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ABSTRACT

Electrospinning is a promising process to fabricate func-
tional parts from macrofibers and nanofibers of bio-compatible
materials including collagen, polylactide (PLA), and polyacry-
lonitrile (PAN). However, the functionality of the produced parts
highly rely on quality, repeatability, and uniformity of the electro-
spun fibers. Due to the variations in material composition, pro-
cess settings, and ambient conditions, the process suffers from
large variations. In particular, the fiber formation in the sta-
ble regime (i.e., Taylor cone and jet) and its propagation to the
substrate plays the most significant role in the process stabil-
ity. This work aims to designing a fast process monitoring tool
from scratch for monitoring the dynamic electrospinning pro-
cess based on the Taylor cone and jet videos. Nevertheless, this
is challenging since the videos are of high frequency and high
dimension, and the monitoring statistics may not have a para-
metric distribution. To achieve this goal, a framework integrat-
ing image analysis, sketch-based tensor decomposition, and non-
parametric monitoring, is proposed. In particular, we use Tucker
tensor-sketch (Tucker-TS) based tensor decomposition to extract
the sparse structure representations of the videos. Additionally,
the extracted monitoring variables are non-normally distributed,
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hence non-parametric bootstrap Hotelling T* control chart is de-
ployed to handle this issue during the monitoring. The frame-
work is demonstrated by electrospinning a PAN-based polymeric
solution. Finally, it is demonstrated that the proposed frame-
work, which uses Tucker-TS, largely outperformed the compu-
tational speed of the alternating least squares (ALS) approach
for the Tucker tensor decomposition, i.e., Tucker-ALS, in various
anomaly detection tasks while keeping the comparable anomaly
detection accuracy.

Keywords: Biocompatible Materials, Electrospinning, Non-
parametric Multivariate Control Chart, Tensor Sketch, Video
Monitoring

1 Introduction

Continuous structured polymer fibers with diameters rang-
ing from tens of nanometers to several micrometers are of consid-
erable interest for various kinds of applications, such as high per-
formance filters, regenerative medicine, and biomaterial scaffold
for cell growth, wound dressings, and tissue engineering [1-4].
Electrospinning has been shown to be a feasible approach that
is able to produce such fine fibers, where aqueous solutions of
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Figure 1. A Scheme of the Electrospinning Process: (a) Electrospinning
setup, and (b) Stable regime

biocompatible materials (e.g., collagen, polylactide (PLA), poly-
acrylonitrile (PAN), etc.) can be electrospun [5].

Figure 1 shows a schematic setup of electrospinning. In par-
ticular, a strong electrostatic field is generated between a poly-
meric aqueous solution contained in a syringe with a capillary
tip and a metallic collector. Due to the influence of the electro-
static field, the suspended droplet from the capillary tip is de-
formed into a conical shape (i.e, Taylor cone). When the voltage
surpasses a threshold value, electrostatic force overcome the sur-
face tension of the aqueous solution, thus a fine charged jet is
produced, as depicted in Figure 1 (b). The ejected jet travels to-
wards the metallic collector, which acts as a counter electrode.
Before the jet lands onto the collector, it thins up under the influ-
ence of electrohydrodynamic force [6]. Depending on the oper-
ating condition, the charged jet undergoes a series of electrically
induced bending instabilities (i.e., whipping, see Figure 1 (a))
that generates considerable stretching [7]. The stretching phe-
nomenon is accompanied by fast evaporation of the solvent and
results in substantial reduction in the final diameter of the de-
posited fibers [8]. Finally, the accumulated fibers on the surface
of the collector form a non-woven mat with diameters of the or-
der of nanometers and micrometers.

The uniformity of the fiber diameters is a critical quality-
determining factor for functional applications of the nonwoven
mats. For instance, the uniformity of diameter controls the
porous three-dimensional structure and high-surface volume ra-
tio, which are beneficial for tissue engineering applications [9].
Hence, it is important to guarantee the diameter uniformity in
the electrospinning process. The diameter of the fibers can be
affected by several parameters, i.e., solution parameters, process
parameters, and ambient parameters [4]. For instance, solution
parameters, namely viscosity, conductivity, molecular weight,
and surface tension, have been extensively studied to improve
the processability of aqueous solutions in order to obtain uniform
fibers with high mechanical properties in electrospinning [10].

In addition, proper selection of process parameters, such as tip-
to-collector distance, voltage, flow rate, among others, has in-
fluenced the distribution of the deposited fiber diameters. Sev-
eral statistical approaches, such as response surface methodology
(RSM) and analysis of variance (ANOVA), have been used to
optimize the uniformity of the fiber diameters [11, 12]. Ambient
parameters, such as temperature and humidity, can also affect the
electrospun fibers morphology and diameters [13]. Even though
there are several studies that have attempted at understanding and
improving the uniformity of electrospun fiber diameters, most of
them are performed off-line, and real-time monitoring and con-
trol remains a critical challenge.

The stable regime, defined by the Taylor cone and jet as
shown in Figure 1 (b), can be modulated by changing the pro-
cess parameters [14], and the behavior of this regime will reflect
the uniformity and diameter of the electrospun fibers. Real-time
videos of the Taylor cone and jet can be captured based on which
real-time monitoring and control are feasible. For instance, an al-
gorithm of pattern recognition for process control of electrospin-
ning has been developed by tracking the Taylor cone’s behaviour
in [15]. However, the system performs edge detection of the Tay-
lor cone only for pattern determination, ignoring the jet stability
and possible bubbles inside. Additionally, electric current was
measured in real-time during the electrospinning process, and
the recorded current was associated to the jet behaviours and the
morphology of the electrospun mats [16].

The available methods do not fully take advantage of the
rich process information that vision systems (e.g., borescope,
charged-couple device (CCD) camera, high-speed camera, etc.)
may offer. Videos are represented by complex data structure,
specifically high-dimensionality and correlation characteristics
(i.e., spatio-temporal correlation), and are non-trivial to model
[17]. For instance, [17] performed an image-based process mon-
itoring using low-rank tensor decomposition to detect combus-
tion anomalies in the steel tube manufacturing. However, this
approach assumes multivariate normal distribution of the moni-
toring variables and the tensor decomposition is performed by al-
ternative least squares (ALS). ALS can be highly computational
expensive, which can affect the efficiency of anomalies detection
in fast-changing processes as in electrospinning.

The objective of this paper is to propose a video-based mon-
itoring framework from scratch for the dynamic and non-normal
electronspinning monitoring variables. A complementary-metal
oxide semiconductor (CMOS) image sensor coupled with an am-
plifying lens was used to record the videos. The system is able
to capture the Taylor cone and jet, as shown in Figure 1 (b).
Tucker tensor decomposition via tensor-sketch (TS) and a multi-
variate non-parametric bootstrap Hotelling (72) control chart to
monitor the video are integrated. The merit of TS [18] lays on
considerably reducing the cost and memory consumption dur-
ing computation while keeping good accuracy. Thus, the sav-
ings can be more evident when the dimensionality of the video
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streams grows in a dynamic environment (e.g., continuous ink
jet printing (IJP) processes). For instance, videos recorded with
high-speed cameras (HSC) at a frequency of several thousands of
frames per second. Additionally, for the electrospinning process,
it was found that the extracted monitoring variables after using
Tucker TS are not normally distributed. Thus, a non-parametric
bootstrap approach is used to address this issue.

As will be demonstrated in the Case Study section, this pa-
per designs a monitoring framework from scratch that can accu-
rately detect defects in the electrospinning much faster than the
ALS based approach. Although there are several methods dedi-
cated to model high-dimensional data and monitor the extracted
variables, to the best of our knowledge, this is the first study ded-
icated to monitoring the Taylor cone and jet from video streams
in the electrospining of biocompatible materials. The proposed
framework is compared with the Tucker tensor decomposition
via ALS [19]. The results showed that our proposed framework
outperformed the computational speed of the ALS method with
comparable anomaly detection performance. Such a framework
is applicable to other processes with high-dimensional, high-
frequency and dynamic measurements, and non-parametric mon-
itoring statistics.

The organization of the paper is as follows. Section 2 will
briefly review the related works. The proposed approach will
be discussed in Section 3. Section 4 will show the experimental
results. Finally, Section 5 will conclude the paper and discuss the
future work.

2 Literature Review
2.1 Electrospinning

Electrospinning of bio-materials, such as polyethylene oxide
(PEO), PLA, PAN, etc., has shown to be an effective technique
to produce macrofibers and nanofibers. Such small fibers can be
used to produce functional parts, e.g., scaffolds for cell growth
and tissue engineering. However, controlling the uniformity of
fiber diameters remains a challenge, which affects the function-
ality of the produced parts. Empirical and analytical approaches
have been used to deal with large diameter variations [20].

Empirical approaches have been most widely explored. On
one hand, several studies have been dedicated to tailor solutions
to improve the fibers” uniformity. For instance, electrospun mats
with fibers of less than 1 um were obtained in [4] by tayloring
polimeric solutions, e.g., Bombyx mori silk with PEO. Zhu et
al. [21] analyzed the effects of pH and concentration on electro-
spinning and rheology of regenerated Bombyx mori silk fibroin
aqueous solutions. It was revealed that under certain regimes of
pH, the average fiber diameters become smaller and more uni-
form. Similar studies can be seen in [22,23]. On the other hand,
process and solution parameters have also been studied by empir-
ical statistical methods to improve the uniformity of fibers. Suki-
gara et al. [11] studied the effect of electrospinning parameters,

namely concentration percentage, electric field, and spinning dis-
tance, on the morphology and diameter of electrospun Bombyx
mori regenerated silk fibroin (RSF) fibers. A factorial design was
deployed to investigate the parameters’ statistical significance on
the fiber diameters, and it was identified that the concentration of
the solution was the most significant factor. The reported fiber di-
ameters were 100nm. In a follow up work, Sukigara et al. [24] re-
alized process optimization and empirical modeling using RSM
in the electrospinning of Bombyx mori silk. They were able to
produce fiber diameters of 40nm. See also [25,26] for similar
studies.

Analytical models have also been used to predict and con-
trol the uniformity of fiber diameters. An example can be found
in [20], where an analytical model for the forces that determine
jet diameter during electrospinning as a function of surface ten-
sion, flow rate, and electrical current in the jet was presented.
The model accuracy was successfully attested by experimenta-
tion. In addition, analytical equations linking the electrospun
fiber diameter with the process parameters and the characteris-
tics of the polymer solution is shown in [27]. The authors in-
troduced the scaling laws to model the diameter of the jet near
to and far from the tip of the needle, and at the collector. After
experimentation, the models correspond relatively well with the
experimental values.

Although the aforementioned approaches have shown sig-
nificant progress towards reducing the diameter variability in
the electrospinning, they are performed off-line, thus preventing
their applicability for real-time monitoring and control.

2.2 Process Monitoring

Currently, due to the development of sensing technolo-
gies, process modeling and monitoring have been feasible in
emerging technologies, such as additive manufacturing and
micro/nano-manufacturing [28]. Specifically, image sensors,
such as borescope, CMOS cameras, etc., are able to provide
a great amount of information for this purpose. Image sensor
information are usually of high frequency and high dimension,
and processing this information is challenging. Thus, the widely
used dimensional reduction techniques, e.g., principal compo-
nent analysis (PCA) and unfolded PCA, are utilized to extract
features that will be used for later analysis. For instance, Jiang
et al. [29] presented liquid crystal display surface uniformity de-
fect inspection using ANOVA and exponentially weighted mov-
ing average (EWMA) control chart to detect the size and location
of defects. Lin et al. [30] used PCA based on wavelet charac-
teristics for automated surface defect inspection. Lu et al. [31]
reported an automatic defect inspection for liquid crystals dis-
plays (LCDs) using singular value decomposition. Colosimo et
al. [32] developed a spatially weighted PCA for monitoring video
image data with application to additive manufacturing. See other
related works in [33,34]. However, these techniques break the
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original structure of the data, and this might affect the detection
accuracy of defects.

Tensor decomposition has risen as an alternative to the tra-
ditional dimensional reduction techniques. Tensor decomposi-
tion approaches, such as Tucker and CANDECOMP/PARAFAC
(CP), preserve the structure of the original data, and have been
recently explored in image-based process monitoring. Yan et
al. [17] explored coupled low-rank tensor decomposition with
multivariate control charts to develop an image-based monitor-
ing framework. Also, in a subsequent work, Yan et al. [35] pre-
sented real-time monitoring of high-dimensional functional data
streams via spatio-temporal smooth sparse decomposition. The
proposed methods used ALS and proximal methods to solve the
formulation of the tensor decomposition. This can be time con-
suming if continuous updates are necessary in fast-changing pro-
cesses such as electrospinning. To ameliorate the high computa-
tional cost that tensor decomposition may involve, TS [18] is ap-
plied for the decomposition in this paper. Additionally, the above
mentioned monitoring methods assume multivariate normal dis-
tribution of the monitoring variables, which is not necessarily the
case in many applications.

Megahed et al. [36] reviewed the image-based monitoring
methods, and they pointed out that control chart selection de-
pends on whether the monitoring data follows parametric or non-
parametric distributions. Since most of the conventional control
charts, e.g., Hotelling T2, EWMA, assume parametric distribu-
tions for their implementation, the non-parametric approaches
are not well-explored yet. Phaladiganon et al. [37] presented a
bootstrap-based 72 multivariate control chart approach to deal
with non-parametric distributions in the monitoring statistics.
Another example can be seen in [38]. In this work, a moni-
toring framework that couples Tucker-TS tensor decomposition
with multivariate bootstrap-based Hotelling 7% control chart is
presented.

3 Approach
3.1 Overview of the Proposed Method

A schematic illustration of the proposed framework is pre-
sented in Figure 2. Figure 2 (a) shows the electrospinning setup.
Solution, process, and ambient parameters govern the stability
of the Taylor cone and jet (i.e., stable regime, see Figure 2 (b)),
of the electrospinning process. The stable regime is captured
by recording videos with a CMOS camera (Figure 2 (c)). The
videos, which are high-dimensional, are used as input data to
extract the monitoring statistics, as illustrated in Figure 2 (d).
In particular, the videos are pre-processed as shown in Figure 2
(d.1) for later analysis. After that, the in-control image frames
are stacked as a tensor 7, and Tucker TS tensor decomposi-
tion is deployed for feature extraction [17] (see Figure 2 (d.2)).
After the tensor decomposition, the tensor factorization matri-
ces and core tensor are extracted. The factorization matrices

are used to compute the core tensors G; for each frame, which
serves as the monitoring statistics. The corresponding G; of each
frame is vectorized and the monitoring statistics is obtained for
all the in-control samples. Based on these in-control samples,
the T2 statistics can be calculated. It is observed that the vector-
ized core tensors do not follow multivariate normal distribution.
Therefore, a non-parametric method is used to determine the up-
per control limit (UCL) by bootstrapping the T2 statistics [37].
Once the factorization matrices and control charts are established
based on the in-control frames, the new frames’ G;s are com-
puted and monitored subsequently. The following section is ded-
icated to explaining the details of the proposed framework.

3.2 Tensor Decomposition and Sketch-based Tensor
Decomposition

As mentioned in the Introduction, the electrospinning sta-
ble regime, namely Taylor cone and jet, is a critical quality-
determining factor towards the consistency and uniformity of the
electrospun fiber diameters. Thus, this regime needs to be con-
tinuously monitored to assure the quality of the final fibers. Ad-
ditionally, the stable regime may undergo sudden changes which
happen at very high speed. Therefore, high-resolution and high-
frequency videos are required to capture these changes. In this
way, video data streams grow fast in a short period of time, and
this is even more evident if high-speed cameras are used, which
usually record videos at very high-resolution and high-frequency,
several thousands of pixels and fps, respectively. Due to the
abundance of information, extracting interpretable features and
common properties from the image frames can be highly com-
putational involving.

In order to address this issue, sparse tensor structures and di-
mensional reduction techniques (i.e., tensor decomposition) are
exploited. Tensor decomposition, a powerful dimensional re-
duction technique, is used to handle large data representation.
The objective of tensor decomposition is to approximate high-
dimensional tensors with the tensor product of low dimensional
factorization matrices (e.g., U, V, and W) and core tensor (e.g.,
G) [39], see Figure 3. The framework is illustrated with a third-
order tensor T € R"™/*K_ There are several methods, such as CP
and Tucker decomposition methods, that can be used to decom-
pose T [19].

Tucker decomposition is used for this work, as illustrated in
Figure 3. T is decomposed by Tucker T ~ TT#ker — G x| U x,
VxsW=YE YM YN et ovmow, = [G;U,V, W], where
UeRXL v e R”*M and W € REXN are the factorization ma-
trices, and G € RE*M>N is the core tensor. Consequently, Tucker
tensor decomposition is used to extract the monitoring variables
for different frames and subsequently determines the 72 values
and UCL. In addition, the factorization matrices and core tensor
are used to characterize each frame. The Tucker decomposition
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is formulated as,

argmin

G,U VW
and can be solved via ALS [18] (i.e. Tucker-ALS). However,
Tucker-ALS may suffer from computational issues (e.g., run
out-of-memory) as the dimensionality, density (i.e., number of
nonzeros), and rank of T increase [18]. An alternative to solv-
ing Equation (1) is TS (i.e., Tucker-TS). TS is a technique that

IT—-[GU VW | (1)

performs random projection of the high-dimensional data vec-
tors into lower-dimensional ones. Thus, TS can reduce cost and
memory usage of computations at the price of reduced accu-
racy [18,40]. Particularly, the core tensor and factor matrices are
initialized randomly with each element independent and identi-
cally distributed (i.i.d.) Uniform (-1,1). Additionally, three oper-
ators, i.e., a constant K, the first sketch dimension J; = KR,
and the second sketch dimension J, = KR%, are defined to ini-
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tialize the algorithm, where Z is the size of R and R, = R < [
for all z € [Z]. Values of K > 1 work well in practice [18]. The
rank R=[L M N] can be determined by structural similarity
index (SSIM). SSIM performs a pixel-wise comparison between
the tensor T and the approximated tensor TTucker  The closer
SSIM is to 1, the better the approximation is [41]. The rank R
needed is usually small compared with the original size of the
tensor 7. After the tensor decomposition, U and V are shared
factorization matrices for Vi, and W is the factorization matrix
that corresponds to the sample dimension K for Vi. Tensor mul-
tiplication G; x3 W is applied to obtain the individual g; ,’s, thus
the monitoring variables for Vi are obtained.

3.3 Control Chart

After the monitoring variables are extracted, one can use
Hotelling 72 multivariate control chart to monitor the electro-
spinning process. This approach has been extensively used to
monitor multivariate processes with individual observations [42].
Assuming that the monitoring variables follow a multivariate
normal distribution with mean g and covariance matrix X, the
T? statistics can be calculated by,

T*=(g-2)'z '(g-9) )

where g is the multivariate mean vector, g is the sample mean
vector, and X is the covariance matrix of in-control samples. One
basic assumption of 72 control chart is multivariate normality,
which is not complied in the electronspinning process monitor-
ing. Thus, a bootstrap-based T multivariate control chart [37] is
used to address the non-normality problem. This non-parametric
approach does not rely on the assumption of a parametric distri-
bution of the monitoring variables. In order to compute the UCL,
the T2 statistics are first calculated. Then, random bootstrap sam-
ples (i = 1,...,B) from the initial T statistics with replacement
are drawn, and it showed that B > 1000 is a good estimation [37].
In each of the bootstrapped replications, the 100(1 — )" per-
centile was determined, where 0 < a0 < 1. Finally, the average of
the B percentile values is set as the UCL [37]. For new samples
g, replaces g in Equation (2) to compute the new 72 statistics.
Subsequently, they are plotted in the non-parametric Hotelling
T2 control chart for the process monitoring.

4 Case Study

In the electrospinning process, the shape of the Taylor cone
and jet are crucial to determine the uniformity of the electrospun
fibers. For instance, Figure 4 shows a proper stable regime, i.c.,
Taylor cone and jet, (Figure 4 (a)), and three improper regimes
(Figure 4 (b-d)). It is paramount to detect these instabilities that
will derive in fiber diameter defects, thus affecting the function-
ality of the non-woven mats. The proposed framework is able to
detect these faults and will be demonstrated in this section.

(c) @

Figure 4. A Comparison of Proper and Improper Regimes: (a) Proper
stable regime, (b) Taylor cone with overflow, (c) No Taylor cone formation,
and (d) Taylor cone with overflow and double jet

Figure 5. Electrospinning Setup: (a) Syringe pump, (b) Flat collector,
(c) Thermo-hygrometer, (d) Syringe, (e) High-voltage source, (f) CMOS
camera, and (g) Computer

Figure 5 shows the electrospinning setup that was used
for collecting the videos to demonstrate the proposed frame-
work. First, a polymeric solution of PAN at 10% was pre-
pared. The polymeric solution was filled into a syringe container
and mounted on a Cole-Parmer syringe pump, see Figure 5 (a)
and (d). The pump can supply constant flow at an accuracy of
0.01ml /h, and a flow rate of 0.4ml /h was used. The distance be-
tween the tip of the syringe needle and the flat collector is set as
13cm. The high-voltage source (Figure 5 (e)) supplies voltages
of the order of several £V, which in this case was 9kV. The flat
collector (Figure 5(b)) was covered with aluminum foil. Addi-
tionally, a CMOS camera (Figure 5 (f)) was used to record the
videos that capture part of the tip of the needle, the Taylor cone,
and jet (Figure 5 (g)). The resolution of the videos is 480 x 720
pixels. Finally, a video of 3900 seconds was recorded for this
analysis.
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(b)

Figure 6. Pre-processed Frame Example: (a) Original frame, and (b)
Processed frame

The proposed framework was applied to the recorded video.
The recorded video was pre-processed following the procedure
shown in Figure 2 (d.1). The unnecessary information was re-
moved so that sparse matrix structures are exploited. A sample
of a processed frame can be seen in Figure 6 (b). For this anal-
ysis, 1000 in-control frames (i.e., samples) were used for tensor
decomposition, feature extraction, and constructing the control
chart (determine UCL).

Before applying the tensor decomposition, the 1000 sam-
ples were divided into five randomly generated and equally sized
folds to determine the rank R via cross-validation (CV). For iter-
ations, four folds were used for training and the remaining fold
was used for testing. Thus, the training and testing tensors are of
dimensions Ty, € R*80x720x800 apnq T3, € R480x720x200  pegpec-
tively. In addition, to choose an appropriate rank R for the tensor
decomposition, the values of R were incrementally varied, from
[5 5 5,[5 6 6],...,to[10 10 10]. For every combina-
tion of R, training and testing were repeated for five times. The
rank R selection was done by using the SSIM metric (the closer to
1, the better). Table 1 shows the results of the best rank, SSIM in-
dex, and corresponding computational time for the Tucker-ALS
and Tucker-TS approaches. The rank Razs =[8 5 5] was se-
lected for the construction of the control chart since this is the
reference to be compared with, and is expected to have accurate
tensor decomposition performance. From Table 1, the proposed
Tucker-TS based approach can extract the features for monitor-
ing much faster than the Tucker-ALS approach.

Table 1. Results of best rank, SSIM index, and computational time for
Tucker-ALS and Tucker-TS

Time Elapsed
Approach | Best Rank | SSIM
(seconds)
Tucker-ALS [855] 0.9293 3360.7
Tucker-TS [9 6 6] 0.9097 1154.8
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Figure 7. Phase I bootstrap-based Hotelling T2 control Chart: (a) Con-
trol Chart for the Tucker-TS approach, and (b) Control Chart for the
Tucker-ALS approach

For the bootstrap Hotelling 72 control chart, the 1000 pre-
processed in-control images are stacked to form a tensor of size
T € R*80x720x1000 - The R,; ¢ was set for the tensor decompo-
sition in both approaches. By using the factorization matrices
learned from the tensor decomposition, U and V, the core ten-
sors g;, for each individual frame were computed and then vec-
torized. Consequently, the monitoring statistics were extracted.
For phase I, the T2 statistics were calculated by deploying Equa-
tion (1) and the UCLs were estimated by choosing the average of
99.95" percentile of the bootstrapped samples. A big percentile
(99.95) is used here to accommodate the possible changes in light
conditions and background noise, which will affect the pixel den-
sity distribution but are not anomalies (As shown in Figure 4,
the anomalies are obvious changes in the Taylor cone). 3000
bootstrapping draws were done for this analysis. The in-control
non-parametric Hotelling 72 control charts for the ALS and TS
approaches are shown in Figure 7.

In phase 11, the UCLs are the same as in phase /. The shared
factorization matrices (i.e., U and V'), were used to calculate the
NEeW Core tensors gnew- Snew Was then vectorized to compute the
T2 statistics for the new samples. Subsequently, they were plot-
ted in the T control chart, see Figure 8. In Figure 8, 180 in-
control samples and 100 out-of-control samples were included
to show the performance of the proposed framework. Figure 8
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Figure 8. Phase /I bootstrap-based Hotelling T2 control Chart: (a)-(b) Taylor cone with overflow detection, (c)-(d) No Taylor cone formation detection,

and (e)-(f) Taylor cone with overflow and double jet detection

shows several fault detection cases (see Figure 4 (b), (c), and (d))
in the electrospinning process. From Figure 8, both approaches
can accurately detect sudden changes of the Taylor cone and jet.
Note that their false positive rate and false negative rate for the
detection are the same, and therefore not shown here.

Moreover, the proposed framework, which uses Tucker-TS
for the tensor decomposition, was able to update the shared fac-
torization matrices much faster than the approach that utilized
Tucker-ALS while keeping similar accuracy. For instance, for
the rank R4y s the Tucker-TS took 5.82 seconds while the Tucker-
ALS took 44.65 seconds. Thus, the proposed framework can per-
formed ~ 87% faster with comparable anomaly detection perfor-
mance in this study. This is especially beneficial when dynamic
updates are necessary, which is the case of electrospinning and
many other manufacturing processes, such as IJP.

5 Conclusions

Although electrospinning’s potential to produce macrofibers
and nanofibers has been widely demonstrated, the process suf-
fers from instabilities that harm the uniformity of the elec-
trospun fibers. These instabilities can be captured by videos,

which posses intricate structures (i.e., high-frequency and high-
dimensionality), that can be used to monitor the process. Hence,
this work presents a framework to address the high-frequency
and high-dimensionality of the videos as well as the non-
parametric distribution that the monitoring variables may have.
Image analysis, sketch-based tensor decomposition, and non-
parametric bootstrap based Hotelling 7% control chart, are inte-
grated in the proposed monitoring framework. The sketch-based
approach enables fast feature extraction and control chart es-
tablishment for the high-frequency and high-dimensional videos
streams over existing methods. It is demonstrated that the sketch-
based tensor decomposition (i.e., Tucker-TS approach) largely
outperformed the computational speed of the Tucker-ALS ap-
proach while keeping the anomaly detection accuracy. Thus, the
proposed framework can benefit the fast decision-making in pro-
cess monitoring and future implementation of closed-loop con-
trol. This framework can be applied to other applications with
high-frequency and high-dimensional data streams, such as IJP.
In the future, several directions can be investigated. One di-
rection is to explore the non-parametric generalized likelihood
ratio (GLR) based approach for change-detection of electrospin-
ning and IJP processes . In GLR, fast computations are required

Copyright (© 2020 by ASME



to continuously update the GLR statistics based on a moving
window. Another direction is to explore convolutional neural
network (CNN) for anomalies classification of electrospinning
and IJP processes. In CNN, the sample size has to be consider-
ably increased. In addition, root-cause identification of the de-
tected anomalies will be investigated, and possible process ad-
justments will be recommended.
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