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Abstract—Graphical models are often used to facilitate efficient
computation of posteriors in order to make predictions. With
this objective in mind, we consider the problem of estimating
the parameters of a graphical model with known structure from
samples such that posteriors computed using the model are accu-
rate. Focusing on tree-structured binary Markov random fields,
our main result is a sharp characterization of the dependence
on number of samples needed for all pairwise marginals (and
hence posteriors of one variable given another) to be accurate:
n = Θ(η−2 log p) samples are necessary and sufficient to estimate
model parameters such that all marginals of arbitrary order k
are accurate to within

√
k η. The result implies that prediction

error is bounded uniformly, with no dependence on the strength
of interactions. We will also show that these guarantees are
achievable using moment matching techniques.

I. INTRODUCTION

Graphical models are ubiquitous in a wide variety of ap-
plication domains including signal processing, computational
biology, finance, and natural language processing [13], [24].
As the name suggests, these models use an underlying graph to
represent structure in high-dimensional data: random variables
are associated with nodes, and edges indicate interactions
between the variables. For a given application, domain knowl-
edge is often used to select the model structure, for instance
one might use a Hidden Markov Model for time-series; the
model parameters are then estimated from data.

From the statistical point of view, the fundamental objective
is to determine how much data is needed to accurately estimate
the model. There are two natural measures of accuracy: one
measures closeness of estimated parameters to those of the
model generating the data, for instance in squared error;
the second measures accuracy of predictions computed using
the model. Since in the typical machine learning application
graphical models are used to make predictions, and moreover
the first objective is by now largely understood when the graph
structure is known, we focus on prediction.∗

A graphical model allows to simultaneously make many
predictions. One might wish to predict whether (or compute
the probability that) a user in a recommendation system will
buy each of a collection of items given feedback previously
obtained from the user, and also to do this for many different
users each of whom has rated a different set of items. Accuracy
of the model thus entails accuracy of posteriors P (Xi|XS) for

∗The story for linear regression is parallel, with a large body of work
studying both parameter estimation and prediction error [18].

many choices of nodes i and sets S. This paper is motivated
by the following basic question.

Motivating Question: How many samples generated from
a graphical model with known structure are needed in order
to estimate the model parameters θ such that all posteriors
Pθ(Xi|XS) computed using the estimated model are accurate,
for sets S of size at most k?

As observed in [3], and can be seen by writing out the
conditional probability, accuracy of posteriors is captured by
the following local total variation, which we take as the loss
function in this paper. For any two distributions P and Q and
integer k ≥ 2, let

L(k)(P,Q) = max
S:|S|≤k

dTV(PS , QS) . (I.1)

Here PS denotes the marginal of P on the subset of variables
S (and similarly for QS). This loss function was used by [3]
in the same context and previously by Rebeschini and Handel
[17]. To connect this notion of distance to the prediction based
on partial observations, note that given two distributions P (X)
and Q(X) on X ∈ {−,+}p, if L(k)(P,Q) ≤ η, then for any
S ⊆ V , such that |S| ≤ k− 1 and any i ∈ V and x ∈ {−,+},
we have∑

xS

P (xS)
∣∣Pi|S(x|xS)−Qi|S(x|xS)

∣∣ ≤ 2η ,

as proved in [3].
The main challenge in controlling this loss is that that the

total variation must be bounded uniformly over all marginals,
and moreover, depending on k and the number of edges in the
model, there are far too few parameters in order to separately
minimize the total variation for each of the marginals. What
this means is that inherently one must trade-off accuracy of
some marginals against others.

In this paper we give an essentially complete answer to
the question posed above for the special case of Ising models
(binary pairwise graphical models) with no external field on
trees, with no restriction on the node and edge parameters.
A probability distribution PX(x), denoted by P (x) on x ∈
{−,+}p represented by the tree T = (V , E) in this class of
models is represented as

P (x) = exp
( ∑

(i,j)∈E

θi,jxixj − Φ(θ)
)

(I.2)
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where Φ(θ) is a normalizing constant. The tree T determines
the factorization of the distribution and the edge parameters
θi,j quantify the pairwise marginal distributions on each edge.

What our results show is that for this class of models there
is essentially no trade-off and it is possible to simultaneously
guarantee accuracy for all marginals by optimizing the errors
only across the edges. This is surprising because errors can
accumulate and combine along paths in the tree, but this turns
out not to matter.

The intuition for why accumulation of errors along paths
does not result in worse error is that accumulation of errors
can occur over large distances only if the interactions across
the edges are quite strong, but this in turn reduces the variance
in estimating the edge parameter and this compensates for the
accumulation.

We show that given n > Cη−2 log p/δ samples with a uni-
versal constant C, for all k ≥ 2, we have L(k)(P,Q) ≤

√
k η

where the distribution Q is the derived using moment matching
across the edges of the given tree. Moreover Theorem IV.3
shows that this bound is information theoretically tight: There
exists a constant c such that for any value of k ≥ 2, if
n < cη−2 max{k, log p}, then L(k)(P,Q) > η.

This paper gives the first sharp guarantees for estimation in
graphical models with a prediction-centric loss. We view tree
models as an important first step in this broader direction. Tree
graphical models are important in a range of applications, in
part because marginals can be efficiently computed exactly
using belief propagation. Thus when actually carrying out
posterior computations in a learned tree model, the error is
entirely due to parameter estimation from data, and none of it
from the need to approximate the computational task [23].

A. Related work

There is a large literature on structure learning of graph-
ical models, where the goal is to infer the graph structure
underlying the model given samples. There has been a great
deal of recent progress in learning non-tree bounded-degree
graphical models, including [2], [9], [12], [16], [22]. The
seminal paper by Chow and Liu [5] gives a computationally
efficient algorithm to find the maximum likelihood tree and the
parameters over the tree, given samples from a tree structured
graphical model. They algorithm guarantees to minimize the
probability of error in recovering the underlying structure.
Tan et. al [20], [21] generalized this algorithm for forest
approximation purposes. They also analyzed the asymptotic
number of samples required to guarantee correct recovery of
the underlying tree.

Instead of focusing on correct structure recovery, several
papers have considered various notions of approximation.
Heinemann and Globerson [10] studied high-girth graphs with
correlation decay to show that the loopy belief propagation
guarantees accurate marginals. Narasimhan and Bilmes [15]
proposed an algorithm to learn bounded tree-width graphical
models with respect to KL-divergence. In this work, the
error in computing a posterior is due to estimation of model
parameters from noisy data. Other papers have studied errors

arising from noisy computation in message passing algorithms
on loopy graphs, e.g. [25].

Bresler and Karzand [3] showed that accurate estimation
of all pairwise marginals does not require correct structure
recovery. They analyzed the performance of the Chow-Liu
algorithm and showed that even in the regime in which
correct recovery of the structure is not possible, using a
possibly incorrect tree (the Chow-Liu tree) provides accurate
pairwise marginals. The sufficient number of samples for this
purpose is a function of the maximum strength of interaction
between variables. In this work, we show that given the correct
tree, the sample complexity of learning a distribution which
accurately estimates the pairwise marginals is independent of
the interaction strengths.

Theorem 9 by Babichenko et. al. [1] is equivalent to bound-
ing L(2) loss in our setup in the specific case Pi(xi) = 1/2 for
all i. Their analysis claims that number of samples required
to guarantee L(2)(P,Q) < η with probability 1/2 is at least
C/η2 log(p/η). Theorem IV.1 in this paper shows a strict
improvement over this number.

There is a nascent literature on testing graphical models,
such as [4], [7], [8]. In goodness-of-fit testing, the goal is to
determine whether or not samples are from a given model P;
in equality testing, one attempts to determine whether samples
are both from the same distribution P or from two different
distributions P and Q. These testing questions are distinct
from (but related to) estimation questions, and moreover the
underlying metric is typically total variation or Kullback-
Leibler divergence over the entire joint distribution.

II. MODEL AND NOTATION

We use the notation Pi,j(xi, xj) in place of PXi,Xj (xi, xj)
and similarly Pi|j(xi |xj) for PXi|Xj (xi |xj). We denote by
PT the set of all distributions factorizing according to tree T.

Given a tree T and n i.i.d. samples X(1:n) =
(X(1), . . . , X(n)) ∈ {−1,+1}|V| generated according to
P ∈ PT (i.e., P factorizes according to T), an estimator
ψ : X(1:n) → PT returns a distribution factorized according
to T.

a) Estimation.: The maximum likelihood estimator is a
natural estimator and the one we will analyze in this paper.
It was observed by Chow and Liu in their 1968 paper [5]
that the maximum likelihood estimator gives a distribution Q
matching the marginals on the edges to those of the empirical
distribution P̂ , i.e., for all (i, j) ∈ E , and all xi, xj ∈ X ,
Q(xi, xj) = P̂ (xi, xj). The full distribution Q is then obtained
via the tree factorization (I.2). We use the notation Q = ΠT(P̂ )
to denote the maximum likelihood estimator just described,
which is equivalent to the reverse information projection of P̂
onto PT [6], to emphasize the role of the tree T.

III. MODEL AND NOTATION

We use notation similar to the ones used in [3] For a
given tree T = (V, E) let P be the set of Ising models (I.2)
We denote by µi,j = EPXiXj the correlation between the
variables corresponding to any pair of vertices i, j ∈ V . For
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an edge e = (i, j) we write µe = µi,j and similarly for a set
of edges A ⊆ E , µA =

∏
e∈A µe. The empirical distribution

of samples is denoted by P̂ (x) = 1
n

∑n
l=1 1{X(l)=x}.

IV. MAIN RESULT

For distribution P on {−,+}p and tree T, we define
ΠT(P ) = arg minR∈PT

D(P‖R) to be the reverse informa-
tion projection of P onto the class of Ising models on T
with no external field (where D(P‖R) is the KL divergence
between distributions P and R). Lemma 11.1 in [3] shows that
Q = ΠT(P ) has edge weights satisfying EQXiXj = EPXiXj

for all edges (i, j) ∈ E .
From here on, we define

Q = ΠT(P̂ ) (IV.1)

to be the reverse information projection of the empirical
distribution P̂ on tree T. Hence, distribution Q is factorized
according to the tree T (according to Eq. (I.2)) and satisfies
EQXiXj = EP̂XiXj for all edges (i, j) ∈ ET.

Theorem IV.1. Let distribution Q be defined as in Eq. (IV.1).
Then, given n > 80η−2 log p

δ samples, we have

L(k)(P,Q) ≤
√
k η

for all 1 ≤ k ≤ p with probability 1− δ.

Corollary IV.2. Let distribution Q be defined as in Eq. (IV.1).
Then, given n samples, we have a universal constant C such
that

E
[
L(k)(P,Q)

]
≤ C

√
k

n
log p (IV.2)

The statement of the corollary can be derived using standard
techniques from Theorem IV.1.

This main result implies that using moment matching tech-
niques, one can achieve optimal accuracy in terms of k-
wise marginals of the learned distribution for any k ≥ 2.
Note that by using moment matching, the distribution Q is
enforced to be factorized according to the given tree T, and
its parameters on the edges are computed by looking at the
pairwise empirical distributions along the edges. This implies
that by exploiting the tree structure, the local accuracy along
the edges is sufficient to guarantee global accuracy of the
learned distribution in terms of higher order marginals.

Theorem IV.3 (Necessary sampling for parameter estimation).
Fix 2 ≤ k ≤ p. Given n < cη−2 max{k, log p} samples and
given tree structure T, the worst case probability of L(k) loss
greater than η taken over distributions R ∈ P̃T is at least half
for any algorithm, i.e.,

inf
φ

sup
P∈P̃T

P[L(k)(P, φ(X(1:n))) ≥ η] > 1/2 .

where φ(X(1:n) is an estimator which provides a distribution
given i.i.d. samples X(1:n).

Proof. We assume the tree T is a Markov chain, such that
X1 → X2 → · · · ,→ Xp. If k < log p, we choose p

different models over this Markov chain each denoted by edge
parameters θ(m). We assume that for i = 1, · · · , p−1, we have
θ
(1)
i,i+1 = atanh(η). We also assume that in the m-th model,

we have θ(m)
m,m+1 = atanh(η) and the remaining edge weights

are atanh(2η). Then, applying the Fano’s inequality Similar
to the proof of Theorem 3.3. in [3] gives the statement of the
theorem. If k ≥ log p, we choose p different models over this
Markov chain denoted by edge parameters θ(0) and θ(1) such
that Lk between these two models is greater than η. To do so,
assume θ(0)i,i+1 = atanh(η/k) for all i ≤ k + 1 and θ(0)i,i+1 = 0
for all i.

V. PROOF OF THE MAIN RESULT

A. Event of interest

We introduce an event of interest in this section and bound
L(k) on this event. Later on, we show that this event happens
with large probability given n > Cη−2 log p.

Definition V.1. For η ≥ 0, define the Epair(η) as follows:

Epair(η) :=

{
1− η√

P (xi, xj)
<
Q(xi, xj)

P (xi, xj)
< 1 + εij

with εij = 2 max
{ η√

P (xi, xj)
,

η2

P (xi, xj)

}
for all xi, xj ∈ {−,+} and i 6= j

}
(V.1)

Lemma V.2. On the event Epair(η) (Definition V.1), we have
L(k)(P,Q) ≤ 4

√
kη for all k ≥ 2.

Simple algebraic manipulation can prove the statement of
lemma for k = 2. For k > 2, we prove the statement of lemma
in Section V-C by bounding the TV distance between distribu-
tions with the Hellinger distance and then using subadditivity
of the Hellinger distance along with the properties of the event
Epair(η) as in Definition V.1. In particular, the statement of the
lemma is a direct consequence of Equations (V.3) and (V.5)
and Lemma V.3 (summarized in Eq. (V.6)) and Lemma V.4.

Later, in Corollary V.5 in Section V-D, we show that

P[Epair(η)] > 1− 2p2 exp
(
− nη2

)
. (V.2)

Hence, the Theorem IV.1 is a direct consequence of Lem-
mas V.2 and V.5.

B. Marginal distribution over the subtree induced by S
To bound L(k), we need an upper bound for dTV(PS , QS)

for any S ⊆ V such that |S| = k. Fix S ⊆ V with |S| = k.
To compare the marginals of distributions P and Q on S , we
look at the subtree T̃ = (VT̃, ET̃) of tree T induced by the
nodes in S . It can be shown that k̃ , |VT̃| ≤ 2k and

dTV(PS , QS) ≤ dTV(PVT̃ , QVT̃) , (V.3)

since S ⊆ VT̃. First, we define an ordering over the k̃ nodes
of the tree T̃. Pick an arbitrary node of the tree T̃ as root and
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label it as node 1. Define an ordering in the nodes of tree T̃
such that for any ` > 1, the nodes 1, · · · , ` form a connected
component in tree T̃. For each node i, define the parent of the
node i, π(i) as the first node in the path between node i and
the root. With this choice of labeling over nodes, π(i) < i.
We use this ordering over the nodes to define a decomposition
of the distributions described by T̃. If PVT̃ is described by T̃,
then

PVT̃(x) = P (x1)
k̃∏
i=2

P (xi|xπ(i)) .

Throughout this section, the subscript will be omitted when
clear from the argument, for instance we use P (xi|xπ(i))
instead of Pi|π(i)(xi|xπ(i)). We can decompose QVT̃ described
by T̃ similarly.

QVT̃(x) = Q(x1)
k̃∏
i=2

Q(xi|xπ(i)) .

Note that Q(xi|xπ(i)) is the marginal distribution of Q defined
in Eq. (IV.1) on nodes i and π(i). If (i, π(i)) ∈ ET is an edge
in the original tree, according to the moment matching, we
have Q(xi|xπ(i)) = P̂ (xi|xπ(i)). But when (i, π(i)) /∈ ET, the
Q(xi|xπ(i)) is derived by cascading the edges along the path
between i and π(i) with edge parameters based on P̂ .

C. Subadditivity of Hellinger Distance (Proof of Lemma V.2)

Given two distributions P (x) and Q(x), the Hellinger
distance H(P,Q) is defined such that

H2(P,Q) =
1

2

∑
x

(√
P (x)−

√
Q(x)

)2
= 1−

∑
x

√
P (x)Q(x) . (V.4)

Hellinger distance satisfies the following inequalities:

H2(P,Q) ≤ dTV(P,Q) ≤
√

2H(P,Q) . (V.5)

We use Hellinger distance and the subadditivity property of
Hellinger distance described in Lemma V.3) to bound the TV
distance between k-wise marginals of distributions P and Q.

Lemma V.3. Using the notation defined in Section V-B,

H2(PVT̃ , QVT̃) ≤
k̃∑
i=2

H2
(
Pi,π(i), Qi,π(i)

)
.

where Pi,π(i) and Qi,π(i) are marginal distribution of P and
Q on the variables Xi and Xπ(i)

The proof is similar to the proof of Theorem 2.1 in [8]. We
provide the variation of the proof with our notation for the
sake of completeness in the Appendix.

Note that using the description of the tree T̃ in Section V-B,
we have k̃ ≤ 2k. Hence, using Equations (V.3) and (V.5)
and Lemma V.3, for two distributions P and Q factorized
according to the same tree T, we have

L(k)(P,Q) ≤ 2
√
k .max

i,j
H
(
Pi,j , Qi,j

)
(V.6)

where Pi,j and Qi,j are marginal distribution of P and Q on
the variables Xi and Xj .

Lemma V.4. On the event Epair(η) (Definition V.1), for any
i 6= j, we have

H2
(
Pi,j , Qi,j

)
≤ 8η2 ,

where Pi,j and Qi,j are marginal distribution of P and Q on
the variables Xi and Xj .

Proof. We use the shorthand P (a, b) = Pi,j(a, b) and
Q(a, b) = Qi,j(a, b) in the proof of this lemma. Using
definition of Hellinger distance in Eq. (V.4),

H2
(
Pi,j , Qi,j

)
=

∑
a,b∈{−1,+1}

P (a, b)

[√
Q(a, b)

P (a, b)
− 1

]2
.

We bound each of the above four terms in terms of η on the
event Epair(η). Note that for some values of a, b ∈ {−1,+1}
we could have Q(a, b) > P (a, b) or Q(a, b) ≤ P (a, b).

a) Case 1, Q(a, b) > P (a, b): On the event Epair(η)

Q(a, b) ≤ (1 + ε)P (a, b)

with ε = 2 max
{ η√

P (a, b)
,

η2

P (a, b)

}
(according to Definition V.1) and since (

√
1 + ε − 1)2 ≤

ε2/(2 + ε) for all ε ≥ 0, we have

P (a, b)[
√

1 + ε− 1]2 ≤ P (a, b)
ε2

2 + ε
≤ 2η2 .

b) Case 2, Q(a, b) ≤ P (a, b): On the event Epair(η),

Q(a, b) >

[
1− η√

P (a, b)

]
P (a, b) ,

(according to Definition V.1) and since 1 −
√

1− x ≤ x for
all 0 ≤ x ≤ 1, we have

P (a, b)

1−
√

1− η√
P (a, b)

2

≤ η2 .

D. Concentration bounds (Proof of Lemma V.5)

Lemma V.5. Given n samples, we have

P[Epair(η)] ≤ 8p2 exp
(
− nη2/4

)
.

Proof. To prove this lemma, we show that for any i 6= j and
any xi, xj we have

P
[
Q(xi, xj) ≥ (1 + t)P (xi, xj)

]
≤ exp

(
− n t2

2 + t
P (xi, xj)

)
for any t ≥ 0. Also,

P
[
Q(xi, xj) ≤ (1− t)P (xi, xj)

]
≤ exp

(
− nt2P (xi, xj)/2

)
for any 0 ≤ t ≤ 1. Next, using a union bound on i 6= j and
xi, xj ∈ {−,+} gives the statement of the lemma

The proof of these statements uses the definition of the
distribution Q(x) = ΠT(P̂ ) which implies that Q is factorized
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according to the tree T (Eq. (I.2)) and pairwise marginals
according to Q on the edges of T is the same as the pairwise
marginals according to empirical distribution P̂ . Hence, for
(i, j) ∈ E and any xi, xj ∈ {−,+}, we have Q(xi, xj) =
1
2 (1+xixj µ̂i,j). Also, for (i, j) /∈ E and any xi, xj ∈ {−,+},
we have Q(xi, xj) = 1

2 (1 + xixj
∏
e∈pathT(i,j)

µ̂e).
This characterization of distribution Q implies that the state-

ment of the lemma is a direct application of Lemma V.6 on the
deviation bound of product of binomial random variables.

Lemma V.6. Let Z1, . . . , Zt be independent random variables
such that for each i ∈ [t], Zi ∼ 2Bin(n, µi)/n − 1. Let µ =∏n
i=1 µi. Then

P
[∣∣∣ t∏
i=1

Zi −
t∏
i=1

E[Zi]
∣∣∣ ≥ t] ≤ 2 exp

( −nt2

2(1− µ2) + 4t/3

)
.

Proof. For each i ∈ [t], write Zi = 1
n

∑n
j=1Xij , where the

Xij ∼ Rad
(
(1 + µi)/2

)
are independent. Then

t∏
i=1

Zi =
1

nt

t∏
i=1

n∑
j=1

Xij

=
1

nt

∑
j1,...,jt∈[n]

t∏
i=1

Xiji

=
1

nt−1

∑
s2,...,st∈[n]

(
1

n

∑
s1∈[n]

t∏
i=1

Xi,(
∑i
l=1 sl mod n)

)
.

Note that for each choice of s2, . . . , st ∈ [n], the variable
Ys2,...,st := 1

n

∑
s1∈[n]

∏t
i=1Xi,(

∑i
l=1 sl mod n) is equal in

distribution to Y := Y0,...,0 = 1
n

∑
j∈[n]

∏t
i=1Xi,j .

Therefore for any λ ∈ R,

E

[
exp

(
λ

( t∏
i=1

Zi − E
[ t∏
i=1

Zi

]))]

= E

exp

 λ

nt−1

∑
s2,...,st∈[n]

(
Ys2,...,st − E[Ys2,...,st ]

)
(a)

≤ 1

nt−1

∑
s2,...,st∈[n]

E
[

exp
(
λ(Ys2,...,st − E[Ys2,...,st ])

)]
= E

[
exp

(
λ(Y − E[Y ])

)]
,

where Inequality (a) is by convexity of the exponential func-
tion. Now we can bound the deviations of

∏t
i=1 Zi by Bern-

stein’s inequality. Since Y − E[Y ] = 1
n

∑
i∈[n]

(
Wi − E[Wi]

)
for W1, . . . ,Wn

i.i.d.∼ Rad
(
(1 + µ)/2

)
, the Bernstein bound

reads

E
[

exp
(
λ(Y − E[Y ])

)]
≤ exp

(
λ2n(1− µ2)

(e2λ − 1− 2λ)

4λ2

)
.

Optimizing λ and applying a Markov bound as in the proof
of the Bernstein bound yields (similar to [19] and [11])

P
[∣∣∣ t∏
i=1

Zi −
t∏
i=1

E[Zi]
∣∣∣ ≥ t] ≤ 2 exp

( −nt2

2(1− µ2) + 4t/3

)
.
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APPENDIX: PROOF OF LEMMA V.3

Since π(`) < `, we can prove the following statement which
gives the result in the lemma.

H2(P (x1, · · · , x`), Q(x1, · · · , x`))
≤ H2(P (x1, · · · , x`−1), Q(x1, · · · , x`−1))

+H2(P (x`, xπ(`)), Q(x`, xπ(`))) .

A recursion on the above statement gives the statement of
the lemma. For given ` > 0, define S = {1, · · · , ` − 1} and
xS = x1, · · · , x`−1. Then,

H2(P (x1, · · · , x`), Q(x1, · · · , x`))

= 1−
∑
xS ,x`

√
P (xS , x`)Q(xS , x`)

= 1−
∑
xS

√
P (xS)Q(xS)

∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

= 1−
∑
xS

P (xS) +Q(xS)

2

∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

+
∑
xS

(
P (xS) +Q(xS)

2
−
√
P (xS)Q(xS)

)
×
∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

Next, we bound each term separately∑
xS

P (xS) +Q(xS)

2

∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

=
∑
xπ(`)

P (xπ(`)) +Q(xπ(`))

2

∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

≥
∑
xπ(`)

√
P (xπ(`))Q(xπ(`))

∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

= 1−H2(P (x`, xπ(`)), Q(x`, xπ(`)))

where we used AM-GM inequality.∑
xS

(
P (xS) +Q(xS)

2
−
√
P (xS)Q(xS)

)
×
∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

=
1

2

∑
xS

(√
P (xS)−

√
Q(xS)

)2∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`))

≤ 1

2

∑
xS

(√
P (xS)−

√
Q(xS)

)2
= H2(P (xS), Q(xS))

where we used Cauchy-Schwartz to get∑
x`

√
P (x`|xπ(`))Q(x`|xπ(`)) ≤ 1.
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