., solutions/inks at dif-
ferent concentrations) to the substrate to form the final product. It
has been extensively deployed in material patterning for the fab-
rication of functional parts, such as sensors, optic/electronic de-
vices, biochips, among others [1], and has broad applications in
health, energy, environment and electronics areas [2–4]. Among
different inkjet printing processes, the Drop-On-Demand (DOD)
method can achieve the highest resolution reported so far [5]. A
suitable technology to supply droplets in DOD mode is the Piezo-
electric Inkjet (PIJ) process (see Figure 1). In the PIJ process,
the droplet formation is governed by tuning the driving electri-
cal signal, various solution/ink properties (e.g., surface tension,
viscosity, etc.), and the interaction between solution/ink, air, and
substrate (e.g., wettability of the nozzle) [6, 7].

The droplet formation and ejection of PIJ will determine the
properties of the final product. One major challenge of this pro-
cess is that a droplet can have different jetting behaviors includ-
ing drop initiation, thinning, necking, pinching and flying, and
they are vulnerable to the variations such as vibration, material
inhomogeneity, etc. [8]. The deposition rate in PIJ is typically

1 Copyright c© 2020 by ASME



Figure 1: A schematic representation of the piezoelectric inkjet
technology

100 to 1000 droplets per second, making it challenging to man-
ually keep track of each individual droplet. Therefore, a real-
time monitoring system would be very helpful to understand the
droplet behavior under such high frequency deposition process
and further identify the defects of printed parts. To build such a
monitoring system, in the literature, many researchers have stud-
ied the droplet ejection and pinching behaviors by various ap-
proaches.

High-resolution and high-speed cameras are typically used
to capture the droplet shape as it evolves over time [8, 9]. Such
experimental characterization of the droplet behavior usually re-
quires additional devices to estimate nozzle size, voltage signal,
jetting speed, droplet shape, and ink properties [8]. For example,
dimensionless parameters such as Reynolds (Re, ratio inertial-to-
viscous forces), Weber (We, inertia-to-surface tension) are used
to characterize the droplet evolution in [10]. Although the di-
mensionless numbers are helpful for droplet pinch-off estima-
tion, they need a lot of experimental observations and the empir-
ical results for one material and experimental setting can hardly
be generalized to other materials and settings. In addition, the
experimental approach is usually limited by a rough estimation
based on visualizing the exterior of the inkjet nozzle, and ig-
nores the complex processes that happen before the droplets are
ejected.

Therefore, a real-time droplet behavior recognition system
is needed. We hypothesize that an offline learning model, trained
based on the limited amount of labelled experimental data, could
be used for the online recognition of the high-speed droplet for-
mation process. We use the state-of-the-art machine learning ap-
proach, Convolutional Neural Networks (ConvNet) [11], which
has been extensively used in areas such as computer vision and
image analysis with remarkable performance. In addition, as the
collected data for droplet behavior is in video format, we are not
only interested in learning the shape evolution of the droplet, its
motion in temporal domain is also of interest. Therefore, a spa-
tiotemporal fusion ConvNet which includes both spatial and tem-
poral ConvNet is applied for the droplet video data training. The

technical contributions of the paper are summarized as follows:

1. We investigated the intrinsic properties of the droplet form-
ing process and proposed optical flow technique to extract
the temporal information of the video data, and used the
state-of-the-art ConvNet for the temporal feature learning.

2. We designed and implemented a spatiotemporal fusion
framework for inkjet printing classification, which enables
in-situ monitoring and process control towards a certified
quality control system for additive manufacturing.

The remaining parts of the paper is organized as follows.
Section 2 briefly review the related works. In Section 3, we
discuss the PIJ droplet monitoring system for the droplet data
collection as well as the optical flow calculation. The network
architecture is presented in Section 4. Section 5 shows the ex-
perimental results from the designed fusion network. Finally,
Section 6 concludes and summarizes the paper.

2 Literature Review
In this section, we will briefly discuss the related literature

about the 3D printing process monitoring and machine learning
with video data.

2.1 3D printing process monitoring
Monitoring and controlling the droplet formation process,

which is a critical quality-determining factor in inkjet printing,
are crucial to improve quality, repeatability, and consistency of
the printed parts. Researchers have investigated new forms of
instrumentation and adaptive approaches to further enhance the
quality of the printed parts [12] Among various instruments,
the image and video based devices such as cameras are most
widely used. For instance, the droplet formation process of low,
medium, and high viscosity inks was investigated in [13] by
recording videos with a high-speed camera. Additionally, a new
monitoring system that can show, within 2 seconds, the jetting
status of a piezo driven inkjet printhead was proposed in [14]. A
charged coupled device (CCD) camera was utilized to obtain the
images along with the implementation of a low cost monitoring
module that can measure the piezo self-sensing signals. Through
the ink droplet images analyses, which were performed by de-
ploying the edge detection technique, the jetting condition could
be visualized and compared with the monitored results based on
the piezo self-sensing signals. A closed-loop control framework
by seamlessly integrating vision-based technique and neural net-
work to inspect droplet behaviors and accordingly stabilize the
printing process was presented in [9]. For the reviewed image-
and video-based works, the complete droplet formation process
is not fully considered. Furthermore, deep learning techniques,
specifically a multi-scale convolutional neural network, for au-
tonomous detection and classification of anomalies based on im-
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ages has been developed in [15] for the Laser Powder Bed Fu-
sion (LPBF). High-speed image acquisition, coupled with image
segmentation and feature extraction, is used to estimate different
statistical descriptors of the spattering behavior along the laser
scanning path [16]. However, these methods failed to capture the
complete process since they focus on specific stages of the LPBF
process, and can hardly be incorporated to the full droplet forma-
tion in the PIJ process. Numerical simulations have been used to
close this gap instead [6,8,17], although these methods are com-
putational expensive and infeasible for real-time monitoring and
control.

2.2 Video learning
Video has been studied for decades in the area of computer

vision. Different types of problems such as action detection and
recognition were studied with video data. For example, the ac-
tion recognition based on the local image features or interest
points were presented in [18]. Other tasks like anomaly detec-
tion [19] were explored by various researchers. Different shape
descriptors in image domain such as scale-invariant feature trans-
form (SIFT) and histogram of oriented gradients (HOG) were
extended to 3D space [20, 21]. Dollar et al. proposed cuboids
features for behavior recognition [22]. Wang et al. improved the
performance of dense trajectories by taking into account cam-
era motion to correct them [23]. Most of these works used
hand-crafted features to extract the expected information from
videos, hence they heavily relied on the pre-selected or defined
features which usually is computationally intensive and becomes
intractable on large-scale datasets.

With the breakthrough performance, ConvNets has been
widely applied to different type of tasks in both images and
videos [24, 25]. Le et al. proposed independent subspace anal-
ysis method for learning hierarchical invariant spatio-temporal
features in action recognition [26]. While in [27], a novel 3D
CNN model for action recognition was developed. The 3D Con-
vNet was also used to generate affinity graphs for medical im-
age segmentation [28]. The Restricted Boltzmann Machines is
combined with 3D CNN to learn spatio-temporal features [29].
Recently, Karpathy et al. utilized an extensive empirical eval-
uation of ConvNets on large-scale video classification using a
large dataset [30]. Tran et al. proposed a model which performs
3D convolutions and 3D pooling propagating temporal informa-
tion across all the layers in the network. However, such net-
work is considerably deeper than the previous works [31]. Si-
monyan et al. investigated a two-stream architecture of discrimi-
nating trained network for action recognition in video [32]. Such
a spatio-temporal network achieves superb performance for hu-
man action and is extensively exploited in different works [33].
In this paper, this method is introduced to the inkjet printing pro-
cess through video learning. The fused network is used for the
real-time monitoring of the inkjet printing process and identify-

ing potential quality issues.

3 Data Collection System
In this section, the monitoring data collection system and

optical flow is briefly introduced.

3.1 Monitoring data collection
Experiments are conducted to collect the video data for the

training and testing of the network. The whole hardware setup
is shown in Figure 2. In this system, a piezo-based micro-
dispensing nozzle (MicroFab Inc.) is used as the inkjet droplets
generation device, it has a nozzle size of 50 µm and can be op-
erated with a jetting rate from 100 to 1000 droplets/second. The
piezo-based micro-dispenser is driven by symmetrical trapezoid
voltage. In the experiments, the peak drive voltage and back-
pressure are selected as the design variables. Specifically, the
voltage varies from 30 to 70V, and the back-pressure varies from
-1 to -5 inch-water. Owing to their excellent rheological prop-
erties favorable for inkjet printing, typical Newtonian materials
(deionized water and isopropyl alcohol in this study) are used
in the experiments. A CCD camera (Sensor Technologies Inc.)
coupled with a magnification lens works as the video capturing
device, each frame obtained has a resolution of 640×480 pixels,
and the data are transferred to the computer through USB proto-
col. To collect videos of the droplets generation process, strobing
technology is utilized [34], which is also known as synchronized
illumination technology and implemented by synchronizing the
droplet jetting signal and the lighting signal of the LED for il-
lumination. By tuning the delay time between these two sig-
nals, when capturing the repeated droplets generation process,
the time between every two frames can be set precisely. In the
data collection experiments, we set the delay time as 20 µs.

From the above data collection system, we can collect the
vision data of the droplet forming process. A sample video is
shown in Figure 3. Through analyzing such collected vision
data, we can capture the evolution of the droplet and recognize
its forming behavior, which can be further utilized for process
monitoring and printability analysis.

3.2 Optical flow of droplet ejecting
To make use of the temporal information of the droplet form-

ing in the video data, the optical flow is used as the input of the
neural network in this work. The optical flow is defined as the
distribution of apparent velocities of object movement pattern in
an image [35]. It represents the movement of the observing ob-
ject, specifically the dynamic behavior of the droplet in this pa-
per. A dense optical flow can be seen as a set of displacement
vector fields dt between the pairs of consecutive frames t and
t +1. We denote dt(u,v) as the displacement vector at the point
(u,v) in frame t to the new point in the next frame t + 1. The
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Figure 2: Inkjet printing device and data collection system

horizontal and vertical components of the vector field dx
t and dy

t
can be seen as the image channels. An example of the optical
flow in the droplet forming behavior in the PIJ process is shown
in Figure 4.

The optical flow is computed through Horn-Schunck
Method [35]. It can be seen from Figure 4 that the optical flow
can capture the accelerated velocity and direction of each point
in the image domain, which reflects the movement of the droplet.
Figure 4(a) and (b) show two consecutive frames corresponding
to drop initiation and pre-pinching stages. Based on these two
video frames, Figure 4(c) shows the derived optical flow and vi-
sualizes the motion of the droplet. The slower motion in the left
region (the cone area close to the orifice of the nozzle) indicates
a concentric optical flow, while the faster motion in the right re-
gion (the neck of the droplet) shows centrifugal direction. Since
the optical flow depicts the motion of the droplet, it can be used
to characterize the dynamic behavior and accordingly determine
the ejecting quality of the droplet. In the next section, we will
discuss how to integrate the optical flow as temporal information
into the network architecture.

4 Two-stream Fusion Network for Droplet Forming
Behavior Recognition
Video can be naturally decomposed into spatial and tem-

poral components. The spatial part, in the form of individual
frame appearance, carries information of the scenes and objects
depicted in the video. The temporal part, in the form of mo-
tion across the frames, conveys the movement of the observer
(the camera) and the objects. Specifically, for the inkjet print-
ing process studied in this work, the spatial component is related
to the static features (ligament, satellite, and meniscus), and the
temporal component is related to the dynamic features (ligament
thinning, droplet pinch off, and meniscus oscillation). In this

section, we will introduce the two-stream network architectures
for the droplet video data learning, and the input and output data
format of the training network.

4.1 Data labeling
In order to recognize the droplet behavior in the printing pro-

cess, the intrinsic features embedded in the video data should be
learned and extracted by the network. These features should be
distinguishable from each other in order to avoid ambiguity dur-
ing classification and recognition of different droplets. Hence,
clearly labeled data should be provided for the network to learn
such features. The aim of this paper is to identify the inkjet print-
ability by recognizing the droplet forming behavior. It follows
that the level of the printability can be used as the main factor for
the data labeling. Based on the experimental data collected, we
classify the dataset into four types as shown in Table 1.

Among the four different types of droplet forming behav-
ior, the “excellent printability” is assigned to the droplets with
clear pinching and very few tiny satellites followed, and the pri-
mary droplet contains the majority of the volume. For the ones
with “good printability”, the primary droplet is also pinched with
satellites, but the secondary drops are connected with the tail
satellite of the primary drop. In most cases, such behavior does
not affect the overall printing quality, they are however vulner-
able to external disturbance. The “fair printability” is for the
droplets with unclear pinching and heavy broken satellites, as
well as unstable flying trajectory. The drops with “fair printabil-
ity” will severely affect the quality of the printed part and should
be corrected or abandoned in real applications. The last case is
classified as “poor printability”, mainly for the droplets that can
not be properly formed, which are typically caused by low back-
pressure, low driving voltage, high material viscosity and nozzle
clogging etc. Based on such classification criterion, all of the
collected video data are labeled and provided for the network to
learn the features of the jetting behavior.

4.2 Spatio-temporal fusion network for video recog-
nition

Most of the existing neural network frameworks use the im-
ages as input, and the success of the convolutional neural net-
work benefits from the hierarchical feature learning ability in
spatial domain. However, for the video data, the motion fea-
ture in temporal domain is also an important factor for the object
recognition. Hence, the temporal feature should be considered
especially for the tasks relying on the motion information.

In this paper, in order to learn the droplet evolving behav-
ior, a two-stream (in both spatial and temporal domain) neural
network is built for the feature understanding of the PIJ printing
process. The input data of the network are formatted with the
dimension of H×W ×C×L, where L is the number of frames,
H and W are the height and width of each frame, C is the number
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t t+1 t+2 …t+3

Figure 3: Multiple consecutive time frames (t, t +1, t +2, ...) from the collected sample video data.

(a) (b) (c) (d) (e)

Figure 4: Optical flow. (a)-(b): a pair of consecutive video frames with the droplet ejecting outlined with a red frame. (c): a close-up
view of the dense optical flow in the outlined area; (d)-(e): horizontal component dx and vertical component dy of the displacement
vector field, higher intensity corresponds to positive value and lower intensity corresponds to negative value.

of channels of the frames. The output data of the network are
the category labels of the video. In this work, the dimension of
the video clips is 216×216×1×10, i.e. 10 consecutive frames
are sampled from the droplet video, each frame is cropped and
down-sampled to 216× 216 pixels. Here the video is recorded
in gray-scale mode, hence the number of channels is 1. As dis-
cussed before, the droplet forming behaviors are classified into
four different types, hence the output data have four different
class labels. The two different streams of the networks are intro-
duced in the following sections.

4.2.1 Spatial stream ConvNet

Spatial stream ConvNet operates on individual droplet jet-
ting video frames, which performs droplet behavior recognition
in the printing process from these static images. The static ap-
pearance of the droplet in the jetting process provides a useful
clue, since many type of droplets visually form into different
shapes, and such shapes are strongly associated with a particu-
lar type of printability.

Since the spatial ConvNet is essentially an image classifi-
cation architecture, we can make use of the recent advances in
large-scale image recognition methods. In this paper, we applied
a state-of-the-art pre-trained deep network, ResNet50 [36], with

fine-tuning in our spatial network architecture for the droplet be-
havior recognition. The architecture is depicted in Figure 5. 10
consecutive frames (i.e., a 216×216×1×10 volume) are sam-
pled from each video for the input of the spatial stream ConvNet.
Three fully connected layers with dimensions of 4096, 2048 and
4 are concatenated to the ResNet50 to achieve droplet behav-
ior classification. The softmax layer is used on the classification
layer.

4.2.2 Temporal stream ConvNet

Optical flow stacking. To represent the motion across a se-
quence of frames, we stack the flow channels dx,y

t of L consecu-
tive frames to form a total of 2L input channels, here dx,y

t is the
displacement vector at the point (x,y) in frame t, which moves
the point to the corresponding point in the following frame t + 1.
More formally, let H and W be the height and width of a video,
a ConvNet input volume Iτ ∈ RH×W×2L for an arbitrary frame τ

is then constructed as follows:
Iτ(i, j,2k−1) = dx

τ+k−1(i, j)

Iτ(i, j,2k) = dy
τ+k−1(i, j)

1≤ i≤ H,1≤ j ≤W,1≤ k ≤ L

(1)

For an arbitrary point (i, j), the channels Iτ(i, j,c); c = [1 :
2L] encode the motion at that point over a sequence of L frames.

5 Copyright c© 2020 by ASME



Table 1: Four different type of droplet jetting behaviors

Label Example

Excellent printability

Good printability

Fair printability

Poor printability

Video

10×216×216×1
Frame sequences

2048×1×1 1024×1×1

Dropout 0.5 Dropout 0.5

4 classes

ResNet50

State-of-the-art deep network

Dense layer with ReLU

Dense layer with Softmax

Figure 5: Spatial stream ConvNet architecture.

After stacking multiple optical flow displacement fields into a
single volume Iτ ∈ RH×W×2L, we feed it into the ConvNet. Con-
sidering that a ConvNet requires a fixed-size input, we sample 10
consecutive frames from the video and compute 9 optical flow
between these frames. Then a sub-volume of 216× 216× 18
is formed and passed to the network as input. The hidden lay-
ers configuration remains similar as those used in the spatial net.
The temporal stream ConvNet is illustrated in Figure 6.

The network has 5 convolution layers, 2 pooling layers, 3
fully-connected layers and a softmax loss layer to predict the
jetting behavior. The first convolution layers are followed by a
pooling layer. The number of filters for the 5 convolution layers
from 1 to 5 are 96, 256, 512, 512, 512, respectively. All of these
convolution layers are applied with appropriate padding (both
spatial and temporal) and stride of 1, thus there is no change in

term of size from the input to the output of all convolution layers.
All pooling layers are max pooling with kernel size of 2×2×2
with stride of 1. Three fully connected layers have 4096, 2048
and 4 outputs. Same as the spatial ConvNet, the softmax layer is
used on the classification layer.

4.2.3 Two-stream fusion network architecture

Sections 4.2.1 and 4.2.2 introduced the spatial and temporal
stream CovnNet for the droplet behavior recognition. These two
networks only consider one-fold information of the inkjet print-
ing process. In this section, we introduce a fusion network that
combines the two aforementioned networks together to perform
the droplet printability classification. The two-stream network
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Video

216×216×18
Optical flow

4096×1×1 2048×1×1

Dropout 0.9 Dropout 0.9

4 classes

Convolutional layer with ReLU

Dense layer with ReLU Dense layer with Softmax

216×216×96 108×108×256 54×54×512

MaxPooling layer 2×2

Figure 6: Temporal stream ConvNet by taking multi-frame optical flow as input.

architecture is shown in Figure 7.

Fusion method. As can be seen in Figure 7, the fusion func-
tion is performed in the last dense fully connected layers. It
should be noted that the fusion can be applied at any point in
the two networks. Suppose a fusion function f , yt = f (xa

t ,x
b
t )

fuses two feature maps xa
t ∈ RH1×W1×C1 and xb

t ∈ RH2×W2×C2,
at time t, to produce an output map yt ∈ RH×W×C, where H,W
and C are the height, width and number of channels of the re-
spective feature maps. For the sake of simplicity, we assume
that H = H1 = H2,W = W1 = W2,C = C1 = C2. When ap-
plied to ConvNet architectures, consisting of convolutional, fully
connected, pooling and non-linearity layers, f can be applied at
different locations in the network, e.g., early-fusion, late-fusion
or multiple layer fusion [33]. Various fusion functions f can be
used. In this paper, we mainly consider two type of fusion meth-
ods.

Average fusion. Average fusion computes the average of
the two feature maps at the same spatial locations i, j and feature
channels d.

yi, j,d =
xa

i, j,c + xb
i, j,c

2
(2)

where 1≤ i≤H,1≤ j ≤W,1≤ c≤C, and xa,xb,y ∈RH×W×C.

Conv fusion. Conv fusion first stacks the two feature maps
at the same spatial locations i, j across the feature channels c and
subsequently conducts a convolution operation on the stacked
data with a bank of filters f ∈ R1×1×2C×C and biases b ∈ RC.

y =Concatenation(xa,xb)∗ f+b (3)

where the number of output channels is C. When used as a train-
able filter kernel in the network, f is able to learn the correspon-
dence of the two feature maps that minimize a joint loss function.

5 Experimental Results and Discussion
In this section, the performance of the proposed spatiotem-

poral fusion network on the collected dataset is tested. We collect
the monitoring data through the system introduced in Section 3.1.
The fixed system parameters are set as in Section 3.1, then the ex-
periments are conducted by changing the variable parameters in-
cluding peak drive voltage and back-pressure, these variables are
randomly selected with random combinations. In total we collect
4K videos of the process monitoring data. In the training stage,
3K videos are used for training the network, and 500 are used
for validation and testing, respectively. The layer configuration
of the spatial and temporal ConvNets are detailed in Figures 5-7.
All hidden weight layers use the rectification (ReLU) activation
function, maxpooling is performed over 2× 2 spatial windows
with stride 1.

In this experiment, we test the performance of different types
of networks described in Section 4 on various sizes of training
data. The training procedure is conducted on the collected video
frames, and is generally the same for both spatial and tempo-
ral nets. The network weights are learnt using the mini-batch
stochastic gradient descent with momentum. At each iteration, a
mini-batch of 200 samples is constructed by sampling 200 train-
ing videos (uniformly across the classes), from each of which
a single frame is randomly selected. In spatial net training, a
216× 216 sub-image containing the area of interest (i.e., the
printing head and the droplet trajectory) is cropped from the se-
lected frame. In the temporal net training, we compute an optical
flow volume I for the selected training frame as described in Sec-
tion 4.2.2. From that volume, a fixed-size 216× 216× 18 input
is stacked. The learning rate is initially set to 10−2 and then de-
creased according to a fixed schedule, which is kept the same
for all training sets. Namely, when training a ConvNet from
scratch, the rate is changed to 10−3 after 30K iterations, then
to 10−4 after 40K iterations, and the training is terminated after
50K iterations. In the fine-tuning scenario, the rate is changed to
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2048×1×1 1024×1×1

Dropout 0.5 Dropout 0.5

4 classes

ResNet50

State-of-the-art deep network

Dense layer with ReLU

Dense layer with Softmax

Simple CNN

2048×1×1 1024×1×1

Dropout 0.5 Dropout 0.5

4 classes

4 classes
Video

Fusion

Image frames

Optical flow

Figure 7: Two-stream network architecture for droplet behavior recognition.

Table 2: Classification results on the collected video data

Training data size ResNet50 Temporal stream ConvNet Fused ConvNet (Average fuse) Fused ConvNet (Conv fuse)

3000 78.2% 70.0% 88.3% 94.2%

2000 76.3% 67.6% 84.5% 93.5%

1000 75.8% 66.0% 82.9% 90.5%

500 73.4% 62.6% 80.4% 87.8%

10−3 after 15K iterations, and training stopped after 20K itera-
tions. The training is optimized using the Adam algorithm with
β1 = 0.9,β2 = 0.999 [37]. Table 2 listed the droplet comparison
results for behavior recognition accuracy on a set of same test-
ing samples with different size of training data. The accuracy is
measured as the correct printability prediction percentage of the
input test data.

It can be seen form Table 2 that the performance of trained
network is stable on different sizes of training data (i.e., the dif-
ference of the prediction results within training size is small).
This reveals that these networks are stable for the droplet behav-
ior recognition on the video data. It can also be observed that
with the spatial stream (ResNet50) alone, the network can obtain
a fair recognition accuracy. This is mainly because the forming
shape of droplet pinching process is related to the final printing
quality. Thus the ResNet50 can capture such shape feature to
enable its droplet behavior recognition performance.

With the spatiotemporal fusion, we can see the network ob-
tained a remarkably improved recognition accuracy. The accu-
racy of two-stream fused network achieves up to 17.2% better
than the spatial network. This reveals that through fusing the
temporal information into the network, the network could have
a discriminating capability for the droplet evolving feature, thus

increasing the droplet behavior recognition accuracy. In addi-
tion, the convolution fusion performances better than the simple
average fusion, this suggests an early convolution fusion of the
spatial feature and temporal feature could be aggregated and ben-
eficial for the classification of the droplet forming printability. It
should be noted that the average fusion method still outperforms
the solely spatial-stream or temporal-stream method.

6 Conclusions
In this paper, a two-stream network is proposed for the

recognition of the droplet jetting behavior in the PIJ printing pro-
cess. The collected data is firstly labeled based on the printabil-
ity, then based on the spatial as well as temporal stream of video
data, a fused network is proposed for the jetting behavior recog-
nition. Though a trained network, the droplet evolving behavior
is recognized for a new video data, and experiments results show
the proposed method can capture the droplet evolving feature and
identify the printability of the droplet during printing. By using
such a video recognition framework, the proposed work can be
extended to the printing process monitoring using a vision-based
system, which can be applied to other types of nozzles and mate-
rials, also the learned network can be further used in the quality
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control of the inkjet printing process. Future work includes the
learned feature visualization, analysis and application for video
clustering and integrating the process control parameters in the
network.
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