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A B S T R A C T

Mesoporous oxides are outstanding metal nanoparticle catalyst supports owing to their well-defined porous
structures. Such mesoporous architectures not only prevent the aggregation of metal nanoparticles but also
enhance their catalytic performance. Metal/metal oxide heterojunctions exhibit unique chemical and physical
properties because of the surface reconstruction around the junction and electron transfer/interaction across the
interface. This article reviews the methods used for synthesizing metal-supported hybrid nanostructures and
their applications as catalysts for environmental remediation and sensors for detecting hazardous materials.

1. Introduction

Over the past few years, metal nanoparticles have gained con-
siderable interest for catalytic applications owing to their unique
properties including high surface area and well-controlled facets (Zhang

and Wang, 2014; Skrabalak and Xia, 2009; Sun and Xia, 2002;
Rodrigues et al., 2019). Au, Pt, Pd, Ru, Ni, and Co and their binary,
tertiary, and quaternary compositions have been extensively in-
vestigated for a wide range of catalytic applications (Au et al., 1998;
Wong et al., 2011; Ito et al., 2014). As compared to bulk catalysts,
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nanocatalysts significantly reduce the process cost and time (Shan et al.,
2019; Ran et al., 2018; Song et al., 2015; Yan et al., 2015; Ray and Pal,
2017). The catalytic activity and selectivity of colloidal metal nano-
particles depend on their shape, size, and support material (Decarolis
et al., 2018; Lin and Compton, 2017).

Chemical reduction and thermal decomposition based on colloidal
chemistry are the most widely used methods for the synthesis of metal
nanoparticles. Atomically clean metal nanoparticles are ideal for
characterizing their surface properties. However, it is not possible to
generate such nanoparticles in a chemical flask. Metal nanoparticles
with clean surfaces can only be obtained under high vacuum condi-
tions. Furthermore, as bare nanoparticles are kinetically as well as
thermodynamically unstable, they always show a tendency to lower
their high surface energy either by sorption of molecules from the
surroundings or via aggregation. Steric and/or electrostatic stabilization
forces are normally used to prevent the aggregation of nanoparticles
(Tadros, 2012). Incorporation or encapsulation (in certain cases) of
nanoparticles in solid porous substrates is a commonly used approach
for the preparation of nanocatalysts and their subsequent applications
(Genna et al., 2013; Jin et al., 2012a, b). The porous substrate not only
stabilizes the nanoparticles but also induces a synergistic effect in many
applications (Yang et al., 2017; Plata et al., 2016; Muller et al., 2018).

Different mesoporous materials have been developed as nano-
particle supports in the past few years owing to their optimum pore
sizes (2–50 nm), high surface areas, and easy and reliable synthesis
methods (Yanagisawa et al., 1990; Kresge et al., 1992; Bastakoti et al.,
2015a). These properties of mesoporous materials make them pro-
mising candidates for applications such as catalysis, sensing, drug de-
livery, and gas separation (Li et al., 2014). In general, mesoporous
metal oxides with different compositions are synthesized using either
soft (surfactants, block copolymers, etc.) or hard (SBA-15, MCM-48,
MCM-41, CMK-1, CMK-3, etc.) templates (Gu and Schüth, 2014; Li
et al., 2016; Zhang et al., 2019a; Wang et al., 2011; Morris et al., 2008;
Xu et al., 2020). Mesoporous metal oxides exhibit intrinsic catalytic
functionalities. In addition, they can be used as supports for metal na-
nocatalysts. The numerous openings in the mesopores of these metal
oxides facilitate the encapsulation of small metal nanoparticles and
provide easy access to gases and other molecules. The catalytic activity,
selectivity, and stability of mesoporous metal oxide-supported nano-
particle catalysts depend on the physicochemical properties of the
metal nanoparticles and mesoporous supports and the interactions be-
tween them (Shan et al., 2019; Zheng et al., 2019; Jo et al., 2018; Gates
et al., 2017; Ghimire et al., 2019; Goncalves and Jaroniec, 2019). Thus,
designing optimum nanoarchitectures for metal nanocatalysts is a topic
of interest for researchers. In order to develop optimum metal sup-
ported nanoarchitectures at the nanoscale level, it is imperative to
understand the synthesis methodology, the mode of interaction be-
tween the support and metal nanoparticles, and the potential applica-
tions of the resulting nanoarchitectures. This review discusses several
important environmental as well as other related applications of metal-
incorporated mesoporous oxides.

2. Interaction of metal nanoparticles with mesoporous oxides

For a long time, it was assumed that mesoporous oxides act as inert
supports to stabilize the incorporated nanoparticles. This concept has
changed over the years as the small metal nanoparticles that adhered to
supporting oxides exhibited remarkable performance for different ap-
plications (Xu et al., 2020). For example, owing to the interaction of
platinum nanoparticles with mesoporous transition metal oxides at the
interface, the rate of the oxidation of CO is significantly enhanced (An
et al., 2013a). Therefore, understanding the interaction between metal
nanoparticles and mesoporous metal oxides is crucial for developing
metal-incorporated mesoporous oxides with desired properties or ap-
plications (van Deelen et al., 2019; Oh et al., 2018; Yuan et al., 2010;
Ro et al., 2018; Witzke et al., 2017). The complexity of these

interactions reflects the complexity of the metal/metal oxide interface
(Caldas et al., 2017). The same metal can behave very differently de-
pending upon its interaction with the support materials. The interfacial
energy arising from the interactions between the metal nanoparticles
and support is affected by the size and orientation of the nanoparticles
(Kale and Christopher, 2016; Shekhar et al., 2012; Winterbo, 1967;
Cargnello et al., 2013; Campbell et al., 2002). The coordination en-
vironment of the exposed metal atoms is a function of the particle size.
The relative fraction of exposed atoms existing in different local en-
vironments varies as the dimensions of the supported metal particle
decreases (Ro et al., 2018).

From electronic and geometric perspectives, metal oxides are more
complicated than metals. The electronic and geometric properties of
metal oxides can be tailored by doping them with different atoms or
ions. The properties of doped metal oxide-supported metals depend on
the electron exchange between the dopants and the metal oxides
(Stavale et al., 2012). When metal atoms or clusters interact with the
metal oxide support having anion vacancies (defects), the charge
transfer occurs from the support to the adsorbed metal. The defects
occupy higher energy levels in the bandgap and can be located above
the Fermi level of the deposited metal nanoparticle, thus inducing the
electron flow (Lohaus et al., 2018). Stavale et al. investigated the effects
of metal dopants on the properties of alkaline earth metal oxide sup-
ports. Cr and Mo (group 6 elements) have been incorporated into the
rock salt oxides of MgO and CaO, respectively (Fig. 1a) (Stavale et al.,
2012). The Au binding behaviors of MgO and CaO have been in-
vestigated to demonstrate the charge transfer in them. Mo3+ ions in-
corporated into CaO can donate an electron to the surface of Au atoms.
However, in MgO-Cr, the Cr3+ ions cannot be oxidized any further,
which inhibits the electron transfer to the Au atoms (Fig. 1b) (Stavale
et al., 2012). This difference in the characteristics of MgO-Cr and CaO-
Mo can be attributed to the characteristics of the dopants rather than
those of the oxides. The Mo3+ ions in CaO-Mo oxidize into Mo4+ by
donating an electron. In contrast, in the case of MgO-Cr, the Cr3+ ions
replace the Mg2+ ions, leading to the formation of cation vacancies to
maintain the electroneutrality of the compound (Stavale et al., 2012;
Pacchioni and Freund, 2018).

The catalytic activity of metal-incorporated metal oxides also de-
pends on the nature of the metal oxide support. For example, alumina-
and magnesia-supported Au nanoparticles are more active than silica-
supported Au nanoparticles (Bond and Thompson, 1999). Oxide sup-
ports can be classified into non-reducible (Al2O3, SiO2, MgO, etc.) and
reducible (TiO2, CeO2, NiO, WO3, etc.) oxides (Pacchioni and Freund,
2018; Barcaro and Fortunelli, 2019). The binding properties of these
two groups of oxides are completely different. In general, non-reducible
oxides have high-energy conduction band and low-energy valence
band, and thus exhibit low reactivity. Hence, these oxides act as inert
supports in catalysis. However, these properties change drastically
when the size of the oxides reduces to the nanoscale. Non-reducible
oxides exhibit steps, kinks, and corners, which affect the electronic
properties of the oxides by introducing new acceptor and donor levels
(Pacchioni et al., 1994). Generation of defects favors the charge transfer
from the metal nanoparticles to the oxide (Pacchioni and Freund,
2018). The oxygen anions of reducible metal oxides show some oxi-
dizing power. The oxide/metal interface is the most active catalytic site
in these materials and is referred to as the hot-spot zone (Rodriguez
et al., 2009). Owing to their electron donating properties, metal na-
noparticles induce the formation of vacancies in metal-supported
structures (Vayssilov et al., 2011).

Metal-oxide interactions can be supported by experimental proofs as
well as speculations (Guo et al., 2015). Libuda and coworkers found
that in ceria-supported Pt nanoparticles, the oxidative metal-oxide in-
teraction occurs via electron transfer from the Pt nanoparticles to the
support (ceria) and oxygen transfer from ceria to Pt (Vayssilov et al.,
2011). The chemisorption of active metal nanoparticles on oxide sur-
faces induces charge transfer, which improves the rate of the catalytic
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reaction. The lattice mismatch between the metal nanoparticles and
metal oxide surface causes the contraction or expansion of the lattice,
which improves the inter-facial bonding stability of the catalyst
(Tauster et al., 1978). The adhesion energy between a metal and metal
oxide creates a repulsive interaction between the neighboring metal
nanoparticles. Such repulsion acts as an activation barrier to prevent
the adjacent metal nanoparticles from diffusing together and agglom-
erating, thus inhibiting the catalyst sintering (Farmer and Campbell,
2010).

3. Synthesis of metal-incorporated mesoporous oxides

Various synthetic routes have been reported for metal-incorporated
mesoporous oxides. Depending on the mode of nanoparticle en-
capsulation, metal-incorporated mesoporous oxides are mainly syn-
thesized using pre-synthesized nanoparticles and via the impregnation-
reduction and one-pot synthesis methods. Metal nanoparticles are also
used to form the core of core-shell or yolk-shell nanoparticles with

nanoporous oxides as the shells (Chaudhuri and Paria, 2012; Gawande
et al., 2015; Li et al., 2019; Yang et al., 2015; Talebzadeh et al., 2019;
Bastakoti et al., 2012). Core-shell nanoparticles comprise of two or
more materials. The choice of the core and shell materials mainly de-
pends on the application (Cai et al., 2009; Tao et al., 2008; Lim et al.,
2016; Zhong et al., 2018). The yolk-shell structure is a special variant of
the core-shell structure, in which the core (yolk) is free to move into the
hollow interior of the shell. Core-shell and yolk-shell materials can
accommodate a large number of molecules in their void space, which
makes them suitable for nanoreactor (Lin and Doong, 2017) and pay-
load delivery applications (Shen et al., 2017).

3.1. Using pre-synthesized metal nanoparticles

Pre-synthesized metal nanoparticles can be encapsulated into the
mesopores of metal oxides via the reduction of metal ions in the solu-
tion or a sol-gel reaction. Metal nanoparticles are mainly prepared via a
colloidal synthesis method with appropriate functionalization.

Fig. 1. (a) Scanning tunneling microscopy images of Mo-doped CaO and Cr-doped MgO films. (b) Projected densities of states for CaO-Mo and MgO-Cr in the
presence of Au atoms calculated for two different charge states of the transition metal ions. Charge transfer from the highest occupied molecular orbital of the dopant
to the Au 6s affinity levels is indicated by arrows. Reprinted with permission (Stavale et al., 2012). Copyright 2013, American Chemical Society.
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Reducing agents such as sodium borohydride, ascorbic acid, and hy-
drazine are used to reduce metal ions in the solution, while capping
agents such as polyvinylpyrrolidone (PVP), thiols, and surfactants are
used to prevent nanoparticle aggregation (Bastús et al., 2014; Schrade
et al., 2013; Niu and Li, 2014; Barman et al., 2018). Preformed PVP
capped metal nanoparticles are mixed with the polymer solution fol-
lowed by the addition of the metal oxide precursors. Nucleation and
inorganic-organic co-assembly stabilize the size of the resulting metal
nanoparticles in the nanoscale range. The polymer-assisted method is
used to synthesize nanomaterials with shape control (Zhang et al.,
2020a). Different types of polymers such as homopolymers (Parra and
Haque, 2015) and double hydrophilic (Bastakoti et al., 2012; Guragain
et al., 2018) and amphiphilic block copolymers (Li et al., 2016;
Bastakoti et al., 2011) are employed as adjustable masks for the
synthesis of nanoparticles. The polymer layer on the nanoparticles
undergoes transformation during the crystal growth. The nanoparticles
prepared using this approach are highly resistant to aggregation but at
the same time are fluidic and adjustable to control the crystal growth
(Wang et al., 2018).

Photoreduction has been investigated as an alternative to the con-
ventional chemical reduction method for the synthesis of nanoparticles
(Bastakoti et al., 2015b). This method can control the shape and size of
the resulting nanoparticles depending on their encapsulation into me-
soporous oxides. For efficient infusion of nanoparticles into the meso-
pores of metal oxides, the nanocrystal dispersion should flow through
the pores by capillary wetting and the nanocrystals must not block the
pore openings. In addition, the nanoparticles should exhibit sufficient
adsorption to the substrate. Various methods such as supercritical CO2,
ultrasonication, electrophoretic, and direct deposition methods are
used to infuse the metal nanoparticles on/into the mesoporous frame-
work (Konya et al., 2003; Xu et al., 2018). Gupta et al. used CO2 as an
antisolvent in toluene to overcome both the transport and thermo-
dynamic challenges encountered during the infusion of nanoparticles
into mesoporous silica. They obtained mesoporous silica with nano-
particle loadings of more than 2 wt% in 24 h using carbon dioxide-
toluene mixtures (Gupta et al., 2005). Various metal-incorporated me-
soporous metal oxides (Pt/SiO2, Pt/TiO2, Pt/ZrO2, Au/TiO2, and Pd/
TiO2) have been prepared by using a sol-gel process (Liu et al., 2013).
Metal nanoparticles exhibit good anti-sintering properties even at high
calcination temperatures and metal loadings. Mesoporous oxides are
synthesized using mesoporous silica as the hard template. PVP-capped
Pt nanoparticles with a size of 2.5 nm can be infused into the me-
sochannels of such oxides by ultrasonication. Fig. 2 shows the sche-
matic of the synthesis of Pt nanoparticle-incorporated mesoporous
oxides and the transmission electron microscopy (TEM) images of the
intermediate products obtained during the synthesis process and the
final product (An et al., 2013a). Pt nanoparticles strongly adhered to
mesoporous metal oxide substrates exhibit excellent CO oxidation
performance. In another study, 3-nm Au particles were electro-
phoretically deposited on a mesoporous TiO2 film at very high Au na-
noparticle loadings (up to 21 %). The nanoparticles were stabilized by
dodecanethiol prior to the deposition. The penetration depth of the
nanocrystals depended on the strength of the nanoparticles and the wall
interactions, which were affected by the dodecanethiol coverage of the
metal surface (Patel et al., 2008). Maximum deposition occurs when the
pores of the film are perpendicular to the substrate and are aligned with
the electric field (Kamada et al., 2004).

The use of the direct film deposition technique for depositing Au
nanoparticles on mesoporous silica has been reported. The sol-gel re-
action of mesostructure silica was carried out over a monolayer of Au
nanoparticles. The shape of the Au nanoparticles could also be changed
in-situ through seeded growth and branching. However, the nano-
particles were larger than the silica pores (Angelome et al., 2012).
Small nanoparticles can be easily inserted into the mesochannels of
porous substrates. Huang et al. synthesized ultrasmall Pt nanoparticles
(approximately 1 nm in size) within the branches of polyaminoamide

dendrimers. The tertiary amines present in the highly branched den-
drimers encapsulated the metal ions and improved the stability of the
nanoparticles obtained after the reduction. The silica support im-
mobilized the dendrimer-encapsulated nanoparticles via electrostatic
and hydrogen bonding interactions (Huang et al., 2008).

This method yields nanoparticles with desired properties such as
optimum stabilizing agent, size, shape, and crystallinity. Prior to the
infusion, the particles may be isolated from unwanted byproducts,
cleaned, and separated according to their size. Nanoparticles are un-
stable and should be stabilized using several organic molecules. Some
organic molecules play an important role during the chemisorption of
particles onto porous substrates. However, particle stabilization using
organic molecules is not always necessary. Table 1 summarizes various
metal-incorporated porous materials prepared using pre-synthesized
metal nanoparticles (Gupta et al., 2006; Fattakhova-Rohlfing et al.,
2009; Bore et al., 2006; Ding et al., 2005; Liu et al., 2018; Kim et al.,
2015; Chen et al., 2015; Yadav et al., 2019; Zheng and Stucky, 2006;
Chen et al., 2012; Chu et al., 2019; Wei et al., 2018).

3.2. Impregnation and reduction

In this method, a metal salt solution is impregnated into a meso-
porous substrate followed by reduction of the metal precursors to me-
tallic nanoparticles. The chemical, electrochemical, microwave,
plasma, or pulse laser ablation methods are more commonly used for
the reduction of metal ions. The metal salt solution either physically
adsorbs onto the mesoporous substrate or chemically interacts with it.
The isoelectric point (IEP) of the mesoporous substrate and the pH of
the solution are very important for creating strong electrostatic inter-
actions between the metal ions and the charged surface of the support.
For example, TiO2 has an IEP of approximately 6. Therefore, at the
solution pH values lower than 6, it is positively charged as Ti-OH2+. On
the other hand, HAuCl4 and H2PtCl6 form anionic aqua complexes in
water. The strong electrostatic interaction between the anionic metal
ions and positively charged substrate surface is the driving force for the
adsorption of metal ions on mesoporous materials (Suttiponparnit et al.,
2011).

Wen et al. synthesized metal nanoparticles encapsulated in the
mesochannels of ceria via the impregnation route. First, mesoporous
ceria was synthesized by using the hard-templating method. Then, the
mesoporous ceria was added to the metal salt solution. The solvent was
evaporated, and the dry sample was subsequently reduced by heating.
The size of the metal nanoparticles was 3–6 nm. The synthesis me-
chanism and TEM images of the Au-incorporated mesoporous CeO2 are
shown in Fig. 3 (Wen et al., 2012). Lysine-assisted hydrothermally
synthesized mesoporous alumina strongly supports Au nanoparticles
with a size of approximately 2 nm. Au nanoparticles are introduced into
mesoporous alumina using the deposition and precipitation method
followed by annealing in air at elevated temperatures. Annealing is not
desirable for Au nanoparticles owing to their low Tammamn tempera-
ture (395 °C). However, the strong interfacial interactions between the
Au nanoparticles and porous alumina prevent sintering even at high
temperatures (up to 900 °C) (Wang et al., 2013). Table 2 summarizes
various metal-incorporated nanoporous materials prepared using the
impregnation and reduction method (Amin, 2020; Fiorenza et al., 2020;
Wang et al., 2015; Chen et al., 2017; Yang et al., 2016; Chen et al.,
2008, 2018; Lewis et al., 2019; Lang et al., 2019; Lv et al., 2012;
Irandoust and Haghtalab, 2017; Grabchenko et al., 2020).

Campelo et al. reported a quick and environmental friendly method
for the preparation of highly active and dispersed mesoporous silica-
supported Au and Pd nanoparticles using a microwave technique
without using any reducing agent. The microwave irradiation was
carried out after soaking the mesoporous silica into the metal salt so-
lution. The rapid heating of the reaction mixtures, especially those
containing polar solvents leads to a rapid and almost simultaneous
precipitation of the metal solution of the precursor, which in turn
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results in the formation of materials with small particle sizes and
narrow size distributions within very short reaction durations (less than
3 min) (Campelo et al., 2008). Highly dispersed metal (Pd, Pt) nano-
particles have been incorporated into SBA-15 via the conventional in-
cipient wetness impregnation method followed by a novel glow dis-
charge plasma reduction. In particular, the plasma reduction at ambient
temperature is a green, cost-effective, and rapid reduction method. It
offers several advantages over the conventional reduction in the pre-
sence of hydrogen at elevated temperatures. Moreover, it requires mild
working conditions (Wang et al., 2008a). Instead of wetting the me-
soporous substrate by a metal salt solution, Gao and Ying first func-
tionalized SBA-15 with a dendrimer. The Pd2+ ions strongly anchored

on the dendrimer were reduced to obtain Pd nanoparticles. The very
strong anchoring behavior of the dendrimer rendered the resulting Pd
nanoparticles highly stable. The Pd nanoparticles could retain their size
and activity (Jiang and Gao, 2006). The impregnation and reduction
method can be used to load multiple metal nanoparticles on the same
mesoporous support.

3.3. One-pot synthesis

This is a relatively easier and faster method for the synthesis of
metal-encapsulated mesoporous oxides. In this method, the metal salt,
templating agent, and inorganic precursors are mixed together in a
single pot avoiding multiple synthesis steps. The metal nanoparticles
and mesoporous structure are formed simultaneously. Calcination in an
inert medium (N2 or Ar) during the template removal process reduces
the metal precursors to metals and converts the amorphous oxides in
the pore walls into crystalline phases (Orilall et al., 2009). Sometimes,
H2 reduction helps to reduce the metal oxides into metals (Wang et al.,
2008b).

In general, amphiphilic molecules are used as a template. These
molecules co-assemble with the metal and oxide precursors, as shown
in Fig. 4a (Orilall et al., 2009). The amphiphilic di-block copolymer
poly(isoprene-ethylene oxide) (PI-PEO) acts as a structure-directing
agent and provides reaction sites for niobium oxide sols and the metal
precursor. The hydrophobic metal precursor is encapsulated into the
hydrophobic PI block. Heat treatment in an inert medium removes the
PEO unit. The carbonized PI block provides mechanical support to the
Nb2O5 mesoporous framework and reduces the metal precursors to
nanoparticles. Crystalline Nb2O5 is obtained by further heating in air
(Orilall et al., 2009). A similar amphiphilic diblock copolymer, poly
(styrene-ethylene oxide) (PS-PEO) has been used as a template and
structure-directing agent for the synthesis of Pt-loaded SiO2-carbon

Fig. 2. TEM images of (a) a mesoporous silica template and (b) the resulting Co3O4 replica. (c) Pt/Co3O4 and (d) their corresponding energy-dispersive spectroscopy
image. (e) High-resolution TEM image of Pt/Co3O4. (f) Infusing pre-synthesized nanoparticles into mesoporous oxides. Reprinted with permission (An et al., 2013a).
Copyright 2013, American Chemical Society.

Table 1
Metal-incorporated porous materials prepared using pre-synthesized metal na-
noparticles.

Compositions Applications References

Ir@SiO2 Hydrogenation of decene (Gupta et al., 2006)
TiO2@SiO2 Oxidation of NO (Fattakhova-Rohlfing

et al., 2009)
Au@SiO2 Oxidation of CO (Bore et al., 2006)
Pt-Ru@Carbon Fuel cell reactions (Ding et al., 2005)
Au@TiO2 Hydrogenation of

methanol
(Liu et al., 2018)

Rh@Carbon Alcohol synthesis from
syngas

(Kim et al., 2015)

Au@zeolite Oxidation of ethanol (Chen et al., 2015)
Pt@TiO2 Hydrogen evolution (Yadav et al., 2019)
Au@SiO2 Oxidation of ethanol (Zheng and Stucky,

2006)
Pd@CeO2 Oxidation of ethanol (Chen et al., 2012)
Pt@TiO2 Computed tomography (Chu et al., 2019)
Pd,Pt,Au@ZnO,

Cu2O,CeO2
Hydrogenation of
nitroaromics

(Wei et al., 2018)
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composites. The presence of SiO2 provides thermal and mechanical
stability to the composites. Hydrophilic resols and oligomer silicate
species show a large number of −OH groups and can interact strongly
with the PEO block, while the hydrophobic metal source selectively
interacts with the hydrophobic styrene segments (Shim et al., 2012).
Highly dispersed Pd nanoparticles have been encapsulated into MCM-
41 using CTA+ surfactants and Pd2+ ions as the capping agents. During
the template removal, PdO is formed. This PdO is then reduced to Pd
nanoparticles by H2 reduction. Pd nanoparticles with a particle size of
approximately 2 nm have been synthesized in the mesochannels of
MCM-41 (Wang et al., 2008b). The in-situ preparation of a mesoporous
Pt/TiO2 nanocomposite using the one-pot synthesis method has been

reported. H2PtCl6 and titanium butoxides were mixed in the presence of
a triblock copolymer, F127, to form ordered micelles. These micelles of
F127 acted as a template for the condensation of the inorganic agents.
Calcination was carried out in air to remove the polymeric template and
render the TiO2 framework crystalline. The reduction of the Pt source
was carried out in a H2 gas flow at 300 °C (Ismail and Bahnemann,
2011). A multicomponent assembly approach, in which the surfactant,
titania and gold precursors are cooperatively assembled in a one-step
process, was adopted. Au nanoparticles with a size of 5 nm adhered
strongly to the TiO2 mesochannels. The negative shift in the X-ray
photoelectron spectroscopy bands confirmed the existence of a strong
interaction between the Au nanoparticles and TiO2 framework. The

Fig. 3. (a-d) Synthesis of metal nanoparticles in the mesochannels of mesoporous-CeO2. (e,f) TEM images of metal nanoparticle-encapsulated mesoporous CeO2.
Reprinted with permission (Wen et al., 2012). Copyright 2012, American Chemical Society.

Table 2
Metal-incorporated nanoporous materials prepared using the impregnation and reduction method.

Compositions Applications References

Ni@SiO2 CO2 reforming of Methane (Amin, 2020)
Au@CeO2 Oxidation of CO (Fiorenza et al., 2020)
Pt@CN Oxidation of glycerol (Wang et al., 2015)
PtFe@Carbon Hydrogenation of nitrobenzene (Chen et al., 2017)
M@Carbon(M = Au, Pt, Rh, Ru, Ag, Pd and Ir) Hydrogenation of benzaldehyde (Yang et al., 2016)
Au@MxOy(M = Zr, Ce, Fe, Si) Oxidation of formaldehyde (Chen et al., 2008)
Pt@Cr2O3 Combustion of toluene (Chen et al., 2018)
AuPdPt@Titanium silicate Synthesis of H2O2 (Lewis et al., 2019)
Pt1/FeOx Combustion of methane (Lang et al., 2019)
Ni@SiO2 Reforming of methane (Lv et al., 2012)
Co-Ru@Al2O3 Fischer-Tropsch synthesis (Irandoust and Haghtalab, 2017)
Ag@CeO2 Oxidation of CO (Grabchenko et al., 2020)
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nanoparticle dimensions depended on the Au precursor amount (Li
et al., 2007a). Morris et al. developed a method to synthesize alumina-
supported structures via the simultaneous self-assembly of aluminum
isopropoxide, the metal precursors, and the P123 triblock copolymer.
Compared to pure alumina, nickel aluminum oxides show improved
thermal stability. Very high metal loadings, large and accessible pores,
and the generality of the synthetic route represent the important steps
towards the facile one-pot synthesis of alumina-supported materials
(Morris et al., 2008).

We reported the synthesis of Pt-incorporated mesoporous metal

oxides via the self-assembly of polymeric micelles of asymmetric tri-
block copolymers. The micelles of poly(styrene-2-vinylpyridine-ethy-
lene oxide) (PS-PVP-PEO) facilitated the direct synthesis of Pt-deco-
rated mesoporous TiO2, Al2O3, and SiO2 (Fig. 4b-e) (Bastakoti et al.,
2014a). The hydrophobic interaction of platinum- (II) 2,4-pentanedio-
nate with the PS block and the electrostatic interaction between the
oxide precursors and the PVP block enabled the successful incorpora-
tion of Pt nanoparticles into the pores of the mesoporous oxides
(Bastakoti et al., 2014b). As PVP blocks can arrest a wide range of metal
sources, the composition of such mesoporous frameworks can be easily

Fig. 4. (a) Illustration of the one-pot synthesis of metal-incorporated mesoporous supports. Reprinted with permission. (Orilall et al., 2009) Copyright 2009,
American Chemical Society. (b) scanning electron microscopy and (c and d) TEM images of Pt-incorporated mesoporous SiO2. (e) Particle-size distribution of Pt
nanoparticles. Reprinted with permission (Bastakoti et al., 2014a). Copyright 2014, Royal Chemical Society.
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controlled (Bastakoti et al., 2014c). The shell thickness and pore dia-
meter can be easily tuned by changing the molecular weight of the
block copolymer or the precursor/polymer ratio. The facile ‘polymeric
micelle assembly’ approach is beneficial for the deposition of fully ac-
cessible and uniformly dispersed metal nanoparticles on/into the me-
sopores of the substrate. Table 3 summarizes various metal-in-
corporated nanoporous materials prepared using the one-pot synthesis
method (Morris et al., 2008; Orilall et al., 2009; Lu et al., 2014; Zhang
and Shen, 2015; Yao et al., 2014; Li et al., 2018a; Wang et al., 2017a;
Pillalamarri et al., 2005; Solovyeva et al., 2014; Yi et al., 2017; Tian
et al., 2014; Bao et al., 2017).

In spite of its simplicity, the one-pot synthesis method shows several
disadvantages. Selecting appropriate concentrations of different in-
gredients is very important for the synthesis of a well-organized co-
operative assembly. Metal precursors interfere with the polymerization
reaction of the alkoxide precursors. The competition between the metal
and metal oxide precursors and the template, heterogeneous nature of
hydrolysis, and condensation of metal oxides make the one-pot synth-
esis of metal-loaded mesoporous metal oxides challenging. This method
offers less control over the size of nanoparticles because of the presence
of various interfering agents such as counter ions and the simultaneous
interaction of the metal salt and inorganic oligomers with the organic
template. However, if a reduction step is used after the one-pot reac-
tion, the size of the resulting nanoparticles can be easily controlled. Liu
et al. used a steaming reduction process to control the size of nano-
particles synthesized via the one-pot method. With an increase in the
reduction time from 1 to 24 h, the particle size increased from 1.4 to 4.5
nm (Liu et al., 2014).

Gonçalves and Jaroniec controlled the solvent exchange to tune the
hydrolysis and condensation rate of oxide precursors to stabilize the
mesophase formation (Fig. 5) (Goncalves and Jaroniec, 2019). The
difference in the solubility, hydrolysis, and condensation of the Ni, Al,
and Zr precursors in different solvents affected the mesophase forma-
tion in the Ni-Al-Zr ternary oxides. The oxides synthesized in the pre-
sence of isopropanol and n-propanol showed similar textural properties.
The slightly higher specific surface area and pore volume of the oxide
synthesized in the presence of propanol (Fig. 5b) can be attributed to
the poor solubility of zirconium n-propoxide in propanol. The use of
ethanol as the solvent rendered the mesophase unstable. This is because
both the aluminum and zirconium precursors showed high reactivity
towards ethanol. These results demonstrate the importance of rationa-
lizing the entropic changes during the synthesis of nanostructured so-
lids by the evaporation-induced self-assembly process (Goncalves and
Jaroniec, 2019; Goncalves et al., 2018).

4. Applications

4.1. Novel catalysts for environmental remediation

Metal-supported catalysts are widely used in various catalytic re-
actions (Morris et al., 2008; Xu et al., 2020; Cai et al., 2011). Among
these reactions, the catalytic oxidation of CO has been widely in-
vestigated as a typical model reaction. CO is a toxic gas, which is
produced by the incomplete combustion of carbon-containing fuels. CO
oxidation is practically important for the purification of engine exhaust
gases. Pt, Pd, and Au nanoparticles show high catalytic activities to-
wards the oxidation of CO, and mesoporous TiO2, CeO2, SiO2 are the
most promising supports. Haruta prepared several supported metal
catalysts and compared their activities for CO oxidation. He found that
the CO oxidation activities of the metal catalysts followed the order: Au
> Pd> Rh> Pt > Ir > Ru> Ag. The optimum particle size for the Au
catalyst was found to be approximately 3 nm. The efficacy of the sup-
ports for the oxidation reaction followed the order: CeO2 > ZrO2 >
Al2O3 > SiO2 (Haruta, 2003). Somorjai et al. prepared several Pt-based
catalysts for the oxidation of CO. The turnover frequencies of the Pt-
loaded mesoporous supports were significantly higher than those cal-
culated by simply summing the contributions from each of the con-
stituents. This can be attributed to the synergic effect of the oxide and
metal. The in-situ studies revealed that the redox reactions of the oxides
generated charged species, which altered the CO oxidation mechanism.

Table 3
Metal-incorporated nanoporous materials prepared using the one-pot synthesis
method.

Compositions Applications References

Ni@Al2O3 – (Morris et al., 2008)
Pt-Pb@NbO2-carbon Fuel cells (Orilall et al., 2009)
Pd@CoFe2O4-graphene Reduction of nitrophenol (Lu et al., 2014)
Pt@CeO2−x /graphene Oxidation of alcohol (Zhang and Shen,

2015)
Cu@SiO2 Dehydrogenation of borane (Yao et al., 2014)
Au@MxOy (M = Co, Ce,

Fe, and Sn)
Oxidation of CO (Li et al., 2018a)

Ni@SiO2 Dry reforming of methane (Wang et al., 2017a)
Au, Ag@polyaniline – (Pillalamarri et al.,

2005)
Au@SiO2 Hydroamination of alkyne (Solovyeva et al.,

2014)
Ni-Mo@Al2O3 Hydrodesulfurization (Yi et al., 2017)
Ag@SiO2 Antibacterial activity (Tian et al., 2014)
Pt, Pd@ZnO Reduction of nitrophenol (Bao et al., 2017)

Fig. 5. (a) Solvent exchange to control the mesostructure. (b) Nitrogen sorption
isotherms for nanostructured Ni-Al-Zr ternary mixed oxides synthesized in
ethanol (NAZ50-ET), isopropanol (NAZ50-IP), and n-propanol (NAZ50-nP) and
their pore size distribution curves. Reprinted with permission (Goncalves and
Jaroniec, 2019). Copyright 2018, Elsevier Inc.
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The CO oxidation rates of the Pt-nanoparticle-loaded oxide catalysts
were affected by the redox properties of the oxides at the oxide-metal
interface under reducing reaction conditions. The Pt/Co3O4 catalyst
showed the highest catalytic turnover among all the catalysts in-
vestigated (). This is probably because of the efficient charge transfer
due to the higher concentration of electrons in the interfacial region of
this catalyst.

As a fuel, H2 is a promising alternative to fossil fuels as it produces
only H2O during combustion. Metal oxide-supported catalysts have
been used for the steam reforming of alcohols to produce H2 for auto-
mobiles and fuel cell applications. In supported metal catalysts, both
the metal and the mesoporous support play a significant role in im-
proving the selectivity for H2 production. In a study on the steam re-
forming of methanol (SRM), Cu exhibited better methanol conversion
and higher hydrogen selectivity than all the other metals investigated
when mesoporous silica such as MCM-41 was used as the support
(Abrokwah et al., 2016). Significant difference was observed in the
methanol conversion and hydrogen selectivity of the catalysts when the
MCM-41 support was replaced with a mesoporous TiO2 support
(Deshmane et al., 2015). Zn/TiO2 showed better SRM catalytic activity
than the other catalysts investigated. To increase the stability of the
catalyst and suppress the formation of CO, CeO2, TiO2, and MgO were
added to the MCM-41- or SBA-15-supported Ni or Co-catalysts. The 10
%Ni-MCM-41 catalyst with 5 % CeO2 or TiO2 exhibited excellent cat-
alytic stability for glycerol steam reforming over 40 h. Addition of 5 %
MgO to Ni-SBA-15 or Co-SBA-15 significantly improved the long-term
stability of both the catalysts (Bepari and Kuila, 2020; AlSalihi et al.,
2020). In another study, Ni-incorporated Al2O3 and Al2O3-TiO2

supports were used for the steam reforming of ethanol to produce H2
(Fig. 6a, b) (Goncalves et al., 2017). TiO2 played a vital role in tailoring
the acidic and basic properties of the composites. The acidic sites of the
Ni-Al oxide composites decreased with the addition of TiO2, which in
turn weakened the interaction of ethanol and the byproducts with the
Al2O3-TiO2 support, thus retarding the accumulation of coke during the
reaction (Goncalves et al., 2017).

Kuila et al. used metal-loaded mesoporous supports for the conver-
sion of syngas (CO and H2) into hydrocarbons. In a previous study, a
uniform coating of the sol-gel catalyst layer in the microchannels of Si-
microreactors produced C1-C4 alkanes at 1 atm (Zhao et al., 2008). The
support showed a significant effect on the CO conversion and stability
of the catalyst. On the other hand, the Co-catalyst showed higher CO
conversion and stability than Fe and Ru in the SiO2 sol-gel (Abrokwah
et al., 2019). Unlike the case with the SiO2-supported catalysts, Ru-TiO2
showed much higher stability than the Co- and Fe-TiO2 catalysts in
Fisher-Tropsch (F–T) synthesis. The rutile phase of TiO2 played a sig-
nificant role in catalyzing the F–T synthesis. In order to investigate the
effect of the 2nd metal on the F–T synthesis, Mohammed et al.
(Mohammad et al., 2020) added Fe, Ru, and Ni to Co-MCM-41 with
large surface area and carried out CO conversion in a three-dimensional
(3D) printed microreactor. The addition of the 2nd metal increased the
CO conversion efficiency of Co-MCM-41 by 65–78 %. The reaction
temperature also affected CO conversion of the catalyst. The presence of
Ni did not favor the formation of propane and butane, while both Ru
and Fe showed a positive effect. Over the temperature range of 270–300
°C, the CoFe bimetallic catalyst showed the propane and butane se-
lectivities of 39 and 8 %, respectively. On the other hand, the CoRu

Fig. 6. Steam reforming of ethanol over (a) Ni-Al2O3 and (b) Ni-Al2O3-TiO2 catalysts. Reprinted with permission (Goncalves et al., 2017). Copyright 2017, American
Chemical Society. (c) Fischer-Tropsch synthesis: 3D printed micro-reactor design and metal-decorated oxide catalyst-coated microchannels. (d) CO selectivity and
conversion (into hydrocarbons) in Si-microchannel microreactors. Reprinted with permission (Mohammad et al., 2019). Copyright 2019, Molecular Diversity Pre-
servation International.
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catalyst showed higher propane and butane selectivities of 33.5 and
11.2 %, respectively at 210 °C (Mohammad et al., 2019). In addition,
the FeCo catalyst showed much higher stability than the other bime-
tallic catalysts. To investigate the effects of the metal-support interac-
tions, catalyst morphology, and mesoporous SiO2-structure on the ki-
netics of the F–T reaction, Co and Ru bimetallic nanocatalysts were
loaded into MCM-41, SBA-15, and KIT-6 using a one-pot procedure. The
catalysts were coated in 3D printed stainless steel microchannels using
a slurry method (Fig. 6c, d). Mesoporous silica supports significantly
affect the F–T kinetics and stability of metal catalysts. The activation
energy calculations revealed that the activity of CoRu-KIT-6 was 2.5
times higher than that of Co-Ru-MCM-41 and slightly higher than that
of CoRu-SBA-15. The CO conversion capacities of the catalysts mea-
sured during the deactivation studies indicated that CoRu-KIT-6 was
∼3 and ∼1.5 times more stable than CoRu-SBA-15 and CoRu-MCM-41,
respectively (Mohammad et al., 2019).

Supported metal catalysts are also used for degrading organic mole-
cules (pollutants). The mesoporous support not only increases the re-
activity but also facilitates the recycling of the catalyst (Lu et al., 2013;
Ahmed et al., 2017; Li et al., 2007b). Furthermore, the introduction of
nanoparticles into a mesoporous support decreases the gap between the
intraband state and the conduction band or valence band edge by forming
a sub-band gap. This sub-band gap serves as an electronic trap by pro-
viding defective sites. The use of porous supports also significantly in-
creases the adsorption capacity of the catalyst. Organic molecules move to
the metal surface to enhance the degradation rate (Li et al., 2007a). Ag-
loaded mesoporous WO3 shows excellent activity for the degradation of
acetaldehyde in the presence of visible light. The excellent photocatalytic
activity of this catalyst can be attributed to the electron-hole separation at
the Ag-WO3 heterojunction (Sun et al., 2010). The photoinduced holes
react with H2O or OH− to produce the hydroxyl radical (∙OH), which is an
extremely strong oxidant for the degradation of organic contaminants
(Hayyan et al., 2016). When Ag nanoparticles come in contact with WO3,
the electrons migrate from Ag to the conduction band of WO3 to achieve
the Fermi level equilibrium. As a result, the surface of the WO3 accumu-
lates excess electrons, while Ag exhibits excess positive charge. Thus, a
deflexed energy band is formed at the Ag-WO3 interface, which generates
more holes in the valence band of WO3. In another study, Gao et al. used
Pd-In nanoparticle-loaded mesoporous Al2O3 to reduce nitrate ions into N2
and NH3 (Gao et al., 2015). The overuse of nitrogen-rich fertilizers in
agriculture has contaminated the ground water with nitrate ions. The
catalytic reduction of nitrate ions is a promising technology for ground-
water purification because it transforms nitrate ions into nitrogen, am-
monia, and water.

4.2. Catalysts for sensing hazardous materials

Sensing hazardous materials is a key technology that finds appli-
cations in many technical processes, environmental monitoring, and
automobiles (Wang et al., 2017b; Bahadur et al., 2011; Koo et al., 2016;
Tomer et al., 2014). Transition metal oxides, such as TiO2, SnO2, WO3,
Cr2O3, and In2O3, are widely used for developing semiconductor sen-
sors (Meixner et al., 1995; Mccue and Ying, 2007; Choi et al., 2014;
Wang et al., 2006). The sensitivity of these oxides towards hazardous
materials depends on their morphology and conductivity. Metal nano-
particles such as Pt and Pd show excellent chemical and electronic
sensitization (Yamazoe et al., 1983). Ag nanoparticle-loaded meso-
porous Cr2O3 microspheres show excellent triethylamine detection. Ag
nanoparticles improve the triethylamine selectivity of mesoporous
Cr2O3 microspheres at low working temperatures (Cao et al., 2015).
Recently, we developed Pt-decorated mesoporous TiO2 for sensing
various volatile organic solvents using a quartz crystal microbalance
(QCM)-based technique(Bastakoti et al., 2014b). The QCM-based sen-
sing method enables the real-time monitoring of the sorption of vapor
molecules. The frequency of a quartz electrode changes when a small
amount (nanogram scale) of vapor is adsorbed onto its surface. The
sensing efficiency of a material can be determined by measuring its
frequency. The dynamic response of the Pt-decorated mesoporous TiO2
electrode upon exposure to acetaldehyde vapor with different con-
centrations ranging from 100 to 500 ppm is shown in Fig. 7 (Bastakoti
et al., 2014b). Compared to the mesoporous TiO2 sensor, the Pt-deco-
rated mesoporous TiO2-based sensor showed almost 2.5 times higher
acetaldehyde vapor uptake. This can be attributed to the presence of
metallic Pt, which remarkably enhanced the sensing property of me-
soporous TiO2 through the chemical sensitization mechanism. The Pt
nanoparticles not only provided abundant adsorption sites for the in-
coming gas molecules but also facilitated the spillover of oxygen species
onto the TiO2 surface, where they ionosorbed by trapping electrons
from TiO2 (dipole-dipole interaction with the oxygen surface of TiO2)
(Bastakoti et al., 2014b). Li et al. systematically investigated the
NO2sensing ability of Au-loaded mesoporous In2O3. The 0.5 wt% Au-
loaded In2O3 catalyst exhibited excellent sensor response with a low
detection limit of 10 ppb at a low operating temperature of 65 °C (Li
et al., 2018b). Zalduendo et al. used nanocomposites of Au nano-
particles and mesoporous TiO2 as surface-enhanced Raman scattering
sensors. The dendritic Au nanoparticles covered with mesoporous TiO2
showed a detection limit as low as 10 pM (Zalduendo et al., 2018).

Defects in either the metal catalyst or support significantly affect the
sensing performance of metal oxide-supported metal catalysts (Shen
et al., 2020; Zhang et al., 2020b; Sterrer et al., 2006; Dey, 2018; Zhang
et al., 2019b). These defects introduce new acceptor or donor levels and
provide sufficient mobility of electrons. Oxygen vacancies in the sup-
port act as adsorption sites and nucleation centers for metal clusters/
nanoparticles (Dey, 2018). Al doping generates oxygen vacancies in
TiO2 and increases its conductivity. Al-doped TiO2 sensors are more
sensitive and selective to oxygen and carbon monoxide than pure TiO2
sensors (Choi et al., 2007). The addition of Au nanoparticles on the
basal plane of nitrogen-doped graphene quantum dots (N-GQDs) re-
duces the number of defects by decreasing the N and O % in Au@NGQD
composites. This enhances the charge carrier mobility of N-GQDs and
produces an ultrafast photoresponse (Das et al., 2020). Zhang et al. used
bimetallic nanoparticles of Au and Pt for the selective detection of
dopamine. Different metals grow independently and show random
growth orientations. This generates multiple surface defects such as
twin boundaries, dislocations, stacking faults, and interstitial defects on
bimetallic nanoparticles (Zhang et al., 2020b).

5. Conclusion and future perspective

In this review, we have summarized the recent developments in the
synthesis and applications of metal-incorporated mesoporous metal

Fig. 7. Time-dependent frequency shift curve of QCM coated with pure meso-
porous TiO2 (red line) and Pt-decorated mesoporous TiO2-based films (blue
line) caused by exposure to different concentrations of vaporized acetaldehyde.
Reprinted with permission (Bastakoti et al., 2014b). Copyright 2014, American
Chemical Society.
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oxides. Owing to their ultrasmall size, nanoparticles are very reactive
and tend to aggregate. The anchoring of metal nanoparticles on/into
mesoporous frameworks not only stabilizes the nanoparticles but also
induces a synergistic effect, which is exploited in a wide range of ap-
plications. The lattice mismatch between the metal nanoparticles and
metal oxide surface provides extra stability to metal-incorporated me-
soporous metal oxides. The adhesion energies between the metal na-
noparticles and metal oxide surface create a repulsive interaction be-
tween the neighboring metal nanoparticles. These repulsive
interactions act as an activation barrier to prevent the agglomeration of
the nanoparticles. The recent advances in the design and synthesis of
metal-incorporated mesoporous metal oxides have led to the synthesis
of various novel materials suitable for various applications. The ad-
vantage of using pre-synthesized nanoparticles for the preparation of
metal-incorporated mesoporous metal oxides is that the desired nano-
particle properties such as the size, shape, and crystallinity can be
achieved prior to the nanoparticle infusion into the support. The one-
pot synthesis method is relatively easier and faster than the other
methods used for the preparation of metal-incorporated mesoporous
metal oxides as it avoids multiple synthesis steps. Controlling the sol-
vent exchange during the condensation and hydrolysis reaction of metal
oxides stabilizes the mesophase formation. The impregnation and re-
duction methods are useful to control the nanoparticle size and to load
multiple metal nanoparticles on the same mesoporous support. These
metal-incorporated mesoporous metal oxide materials have been
widely investigated for various applications such as sensing hazardous
chemicals and the conversion of pollutants into useful chemicals.
However, most of the studies on support materials are limited to a few
metal oxides such as SiO2, Al2O3, TiO2, Co3O4, and CeO2. Thus, there is
a limited scope to tailor the properties of metal-incorporated meso-
porous metal oxides. In the future, more attention should be paid on the
design of novel metal-support combinations with improved catalytic
performance.
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