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An Inverse Method to Predict
NEMS Beam Properties From
Natural Frequencies
This paper presents a method to simultaneously predict the elastic modulus, axial load, and
boundary conditions of a nanoelectromechanical system (NEMS) beam from a minimum of
two measured natural frequencies. The proposed method addresses the challenges of the
inverse problem at the nano scale, which include high natural frequencies, small geometric
beam dimensions, and measurements limited to natural frequencies. The method utilizes a
finite element model of an Euler–Bernoulli beam under axial loading to predict the response
of the beam with axial loading and flexible boundary conditions. By expressing the finite
element model in terms of dimensionless beam parameters, the proposed method may be
applied to nano scale beams while maintaining numerical stability of the finite element
equation of motion. With the stabilized finite element model, the NEMS beam properties
are predicted by iterating through values of dimensionless beam parameters until the nor-
malized error between predicted and measured natural frequencies is minimized. A key
feature of the proposed method is the simultaneous prediction of the elastic modulus
during the iterative search, resulting in a reduction of the search space and significant com-
putational savings. Additionally, the proposed method readily accommodates an arbitrary
number of measured natural frequencies without the reformulation of procedures and anal-
yses. Numerical examples are presented to illustrate the proposed method’s ability to
predict the elastic modulus, axial load, and boundary conditions. The proposed method
is applied to experimental measurements of a NEMS beam, where the normalized error
between predicted and measured natural frequencies is reduced below 10−3.
[DOI: 10.1115/1.4046445]
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1 Introduction
Nanoelectromechanical system (NEMS) devices have recently

gained significant attention due to their ability to actuate and
sense on the nanoscale [1]. Common NEMS devices include nano-
mechanical resonators such as nanotubes, cantilevers, doubly
clamped beams, membranes, and more. With relevant dimensions
in the deep submicron, NEMS devices offer access to an unprece-
dented set of dynamic properties including very high resonance fre-
quencies in the megahertz to gigahertz range, mechanical quality
factors in the thousands, and active masses in the picograms
(10−12 g). Given this extraordinary set of parameters, a NEMS res-
onator can respond to even the slightest changes in the environment
with extreme sensitivity [2]. As a result, NEMS devices are cur-
rently being developed as ultrasensitive sensors of physical quanti-
ties, such as mass [3–9], charge [10], and viscosity [11].
Complimentary to this effort, NEMS devices that are optimized
for operation in water, referred to as bio-NEMS, are being envi-
sioned for sensing biological quantities and phenomena [12–14].
Such unprecedented sensing capabilities enable NEMS devices to
serve as lab-on-a-chip biosensors, with applications that include
mass spectrometry, label-free detection of biological molecules,
and more [1].
To accurately sense the aforementioned perturbations, properties

and parameters of the NEMS resonator must be precisely known.
These properties include the elastic modulus, prestress, and bound-
ary conditions of the resonator. Accurate properties of the NEMS
resonator are paramount for an accurate nominal model. Such
models are heavily relied upon when predicting the changes in

response due to physical perturbations of a resonator. For
example, when performing mass sensing, an accurate model of
the nominal NEMS resonator is needed to predict the mass and posi-
tion of a molecule adsorbed to the physically perturbed resonator
[7]. In this example, the measured change in response is attributed
to a change in the nominal model, which then characterizes the
added mass. Consequently, to sense and measure perturbations of
a NEMS resonator, it is critical to precisely know the properties
of the resonator for an accurate nominal model.
It is typically very challenging, if not impossible, to predict the

exact parameters of a NEMS resonator. There are several reasons
for this. First, variations in the material properties of the semicon-
ducting wafer, unnoticeable at the macroscopic scale, will lead to
large changes in the parameters of a single NEMS device. For
instance, due to randomness of ion implantation, wafers will
have spatial stress variations at the length scales of NEMS
[15,16]. Likewise, spatial fluctuations in the processing parameters
during nanofabrication will result in significantly different param-
eters for two NEMS devices on the very same chip. Even after fab-
rication, the device properties will be highly susceptible to
environmental factors such as temperature, given the fact that
small perturbations lead to big changes in the parameters of
NEMS. Moreover, boundary conditions of the NEMS device are
typically hard to model: undercuts due to fabrication, mismatch
between epilayers, and deposited films, which all complicate the
boundary conditions. In summary, more modeling work is
needed in the NEMS domain, and this paper addresses this need
by presenting a new method for predicting initially uncertain prop-
erties of NEMS resonators from measured natural frequencies. Spe-
cifically, the present work focuses on beams with an axial load and
flexible boundary conditions modeled by translational and rota-
tional stiffnesses.
Axial loading is often present in NEMS beams and the thin films

they are fabricated from due to the difference in thermal expansion
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between the substrate and the deposited material [17,18]. Axial
loading has also been observed in macroscale beams, with examples
such as cables on a bridge, diagonal braces of a truss, and struts and
ties of a space truss structure. Methods have been proposed that
predict the axial load of beams from measured displacements
using analyses based on the solution to the equation of motion of
axially loaded beams [19–21]. However, these methods require dis-
placement measurements from at least five sensors, which is infea-
sible for NEMS beams where measurements are often limited to
natural frequencies. Alternatively, sensitivity-based methods have
been proposed that predict the dependence of the beam’s modal
properties on axial loading [22–25]. With the computed sensitivi-
ties, the methods iteratively predict the uncertain beam properties
until the error between the measured and the predicted natural fre-
quencies is minimized. However, these methods assume the elastic
modulus or boundary conditions to be known.
Stachiv et al. [26] presented a more general method, which pre-

dicted the elastic modulus, axial loading, density, and thickness of
doubly clamped NEMS beams. By analyzing the dependence of the
in-plane and out-of-plane modes on the axial load, Stachiv et al.
developed a method to simultaneously predict the initially uncertain
beam properties. Their method, however, required measurements
from beams with different applied prestress forces and in-plane
and out-of-plane fundamental frequencies. Recently, Pratab and
Behera [27] presented a method to simultaneously predict the
elastic modulus and axial load of buckled microelectromechanical
system beams from measured natural frequencies. Although their
method only requires measurements of a single even and odd
bending mode, it is specific to buckled beams as the method utilizes
the invariance of even modes to compressive loading.
To overcome the limitations of previous works, a new method is

proposed that simultaneously predicts the elastic modulus, axial
load, and boundary conditions of a beam from measured natural fre-
quencies. The proposed method has the significant advantage of
requiring only two measured natural frequencies. In addition, the
method is general as it may be applied to beams that have either
a tensile or a compressive load and any boundary condition. The
proposed method utilizes a finite element model (FEM) of an
Euler–Bernoulli beam to formulate a generalized eigenvalue
problem that relates the axial load and boundary conditions to the
beam’s natural frequencies. After algebraic manipulation of the
equations of motion, the generalized matrices are expressed in
terms of dimensionless beam parameters that are related to the
axial load and boundary stiffnesses, while the eigenvalues are
related to a dimensionless frequency parameter. The method iterates
through values of the dimensionless axial load and stiffness param-
eters, while simultaneously predicting an elastic modulus by com-
paring the evaluated dimensionless frequency to measured natural
frequencies. The elastic modulus, axial load, and boundary condi-
tions are then predicted by iterating over the dimensionless param-
eters until the normalized error between measured and predicted
natural frequencies is minimized. The proposed method is illus-
trated with numerical simulations, where the uncertain beam prop-
erties are accurately predicted from simulated measurements.
Properties of a NEMS beam are then predicted from experimentally
measured natural frequencies.
The remainder of this paper is organized as follows. In the fol-

lowing section, the FEM of an Euler–Bernoulli beam is presented.
With the developed FEM, an analysis that evaluates the modal
properties of the beam is presented in Sec. 3. The analysis intro-
duces a dimensionless frequency parameter and dimensionless
beam parameters that are related to the axial load and boundary
stiffnesses. In Sec. 3.1, the dimensionless frequency’s dependence
on the dimensionless beam parameters is examined to investigate
the effect axial loading and boundary conditions have on natural
frequencies and to illustrate potential limitations of the proposed
method. In Sec. 4, the proposed method is presented, followed
by an assortment of numerical examples in Sec. 5 intended to
illustrate the accuracy of the method. The proposed method is
then applied to experimental measurements from a NEMS

resonator in Sec. 6, where ideal and flexible boundary conditions
are considered.

2 Finite Element Model
To begin, we first consider the continuous model with the equa-

tion of motion of a beam with axial loading

EI
∂4w
∂x4

+ ρA
∂2w
∂t2

− P
∂2w
∂x2

= f (x, t) (1)

where x is the location on the beam, t is time, w is the lateral beam
displacement about the y-axis such that the beam’s thickness is
along the direction of vibration, E is the elastic modulus, I is the
moment of inertia of the beam cross section about the y-axis, ρ is
the mass density, A is the cross-sectional area, P is the axial
force, and f (x, t) is the external force per unit length. The axial
force is tensile when P is positive and compressive when P is neg-
ative. In the present work, the beam is assumed to be undamped.
Although it is out of the scope of this paper, damping may be
readily added by including a dissipative force in the equation of
motion.
To predict the solution of Eq. (1), FEM of an Euler–Bernoulli

beam with axial loading is considered. The FEM in consideration
is depicted in Fig. 1, where the beam of length L is discretized
into Q beam elements, such that each beam element has a length

l =
L

Q
(2)

The equation of motion for a beam element in the frequency domain
is as follows:

k + kax + (iω)2m
( )

x = f (3)

where x is the elemental displacement vector, f is the elemental
force vector, k is the elemental bending stiffness matrix, kax is
the elemental axial loading stiffness matrix, and m is the elemental
mass matrix. The displacement vector is as follows:

x =

wn

θnl
wn+1

θn+1l

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭ (4)

where wn and θn are the lateral displacement and slope, respectively,
of the nth node. The elemental force vector is as follows:

f =

Fn

Mn/l
Fn+1

Mn+1/l

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭ (5)

where Fn andMn are the applied force and moment, respectively, of
the nth node.
A cubic function in x is used to model the lateral displacement of

the beam element as it is an appropriate choice for a four
degree-of-freedom (DOF) element, such as the beam element

Fig. 1 Schematic of the finite element model of Euler–Bernoulli
beam with axial loading
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described in Eqs. (3)–(5). Furthermore, the cubic displacement
function satisfies the beam differential equation and the conditions
of displacement and slope continuity at nodes shared by two ele-
ments [28]. As a result, the elemental beam matrices are found to
be [29,30]

k =
EI

l3

12 6 −12 6
6 4 −6 2

−12 −6 12 −6
6 2 −6 4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (6a)

kax =
P

30l

36 3 −36 3
3 4 −3 −1

−36 −3 36 −3
3 −1 −3 4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (6b)

m =
ρAl
420

156 22 54 −13
22 4 13 −3
54 13 156 −22
−13 −3 −22 4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (6c)

When deriving the elemental beam matrices in Eq. (6), the rota-
tional DOFs and applied moments were intentionally expressed in
terms of the elemental length l in Eqs. (4) and (5), respectively.
This was done so that each elemental beam matrix in Eq. (6) is
expressed as a product of a scalar and a matrix, where all dependen-
cies on material properties, dimensions, and axial loading reside in
the scalar. This expression will be useful for the analysis in Sec. 3.
With the elemental beam matrices in Eq. (6), the global finite

element matrices are assembled to model the transverse vibration
of the entire beam [30]. The resulting equation of motion is as
follows:

K +Kax + (iω)2M
( )

X = F (7)

where K is the global bending stiffness matrix, Kax is the global
axial bending stiffness matrix, and M is the global mass matrix.
Similarly, X is the global displacement vector of the beam and F
is the global force vector. In Sec. 2.1, boundary conditions of the
beam are discussed.

2.1 Boundary Conditions. As depicted in Fig. 1, boundary
conditions on the translational and rotational degrees-of-freedom
are modeled in the FEM at the left and right ends of the beam
to simulate the physical boundary conditions of the structure.
Commonly, boundary conditions are modeled by either fixing
degrees-of-freedom or allowing degrees-of-freedom to be free
such that no force or moment is applied. In this paper, flexible
boundary conditions are considered to more accurately model the
physical boundary conditions of the NEMS beam. With flexible
boundary conditions, when the ends of the beam translate and
rotate, a force and moment are applied, respectively. Flexible
boundary conditions are modeled with translational and rotational
springs at the ends of the beam, as depicted in Fig. 2. For the
present work, the boundary conditions are assumed to be symmetric
such that the translational and rotational stiffnesses at the left end
are equal to those at the right end.

With flexible boundary conditions, the beam is modeled with the
equation of motion

K +Kax +Kt +Kr + (iω)2M
( )

X = F (8)

whereKt andKr are the global translational and rotational boundary
condition stiffness matrices, respectively. With the displacement
and force vector defined in Eqs. (4) and (5), the global boundary
condition stiffness matrices are as follows:

Kt = kt

1 0 · · · 0 0
0 0 · · · 0 0

..

. ..
. . .

. ..
. ..

.

0 0 · · · 1 0
0 0 · · · 0 0

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (9a)

Kr =
kr
l2

0 0 · · · 0 0
0 1 · · · 0 0

..

. ..
. . .

. ..
. ..

.

0 0 · · · 0 0
0 0 · · · 0 1

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (9b)

where kt is the translation spring constant and kr is the rotational
spring constant. It should be noted that nonsymmetric boundary
conditions may be modeled by letting the springs at the left and
right ends of the beam be different. This would result in four
global boundary conditions stiffness matrices, two for each end to
model the translational and rotational stiffnesses, where each
matrix would have only one nonzero element.

3 Evaluating Modal Properties
In this section, the beam FEM introduced in Sec. 2 is used to

evaluate modal properties of the beam. Specifically, the dimension-
less frequencies and mode shapes of the beam will be found by eval-
uating a generalized eigenvalue problem. The analysis provides a
straightforward alternative to numerically solving the characteristic
equation when computing the natural frequencies of the beam,
which will be essential for the proposed method.
To begin, free vibration is considered by setting F= 0, which

simplifies Eq. (8) to

K +Kax +Kt +Kr − ω2M
( )

X = 0 (10)

Recalling Eqs. (6) and (9) and assuming that the beam is homoge-
neous with constant cross-sectional area and that all elements are
the same size with equal length l, the equation of motion in Eq.
(10) may be rewritten as follows:

EI

l3
K̃ +

P

l
K̃ax + ktK̃t +

kr
l2
K̃r − ω2 ρAl

( )
M̃

( )
X = 0 (11)

where the global FEM matrices are expressed explicitly in terms of
their equivalent scalar-matrix product. Here, the matrices K̃, K̃ax,
K̃t , K̃r , and M̃ are the global FEM beam matrices with all material
properties, dimensions, and axially loading factored out. These
matrices may be considered to be dimensionless FEM matrices
that model the dynamics of a beam but are independent of properties
specific to the structure under consideration. Dividing both sides of
Eq. (11) by (EI/l3) results in

K̃ +
Pl2

EI
K̃ax +

ktl3

EI
K̃t +

krl

EI
K̃r − ω2 ρAl4

EI
M̃

( )
X = 0 (12)

which may be further simplified by substituting in Eq. (2) and intro-
ducing dimensionless parameters, such that

K̃ +
α
Q2

K̃ax +
β
Q3

K̃t +
χ
Q
K̃r −

Ω2

Q4
M̃

( )
X = 0 (13)

Fig. 2 Schematic of a beam with flexible boundary conditions
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where α, β, χ, and Ω are dimensionless beam parameters defined as
follows:

α =
PL2

EI
(14a)

β =
ktL3

EI
(14b)

χ =
krL

EI
(14c)

Ω = ω
������
ρAL4

EI

√
(14d)

Here, α is considered to be the dimensionless axial load parameter
that determines the effect that the axial load has on the response of
the beam. Similarly, β and χ are the dimensionless translational and
rotational stiffness parameters, respectively. The dimensionless
parameter Ω is considered to be the dimensionless frequency
parameter [31,32], as it is related to the natural frequencies of the
beam in Eq. (14d ). The formulation in Eq. (13) provides a novel
method for modeling an FEM Euler–Bernoulli beam with dimen-
sionless beam parameters and FEM matrices. This formulation is
significant, as it offers numerical stability when modeling beams
on the nanoscale. In addition, the formulation in Eq. (13) will
allow for uncertain beam properties to be readily predicted
through the dimensionless beam properties and the evaluation of
the dimensionless frequency parameter in the proposed method.
To solve for the dimensionless frequency parameters and natural

frequencies of the beam, Eq. (13) is rearranged in the form of a gen-
eralized eigenvalue problem:

Aϕn = λnBϕn (15)

where A and B are the generalized matrices that are related to the
factored FEM matrices by

A = K̃ +
α
Q2

K̃ax +
β
Q3

K̃t +
χ
Q
K̃r (16a)

B = M̃ (16b)

and λn and ϕn are the eigenpairs of the system. Here, ϕn are the
dimensionless mode shapes of the beam and λn are related to the
dimensionless frequencies by

λn =
Ω2

n

Q4
(17)

When the generalized eigenvalue problem in Eq. (15) is evaluated,
the dimensionless frequencies are found by

Ωn = λ1/2n Q2 (18)

which are related to the dimensional natural frequencies of the beam
by

ωn =Ωn

������
EI

ρAL4

√
(19)

With the dimensionless FEM in Eq. (16), the generalized eigen-
value problem in Eq. (15) may be readily evaluated for any
length scale while maintaining numerical stability. This model
will be essential for the proposed method when predicting proper-
ties of NEMS beams.
From Eqs. (15)–(17), it is clear that the dimensionless frequency

parameters, and hence natural frequencies, depend on the axial load
and boundary conditions of the beam that are modeled with the
dimensionless parameters α, β, and χ. In Sec. 3.1, the effect of

axial loading and boundary conditions on the dimensionless fre-
quencies is examined to determine reasonable ranges for such
parameters with respect to the proposed method.

3.1 Dimensionless Frequency. Consider the case where the
beam is unloaded, such that α= 0. The dimensionless frequencies
for the first four modes, excluding the rigid-body mode, of beams
with ideal boundary conditions, which consist of fixed and free
degrees-of-freedom, are listed in Table 1. For this example and
the purpose of examining trends, the boundary conditions were
modeled by setting β = χ = 0 in Eq. (16a), thus reducing Eqs.
(15) and (16) to the generalized eigenvalue problem of an ideal free-
free beam. The various ideal boundary conditions were then
modeled by fixing the appropriate degrees-of-freedom with the
method presented by Wu et al. [33]. With the imposed boundary
conditions, the generalized eigenvalue problem was evaluated and
the dimensionless frequencies were found with Eq. (18). The
results in Table 1 are in agreement with expected values that are
often found by numerically solving the characteristic equation
[30]. In Sec. 3.1.1, the effect of including an axial tensile load is
examined.

3.1.1 Effect of Axial Force. The effect of axial loading on the
dimensionless frequency may be observed in Table 1, which lists
the dimensionless frequencies for the first four modes of the previ-
ously described beams with different values of the dimensionless
axial loading parameter α. The dimensionless frequencies, and
thus, the dimensional natural frequencies tend to increase as the
dimensionless axial load parameter α increases. This trend is ubiq-
uitous for all observed boundary conditions and modes. It is well
known that a beam begins to behave like a string when either the
tensile force P becomes very large or the flexural rigidity EI
becomes very small [31,32]. This trend is illustrated in Fig. 3
with a plot adapted fromWei et al. [34]. The figure plots the dimen-
sionless frequency for the fundamental mode Ω1 versus the dimen-
sionless axial load parameter for a string, which behaves as Ωn=
nπα1/2, and three beams with different boundary conditions. From
Fig. 3, at small values of α, the effect of axial loading is negligible
and the dimensionless frequencies closely resemble those of a beam
with no loading. This may be confirmed by comparing Fig. 3 and
Table 1. However, as α becomes larger, the axial load begins to
dominate and the response of the beam becomes independent of
flexural rigidity. This trend is depicted in Fig. 3 where the three
beams closely follow the same dependence of a string for α> 104.
The proposed method is developed and intended for beams with
observable dependence on axial loading and flexural rigidity.
Examples and results presented later will be for beams with a
dimensionless axial loading parameter 100≤ α≤ 105.

3.1.2 Effect of Flexible Boundary Conditions. In this section,
the effect of flexible boundary conditions on the dimensionless fre-
quency and response of the beam will be considered. To better
examine these effects, an unloaded beam is considered such that
α= 0. First, a beam with translational springs at both ends,
modeled with the dimensionless parameter β and K̃t , and fixed rota-
tions at the ends is considered. The dimensionless frequency of the
fundamental mode Ω1 is plotted versus the dimensionless transla-
tional stiffness parameter β in Fig. 4(a). At small β, the low stiffness
of the boundary springs dominates and the response follows that of
a mass-spring system, where the mass is the mass of the entire beam
and the effective stiffness is 2kt, which results in the relation
Ω1 =

���
2β

√
. This trend is also observed in Fig. 4(b), which plots

the fundamental mode shapes for different values of β. From the
figure, for β = 101, the mode is largely dominated by the extension
of the boundary springs. As β increases, the flexural rigidity begins
to dominate and the beam begins to experience more bending
and less extension at the boundary springs. This trend continues
until β becomes very large and the response follows that of a
beam with fixed–fixed boundary conditions. This is observed in
Fig. 4(a), where the dimensionless frequency approaches the
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dimensionless frequency of a fixed–fixed beam, Ω1= 22.3733, as
listed in Table 1. This trend and dependence on β are followed
for all modes, as depicted in Fig. 4(c), which plots the dimension-
less frequency for the first four modes. Considering the beams of
interest, the present work will be limited to translational stiffnesses
captured in the range 101 ≤ β ≤ 105.
Finally, an unloaded beam with rotational springs at both ends,

modeled with χ and K̃r , and fixed translation at the ends is consid-
ered. The dimensionless frequency of the fundamental mode Ω1 is
plotted versus the dimensionless rotational stiffness parameter χ in
Fig. 5(a). As would be expected, at low values of χ, the presence of
the rotational springs is negligible and the beam behaves like a
beam with pinned–pinned boundary conditions such that Ω1=
9.8696, as listed in Table 1. However, as χ increases, the dimension-
less frequency is observed to depend more strongly on the rotational
spring until the beam begins to behave like a fixed–fixed beam. This
is depicted in Fig. 5(a) with a transition region from Ω1= 9.8696 to
Ω1= 22.3733. This trend is also exhibited in all modes as observed
in Fig. 5(b), which plots the dimensionless frequency for the first
four modes versus the dimensionless rotational stiffness. In

Table 1 Dimensionless frequency of first four modes, excluding the rigid-body mode, for beams with different ideal boundary
conditions and axial loading

Boundary
conditions α= 0 α= 1 α= 10 α= 50 α= 100 α= 500 α= 1000 α= 10,000

Ω1= 9.8696
Ω2= 39.4784
Ω3= 88.8264
Ω4= 157.9137

Ω1= 10.3575
Ω2= 39.9753
Ω3= 89.3250
Ω4= 158.4129

Ω1= 14.0038
Ω2= 44.1965
Ω3= 93.6931
Ω4= 162.8369

Ω1= 24.3082
Ω2= 59.4346
Ω3= 111.0471
Ω4= 181.1972

Ω1= 32.9298
Ω2= 74.2050
Ω3= 129.5098
Ω4= 201.8120

Ω1= 70.9381
Ω2= 145.9375
Ω3= 228.6993
Ω4= 322.3252

Ω1= 99.8349
Ω2= 202.5758
Ω3= 310.9929
Ω4= 427.6101

Ω1= 314.3143
Ω2= 629.5576
Ω3= 946.6544
Ω4= 1266.520

Ω1= 22.3733
Ω2= 61.6728
Ω3= 120.9034
Ω4= 199.8595

Ω1= 23.4507
Ω2= 62.5490
Ω3= 121.6736
Ω4= 200.5703

Ω1= 31.3892
Ω2= 69.8892
Ω3= 128.3823
Ω4= 206.8526

Ω1= 52.8630
Ω2= 95.1260
Ω3= 154.3553
Ω4= 232.5673

Ω1= 70.1390
Ω2= 118.3247
Ω3= 180.9463
Ω4= 260.7555

Ω1= 144.9682
Ω2= 225.5369
Ω3= 315.2119
Ω4= 416.3045

Ω1= 202.0838
Ω2= 309.3531
Ω3= 423.8021
Ω4= 547.4178

Ω1= 629.5080
Ω2= 946.4871
Ω3= 1266.124
Ω4= 1589.284

Ω1= 22.3733
Ω2= 61.6728
Ω3= 120.9034
Ω4= 199.8595

Ω1= 22.6464
Ω2= 62.0450
Ω3= 121.3117
Ω4= 200.2883

Ω1= 24.9574
Ω2= 65.2921
Ω3= 124.9250
Ω4= 204.1063

Ω1= 33.1763
Ω2= 77.9997
Ω3= 139.8260
Ω4= 220.2625

Ω1= 40.9932
Ω2= 91.2643
Ω3= 156.3955
Ω4= 238.8921

Ω1= 77.9113
Ω2= 160.2803
Ω3= 251.0408
Ω4= 353.3270

Ω1= 106.5809
Ω2= 216.2878
Ω3= 332.0612
Ω4= 456.5178

Ω1= 320.7300
Ω2= 642.4135
Ω3= 965.9985
Ω4= 1292.423

Ω1= 3.5160
Ω2= 22.0345
Ω3= 61.6972
Ω4= 120.9019

Ω1= 4.1102
Ω2= 22.7566
Ω3= 62.3205
Ω4= 121.4914

Ω1= 7.1675
Ω2= 28.2944
Ω3= 67.6582
Ω4= 126.6700

Ω1= 13.1150
Ω2= 43.8214
Ω3= 87.0217
Ω4= 147.3205

Ω1= 17.6105
Ω2= 56.4993
Ω3= 105.5011
Ω4= 169.1492

Ω1= 36.8506
Ω2= 112.5007
Ω3= 193.7980
Ω4= 283.9516

Ω1= 51.3544
Ω2= 155.4788
Ω3= 263.7737
Ω4= 378.7869

Ω1= 158.6856
Ω2= 476.5181
Ω3= 795.7319
Ω4= 1117.240

Ω1= 15.4182
Ω2= 49.9649
Ω3= 104.2477
Ω4= 178.2697

Ω1= 15.7868
Ω2= 50.3923
Ω3= 104.6977
Ω4= 178.7317

Ω1= 18.7601
Ω2= 54.0847
Ω3= 108.6638
Ω4= 182.8365

Ω1= 28.2268
Ω2= 68.0614
Ω3= 124.7580
Ω4= 200.0577

Ω1= 36.5823
Ω2= 82.1562
Ω3= 142.2974
Ω4= 219.6758

Ω1= 74.2657
Ω2= 152.8053
Ω3= 239.4464
Ω4= 337.3108

Ω1= 103.0991
Ω2= 209.2184
Ω3= 321.2171
Ω4= 441.6689

Ω1= 317.4898
Ω2= 635.9209
Ω3= 956.2297
Ω4= 1279.343

Ω1= 15.4182
Ω2= 49.9649
Ω3= 104.2477
Ω4= 178.2697

Ω1= 16.2749
Ω2= 50.6718
Ω3= 104.8926
Ω4= 178.8810

Ω1= 22.4012
Ω2= 56.6107
Ω3= 110.5203
Ω4= 184.2890

Ω1= 38.3118
Ω2= 77.1052
Ω3= 132.4469
Ω4= 206.5280

Ω1= 51.1261
Ω2= 96.0450
Ω3= 155.0711
Ω4= 231.0744

Ω1= 107.4790
Ω2= 185.1940
Ω3= 271.4863
Ω4= 368.9759

Ω1= 150.5600
Ω2= 255.4300
Ω3= 366.8290
Ω4= 486.9893

Ω1= 471.7514
Ω2= 787.7684
Ω3= 1106.052
Ω4= 1427.492

Ω1= 5.5933
Ω2= 30.2258
Ω3= 74.6389
Ω4= 138.7913

Ω1= 5.8612
Ω2= 30.6321
Ω3= 75.0797
Ω4= 139.2481

Ω1= 7.8368
Ω2= 34.0648
Ω3= 78.9352
Ω4= 143.2935

Ω1= 13.2454
Ω2= 46.2359
Ω3= 94.1508
Ω4= 160.0307

Ω1= 17.6680
Ω2= 57.8092
Ω3= 110.1907
Ω4= 178.7345

Ω1= 36.8599
Ω2= 112.7474
Ω3= 194.9002
Ω4= 286.8104

Ω1= 51.3588
Ω2= 155.5970
Ω3= 264.3142
Ω4= 380.2390

Ω1= 158.6860
Ω2= 476.5290
Ω3= 795.7823
Ω4= 1117.378

Ω1= 2.4674
Ω2= 22.2066
Ω3= 61.6850
Ω4= 120.9027

Ω1= 2.9250
Ω2= 22.7011
Ω3= 62.1830
Ω4= 121.4016

Ω1= 5.5463
Ω2= 26.7432
Ω3= 66.4973
Ω4= 125.8033

Ω1= 11.3780
Ω2= 40.0433
Ω3= 83.0018
Ω4= 143.7449

Ω1= 15.9006
Ω2= 52.0941
Ω3= 99.8676
Ω4= 163.4250

Ω1= 35.2106
Ω2= 107.6868
Ω3= 186.1385
Ω4= 273.9868

Ω1= 49.7342
Ω2= 150.6643
Ω3= 255.9103
Ω4= 368.1306

Ω1= 157.0990
Ω2= 471.7618
Ω3= 787.8168
Ω4= 1106.184

Ω1= 9.8696
Ω2= 39.4784
Ω3= 88.8264
Ω4= 157.9137

Ω1= 10.3575
Ω2= 39.9753
Ω3= 89.3250
Ω4= 158.4129

Ω1= 14.0038
Ω2= 44.1965
Ω3= 93.6931
Ω4= 162.8369

Ω1= 24.3082
Ω2= 59.4346
Ω3= 111.0471
Ω4= 181.1972

Ω1= 32.9298
Ω2= 74.2050
Ω3= 129.5098
Ω4= 201.8120

Ω1= 70.9381
Ω2= 145.9375
Ω3= 228.6993
Ω4= 322.3252

Ω1= 99.8349
Ω2= 202.5758
Ω3= 310.9929
Ω4= 427.6101

Ω1= 314.3143
Ω2= 629.5576
Ω3= 946.6544
Ω4= 1266.520

Ω1= 5.5933
Ω2= 30.2258
Ω3= 74.6389
Ω4= 138.7913

Ω1= 6.5991
Ω2= 30.9884
Ω3= 75.3094
Ω4= 139.4172

Ω1= 12.1336
Ω2= 37.0879
Ω3= 81.0816
Ω4= 144.9247

Ω1= 23.7382
Ω2= 55.8711
Ω3= 102.5205
Ω4= 167.0796

Ω1= 32.6296
Ω2= 72.0629
Ω3= 123.5789
Ω4= 190.8295

Ω1= 70.8762
Ω2= 145.4485
Ω3= 227.0920
Ω4= 318.6875

Ω1= 99.8040
Ω2= 202.3290
Ω3= 310.1673
Ω4= 425.6855

Ω1= 314.3112
Ω2= 629.5328
Ω3= 946.5707
Ω4= 1266.322

Fig. 3 Dimensionless frequency of the fundamental mode Ω1
versus dimensionless axial load parameter α for a string and
beams with different ideal boundary conditions
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comparison to the translational stiffness, the rotational stiffness is
observed to have a weaker effect on the response of the beam and
dimensionless frequency. The present work will be limited to rota-
tional stiffnesses captured in the range 10−2 ≤ χ ≤ 104.

4 Proposed Method
In this section, the proposed method for simultaneously predict-

ing the elastic modulus, axial load, and boundary conditions from
measured natural frequencies is presented. The method assumes
that the dimensions and density of the beam are known and at
least two natural frequencies have been measured. The method pre-
dicts the initially uncertain beam properties by finding values of the

dimensionless parameters, α, β, and χ, that minimize the error
between the measured and predicted natural frequencies. The pre-
dicted natural frequencies are found with the dimensionless fre-
quencies Ωn, which are evaluated with the generalized eigenvalue
problem. A scaling factor is then computed by comparing the fun-
damental dimensionless frequency to the measured fundamental
frequency. It should be noted that during this step, the elastic
modulus of the beam is simultaneously predicted. With the
scaling factor, the natural frequencies of the beam are computed
and a normalized error between the predicted and measured
natural frequencies is evaluated. The uncertain beam properties
are predicted by finding the dimensionless parameters that minimize
the normalized error. The proposed method is outlined in detail with
the following steps.
For each choice of α, β, and χ:

(1) Compute eigenvalues λn by evaluating the generalized eigen-
value problem in Eq. (15) with generalized matrices defined
in Eq. (16). With the eigenvalues, compute the dimensionless
frequencies Ωn with Eq. (18).

(2) Compute the scaling factor using the measured fundamental
frequency ω1,act and evaluated dimensionless fundamental
frequency Ω1 with the relationship

s =
ω1,act

Ω1
(20)

It should be noted that by computing the scaling factor s, the
elastic modulus of the beam is predicted by virtue of Eq.
(14d ) and the relationship between the dimensionless fre-
quency and dimensional natural frequency. Comparing
Eqs. (14d ) and (20), the scaling factor is related by
s =

����������
EI/ρAL4

√
.

(3) Compute predicted natural frequencies with scaling factor
and dimensionless frequency with

ωn,pred = sΩn (21)

(4) Compute normalized error between predicted and measured
natural frequencies with

ε =
rms ωact −ωpred

( )
rms ωact( ) (22)

where ωact and ωpred are vectors of the same length contain-
ing measured and predicted natural frequencies, respectively,
and rms(·) is the root-mean-square of the vector argument.

The initially uncertain beam properties are predicted by iterating
through values of α, β, and χ in search for values that minimize the
error in Eq. (22). When the error between predicted and measured

(a) (b) (c)

Fig. 4 (a) Dimensionless frequency of fundamental mode Ω1 versus dimensionless translational stiffness β, (b) fundamental
mode shape for beams with different dimensionless translational stiffness β, and (c) dimensionless frequency for first four
modes versus dimensionless translational stiffness β

(a)

(b)

Fig. 5 (a) Dimensionless frequency of the fundamental modeΩ1
versus dimensionless rotational stiffness χ and (b) dimension-
less frequency for first four modes versus dimensionless rota-
tional stiffness χ
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natural frequencies is minimized, the beam properties are predicted
with the following steps.
For values α̂, β̂, and χ̂ that minimize the normalized error in

Eq. (22):

(1) Compute eigenvalues λ̂n by evaluating the generalized eigen-
value problem in Eq. (15) with generalized matrices defined
in Eq. (16). With the eigenvalues, compute the dimensionless
frequencies Ω̂n with Eq. (18).

(2) Compute the scaling factor ŝ using the measured fundamental
frequency ω1,act and dimensionless fundamental frequency
Ω̂1 with Eq. (20).

(3) Evaluate predicted elastic modulus with computed scaling
factor ŝ and known dimensions and density with

Ê = ŝ2
ρAL4

I

( )
(23)

(4) With predicted elastic modulus and dimensionless parame-
ters α̂, β̂, and χ̂, evaluate axial load and boundary conditions
from

P̂ = α̂
ÊI

L2

( )
(24a)

k̂t = β̂
ÊI

L3

( )
(24b)

k̂r = χ̂
ÊI

L

( )
(24c)

The proposed method is advantageous to previous methods as it
simultaneously predicts the elastic modulus from the scaling factor
while iterating through the dimensionless parameters. This will sig-
nificantly reduce the computational cost of any search algorithm
and make brute force scans more feasible, as there will be one
less parameter that must be optimized. Additionally, although the
method was derived for a beam with boundary conditions depicted
in Fig. 2, the FEM and the proposed method may be easily adapted
to predict properties for a wide range of beams. This may be done
by imposing known ideal boundary conditions with the method pre-
sented by Wu et al. [33]. Furthermore, although it is not within the
scope of this paper, flexible boundary conditions that are not sym-
metric may be modeled and predicted by introducing additional
stiffness terms in Eq. (8) that will allow for the variation in stiffness
between left and right ends.

4.1 Required Measurements. In the proposed method, a
minimum of two measured natural frequencies is required. Since
the scaling factor is computed with a measured natural frequency
in Eq. (20), an additional measured frequency is needed to
compute the normalized error with Eq. (22). If only one measured
natural frequency is available, then the normalized error will be
independent of the iterated values α, β, and χ, and equal to ɛ= 0.
By measuring a second natural frequency, an error between pre-
dicted and measured natural frequencies is characterized and the
uncertain beam parameters may be accurately predicted. Although
only two natural frequencies are required, the proposed method gen-
erally performs better when more measurements are available. The
dependence of the method’s accuracy on the number of measured
natural frequencies will be examined with numerical and experi-
mental examples. It should also be noted that any natural frequency
and dimensionless frequency may be used to compute the scaling
factor s, since the relationship in Eq. (14d ) is valid for all modes.
In Sec. 5, the proposed method is illustrated with numerical exam-
ples that consider NEMS beams and a range of uncertain
parameters.

5 Numerical Example
In this section, numerical examples are presented to illustrate the

accuracy of the method with cases in which actual beam parameters
are known. In all examples presented, a NEMS beam with the
dimensions and density listed in Table 2 is considered. Here, the
density is that of silicon nitride [35]. The aspect ratios are (b/L)=
0.019 and (h/L)= 0.002 and are within the acceptable range for
which the Euler–Bernoulli FEM beam model is valid. In the exam-
ples, that follow, the highest mode examined is the fifth mode. Con-
sequently, the FEM beam model is discretized into Q= 200
elements to satisfy the general criterion of six elements per wave-
length [36]. In Secs. 5.1–5.3, three different examples are examined
that consider different initially uncertain parameters. The actual
beam properties for all examples and cases are listed in Table 3.

5.1 Uncertain Elastic Modulus and Axial Load. In the first
example, a beam with ideal fixed–fixed boundary conditions and
an uncertain elastic modulus and axial load is considered. The
boundary conditions are assumed to be known and modeled with
β = χ = 0 in Eq. (16a) and the method outlined in Ref. [33]. Four
cases, Ax. 1–Ax. 4, with different actual values of the dimension-
less axial load parameter, α, are examined. To predict the elastic
modulus and axial load, the steps outlined in Sec. 4 were employed.
A global optimization search was performed with MATLAB’s Global-
Search [37] with the local solver fmincon and the interior point
algorithm [38] to iterate through values of α. The objective function
to be minimized was the normalized error ɛ described in Eq. (22),
where the vectorsωact andωpred were composed of the first two sim-
ulated and predicted natural frequencies, respectively. Again, it is
important to note that the proposed method only requires the
axial load parameter α to be optimized, as the elastic modulus is
simultaneously predicted from the scaling factor s, which is evalu-
ated at each iteration.
The dimensionless axial load parameter α̂ that minimized the nor-

malized error in Eq. (22), the predicted elastic modulus Ê, and axial
load P̂ are listed in Table 5 for all cases examined. The normalized
error between the actual and predicted properties is also listed in the
table. From Table 5, it is observed that the predicted elastic modulus
and axial load agree well with the actual properties, as all errors are
well below 1% and an exact prediction was found in case
Ax. 4. Also important to observe is the normalized error between
the actual and predicted natural frequencies for the first two

Table 2 Dimensions and density of NEMS beam

L Length 50 μm
b Width 950 nm
h Thickness 100 nm
I Second moment of area 7.9167 × 10−29 m4

ρ Density 3100 kg/m3

Table 3 Actual beam properties for numerical examples

Case E (GPa) α P (nN) log10 β
( )

kt (N/m) χ kr (nN m)

Ax. 1 270 10 85.5 – – – –
Ax. 2 270 50 427.5 – – – –
Ax. 3 270 100 855 – – – –
Ax. 4 270 500 4275 – – – –
Ax. Tr. 1 270 100 855 2 0.0171 – –
Ax. Tr. 2 270 100 855 3 0.1710 – –
Ax. Tr. 3 270 250 2137.5 2 0.0171 – –
Ax. Tr. 4 270 250 2137.5 3 0.1710 – –
Ax. Ro. 1 270 100 855 – – 50 0.0214
Ax. Ro. 2 270 100 855 – – 75 0.0321
Ax. Ro. 3 270 250 2137.5 – – 50 0.0214
Ax. Ro. 4 270 250 2137.5 – – 75 0.0321
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modes listed in Table 4, where the error is denoted as ɛa. To recall
earlier in the example, this error was used as the objective function
that was minimized to predict the initially uncertain beam proper-
ties. Consequently, a low value is expected for this error. For a
better representation of the accuracy of the proposed method and
predicted properties, the normalized error in predicted natural fre-
quencies for higher modes, not included in the optimization
search, is computed. This error is labeled as ɛb in Table 4 and is
the normalized error in natural frequencies for the third to fifth
mode. From the results, it is observed that the error over the
higher modes ɛb is slightly larger than the error over the lower
modes ɛa. This increase in error is due to the fact that the optimiza-
tion search decreases the error between actual and predicted fre-
quencies at only the first two modes. Thus, the predicted beam
properties minimize the error at those two particular frequencies,
as opposed to the error at higher frequencies. Although the error
over the higher frequencies ɛb is slightly larger than the error over
the fit frequencies ɛa, it is important to note that they are still reason-
ably small. These results indicate that the predicted beam properties
accurately model the response of the beam at higher modes that
were not included in the initial fit and highlight the proposed
method’s ability to predict beam properties from as little as two
measured natural frequencies.
As previously mentioned, the first two natural frequencies were

used to evaluate the objective function. These frequencies were
chosen with the consideration that lower modes are often easier to
excite and measure. However, it is worth noting that the proposed
method will perform best when using frequencies that are most sen-
sitive to changes in the parameters of interest. Specifically, mea-
sured frequencies that will produce large gradients in normalized
error will be advantageous for predicting beam properties with
global optimization searches or brute force scans. For example,
Fig. 6 plots the normalized error in predicted natural frequency
for case Ax. 1 versus dimensionless axial load parameter α for dif-
ferent pairs of fit natural frequencies. For each case, the lowest fre-
quency was used to compute the scaling factor s. From Fig. 6, it is
clear that for each case analyzed, a minimum in error occurs at α=

10, corresponding to the actual beam property for case Ax. 1. These
results imply that any set of measured natural frequencies may be
compared to predicted frequencies to compute an error, which
when minimized will accurately predict the properties of a beam.
However, Fig. 6 also illustrates the different sensitivities for
various pairs of fit frequencies. Relatively large gradients in error
are observed when the first natural frequency is included in the
fit. Furthermore, the gradient is observed to increase with an
increase in the second fit frequency. These results suggest that
using nonconsecutive natural frequencies is advantageous for gen-
erating a well-defined error profile. It is important to note that these
results are specific to this example and the beam’s dependence on
the axial load. To determine optimal sets of fit natural frequencies,
detailed sensitivity studies [39] are required, which are out of the
scope of this paper. In all examples, to follow, consecutive
natural frequencies starting at the fundamental are used to
compute the normalized error between predicted and measured
natural frequencies.

5.2 Uncertain Elastic Modulus, Axial Load, and
Translational Stiffness. In the examples presented in this
section, the NEMS beam under consideration has an uncertain
elastic modulus, axial load, and translational stiffness at the bound-
aries. The rotational degrees-of-freedom are taken to be fixed at
both ends and assumed to be known. The actual values of the
elastic modulus, axial load, and translational stiffness for four dif-
ferent cases, Ax. Tr. 1–Ax. Tr. 4, are listed in Table 3. Similar to
the previous example, the uncertain parameters are predicted
using a global optimization search that optimizes the dimensionless
parameters α and β, while simultaneously predicting the elastic
modulus. Specifically, the logarithm of the dimensionless transla-
tional stiffness log10 β

( )
was set as a search parameter to account

for the relatively large numerical range. For this example, the first
two natural frequencies were used to compute the objective function
in Eq. (22).
The predicted beam properties are listed in Table 5 with their cor-

responding normalized error. Although the errors are slightly larger
than those observed in the previous example, the results suggest that
the proposed method is able to accurately predict the elastic
modulus, axial load, and boundary conditions simultaneously.
From the results in Table 5, all beam properties were predicted
with an error less than 10%. Furthermore, for cases Ax. Tr. 2 and
4, all beam properties were predicted with an error less than 5%.
From Table 5, relatively large errors in the elastic modulus were
observed in cases Ax. Tr. 1 and Ax. Tr. 3., which corresponded
to the cases where the actual translational stiffness was kt=
0.0171 N/m with log10(β) = 2. To better interpret these results,
the logarithm of the normalized error in predicted frequency
log10(ɛ) is plotted versus the dimensionless axial load parameter α
and transnational stiffness parameter β in Figs. 7(a)–7(d ) for four
different cases. Comparing Figs. 7(a) and 7(c) with Figs. 7(b) and
7(d ), less variation in error and a shallower contour is observed
for cases Ax. Tr. 1 and Ax. Tr. 3. These trends suggest that the pre-
dicted beam parameters in cases Ax. Tr. 1 and Ax. Tr. 3 result in
small errors in predicted natural frequencies but do not represent
the global minimum. As a result, small errors in predicted beam
properties may arise when an optimization search is employed.
The results in Table 5 illustrate that the proposed method is able

to simultaneously predict three unknown parameters, elastic
modulus, axial load, and translational stiffness, from as little as
two natural frequencies. As discussed in Sec. 4.1, the two frequen-
cies are required to characterize a normalized error between mea-
sured and predicted natural frequencies. From Figs. 7(a)–7(d ), a
global minimum occurs when the uncertain beam properties are
evaluated at values equivalent to the actual properties. This
unique global minimum allows for such beam properties to be pre-
dicted. However, from Figs. 7(a)–7(d ), additional local minima
exist resulting in the observed error in predicted properties. To
obtain a smoother error profile and reduce the number of local

Table 4 Normalized error between actual and predicted natural
frequencies for modes one and two, ɛa, and modes three to five,
ɛb

Case ɛa ɛb

Ax. 1 3.6503× 10−4 7.1217× 10−4

Ax. 2 2.4340× 10−7 6.2649× 10−7

Ax. 3 7.0953× 10−6 2.2150× 10−5

Ax. 4 0.0000 0.0000

Fig. 6 Normalized error ɛ versus dimensionless axial load
parameter α, for different pairs of measured natural frequencies
used to compare with predicted frequencies and compute the
normalized error
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minima, the number of measured natural frequencies included in the
fit should be increased. This trend is illustrated in Figs. 7(e)–7(h),
which plot the logarithm of the normalized error computed using
the first three natural frequencies for cases Ax. Tr. 1–Ax.
Tr. 4. Comparing Figs. 7(a)–7(d ) with Figs. 7(e)–7(h), the increase
in fit natural frequencies results in a more well-defined global
minimum. This can be clearly observed in the results for cases
Ax. Tr. 1 and Ax. Tr. 3, where the two frequency fit, in Figs.
7(a) and 7(c), resulted in many local minima and very small gradi-
ents near the global minimum. In comparison, the three frequency
fit, in Figs. 7(e) and 7(g), resulted in fewer local minima and a
clearer global minimum. These results suggest that increasing the
number of fit natural frequencies will give rise to error profiles
that will better characterize the accurate beam properties. As a
result, the proposed method generally performs better when more
measured natural frequencies are available to compare to predicted
frequencies. Additional results and analysis on the effect the
number of fit natural frequencies has on the proposed method will
be presented in Sec. 6.

5.3 Uncertain Elastic Modulus, Axial Load, and Rotational
Stiffness. In the final numerical example, the NEMS beam
under consideration has an uncertain elastic modulus, axial
load, and rotational stiffness at the boundaries. The translational
degrees-of-freedom are taken to be fixed at both ends and
assumed to be known. The actual beam properties for four different

cases, Ax. Ro. 1–Ax. Ro. 4, are listed in Table 3. In this example,
the first two natural frequencies of the beam are taken to be mea-
sured, and the normalized error in Eq. (22) is minimized with a
global optimization search that optimizes the dimensionless axial
load parameter α and rotational stiffness parameter χ. The predicted
properties and their corresponding error are listed in Table 5.
From the results, it is observed that the elastic modulus and axial

load are predicted accurately for all cases, with errors well below
5%. However, it is apparent that the proposed method with the
global optimization search has difficulty predicting the rotational
stiffness, with a relatively large error of 26.818% in case Ax.
Ro. 3. The difference in errors is primarily due to the fact that the
response of the beam is fairly insensitive to changes in the rotational
stiffness. This trend may be observed in Fig. 5(b), where the dimen-
sionless frequencies Ωn experience relatively small change with
change in the dimensionless rotational stiffness χ. Additionally,
similar trends may be observed in Fig. 8, which plots the logarithm
of the normalized error in predicted natural frequencies versus the
dimensionless axial load and rotational stiffness parameters. From
the contour plots, the error appears to be relatively insensitive to
changes in the dimensionless rotational stiffness with very
shallow error regions and small variations. As a result, the proposed
method has a difficult time finding the accurate dimensionless rota-
tional stiffness parameter from the error in predicted natural fre-
quencies. From the numerical examples presented in this section,
it is concluded that the proposed method is limited to accurately pre-
dicting the elastic modulus, axial load, and translational boundary

Fig. 7 Contour plot of logarithm of normalized error, log10(ɛ), versus dimensionless axial load, α, and dimensionless translational
stiffness, β. Normalized error is computed from first two natural frequencies for cases: (a) Ax. Tr. 1, (b) Ax. Tr. 2, (c) Ax. Tr. 3, and
(d) Ax. Tr. 4, and from first three natural frequencies for cases: (e) Ax. Tr. 1, (f) Ax. Tr. 2, (g) Ax. Tr. 3, and (h) Ax. Tr. 4.

Table 5 Predicted beam properties and corresponding normalized error for numerical examples

Case Ê (GPa) Error α̂ P̂ (nN) Error log10 β̂
( )

k̂t (N/m) Error χ̂ k̂r (nN ·m) Error

Ax. 1 269.5302 1.7400 × 10−3 10.0893 86.1132 7.1715 × 10−3 – – – – – –
Ax. 2 269.9995 1.7684 × 10−6 50.0002 427.5007 1.5705 × 10−6 – – – – – –
Ax. 3 270.0196 7.2657 × 10−5 99.9893 854.9710 3.3928 × 10−5 – – – – – –
Ax. 4 270.0000 0.0000 500.0000 4275 0.0000 – – – – – –
Ax.Tr. 1 249.9053 7.4425 × 10−2 108.8095 861.0823 7.1138 × 10−3 2.0344 1.7134 × 10−2 1.9799 × 10−3 – – –
Ax.Tr. 2 276.7689 2.5070 × 10−2 95.3850 835.9872 2.2237 × 10−2 2.9928 1.7242 × 10−1 8.3162 × 10−3 – – –
Ax.Tr. 3 249.7437 7.5023 × 10−2 271.0741 2143.8026 2.9486 × 10−3 2.0341 1.7111 × 10−2 6.3219 × 10−4 – – –
Ax.Tr. 4 272.7480 1.0178 × 10−2 247.4231 2136.9990 2.3438 × 10−4 2.9952 1.7083 × 10−1 1.0044 × 10−3 – – –
Ax.Ro. 1 275.7480 2.1289 × 10−2 99.5219 869.0270 1.6406 × 10−2 – – – 39.3200 1.7167 × 10−2 1.9686 × 10−1

Ax.Ro. 2 271.4128 5.2326 × 10−3 99.8245 857.9654 3.4683 × 10−3 – – – 69.6133 2.9915 × 10−2 6.6966 × 10−2

Ax.Ro. 3 276.5626 2.4306 × 10−2 248.4537 2175.9116 1.7970 × 10−2 – – – 35.7228 1.5643 × 10−2 2.6818 × 10−1

Ax.Ro. 4 271.1986 4.4391 × 10−3 249.5976 2143.5330 2.8225 × 10−3 – – – 69.7228 2.9939 × 10−2 6.6236 × 10−2
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conditions. When predicting the rotational stiffness, the proposed
method is capable of reducing the error of the predicted natural fre-
quencies. However, due to the observed insensitivity, the predicted
rotational stiffness will be prone to relatively large errors.

6 Experimental Example
In this section, the proposed method is applied to an example

with experimental measurements taken from a NEMS beam
with uncertain beam properties. A scanning electron microscope
(SEM) image of the beam is shown in Fig. 9(a) with a top-view
schematic of the beam, not drawn to scale, depicted in Fig. 9(b).
The dimensions and density of the NEMS beam are identical to
those listed in Table 2. With the fabrication procedure presented
by Ari et al. [40], the NEMS beam was fabricated with a standard
top–down approach starting with a 100-nm low-pressure chemical
vapor deposition (LPCVD) silicon nitride-coated silicon wafer.
The exact elastic modulus and axial load of the film and beam are
unknown. In the experiment, the beam was excited using electro-
thermal actuation by applying an AC voltage to the gold electrode
[41]. The applied voltage resulted in localized heating and a nonuni-
form expansion, attributed to the difference in linear thermal coef-
ficients of the gold electrode and silicon nitride, which resulted in

the flexing of the beam. For the first 11 modes, the displacement
of the beam was measured optically with a path-stabilized Michel-
son interferometer at 800 discrete frequencies near resonance. A
modal fit was then performed to find the first 11 natural frequencies
of the NEMS beam [42]. In the following sections, the proposed
method is used to predict the elastic modulus, axial load, and
boundary conditions of the beam with the measured natural
frequencies.

6.1 Ideal Boundary Conditions. First, the NEMS beam is
modeled with ideal fixed–fixed boundary conditions, and initially,
uncertain elastic modulus and axial load are simultaneously pre-
dicted with the proposed method. The FEM beam model was dis-
cretized with Q= 200 elements to again satisfy the general
criterion of six elements per wavelength. In this model, the entire
50 μm NEMS beam, which includes sections attached to the gold
electrodes, as pictured in Fig. 9(b), is assumed to be homogeneous
with a constant elastic modulus, density, axial load, and cross-
sectional area. Similar to the numerical example in Sec. 5.1, the
boundary conditions are modeled by setting β = χ = 0 and fixing
the translational and rotational degrees-of-freedoms at both ends.
As outlined in Sec. 4, the proposed method then iterated through
values of the dimensionless axial load parameter α in search for a
value that minimized the normalized error between predicted and
measured natural frequencies. The normalized error was evaluated
using all 11 measured natural frequencies. For this example, the
iterated values of the dimensionless axial load parameter were eval-
uated from a set of discrete values in the range of 10−4≤α≤ 106 to
ensure the global minimum was captured within reasonable values.
The evaluated error is plotted in Fig. 10(a) where a clear global
minimum is observed at α̂ = 1.4940 × 103. With α̂ and the steps
outlined in Sec. 4, the predicted elastic modulus and axial load
were evaluated with Eqs. (23) and (24a), and their values are
listed in Table 6.
To evaluate the accuracy of the predicted properties, the pre-

dicted natural frequencies are compared with the measured
natural frequencies in Fig. 10(b), where good agreement is
observed. The resulting normalized error in the predicted natural
frequencies is ɛ= 3.12678 × 10−3. These results suggest that the
predicted axial load and elastic modulus accurately model the
response of the NEMS beam. For further validation, the predicted
elastic modulus may be compared to values reported in the literature
for LPCVD silicon nitride, which vary between 146 and 290GPa
[43–46]. From the results in Table 6, the predicted elastic
modulus Ê = 194.6388GPa is of reasonable magnitude with
respect to previously reported values. Additionally, from the pre-
dicted axial load, the normal tensile stress of the beam is predicted
to be σ = 96.9297MPa, which falls within the range of reported

Fig. 8 Contour plot of logarithm of normalized error, log10(ɛ),
versus dimensionless axial load, α, and dimensionless rotational
stiffness, χ, for cases (a) Ax. Ro. 1, (b) Ax. Ro. 2, (c) Ax. Ro. 3, and
(d) Ax. Ro. 4

Silicon Nitride

Gold Electrode

Silicon

Silicon Nitride

Gold

(a) (b)

(c) (d )

Fig. 9 (a) Isometric view of SEM image of NEMS beam used in the experiment (scale bar is
10 μm). (b) Top view of schematic of NEMS beam. (c) Side view of schematic of NEMS beam.
(d) FEM model of NEMS beam with translational springs. Schematics are not drawn to scale.
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values of the tensile stress of low stress silicon nitride wafers, which
typically have an upper bound of 1000 MPa [47–49].

6.2 Flexible Boundary Conditions. To improve the model of
the NEMS beam and agreement between measured and predicted
natural frequencies, the beam is modeled with translational
springs at both ends. Specifically, the homogeneous section of
silicon between the two gold electrodes with length L= 45 μm, pic-
tured in Fig. 9(c), is modeled with two translational springs and
fixed rotations at both ends. The resulting FEM depicted in
Fig. 9(d ) reduces previous assumptions by modeling a section of
the beam that is approximately homogeneous in material properties
and dimensions, while accounting for the stiffness presented by the
cantilever ends with translational springs kt. It should be noted that
rotational springs are not included because it was found that the
response of the beam was highly insensitive to the added rotational
stiffnesses, as previously observed in Sec. 5.3. Specifically, it was
found that the error between predicted and measured natural fre-
quencies did not vary with changes in the rotational spring constant.
Furthermore, it was observed that including rotational springs in the
model did not improve the accuracy of the model and predicted
natural frequencies. As a result, only translational springs are
considered.

The elastic modulus, axial load, and translational stiffness are
simultaneously predicted by iterating through values of the dimen-
sionless axial load parameter α and translational stiffness parameter
β. To begin, an initial coarse scan was performed with discrete
values in the range of 10−4≤ α≤ 106 and 101 ≤ β ≤ 106. These
values were chosen based on the preliminary studies examined in
Sec. 3.1 with an increase in the upper bound to fully capture the
error profile. The logarithm of the normalized error in predicted
natural frequency, defined in Eq. (22), is plotted versus α and β in
Fig. 11(a). For this example, the ranges of the iterated values for
α and β were refined three times to better capture the global
minimum of the normalized error. This refinement process is pic-
tured in Fig. 11(a), where a minimum error of ɛ= 5.2461 × 10−4

was found at values α̂ = 953.0056 and β̂ = 4.3545 × 104. With α̂
and β̂, the elastic modulus, axial load, and translational stiffness
were predicted and are listed in Table 6.
The accuracy of the proposed method and predicted beam prop-

erties may be examined by comparing the measured and predicted
natural frequencies in Fig. 11(b). The predicted natural frequencies
are in better agreement than those depicted in Fig. 10(b), with an
error of ɛ= 5.2461 × 10−4. By modeling the homogeneous silicon
beam with translational springs, the original error of ɛ= 3.1678 ×
10−3 obtained from modeling the entire beam with ideal boundary
conditions was reduced by an order of magnitude. Additionally, the
predicted value of the elastic modulus, Ê = 212.7958GPa, still falls
within the previously mentioned range of reported values. The
normal tensile stress found from the predicted axial load may also
be compared to the silicon wafer specifications, where σ =
83.5421MPa is in agreement with the upper bound of 1000 MPa.
Although it is difficult to validate the predicted translational stiff-
ness, k̂t = 8.0899N/m, the predicted mode shapes may be observed
in Fig. 11(c). Here, the predicted mode shapes follow the general
trend of mode shapes for a beam with fixed–fixed boundary condi-
tions. However, it is clear that both ends do not go to zero, which is
expected considering the physical structure and model in Figs. 9(c)
and 9(d ). To recall, the translational springs model the portion of
the NEMS beam with the gold electrode, which vibrate at each
mode. Consequently, the predicted mode shapes support the expec-
tations that energy would be distributed between bending the beam
and extending the boundary springs.
The two sets of predicted beam properties listed in Table 6 may

also be compared with one another. As the predicted beam proper-
ties were found using two different beam models with different
boundary conditions, it is expected that the predicted beam proper-
ties will be different. This is observed in Table 6, where the inclu-
sion of translational springs resulted in an increase in elastic
modulus and decrease in axial load. From Eq. (8), these changes
may be thought of as a change in the distribution of stiffness contri-
butions. By modeling the boundary conditions with translational
springs, the boundaries effectively became less stif,f which then
resulted in the observed increase in elastic modulus and decrease
in axial load. When analyzing such results, the main thing to note
is that for each boundary condition, the predicted beam properties
minimized the error between predicted and measured natural fre-
quencies, as observed in Figs. 10(a) and 11(a). Hence, the proposed
method predicts beam properties that most accurately predict
natural frequencies for the model under consideration. With the pre-
dicted beam properties, the beam modeled with ideal fixed–fixed
boundary conditions offers a good representation of the NEMS
beam with a low error of ɛ= 3.1678 × 10−3 in predicted natural fre-
quencies. This error may be further reduced to ɛ= 5.2461 × 10−4 by
modeling the beam with flexible boundary conditions and the cor-
responding predicted beam properties.

6.3 Efficiency of Proposed Method. The proposed method
offers major computational savings as it simultaneously predicts
the elastic modulus from the determined scaling factor, thus reduc-
ing the dimension of the search space. Such reduction has profound
advantages when performing brute force scans, such as those

(a)

(b)

Fig. 10 Results from modeling experimental NEMS beam with
ideal fixed–fixed boundary conditions: (a) normalized error ɛ
versus dimensionless axial load parameter α and (b) measured
and predicted natural frequencies for first 11 modes

Table 6 Predicted beam properties of experimental NEMS beam
for ideal and flexible boundary conditions

Boundary
conditions Ê (GPa) α̂ P̂ (μN) β̂

k̂t
(N/m)

Fixed–fixed 194.6388 1493.9935 9.2083 – –
Translational
spring

212.7958 953.0056 7.9365 4.3545× 104 8.0899
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performed in the previous experimental examples. For example, in
Sec. 6.1, the elastic modulus and axial load were predicted by scan-
ning over 500 discrete values of the dimensionless axial load
parameter α. The total central processing unit (CPU) time to
perform this search was measured to be 18.0400 s. This time
would significantly increase if the proposed method is not
employed. Considering this same example, a standard brute force
scan that scans over discrete values of both the elastic modulus
and axial load would increase the one-dimensional search space
to a two-dimensional search space. The required CPU time would
then increase proportionally with the number of values evaluated
for the elastic modulus. For example, a standard search that evalu-
ates 500 discrete values of the elastic modulus and 500 discrete
values of the axial load would require approximately 500 times
more computing time than the proposed method. This would
approximately result in a search that requires 2.5 h of CPU time.
The reduction in search space becomes even more beneficial
when considering a beam with flexible boundary conditions,
where the elastic modulus, axial load, and translational spring
constant must be predicted. With the proposed method employed
in Sec. 6.2, 151 values of the dimensionless axial load parameter,
α, and 151 values of the dimensionless translational stiffness param-
eter β were scanned. This initial coarse scan required 741.1000 s of
CPU time. If the proposed method was not employed, a three-
dimensional search would have been required. For this case, if
151 values of the elastic modulus were also scanned, the required
CPU time would significantly increase to approximately 31 h. As
a result, the proposed method offers major computational savings
due to its reduction in the dimension of the search space. Results
presented are from tests performed on a machine with a 2.9GHz
dual-core Intel Core i5 processor (Intel, Santa Clara, CA).

6.4 Number of Measured Frequencies. Finally, it is valuable
to examine the effect the number of measured natural frequencies
has on the predicted beam properties. For this study, the ideal
boundary conditions described in Sec. 6.1 are used to model the

(a) (b)

(c)

Fig. 11 Results from modeling experimental NEMS beam with translational springs at both ends: (a) logarithm of normalized
error, log10(ɛ), versus dimensionless axial load parameter, α, and translational stiffness parameter, β; (b) measured and predicted
natural frequencies for first 11 modes; and (c) predicted modes shapes for first three modes

(a)

(b)

Fig. 12 (a) Predicted elastic modulus Ê and dimensionless axial
load parameter α̂ found from evaluating the normalized error for
a different number of measured natural frequencies and (b) nor-
malized error in predicted natural frequency versus number of
measured frequencies fit
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NEMS beam, and the elastic modulus and axial load are simulta-
neously predicted with the proposed method. In this example,
the beam properties are predicted for an increasing number of mea-
sured natural frequencies. First, the proposed method is employed
while only using the first two natural frequencies to compute the
normalized error in Eq. (22). Additional measured natural frequen-
cies were then continuously included in the analysis until the
beam properties were predicted using all measured frequencies
from the first 11 modes. The predicted elastic modulus Ê and
dimensionless axial load parameter α̂ from the various simulations
are plotted in Fig. 12(a). The results indicate that the value of the
predicted beam parameters vary as more measured frequencies
are included in the fitting procedure until nine or more measured
natural frequencies are fit. These results suggest that measuring
more natural frequencies is advantageous for accurately predicting
beam properties.
Additional results may be observed in Fig. 12(b), which plots the

normalized error in predicted natural frequencies. The error is com-
puted for each simulation, where the error over the fit modes and all
modes are plotted. From the plot, when a small number of measured
natural frequencies is used to perform the fit, the normalized error
over the fit modes is small while the error over all 11 modes is rel-
atively large. From Fig. 12(b), the error over all modes first
increases when the number of fit modes increases from two to
three. This initial increase is due to the relatively low error obtained
for the two frequency fit. For this case, the error over all modes is
dominated by the good agreement of the first two fit modes and
its extremely low error of 1.6813 × 10−5. However, after this
initial increase, as the number of frequencies included in the fit
increases, the error over all modes decreases and the predicted
beam properties become more accurate. From Fig. 12(b), it is
observed that the error over all 11 modes is largest when
only three measured frequencies are used in the fit, with an error of
ɛ= 2.7820 × 10−2. Although this error is reasonably small, it may
be reduced by including more natural frequencies in the fit, where
it is observed that a minimum error of ɛ= 3.1678 × 10−3 is obtained
when nine or more measured natural frequencies are used. As a
result, although the proposed method only requires two measured
natural frequencies, a better model and prediction of the beam is
made when more measured natural frequencies are provided.

7 Conclusion
A method that simultaneously predicts the elastic modulus, axial

load, and boundary conditions of a beam from at least two measured
natural frequencies is presented. The method utilizes a FEM model
of an Euler–Bernoulli beam under axial loading to evaluate a gen-
eralized eigenvalue problem that is expressed in terms of dimen-
sionless beam parameters and frequencies. The beam properties
are predicted by iterating through the dimensionless beam parame-
ters in search for values that minimize the normalized error between
predicted and measured natural frequencies. The proposed method
is advantageous as it only requires two measured natural frequen-
cies and simultaneously predicts the elastic modulus, which
reduces the number of search parameters. The effect of axial
loading and flexible boundary conditions on the natural frequencies
of the beam was investigated. It was found that the response of the
beam has a relative weak dependence on the rotational boundary
stiffness. Numerical examples were presented, which validated
the method’s accuracy in predicting the elastic modulus, axial
load, and translational stiffness of a beam. However, relatively
large errors were found when predicting rotational stiffnesses due
to the beam’s insensitivity to such property. Results from an exper-
imental example with a NEMS beam highlighted the methods
ability to predict beam properties, which reduced the normalized
error in predicted natural frequencies to ɛ= 3.1678 × 10−3 when
the beam was modeled with ideal boundary conditions. The normal-
ized error was further reduced to ɛ= 5.2461 × 10−4 when the beam
was modeled with translational springs. Since the analysis and FEM

are formulated from dimensionless parameters, the proposed
method may be used for beams with any length scale while main-
taining numerical stability.
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