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ABSTRACT: We study the frequency spectrum of the thermal force giving rise to Brownian motion of a nanomechanical beam
resonator in a viscous liquid. In the first set of experiments, we measure the power spectral density (PSD) of the position fluctuations
of the resonator around its fundamental mode at its center. Then, we measure the frequency-dependent linear response of the
resonator, again at its center, by driving it with a harmonic force that couples well to the fundamental mode. These two
measurements allow us to determine the PSD of the Brownian force noise acting on the structure in its fundamental mode. The PSD
of the force noise from multiple resonators spanning a broad frequency range displays a “colored spectrum” and follows the
dissipation of a blade oscillating in a viscous liquidby virtue of the fluctuation−dissipation theorem of statistical mechanics.
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Brownian motion, the random steps taken by a micrometer-
sized particle in a liquid, is a distinct reality of the

microscopic world. The Brownian particle is incessantly
bombarded by thermally agitated liquid molecules from all
sides, with the momentum exchange giving rise to a rapidly
fluctuating Brownian force. One can find an approximation for
the Brownian force by integrating out the many degrees of
freedom of the liquid and writing a Langevin equation for the
motion of the particle.1 For a single-degree-of-freedom particle
moving along the z axis, the power spectral density (PSD) of
the Brownian force noise GF(ω) is related to the PSD of the

particle’s position fluctuations as ω χ ω ω= | ̂ |G G( ) ( ) ( )Z F
2 .

Here, χ ω̂( ) is the complex linear response function or the
force susceptibility of the particle and describes how the
particle responds to a harmonic force at angular frequency ω.
The simplest description of the dynamics of the Brownian
particle comes from the assumption of a “white” PSD for the
Brownian force noise that satisfies the fluctuation−dissipation
theorem.2 This approximation, while neglecting all effects of
inertia and the flow−structure interaction, captures the long-
time diffusive behavior of the Brownian particle.2−4

Brownian motion also sets the limits of mechanical
resonators in physics experiments. Mechanical resonators
with linear dimensions over many orders of magnitude
from meter-scale mirrors5−7 all the way down to atomic-scale
nanostructures8,9have been used for detecting charge10 and
mass11 and for studying electromagnetic fields12 and quantum
mechanics.13 A typical continuous mechanical resonator can be
described as a collection of mechanical modes, with each mode
behaving like a particle bound in a harmonic potential, i.e., a
harmonic oscillator.14 With the normal mode approximation,
Brownian motion of a continuous mechanical resonator can be
easily formulated for small dissipation,15,16 when spectral
flatness (i.e., a white PSD) and modal orthogonality can be
assumed for the Brownian force. For a multidegree-of-freedom
system with large and spatially varying dissipation, however,
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the theoretical formulation of Brownian motion is non-
trivial.6,17 Here, the modes are coupled strongly and motions
in different modes become correlated.15,18 A possibility for
finding the characteristics of the thermal force comes from the
fluctuation−dissipation theorem, assuming that one can
determine the dissipation in the system from a separate
theory, e.g., fluid dynamics.19

While the Brownian force acting on single-degree-of-
freedom particles has been measured in liquids directly,3,4,20

the few reports on continuous mechanical resonators remain in
the small dissipation limit.21−23 In the presence of large
dissipation, experimental challenges, such as dampened signal
levels and lack of reliable motion actuation methods, have so
far precluded the direct measurement of the Brownian force on
continuous mechanical systems. Here, we employ optical and
electronic measurement techniques to extract the PSD of the
Brownian force noise acting on a nanomechanical resonator in
a viscous liquid. The force noise exerted by the liquid on the
resonator has a “colored” PSD and follows the viscous
dissipation of the resonator as dictated by the fluctuation−
dissipation theorem.19 A single-mode approximation obtained
from fluid dynamics24 captures the observed colored PSD at
low frequency but deviates from the experiment with
increasing frequency where higher mode contributions and
the specifics of our external driving approach become
significant.
Our experiments are performed on nanomechanical silicon

nitride doubly clamped beam resonators under tension. Figure
1a shows a false-colored scanning electron microscope (SEM)
image of a typical beam that has dimensions of l × b × h ≈ 40
μm × 950 nm × 93 nm. There is a 2 μm gap between the beam
and the substrate. There are two U-shaped metal (gold)
electrodes on each end of the beam, through which an AC
electric current can be passed (Figure 1a, inset). This causes
Ohmic heating cycles, which in turn generate thermal bending
moments. The result is efficient actuation of nanomechanical
oscillations at exactly twice the frequency of the applied AC
current.25,26 Both the driven and Brownian motions of the
beams are measured using a path-stabilized Michelson
interferometer that can resolve a displacement of

∼5 fm/ Hz after proper numerical background subtraction.27

We focus on the out-of-plane motions of the beams at their
centers (x = l/2), denoted by W(t) (Figure 1a). For
measurements in liquid, the device chip is immersed in a
small bath of liquid. Table 1 lists the dimensions and

experimentally determined mechanical parameters of all the
devices used in this study. In the following analysis, we use a
density of ρs = 2750 kg/m3, Young’s modulus of E = 300 GPa,
and a tension force of S = 7.64 μN for all the beams. All
experimental details and data are available in the SI.28

We first describe how the spring constants k1 and effective
masses m1 are obtained for the fundamental mode of the
resonators from thermal noise measurements in air. Figure 1b
shows the PSD of the displacement noise (position
fluctuations) GW (in units of m2/Hz) at x = l/2 as a function
of frequency ω

π2
for each resonator around its fundamental

mode resonance frequency. Since the resonances are sharply
peaked, GW can be integrated accurately over the frequency to
obtain the mean-squared fluctuation amplitude, ⟨W2⟩, for the
fundamental mode. Using the classical equipartition theorem,
we determine the spring constants of the resonators as k1 =
kBT/⟨W

2⟩, where kB is the Boltzmann constant and T is the
temperature. Thus, k1 is the spring constant for the
fundamental mode when measured at x = l/2. The inset of
Figure 1b shows k1 as a function of beam length. In air, the
frequency of the fundamental mode ω1 and its effective mass
m1 are assumed to be very close to their respective values in a
vacuum.29 Thus, with k1 and ω1 in hand, m1 can be found from

Figure 1. (a) False-colored SEM image of a silicon nitride nanomechanical beam (l × b × h ≈ 40 μm × 950 nm × 93 nm), showing the structure
(green) and the actuators (yellow). (Inset) Close-up image of an electrothermal actuator near one of the clamps of the beam. This is a U-shaped
gold film resistor deposited on top of the beam with a thickness of 100 nm and a width of 120 nm. (b) PSDs of the displacement noise of the beams
with different lengths (15 μm ≤ l ≤ 60 μm) measured in air around their fundamental resonant modes and at their centers (x = l/2). The inset
shows the spring constant k1 as a function of the length for each beam. (c) Driven displacement amplitudes of the 60 μm-long beam in water at
different drive voltages V0. The left inset shows the magnitude of the susceptibility χ| ̂ | as a function of the frequency, and the right inset shows the
responsivity of the force transducer. The line is a fit to =F AV0 0

2 with A = 1.27× 10−8 N/V2.

Table 1. Experimentally Obtained Mechanical Properties of
the Measured Devices

device l × b × h (μm3) k1 (N/m) m1 (pg) ω1/2π (MHz)

60 μm 60 × 0.95 × 0.093 0.93 10.82 1.48
50 μm 50 × 0.95 × 0.093 1.24 9.63 1.80
40 μm 40 × 0.95 × 0.093 1.42 6.53 2.35
30 μm 30 × 0.95 × 0.093 1.66 3.33 3.55
20 μm 20 × 0.95 × 0.093 2.09 1.83 5.38
15 μm 15 × 0.95 × 0.093 3.42 1.26 8.28
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ω=m k /1 1 1
2 where m1 is the effective mass of the beam in the

absence of a surrounding liquid. We discuss how the
experimentally measured values of k1, m1, and ω1 relate to
the theoretical predictions for an Euler−Bernoulli beam under
tension in the SI.28

We now turn to the calibration of the forced response in
water. Under a harmonic force F(t) = F0 sinωt, we can write
the oscillatory displacement of the beam at its center as

ω φ= +ω ωW t W t( ) sin( ), with Wω and φω being the
frequency-dependent displacement amplitude and phase,
respectively. Linear response theory yields χ ω= | ̂ |ωW F( ) 0.

30

Assuming that the fundamental mode response dominates at
low frequency (ω → 0), one recovers the familiar static (DC)
responseWdc = F0/k1 (see eqs 1 and 2 below). Figure 1c shows
the driven response of the 60 μm beam at x = l/2 in water
obtained at several different drive voltages. Each data trace is
collected by applying to the electrothermal actuator a
sinusoidal voltage with constant amplitude V0 and sweeping
the frequency of the voltage. The displacement amplitude at
low frequency, Wdc, is determined from each trace, and F0 is
found as F0 ≈ k1Wdc with k1 from thermal noise measurements.
From the measured displacement amplitudes at different drive
amplitudes, one can obtain the force transducer responsivity,
shown in the upper right inset of Figure 1c. More importantly,
under the assumption that F0 is constant,

28 one can extract the
amplitude of the force susceptibility as χ ω| ̂ | ≈ ωW F( ) / 0. The
left inset of Figure 1c shows that the response of the device at
different drive voltages (forces) can be collapsed onto χ ω| ̂ |( ) as
measured at its center using the proper force calibration.
We show measurements of the driven response and the

Brownian fluctuations for each nanomechanical beam in water
in Figure 2. Each double-logarithmic plot corresponds to a
separate beam, showing the PSD of the displacement noise, GW

(blue, fm2/Hz), and the amplitude-squared susceptibility, χ| ̂ |2
(black, m2/N2), as a function of frequency. In all plots, the
ranges shown for both GW and χ| ̂ |2 are adjusted to span two
decades; the ranges of frequency shown are different. The
approximate positions of the peaks of the second mode (not
detectable at the center of the beam) and the third mode are
marked with arrows when in range. Several important
observations can be made. It is evident that GW and χ| ̂ |2
show different frequency dependencies and peak positions. It is
precisely these variations that we will use to provide an
experimental estimate of the PSD of the Brownian force noise.
It is also clear from Figure 2 that, as the frequency of the
fundamental mode increases for the different devices of
decreasing length, the overdamped response progressively
turns underdamped at higher frequencies where the mass
loading due to the fluid is reduced.24

The continuous lines in Figure 2 are from a theoretical
description that treats the beams as single-degree-of-freedom
harmonic oscillators in a viscous fluid.24 We first express the
linear response function in the familiar general form

χ ω
ω ω ω γ ω

| ̂ | =
[ − ] + [ ]k m

( )
1

( ) ( )f f

2

1
2 2 2 2

(1)

The modal mass mf in fluid is a function of frequency due to
the mass of fluid that is moving in conjunction with m1. In
addition, the dissipation due to the viscous fluid γf is frequency
dependent. Both mf(ω) and γf(ω) can be determined from
fluid dynamics by approximating the beam as a long and
slender blade (or cylinder) oscillating perpendicular to its axis
in a manner consistent with the fundamental mode amplitude
profile of the beam.24,31,32 This description yields
γ ω ω= Γ″ ωm T Re( ) ( )f b1 0 and ω = + Γ′ ωm m T Re( ) (1 ( ))f b1 0 .

Figure 2. (a−f) Amplitude-squared susceptibility χ| ̂ |2 (black) and PSD of the displacement fluctuations GW (blue) for each beam in water; beam
length is indicated in the lower left of each subfigure. Both quantities are measured at the center of the beam x = l/2. Square symbols are
experimental measurements. The continuous lines are theoretical predictions using the single-mode description. The arrows show the approximate
positions of the peaks of the second (ω2f/2π) and third mode (ω3f/2π) in fluid (when in range).
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The hydrodynamic function of the blade Γb is expressed as a

function of the frequency-based Reynolds number, =ω
ω

ν
Re b

4 f

2

,

where νf is the kinematic viscosity of the fluid.24,32 Γb is a
complex valued function, Γ = Γ′ + Γ″ω ω ωRe Re i Re( ) ( ) ( )b b b , and
is found by multiplying the hydrodynamic function of a
cylinder oscillating in fluid by a unity-order correction

factor.32,33 The mass loading parameter, =
πρ

ρ
T

b

h0 4
f

s
, is the

ratio of the mass of a cylinder of fluid with diameter b to the
mass of the beam, where ρf and ρs are fluid and solid densities,
respectively. Using these ideas, the amplitude-squared
susceptibility can be expressed as24

χ ω
ω ω ω

| ̂ | =
[ − + Γ′ ] + [ Γ″]k m T m T

( )
1

(1 )b b

2

1 1 0
2 2 2

1 0
2

(2)

for the fundamental mode of the beam when measured at x =
l/2. Comparing eq 2 with eq 1, one can clearly see how the
oscillating blade solution provides the parameters for the
single-degree-of-freedom harmonic oscillator.
The PSD of the position fluctuations of the fundamental

mode of the beam can be expressed as

ω χ ω ω= | ̂ |G G( ) ( ) ( )W F
2

(3)

It follows from the fluctuation−dissipation theorem34,35 that
the PSD of the Brownian force noise for an oscillating blade or
cylinder in fluid can be expressed as19

ω ω= Γ″ ωG k Tm T Re( ) 4 ( )F bB 1 0 (4)

In Figure 2, the black lines use eq 2 and the blue lines use eqs 3
and 4, where k1 and m1 are measured from the experiment; the

force is calibrated using k1 at zero frequency; and Γb and T0 are
calculated from the dimensions and density of the beam and
the properties of water. In other words, there are no free fit
parameters. We believe that the small but noticeable
disagreement between theory and experiment is caused by
the uncertainties in the material properties of the beams.
Further discussion can be found in the SI.28

With the displacement noise PSD and the susceptibility
experimentally determined, we can find an estimate of the PSD
of the Brownian force noise exerted on the beams by the
surrounding liquid using ω ω χ ω= | ̂ |G G( ) ( )/ ( )F W

2. The
symbols in Figure 3a−f show the experimentally obtained
PSDs of the Brownian force (in units of fN2/Hz) in water. The
monotonically increasing continuous lines are the theoretical
predictions for an oscillating blade in a viscous fluid given by
eq 4. The arrows indicate the approximate peak frequencies,
ω2f and ω3f, of the higher modes as in Figure 2. The
experimental data in Figure 3a−f increase with frequency for ω
≲ ω2f as predicted by the theory of an oscillating blade in fluid.
However, the experiment begins to deviate from theory around
ω2f for all resonators (Figure 3a−f). After making a dip, the
data in Figure 3a,b begin to increase again around ω3f; and this
feature remains out of the measurement range in Figure 3c−f.
As discussed below, we attribute these deviations from the
theoretical prediction to the influence of the higher modes of
oscillation in the driven response of the beam,28 in qualitative
agreement with ref 33. We also observe that, in all the devices,
the experimental force noise remains larger than the theoretical
prediction by a small amount (∼10%). Finally, the
experimental data in Figure 3f from the smallest beam display
a different slope compared to the rest of the resonators and
theory curves. The data and theory in Figure 2f suggest that

Figure 3. (a−f) PSD of the Brownian force GF acting on each beam in water. The line is the prediction of eq 4 for an oscillating blade in a viscous
fluid. Arrows show the higher mode peak positions as in Figure 2. The fundamental mode is dominant in the frequency region shaded in yellow
(light); higher modes become more prominent as the shading turns red (dark).
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the driven response has a slightly lower peak frequency than
expected. We speculate that, as a beam gets increasingly
smaller, any perturbation to its mass, e.g., due to residues or
adsorbates, from one measurement to the next will affect the
extracted force noise spectrum more strongly.
The general trends of the Brownian force can be made

clearer by plotting the experimental data nondimensionally.
From eq 4, the dimensionless variation of the force PSD can be
expressed as ReωΓ″(Reω). This frequency-dependent dissipa-
tion scales as Γ″ ∝ω ω ωRe Re Re( ) 1/2 for large Reω.

31 Figure 4

shows ReωΓ″(Reω) for each data trace in Figure 3 using
semilogarithmic (main) and linear (inset) plots. To make this
plot, we have found experimental Γ″ values from

ωΓ″ = G k Tm T/(4 )F B 1 0 for each beam, with Reω acting as a
nondimensional frequency. Also shown in Figure 4 are the
theoretical predictions for an oscillating cylinder (dashed line)
and blade (solid line) in a viscous fluid. In addition to the six
data sets in water, we include data taken in isopropyl alcohol
(IPA).28 IPA, with its higher viscosity and lower density
compared to water, allows us to extend our dimensionless
parameter space. The data in Figure 4 extend over two decades
in Reω and follow the viscous dissipation of a blade (or
cylinder) oscillating in the liquid over a range of frequencies.
A more accurate description of the Brownian dynamics of

the continuous beams used in the experiments should include
the contributions from the higher modes. If we use a
multimode lumped description, we can express the PSD of
the displacement fluctuations as (cf. eq 3)

∑ω χ ω ω= | ̂ |
=

∞

G G( ) ( ) ( )W
n

n F n
1,3,...

2
,

(5)

where χ ω̂ ( )n represents the susceptibility of the nth mode and
the even modes do not contribute since the measurement is at

x = l/2. Equation 5 is the sum of the different modal
contributions where the modes are assumed to be uncorrelated
with one another. For small mode number n, a reasonable
assumption is that GF,n(ω) is independent of n36 to yield

ω ω χ ω≈ ∑ ̂ |G G( ) ( ) ( )W F n
2, where it is clear that the

important quantity is the sum of the squares of the
susceptibilities of the individual modes.
Similarly, the driven response should be described using a

multimode approach that accounts for the spatially varying
aspects of electrothermal drive. This analysis yields an
approximate expression of the form

∑α π ψ χ ω≈ ̅ ̂ωW F( ) ( )
n

n n
2

0
2

2

(6)

Here, F0 is the magnitude of the electrothermal force and ψn
accounts for the coupling of the drive to mode n.28 We have
used the fact that magnitude of the odd mode shapes at the
center of the beam are nearly constant in order to factor out
the constant α ϕ̅ ≈

−( (1/2))n
2 for small and odd n, where

ϕn(1/2) is the normalized mode shape evaluated at the center
of the beam.
Equations 5 and 6 provide some insight into the deviations

of the experiment from the theory observed in Figures 2 and 3.
For the electrothermal drive applied at the distal ends of the
beam, the coefficients ψn are not expected to be constant and
will result in nontrivial contributions from the higher modes.
Since, in the single mode approximation, we estimate GF(ω)
by dividing the displacement noise PSD at ω by the driven
response at the same ω, variations in the driven response due
to ψn result in deviations from expected behavior for high
frequencies where the influence of the higher modes is
significant. We point out that the effects of ψn cannot be simply
deconvoluted or factored out. The electrothermal driven
responses of the higher modes are entangled due to the large
damping in the system, and the driven response becomes quite
complicated as the frequency increases. We highlight that eq 6
contains the square of the sum whereas eq 5 is the sum of the
squares. As a result, eq 6 would contain complicated
contributions due to the cross terms even if the coefficients
ψn could be made nearly constant.
This first direct measurement of the PSD of the Brownian

force in a liquid employing nanomechanical resonators is a
remarkable manifestation of the fluctuation−dissipation
theorem. Even a qualitative explanation of the experimental
deviation from theory has required consideration of subtle
aspects of the driven response of a continuous system. In the
near future, a transducer capable of exerting forces at arbitrary
positions with high spatial resolution37 may allow for directly
determining χ ω| ̂ |( )n

2 for several individual modes. This could
then be used to extend the frequency range of the type of
measurements described here and would lead to further
physical insights into the Brownian force acting on a
continuous nanostructure.
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