FULL PAPER

www.advintellsyst.com

Efficient Defect Identification via Oxide Memristive
Crossbar Array Based Morphological Image Processing

Hee Sung Lee, Yongmin Baek, Qiubao Lin, Joseph Minsu Chen, Minseong Park,

Doeon Lee, Sihwan Kim, and Kyusang Lee*

Defect identification has been a significant task in various fields to prevent
the potential problems caused by imperfection. There is great attention for
developing technology to accurately extract defect information from the image
using a computing system without human error. However, image analysis
using conventional computing technology based on Von Neumann structure is
facing bottlenecks to efficiently process the huge volume of input data at low
power and high speed. Herein efficient defect identification is demonstrated via
a morphological image process with minimal power consumption using an
oxide transistor and a memristor-based crossbar array that can be applied
to neuromorphic computing. Using a hardware and software codesigned
neuromorphic system combined with a dynamic Gaussian blur kernel opera-
tion, an enhanced defect detection performance is successfully demonstrated
with about 10* times more power-efficient computation compared to the
conventional complementary metal-oxide semiconductor (CMOS)-based
digital implementation. It is believed the back end of line (BEOL)-compatible
all-oxide-based memristive crossbar array provides the unique potential toward
universal artificial intelligence of things (AloT) applications where conventional

methods have been recently developed to
recognize the defective information from
input images.*'?! However, most defects
are of irregular shape and size, while the
inspection area is large, and thus the com-
plexity of the input data for defect inspec-
tion is wusually high. Therefore, high
computational power along with large
power consumption and long processing
times is generally required to operate defect
identification algorithms using the von
Neumann architecture based computing
system due to a memory wall problem
between the microprocessor and storage
memory.'"") To ameliorate these issues,
here we have used a nonvolatile memory
based neuromorphic computing system
that imitates the human brain’s operation
combined with a software algorithm for
the defect identification process.'**?
Among them, memristor-based crossbar

hardware can hardly be used.

1. Introduction

Automated defect inspection technology has been widely
investigated in a variety of fields, including the semiconductor
and integrated circuit industry,~*! engineering and science,*!
and medical applications,’®” to overcome the drawbacks of
manual detection methods, which are imprecise and time-
consuming. Various image processing approaches of defect
identification such as filtering, structuring, and statistical

array based neuromorphic computing has
received great attention due to its scalability
and computing-in-memory features.'>~*#!
Cross-point structured memristors, never-
theless, have suffered from cell-to-cell interferences due to the
sneak path currents through neighboring memristor pixels that
lead to unnecessary power dissipation and inaccurate opera-
tions.!"®) To precisely modulate the resistance of each memristor,
the memristor-based array is usually integrated with a selector
device (switching component) such as silicon (Si)-metal-oxide
field-effect transistor (MOSFET), which is known as 1-transistor
and 1-resistor (1T1R) structure.?***) The 1TIR architecture
allows us to precisely program individual memristors using the
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selectable input electric field controlled by the transistor gate
without the cell-to-cell interferences. However, applications of
Si-MOSFET-based 1T1R crossbar array systems are limited for
the heterogeneously integrated artificial intelligence of things
(AIoT) system due to the back end of line (BEOL) process incom-
patibility.**?*) Although there are various alternative BEOL-
compatible thin-film transistors (TFTs) such as oxide/organic
TFTs that can fulfill large-area and flexible fabrication, they
have yet to be demonstrated in neuromorphic system applica-
tions due to the insufficient electrical performance and poor
reliability to operate the huge volume of artificial synapses in
a neural network.”®! Here, to provide reliable and sufficient
current-driving performance, we have used an indium (In)-rich
indium zinc oxide (IZO)-based TFT 30 exhibiting high prg
of 50 cm? (Vs)™! as a selector that is BEOL process compatible
in the memristive crossbar array. Then, hafnium oxide
(HfO,)?'3% based memristors are integrated with 1ZO TFTs
as a 1T1R pixel for the memristive crossbar array. The HfO, used
as the active switching medium of the memristor also functions
as a passivation layer of the IZO active channel; thus, the reliabil-
ity of TFTs has been significantly improved without increasing
the structural complexity of the 1T1R system. Moreover, the low
leakage current (Iopg) of the IZO TFT (two orders of magnitude
lower than Si-TFT) in the 1T1R system can allow the potential
availability for low-power computing applications requiring
low leakage power consumption in unselected lines under heavy
training operation.

Using the fabricated memristive crossbar array combined with
a morphological image process algorithm,?*** we demonstrated
a defect identification with about 10* times more power-efficient
computation compared to an identical conventional central proc-
essing unit (CPU)-based process. Particularly, we complemented
a unique hardware-based dynamic Gaussian blur kernel?®>>¢
operation with the defect identification process algorithm that
allows us to vary the sigma value of a 2D Gaussian curve to pre-
cisely generate defect information. By combining neuromorphic
hardware and software algorithms, we have demonstrated a
power-efficient and accurate defect identification performance
using morphological image processing. Successful identification
performance has been confirmed by detecting the presence
of defects from the various image sets, including fabric, brain
tumor, graphene, and cupric oxide (CuO) thin film. Further-
more, our system is BEOL process compatible; thus, it provides
the potential to be adapted in various applications that require
limited fabrication conditions, including low temperature, large
scale, and flexibility, which the conventional hardware cannot
fulfill, toward universal AloT applications.

2. Results and Discussion

2.1. Defect Detection Process

Morphological image processing is an image analysis technique
that allows the detection of defects by identifying key shape char-
acteristics while removing irrelevant background information.
Through the image process, the unintentionally existing defect
information can be extracted from the noisy background by
thresholding the pixel intensity of the preprocessed image

Adb. Intell. Syst. 2020, 2000202 2000202 (2 of 11)

www.advintellsyst.com

according to the size and shape based on the morphology.l**-**

However, the conventional morphological image operation has
limitations in the perspective of accuracy because it usually only
uses a single filter for the background segmentation process.
Figure 1a schematically illustrates a flowchart of the conventional
morphological image process (left) and our process (right). In the
preprocessing stage, the input image was adjusted by applying
denoising operations and by converting the full-color image into
binary data. To achieve further accurate defect information, we
used an averaging operation in addition to the conventional pro-
cess by applying 3 x 3 dynamic Gaussian blur kernels as filters.
We applied nine types of Gaussian blur kernels with a sigma
value ranging from 0.7 to 1.1 using the programable memristive
crossbar array. Weight values of each pixel in a Gaussian blur
kernel was discretized into integers between 1 and 64 to match
the available programing resolution of fabricated memristors
that is discussed in a later section, as shown in Figure 1b. By
performing the matrix convolution of a converted image with
each kernel, nine denoised images were acquired. Then, to dis-
tinguish the defects from the background, the binarization
process was subsequently performed by applying a threshold
on the grayscale images through Otsu’s algorithm.>”!
Following the preprocess stage described previously, we used
the morphological image operations for defect identification.
Detection of the defect areas can be achieved through a morpho-
logical image process via matrix multiplication of pixel informa-
tion of the target image and a structuring element.** The
structuring element is a diamond-shaped disk matrix consisting
of 0s and 1s (shown in Figure 1a) that allows us to remove any
details or regions smaller than the size of it through matrix mul-
tiplication. The results of this process confirm the existence of
defects regardless of the shape and size of the defective area
by varying the structuring matrix and the type of morphological
operation. Specifically, we have used the morphological opera-
tions of dilation, erosion, opening, and closing, which are com-
monly used in defect detection (see Experimental Section and
Supporting Information Note 2). The combination of these math-
ematical operations with the application of structuring elements
can be used to identify defects from the images. The erosion and
dilation operations are processed using kernel convolutions!**!
via Boolean operations of XOR and. Here, we have used mem-
ristors to implement binary state kernels as the structuring
elements to perform the erosion and dilation operations. Two
types of diamond-shaped disks (shown in Figure 1a) were used
as structuring elements. Figure 1c shows a comparison of the
estimated power consumption of performing inference mode
kernel operations with analog and digital implementations using
the fabricated 1T1R system and a hypothetical digital circuit,
respectively. Figure S1, Supporting Information, shows the
approximated power consumption of the morphological image
process using kernel operations with structuring elements for
the analog and digital implementations. The kernel operation
can be computed based on the multiply-accumulate (MAC) oper-
ation with a matrix convolution process. The digital implemen-
tation has been modeled as a system executing a sequential
programming code using CPU and dynamic random-access
memory. Then, we calculated the total CPU cycles required
for MAC operation for each kernel by multiplying the basic unit
cycle. For the analog implementation, we assumed the 1T1R
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Figure 1. Scheme of the defect identification process. a) Schematic flowcharts of the conventional morphological image process (left) and our process
(right). Our process consists of a preprocessing stage where the input image is processed by using a dynamic Gaussian blur kernel, a defect detection
stage using morphological operations, and a postprocessing stage where the results are processed via an averaging schema that provides a gradient
image of the defects. b) Dynamic Gaussian blur kernels with various sigma values, discretized into integers between 1 and 64. c) Schematic diagrams of
analog (above) and digital (below) implementation performed using a fabricated 1T1R system and a hypothetical digital circuit, respectively. d) The nine
outputs generated from the processes with nine types of Gaussian blur kernels. €) Comparison of detected defects processed by the conventional process

(left) and our process (right).

memristive crossbar array based system operates at 1 MHz,
output memristor current of 1pA at low Vg, and input Vieaq
of 0.2V. The structuring element, realized by binary states of
the memristor corresponding to the input voltage, was applied
to each pixel of the image to process vector—matrix convolution
for the MAC operation. Particularly, the digital-to-analog conver-
sion (DAC) and multibit analog-to-digital conversion (ADC) units
are not required for both cases because the kernel operations
only have digital inputs and binarized outputs. As a result, the
approximated inference mode power consumption shows that
our memristive crossbar array based analog system enables about
10* times more power-efficient computing than conventional
digital-circuit-based computing, regardless of the disk size, due
to its computing-in memory architecture.”” (See in Figure S1,
Supporting Information, for details.)

In the postprocessing stage, an averaging schema was used to
improve identification accuracy. The element-wise-averaging
method“*”! was used to combine the distributed intensity of
extracted binary images using the following equation:
Lversge = 1/n 3 %1 I;, where [; is ith image matrix, and n is
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the number of detected distributions. Figure 1b shows the pro-
cess example of the fabric defect detected by the previously
described method using the fabricated memristive crossbar array
combined with software operation. We have applied the kernel
operation using nine types of dynamic Gaussian blur kernels
with varied sigma values ranging from 0.7 to 1.1 to the input
image. (The sigma values higher than 1.1 have shown no signifi-
cant difference in the output for the application of defect detec-
tion with the given size of our kernel.) The individual pixel
weight value of kernels was discretized by 6 bits of information
through the 1T1R memristor array. To program the kernel to the
targeted sigma value, each pixel of the memristive crossbar array
was set by a calibrated input voltage. Each output processed
through programmed kernels with varied sigma values shows
defect information. The segmentation process removes uninfor-
mative variations, and then the output is combined to provide an
averaged value. The nine outputs processed by the blur kernels
using the fabricated memristor array are shown in Figure 1d.
Figure 1le shows the comparison of identified defects processed
by conventional means and our method, respectively. The result
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processed by conventional operation using a fixed sigma value of
0.7 was insufficient to provide accurate defect information due
to the difficulty in extracting the defective area from the back-
ground. In contrast, the defect information more effectively
reconstructed the defect information using multiple sigma
values by updating the weight value of each memristor in the
array. The extracted grayscale output image in Figure 1e exhibits
the defect information.

2.2. Structural and Electrical Properties of the TT1R Pixel

To precisely modulate the resistance of individual memristors in
the array for the kernel operation in the defect detection process,
we fabricated a 1T1R memristive crossbar array. The 1T1R pixel
in the crossbar array consists of a series connection of an 1Z0
TFT and a HfO, memristor. The optical microscope image of the
5x5 1T1R pixel array integrated on a sapphire substrate is
shown in Figure 2a. All pixels are interconnected as a matrix
in the array to operate parallel convolution computing. To
enhance the driving current through the oxide TFT, we applied
an interdigitated design!*"! of the source (S)/drain (D) electrodes
with the channel width/length (W/L) ratio of 50/5 (see zoomed
scanning electron microscope (SEM) image of Figure 2a). The
pixels in the same row share the gate electrodes of TFTs, while
the parallel column lines connect the top electrode (TE) and bot-
tom electrode (BE) of each memristor, respectively. Figure 2b
schematically illustrates the device structure of the fabricated
1T1R single pixel. The IZO oxide TFT was designed as an
inverted staggered structure!™” with an Al,O; gate insulator
and a bottom-gate electrode. A 5 nm thick HfO, layer was depos-
ited simultaneously using the atomic layer deposition (ALD)
process on top of both the IZO TFT back-channel and the
25nm Pt/3nm Ti BE as a passivation layer and as an active
medium of the memristor, respectively. As shown in the inset
of Figure 2b, the HfO, layer covered on the IZO back-channel
can effectively prevent the oxygen-related atomic diffusion that
can cause degradation issues in oxide semiconductors. In this
structure, the Pt/Ti is used as a common electrode which forms
the drain contact of the IZO TFT and the BE of the HfO, mem-
ristor in series. The current compliance of the memristor is
controlled by the applied gate voltage of the connected 1Z0
TFT to precisely tune the weight values of the memristor.
Figure 2c shows the transfer characteristics (drain current (Ip)
versus gate voltage (V) measured at drain voltages (Vp) of 0.1
and 1 V) of the single IZO TFT. To enhance the carrier mobility,
we deposited the In-rich IZO (In,03-10 wt% ZnO) as the active
channel layer of the n-type oxide TFT by using a DC magnetron
sputter at room temperature. As shown in the inset of Figure 2c,
the IZO TFT exhibited high ppg of 50 cm? (Vs) ™! at Vi, of 0.1V,
which is approximately five times higher than that of commonly
used oxide TFTs based on an indium gallium zinc oxide
(IGZ0)!** and zinc oxide (ZnO)**! TFTs. The 1T1R system based
on such oxide semiconductors can hardly operate the memristor
due to its insufficient driving current.***3! The 1ZO TFT shows
high enough Ip, of 0.1 to 10 mA at Vp, of 1V depending on Vg
ranging from —5 to 10V, which is sufficiently high to program
the resistance of the HfO, memristor. Furthermore, the 1ZO
TFT shows a low subthreshold gate swing, an enhancement
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mode threshold voltage (Vi), and a low off-current (Iopg) of
0.15Vdec™, 0.8V, and ~10 ' A, respectively. (details are
shown in Supporting Information Note 1) In particular, transfor-
mation of the TFT property from the depletion mode to enhance-
ment mode was achieved by applying O, plasma treatment on the
back channel of the IZO active layer to effectively compensate for
the free electrons that are unintentionally generated from the
In-rich composition of IZOs (see Experimental Section and
Figure S2, Supporting Information).

The current-voltage characteristics of a HfO, memristor fab-
ricated on top of the Pt/Ti drain electrode of the TFT is shown in
Figure 2d. Before measurement, an electroforming process was
performed to obtain reliable bipolar resistive switching behavior
of memristors by applying a 5 V DC bias to the TE of Ta as shown
in the dotted line of Figure 2d. The electroforming in oxide-based
memristors is driven by induced conducting paths via migration
of oxygen atoms.**** The fabricated memristor exhibited a typi-
cal resistive switching -V behavior, where the device is switched
from a high-resistance state (HRS) to a low-resistance state (LRS)
by applying a positive bias over the SET voltage (Vsgr). The pro-
grammed LRS is retained during the voltage sweep back in a
negative direction and switched to the HRS by applying the
RESET voltage (Vreset)-

Moreover, the HfO, oxide layer coated on top of the TFT
channel significantly improves the reliability of the oxide TFT.
The external bias stress and ambient air conditions usually cause
the conductance instabilities of oxide TFTs.***”) Under the bias
stress conditions with constant Vi and Vp to turn on the tran-
sistor, an oxide TFT’s performance is generally degraded by the
gate electric field induced chemical reaction between ambient air
and the back-channel surface of an oxide semiconductor.
Especially, the degradation becomes more serious in a high-
mobility oxide channel such as 1Z0.*”! Therefore, an effective
passivation layer for the stable operation of an oxide TFT is essen-
tial to protect the chemical reaction and to precisely control
the conductance state of a 1T1R system. In the 1T1R system,
the 5nm thick HfO, acts as the passivation layer to protect
the back-channel surface of the IZO TFT as well as the active
layer of the memristor. To confirm the effectiveness of HfO, pas-
sivation, the DC bias stress induced I, degradation characteristic
of the fabricated IZO TFT with and without the HfO, protecting
layer was measured under ambient air conditions at the positive
bias stress conditions (Vg and Vp, were set to 10 and 1V, respec-
tively, at room temperature, and the stress duration was 10*s), as
shown in Figure 2e. As the stress time increased, the Ip, level of
the IZO TFT without the HfO, passivation layer continuously
degraded over two orders of magnitude, whereas the degradation
behavior was dramatically improved by using the HfO, passiv-
ation layer to cover the back-channel surface of the oxide TFT.
The measured results clearly indicate that the HfO, layer could
enhance the stability of oxide TFTs.

The -V characteristic of the 1T1R system, consisting of the
HfO, memristor and 1ZO TFT in series, was measured under
the application of 10 V gate bias, as shown in Figure 2f. The elec-
troforming process was performed by doing a DC bias sweep
from —3 to 3V of the TE of the memristor (Viem) before the
measurement, as shown in inset curve of Figure 2f. The current
flow to the memristor (Iem) in the 1T1R pixel at the forward-
biased regime is controlled by the driving current of the IZO
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Figure 2. Structure and electrical properties of 1T1R pixel. a) Optical microscope image of the 1T1R array (left) and SEM image of the zoomed
single 1T1R pixel (right). b) 3D schematic illustration of the TT1R pixel consisting of an In-rich IZO TFT and a HfO, memristor. c) Transfer characteristics
of the IZO TFT obtained at Vp, of 0.1 and 1V. The inset plot shows the field-effect mobility measured at Vj, of 0.1 V. d) The |-V characteristics of a HfO,
memristor fabricated on top of the Pt/Ti electrode of the TFT. The dotted line shows the electroforming operation. e) The DC bias stress induced transfer
characteristics of IZO TFTs, with and without the HfO, protecting layer. The devices were stressed under the following conditions: Vg and Vp, were set to
10 and 1V, respectively, at room temperature, and the stress duration was 10*s. The inset shows I, degradation properties of the TFTs. f) The |-V
characteristic of 1T1R pixel obtained at V of 10 V. The inset shows the electroforming operation. g) The histogram of the SET and RESET voltage obtained
from the IV curves based on the 200 repetitive switching cycles. The statistical study of the SET and RESET voltage on the 1T1R pixel exhibited a general
Gaussian distribution with a standard deviation sigma of both 0.2 at 2.35 and —2.25 V. h) |-V measurement of the 1T1R consisting of the bias-stressed
1ZO TFTs with and without HfO,.

TFT tuned via V. The measured [ ;e of the 1T1R system shows
the I-V loop with two branches corresponding to the HRS and
the LRS of the memristor, indicating that the fabricated IZO
TFTs provide sufficient current to set the conductance of the
connected memristor. To examine the repeatability of the
1T1R system, multiple cycling measurements were imple-
mented. The [-V characteristics of the 1T1R pixel showed uni-
form SET and RESET operations during repeated DC voltage
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sweep cycles from —3 to 3V of Ve with a fixed Vg of 10V
(see Figure S3a, Supporting Information). Figure 2g shows
the histogram of the SET and RESET voltage obtained from
the I-V curves of the 200 repetitive switching cycles. The statisti-
cal study of the SET and RESET voltage on the 1T1R pixel
exhibited a general Gaussian distribution with a standard devia-
tion sigma of 0.2 at 2.35 and —2.25V, respectively, indicating
a uniform operation. As shown in Figure S3b, Supporting
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Information, we also used endurance-cycling performance test
with AC voltage pulses (500 ns width with fixed Vg of 2V for
SET, —2V for RESET, and a read voltage of 0.2 V) for 10° cycles.
The variation of HRS and LRS was consistent without remark-
able degradation during the switching cycles. In addition, we
demonstrated the -V measurement of the 1T1R consisting
of the bias-stressed IZO TFT without the HfO, layer to examine
the effect of the HfO, passivation layer, as shown in Figure 2h.
The electrical behavior of the 1T1R with the HfO,-passivated
TFTs was well preserved, showing the typical switching curve
after 10* s bias stress time. However, in case of the 1T1R system
with unpassivated TFTs, the memristor could not be completely
reset after electroforming due to the degraded field effect
mobility of the active layer.

2.3. Gate-Induced Current Modulation toward Kernel Operation

We have experimentally demonstrated precise control over the
resistance state of the individual memristor in the 1T1R crossbar
array by using the gate-induced current modulation of the
integrated TFTs. Figure 3a shows Ip—Vg curves of the 1T1R pixel
at a reading voltage of 0.2 V along with the resistance states set by
V¢ of the IZO TFT. Before the demonstration, the resistances of
the memristor were programmed by set and reset processes with
the IZO TFT using target Vg of 10 and 2V. The Ip curve
indicates distinct programmable current states of the HRS at
Vg of 10V and LRSs at Vg of 10 and 2V, respectively. As the
Iopr of the fabricated IZO TFT is lower than 107 '2A, the
oxide-based 1T1R system is capable of providing a wide operation
window of programable weight values. The low leakage power
consumption of oxide TFTs also makes it suitable for a
wide range of low-power applications. The demonstrated
all-oxide-based 1TIR system allows a hundred times more
power-efficient computing compared to a Si-TFT-based system
for the applications due to the low Iopr and the high energy
efficiency, which is even more effective when the size of the
crossbar is large along with the heavy training operation
(see Figure S4, Supporting Information). To confirm the feasi-
bility of the current modulation of the oxide-based 1T1R system,
we demonstrated continuous electrical tuning of the current
states as shown in Figure 3b. By driving the IZO TFT with
Vi ranging from the subthreshold to the high-electric-field
regime (2-10V), we were able to precisely select and modulate
the 64 current levels (6 bits) through the memristor. Therefore,
the on-off current ratio window of ~10* was achieved via the
gate-induced modulation. The discretized current levels
exhibited linearity over the applied Vg regime, as shown in
Figure 3c. The linearly modulated behavior confirms that the
resistance state of the memristor can be accurately tuned by
an IZO TFT for dynamic kernel operation used in this work
for the defect identification.

Furthermore, analog switching behavior was demonstrated
by applying electrical pulses, similar to the weight update of
biological synapses through potentiation and depression./*®*’!
Figure 3d—f shows the incremental weight update characteristics
of a fabricated 1T1R pixel measured by applying potentiation
(rising) and depression (falling) pulses. We have applied both
constant and incremental external bias pulse schemes to
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demonstrate the incrementally updated resistance properties
of a 1T1R pixel. As shown in Figure 3d, the constant pulse
scheme is a pulse sequence with a fixed set voltage in amplitude
and frequency, while the incremental pulse scheme uses
progressively increasing set voltage amplitudes at a fixed fre-
quency.*® The current value was monitored with a 0.2V read
pulse after each set or reset pulse. As shown in Figure 3e, when
the constant pulse with 2V amplitude and 500 ns width was
applied, the current levels abruptly changed during both poten-
tiation and depression processes. By contrast, the current levels
changed almost linearly during weight updates when applying
incremental bias pulses with 150 consecutive positive and nega-
tive pulses changed from 1.8 to 2V and from —1.9 to —2.1V,
respectively, indicative of an ideal analog switching behavior
as shown in Figure 3f. Furthermore, the gate-induced current
modulation technique enables us to precisely tune the weight
value window of the 1T1R device through the compliance current
controlled by applying Vg of TFTs ranging from 2 to 10V.
The linear weight value update behaviors indicate that our
1T1R system based on oxide TFTs is a promising candidate
for an electronic synapse for future analog computing applica-
tions that require a BEOL-compatible process.

For the demonstration of dynamic Gaussian blur kernel, we
fabricated a 3 x 3 1T1R memristive crossbar array. Figure 3g
shows the fabricated 3 x 3 1T1R array connected in series with
[ZO TFTs and HfO, memristors (Figure S5, Supporting
Information, shows the -V curves of all pixels in the array).
To implement the dynamic Gaussian blur kernel operation, each
pixel of the array was programmed by applying a targeted input
V. Figure 3h shows one of the Gaussian blur kernels with a
sigma value of 1.1 under reset and set conditions. The bottom
graph of Figure 3h exhibits the measured current values
of the 3 x 3 array based on the 64 linearly discretized states. As
shown in the graph, the target current states could be precisely
selected by set Vg with narrow distribution that allows accurate
kernel operation. Figure 3i shows the in situ monitoring of the
1T1R array programming process, while measurement was per-
formed with fixed read Vp and Vg of 0.2 and 5V, respectively.
Unit memristors in each pixel were programmed to the distinct
resistive states for the target kernel operation using the biasing
history described in Figure 3h. The read current, which is the
accumulated current value obtained from each unit pixel’s TE line,
was increased stepwise and followed the used time domain
bias scheme. This operation can be effectively expressed as the
convolution process based on Ohm'’s law for vector—matrix mul-
tiplication and Kirchhoff’s current law for summation.’® This
characteristic confirms the feasibility of the all-oxide-based mem-
ristive crossbar array for analog computing.

2.4. Demonstrations of the Defect Identification Process

We demonstrated the image filtering process via dynamic
Gaussian blur kernel operation for the defect identification using
the fabricated memristive crossbar array. To demonstrate the
nine types of 3 x 3 Gaussian blur kernels varied by the sigma
value, we simulated and measured the kernel maps based on
the 6 bits programmed current states ranging from 10 to
107*A, as shown in Figure 4a. The nine types of Gaussian
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Figure 3. Gate-induced current modulation properties for the kernel operations. a) I-V characteristics of the 1T1R pixel at high- and low-resistance states
obtained by applying a fixed reading voltage of 0.2V and Vg of 2 and 10 V. b) |-V characteristics of the TT1R pixel measured during the continuous
electrical tuning of the memristor using gate-induced modulation. c) The plot of discretized 64 current (6 bits) states tuned by V. The inset diagram
shows the 1T1R pixel circuit with designated resistance tuned by the IZO TFT. d) The constant and incremental external bias pulse schemes to demon-
strate the linearly updated weight value of the memristor. The incremental weight update properties of our TT1R pixel performed by e) constant and
f) incremental pule scheme at Vi ranging from 2 to 10 V. g) Circuit diagram of our 3 x 3 1T1R array which connected in series with IZO TFTs and HfO,
memristors. The color variation describes separately proposed resistances of memristor. h) The Gaussian blur kernel with a sigma value of 1.1 demon-
strated by the memristive crossbar array. It is demonstrated by measured current values of the 3 x 3 array based on the calibrated 64 linearly discretized
states. i) In situ monitoring of programed states of 1T1R array, while measurement was performed at the fixed read Vp, and V of 0.2 and 5 V, respectively.

kernels mapped by the experimental readout current matrix
accurately matched with the targeted sigma values of the simu-
lated kernels (Figure S6, Supporting Information, shows all the
experimental readout currents of kernels). Precisely tuned
weight values of the blur kernel based on a memristor array con-
firmed the resistance modulation performance of the fabricated
oxide-based 1T1R system for accurate kernel operation. We also
demonstrated a 5 x 5 diamond-shaped disk consisting of binary
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components using the on and off operation of the 1T1R array for
the linear opening and closing process, as shown in Figure 4D,
showing a precise operation similar to the simulated matrix.
Figure 4c shows the processed output results, extracted from
each processing step of the used defect identification process
using the memristive crossbar array. The input image of a fabric
was filtered by a Gaussian blur kernel to distinguish the defective
pattern from the background. The tunable kernels with multiple
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Figure 4. Demonstrations of the defect detection. a) Simulated and measured current map of the nine types of 3 x 3 Gaussian blur kernels programed
by applying targeted Vg in 1T1R array. b) Simulated and measured current map of the 5 x 5 diamond-shaped disk for the MAC operation of the
morphological image process. c) Processed output images extracted from each processing step of input, distinction, binarization, linear operation,
and averaging, respectively. d) Additionally demonstrated results of brain tumor, skin cancer (called melanoma), CVD-grown graphene, and CuO
thin film extracted by applying the defect detection process using the fabricated memristive crossbar array. The input, output, and overlapped images

of each example are presented.

sigma values (here, ranging from 0.7 to 1.1) allow us to
effectively distinguish the defect information from the back-
ground pattern. Then, the image was binarized by applying
the thresholding process. The defect area was identified

Adv. Intell. Syst. 2020, 2000202 2000202 (8 of 11)

by implementing the morphological image process of
dilation and erosion. This process was repeated using nine
types of Gaussian blur kernels to yield nine outputs.
Following, an element-wise-averaging method was applied to
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reconstruct a single complete defect image from these nine
outputs.

Our technique can be universally applied to various fields
where defect identification is critical. To confirm the generality
of the process, we have applied an identical computing process
using a memristive crossbar array to medical and microscopic
images as well. Figure 4d shows the processed images of brain
tumor,”) skin cancer (called melanoma),®" chemical vapor depo-
sition (CVD)-grown graphene,”” and a CuO thin film®* using
the fabricated oxide-based 1T1R memristive crossbar system
(Figure S7, Supporting Information, shows the nine different
single output images generated from each demonstration).
The processed output images from the various inputs display
the identified defect information. These demonstrations indicate
that a morphological process using memristive crossbar arrays
can be effectively used for various applications, including those
in industry, science, and medical areas.

3. Conclusion

In summary, we have demonstrated efficient defect identification
using a morphological image process with low power consump-
tion via a memristive crossbar array. The memristive crossbar
array consists of 1T1R pixels fabricated with an In-rich IZO
TFT and a HfO, memristor. The 1T1R system allows us to mod-
ulate the resistance of individual memristors in the array without
cell-to-cell interference. The HfO, layer is used as the passivation
layer for the oxide TFT channel to improve the reliability of IZO
TFTs while it serves as an active switching medium of the mem-
ristor. Using the fabricated memristive crossbar array system, we
have demonstrated defect identification via an analog computa-
tion process with lower power consumption compared to digital
computation. To generate precise defect information, we have
used additional pre- and postimage processing steps using
unique hardware-based dynamic Gaussian blur kernels that
allow us to extract accurate defect shapes with the gradient pixel
information. Based on the approaches, we have successfully
demonstrated the defect identification process using images
excerpted from various fields including a fabric, brain cancer,
CVD-grown graphene, and CuO thin film. We believe that the
BEOL-compatible all-oxide-based memristive crossbar array pro-
vides a unique opportunity for neuromorphic hardware toward
universal AloT applications, including defect identification,
where conventional hardware cannot be easily used.

4. Experimental Section

Fabrication of TT1R Pixel Array: The 1TI1R array was composed of
I1ZO transistors and a HfO, memristor. The cross-section structure of
the 1ZO transistor and Ti/Pt/HfO,/Ta fabricated on a sapphire substrate
is shown in Figure 2b. Although a sapphire substrate was used for an
academic research purpose in this work, the device can be achieved on
various substrates, including silicon and glass, without issues due to
the high process compatibility of oxide-based semiconductors. For the fab-
rication of the 1ZO transistor, the Ti/Au back gate electrode (5/100 nm)
was deposited by an e-beam evaporator. Then, a 100 nm thick Al,Os film
as a gate insulator was deposited on the patterned gate metal by ALD.
Subsequentially, a 10 nm thick 1ZO thin film as a channel layer was formed
by using DC-magnetron sputtering of In-rich 1ZO target (In,O;—10 wt%
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ZnO; the atomic percentage values of the indium, zinc, and oxygen were
29.01%, 13.74%, and 57.25%, respectively) with a deposition rate of
0.2nms™, where the gas volume ratio of [O,]/[Ar 4+ O,] was fixed to
0.2, followed by an annealing process at 250 °C for 1h in an oven, and
the channel layer was defined via photolithography and wet etching pro-
cess by using a buffered oxide etchant (BOE). After the channel patterning,
O, plasma treatment for the 1ZO film was performed at 200 W for 30's to
compensate for the exceeded oxygen vacancy. The 5/25 nm thick Ti/Pt was
deposited as source and drain contacts of the transistor and BEs of the
memristor by e-beam evaporation. Following the metallization, the 5 nm
HfO, thin layer was formed by ALD, working as a passivation layer of tran-
sistor channel and switching medium for the memristor. The switching
area was isolated from the passivation area via photolithography and
wet etching process using BOE. Then, a 50 nm Ta metal as a TE of the
memristor was formed via DC-magnetron sputtering and lift-off, forming
a cross-junction.

Electrical Measurement: The DC electrical performance of the 1ZO tran-
sistor, HfO, memristor, and TT1R array was characterized by using a
Keysight B1500A Semiconductor Analyzer. The analog behaviors of the
memristor and 1T1R array were measured using the Keysight B1500A,
a pulse generator (Keysight 33600A), a transimpedance amplifier
(Edmund 59-179), and an oscilloscope (Keysight DSOX3024T). The analog
behavior of the 1T1R pixel was characterized using a pulsed signal with two
types of bias schemes. The constant pulse modulation was performed at a
fixed drain voltage of the transistor at +2 V. On the other hand, the incre-
mental pulse modulation was performed with linearly increasing drain
voltage (with 150 consecutive positive and negative pulses changed from
1.8 to 2V and from —1.9 to —2.1V, respectively) for set and reset pro-
cesses, respectively. All pulse modulation measurements were processed
under a gate bias ranging from 2 to 10V and at a fixed read voltage of 0.2 V.

Defect Detection Algorithm: This algorithm was used to detect defects used
in this work.

Algorithm. Defect identification process using dynamic Gaussian blur
kernels, morphological image process, and averaging schema.
Initialize image and convert to grayscale.
Initiate array of sigma values.
Calculate the discretized Gaussian blur kernels using 64 states using
the sigma values.
Initialize structuring elements SE; and SE, for the morphological
process

(SE); = {x|x =i+ 2zVi € SE}

(SE), == {x|x = —i,Vi € SE}

Erosion := A© SE = {z|(SE), N A° = @}

Dilation == A@® SE = {z|[(SE), n A] C A}
For each kernel

Initialize threshold level, t,,, using Otsu’s method or manually.
Convert grayscale image into a binary image using thresholding.

binarized = image > t,
opened = mathematical morphological opening on binarized
image with SE;

A.SE; = (A© SE,) @ SE;

closed = mathematical morphological closing on opened image
with SE,
A< SE, = (A® SE,) © SE,

end
Calculate average via the element-wise method.

Set Iaverage = Z;”:] Ii'
Divide Ipyerage by the number of morphological output images.
end
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