

Organelles-nucleus-plasmodesmata signaling (ONPS): an update on its roles in plant physiology, metabolism and stress responses

Mohammad F Azim and Tessa M Burch-Smith

Plasmodesmata allow movement of metabolites and signaling molecules between plant cells and are, therefore, critical players in plant development and physiology, and in responding to environmental signals and stresses. There is emerging evidence that plasmodesmata are controlled by signaling originating from other organelles, primarily the chloroplasts and mitochondria. These signals act in the nucleus to alter expression of genetic pathways that control both trafficking via plasmodesmata and the plasmodesmatal pores themselves. This control circuit was dubbed organelle-nucleus-plasmodesmata signaling (ONPS). Here we discuss how ONPS arose during plant evolution and highlight the discovery of an ONPS-like module for regulating stomata. We also consider recent findings that illuminate details of the ONPS circuit and its roles in plant physiology, metabolism, and defense.

Address

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States

Corresponding author: Burch-Smith, Tessa M (tburghsm@utk.edu)

Current Opinion in Plant Biology 2020, 58:48–59

This review comes from a themed issue on **Cell biology**

Edited by **Kimberly L Gallagher** and **Jacob O Brunkard**

For a complete overview see the [Issue](#) and the [Editorial](#)

Available online 13th November 2020

<https://doi.org/10.1016/j.pbi.2020.09.005>

1369-5266/© 2020 Elsevier Ltd. All rights reserved.

Introduction

Plasmodesmata (PD) are intercellular membrane-lined cytoplasmic pores that are essential for plant growth, development, and defense [1–3]. PD, while being distinct cellular structures subject to their own regulatory processes, are actually composed of an amalgam of other cellular components: the plasma membrane (PM) delimits the outer boundaries of the pore, the central desmotubule is formed by an appressed endoplasmic reticulum (ER) strand that is continuous between the connected cells, and the cytoplasmic continuum that is the main route for the trafficking of soluble molecules between cells [4]. Subtending all these are the cell walls of the

connected cells that surround each pore. Identification of plasmodesmal proteins [5,6], and characterization of the lipid components of PD membranes [7] have contributed significantly to advancing our understanding of PD and how they function to not only traffic solutes such as sugars and signaling molecules including hormones, RNA, and proteins, but also to participate in signaling modules that mediate responses to the environment including during pathogen defense [3].

Despite their importance to plant survival and their myriad functions, PD remain among the least understood structures in plants. PD that form at cell division when strands of the ER are sheathed in the nascent cell wall are primary PD. PD may also form across existing walls in the absence of cell division, and these are called secondary PD. Reflecting their importance to plant function, PD structure and function vary temporally and spatially during plant development, as exemplified by changes to PD during the sink-to-source transition and in response to tissue differentiation [8]. There is accumulating evidence that specialization of PD structure is requisite for specialization of PD function. One recent example comes from the PD in the root pole pericycle that adopt a ‘funnel’ structure that facilitates phloem unloading [9].

The best characterized mechanism for regulating PD trafficking in response to developmental and environmental signals is the controlled deposition and/or removal of callose, a β -1,3-glucan, in the cell wall surrounding the pore [4]. Callose accumulation effectively constricts the pore, inhibiting intercellular trafficking. During normal development callose is often deposited at PD when it is necessary to sequester a subset of cells from their neighbors to allow the execution of a specialized development program [10–12]. Several proteins responsible for callose accumulation, callose synthases/glucan synthases (CalS/GSLs), have been identified and CalS1, 8 and 10 specifically deposit callose at PD [13]. Removal of callose is mediated by β -1,3-glucanases, and several localize to PD [14]. Perhaps the best studied of these is β -1,3-glucanase putative plasmodesmal associated protein (BG-ppap) that constitutively localizes to PD and mediates callose dynamics during various stresses including virus infection [15]. There are other mechanisms for regulating PD function besides callose. The plant cytoskeleton components actin and myosin can exert influence over PD permeability [16–18]. Phosphorylation of viral proteins and other non-cell-autonomous proteins can also regulate

their transit through PD [19], raising the possibility that PD-resident kinases may also modulate intercellular flux [20,21]. Finally, we and others have discovered a new role for other organelles, particularly chloroplasts and mitochondria, as critical regulators of PD biogenesis and function [22–24]. Here we discuss the model we have developed for organelle regulation of PD, dubbed organelle-nucleus-PD signaling (ONPS). We frame our discussion in the context of how such a system could have evolved, and then consider new evidence that supports the existence of the ONPS module. We also highlight areas for future research expenditure that would not only help test the ONPS hypothesis but could also greatly advance our understanding of the essential PD.

Developing the ONPS hypothesis

Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts control PD formation and function. Early work in maize (*Zea mays*) identified the *sxd1* mutant which showed defects in exporting sucrose from the leaf. In this mutant, PD at the interface of bundle sheath (BS) and vascular parenchyma (VP) cells are blocked by callose deposition [25,26]. *SXD1* encodes a chloroplast-localized tocopherol cyclase (*VTE1* homolog) [27], and expression of photosynthesis associated nuclear genes (PhANGs) was disrupted in the *sxd1* mutant [26]. Thus, studies with *sxd1* were the first hint that PD development and function were tied to chloroplast signaling pathways.

Mutations that cause defects in PD and more general intercellular trafficking are expected to result in lethality, an assumption borne out by a dearth of such mutants. A genetic screen of embryonic lethal *Arabidopsis thaliana* mutants in the Zambryski lab identified 14 mutants with defects in intercellular trafficking of a 10-kDa fluorescently labeled dextran [28]. Subsequent mapping and cloning identified two of these mutants, *ise1* and *ise2*, as encoding mitochondrial and chloroplast RNA helicases, respectively [22,29,30]. A separate screen for altered intercellular trafficking in seedling-lethal *Arabidopsis* mutants by the Jackson lab identified the *gat* series of mutants [23]. *GAT1* encodes a chloroplast thioredoxin m3, and loss of *GAT1* led to changes in chloroplast redox status and decreased intercellular trafficking. Other *gat* mutants also show defects in chloroplast oxidative states [31].

Study of gene expression in the mitochondrial *ise1* and chloroplast *ise2* mutants revealed profound alterations in the patterns of expression of chloroplast-related genes, leading to the hypothesis that the observed changes in PD function and intercellular trafficking was caused by defective chloroplast function [22]. We interpreted these findings from *ise1* to mean that defective mitochondria led to either altered mitochondrial-to-nucleus retrograde signaling (Box 1) that impinged on PhANG expression, or that

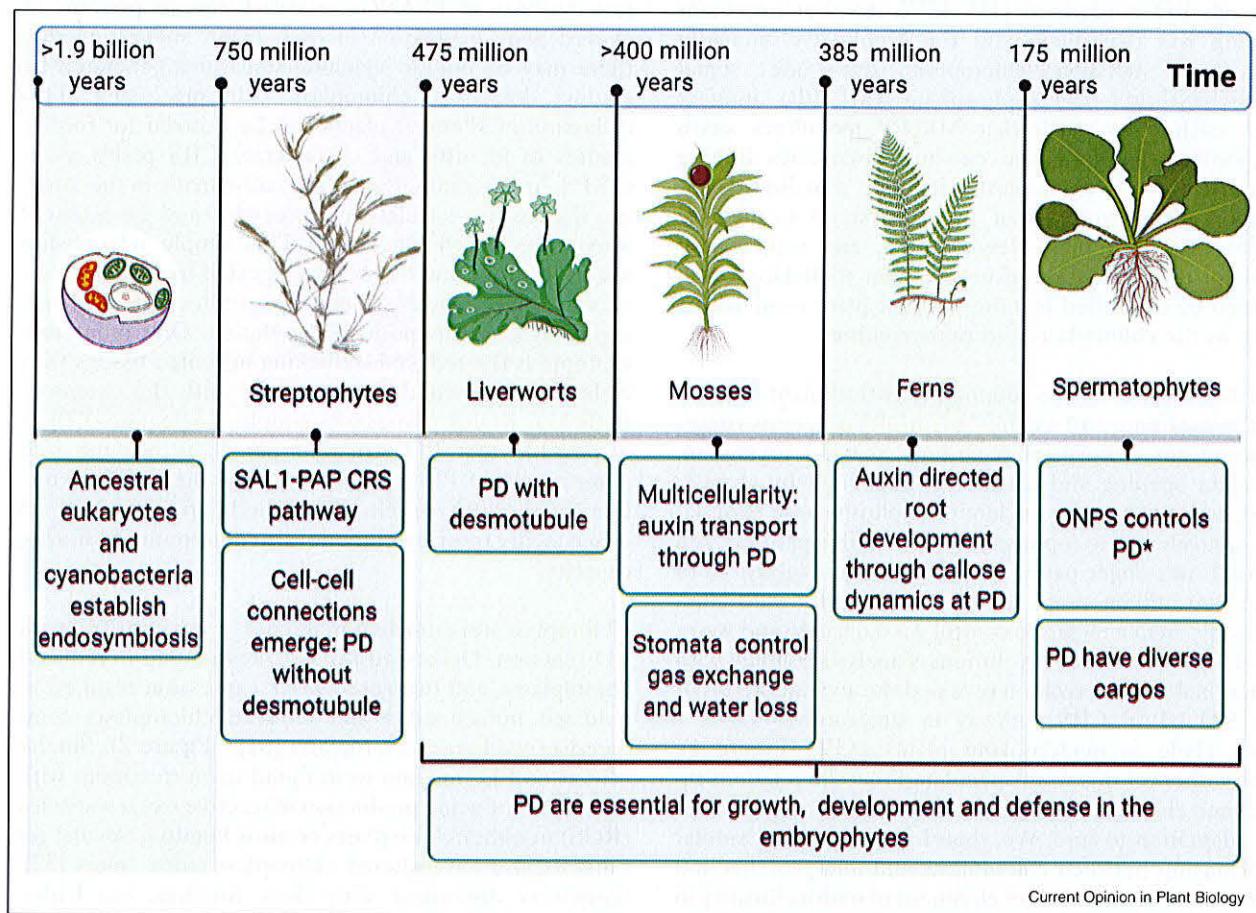
defective mitochondria directly or indirectly perturbed chloroplast development and thence chloroplast-to-nucleus retrograde signaling (Box 1) to disrupt expression of PD associated nuclear genes (PDANGs). Indeed, crosstalk between chloroplast and mitochondrial retrograde signaling is well described [32]. These findings from *ise1* and *ise2*, supported by the independent identification of the maize *sxd1* and *Arabidopsis gat* mutants, led to the hypothesis articulated as organelle-nucleus-PD signaling (ONPS, [22,11]).

Plant evolution and intercellular trafficking

The establishment of the symbiotic relationship between cyanobacteria and the eukaryote host that would give rise to the plant lineage occurred at least 1.9 billion years ago, according to recent estimates [33], (Figure 1). These early photosynthetic eukaryotes then gave rise to several algal lineages including the ancestors of land plants. How multicellular plants evolved from unicellular ancestors continues to be an important question in understanding

Box 1 Organelle retrograde signaling

The cell nucleus controls organelle development through expression of genes that encode organelar proteins which are translated in the cytoplasm and then imported into the organelle, a process called anterograde signaling. Organelles including the chloroplast and mitochondria produce small molecules that act as signals to relay information about their developmental and physiological state to the nucleus to regulate nuclear gene expression. This organelle-to-nucleus signaling is called retrograde signaling. For a comprehensive current review see Ref. [97].


Chloroplast retrograde signaling (CRS)

While chloroplast retrograde signaling (CRS) is traditionally used to describe signals that regulate nuclear genes necessary for maintaining chloroplast homeostasis, recent use of the term has expanded to include chloroplast signaling involved in regulating extrachloroplast processes [98]. CRS pathways that impinge on chloroplasts are divided into two types: biogenic and operational signals. Biogenic control signals are generated during chloroplast development and these signals include tetrapyrrole intermediates, heme, and carotenoids. Operational control signals are generated by mature chloroplasts in response to environmental perturbations and include chloroplast metabolites such as phosphoadenosine-5'-phosphate (PAP), methylerythritol-cyclodiphosphate (MEcPP), β -cyclocitral (β -CC), tetrapyrroles, and reactive oxygen species (ROS). The nucleotidase/phosphatase SAL1 negatively regulates PAP levels by dephosphorylating PAP into AMP, and PAP accumulates in response to drought and high light stress [99]. MEcPP is a dual-function plastidial metabolite that serves as both an isoprenoid precursor produced by methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal [100].

Mitochondrial retrograde regulation (MRR)

Mitochondria transmit signals to nucleus to regulate the gene expression in response to various environmental conditions and its functional states (such as dysfunctional mitochondrial electron transport chain). These signals are called mitochondrial retrograde signals and include mitochondrial reactive oxygen species (mtROS), lipid peroxidation products, calmodulin, cyclic nucleotides, and phospholipases [101].

Figure 1

Evolution of PD and intercellular trafficking during land plant evolution. More than 1.9 billion years ago an ancestral eukaryote established an endosymbiotic association with a photosynthetic cyanobacterium that would evolve into the chloroplast. The SAL1-PAP CRS module evolved in the streptophytes, a group that evolved around 750 million years ago (Mya) and includes the closest algal relatives of extant land plants. Intercellular pores lacking ER but resembling PD evolve in some streptophyte algal lineages. Between 500 and 450 Mya plants moved onto land and these ancestral land plants contained PD that incorporated encased ER, or the desmotubule. PD are found in all embryophytes where they are essential for plant survival. In the mosses, about 400 Mya, the body plan became more complex as auxin gradients were established via PD-mediated trafficking. Also in the mosses, stomata emerged, and they may use SAL1-PAP CRS as a second messenger for regulating these pores and water loss in a dry environment. In the ferns, callose deposition and removal at PD establish auxin gradients for root development. By the time spermatophytes arose, about 175 Mya, PD had evolved for trafficking of numerous types of cargo that allow coordinated responses to myriad intrinsic and extrinsic stimuli. While ONPS operates in spermatophytes the involvement of ONPS in other embryophytes has not yet been investigated.

the processes of plant evolution and development. Recently, the role of PD in the evolution of multicellularity has been evaluated and we refer readers to these excellent discussions [1,34**]. Of note is the work of Newman *et al.* who have conceived of dynamical patterning modules (DPM) that they posit were critical to the evolution of multicellularity [35,36]. DPM theory positions intercellular trafficking and PD as central to the emergence of complex plant body plans through their contributions to cell, tissue and organ polarity and differentiation [34**]. They argue that the presence of intercellular connections is necessary for cell-type specification, a likely prerequisite for multicellularity. Auxin, like

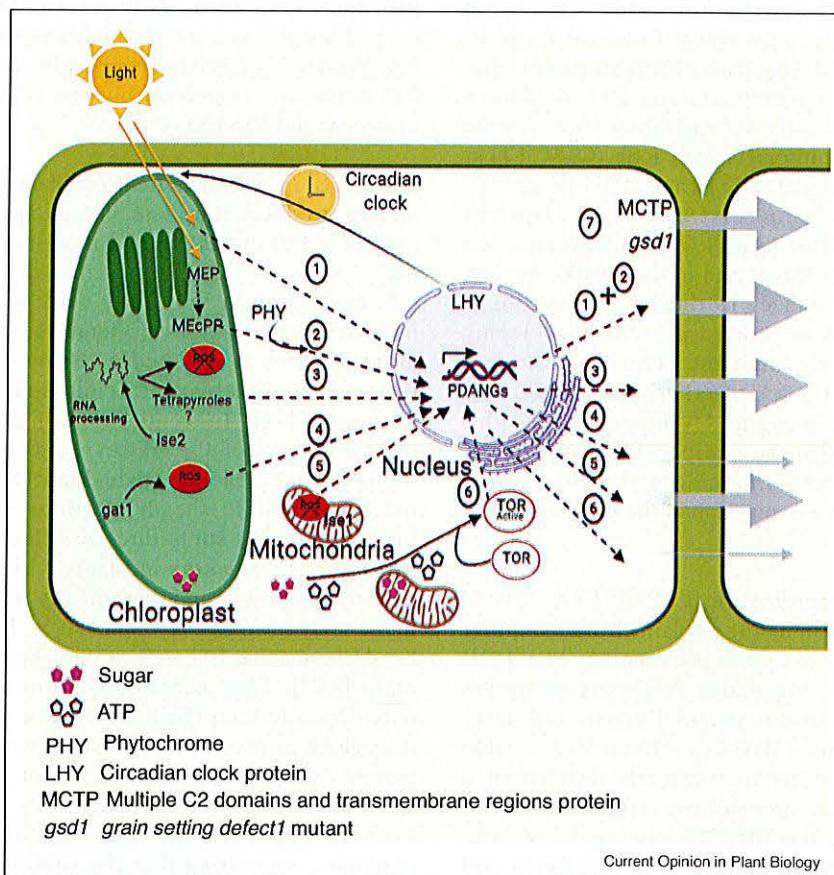
PD, is universally deployed in land plants for development and has its origins in the ancestors of land plants [37*]. Benitez *et al.* speculate that PD may have been crucial for establishing auxin as a central player in regulating plant development [34**]. While the transport of auxin by specialized protein carriers is well documented and extensively experimentally supported, there is strong emerging evidence that PD are also critical for establishing auxin gradients. First, in moss, auxin is transported exclusively through PD [38]. Second, the importance of callose dynamics at PD is now known to be indispensable for auxin-directed root development [39,40*]. Third, mathematical modeling of auxin distribution in both

the root tip and in leaves reveals that diffusive movement through PD is required [41^{••},42^{••}]. Another important finding was that auxin and the highly evolutionarily conserved metabolite/chloroplast retrograde signal methylerythritol cyclodiphosphate (MEcPP) interact with each other, such that MEcPP modulates auxin homeostasis [43[•]]. These exciting discoveries linking auxin to PD and chloroplast retrograde signaling (CRS) support the coevolution of ancient systems to mediate major events in plant development, and support the concept that regulation of intercellular trafficking could indeed be controlled by other ancient plant components such as the chloroplasts and mitochondria.

Further support for the coupling of critical plant features in the evolution and establishment of land plants comes from recent discoveries regarding stomatal regulation. Stomata opening and closure are regulated by abscisic acid, and involves the nucleotidase/phosphatase (SAL1)-phosphoadenosine-5-phosphate (PAP) CRS pathway as a second messenger pathway [44]. Stomata evolved more than 400 million years ago as plants moved onto land, allowing them a means to control gas exchange and water loss (Figure 1). Recent evolutionary analysis coupled with functional characterization revealed the ancient origins of the SAL1-PAP CRS pathway in streptophyte algae, a sister clade to modern land plants [45[•]], (Figure 1). The authors of this work speculated that the relationship between chloroplasts and stomata is ancient and essential for adaptation to land. We, therefore, posit that a similar relationship between chloroplasts and mitochondria and PD evolved during the development of multicellularity in plants. The validity of this hypothesis will only come from the elucidation of the retrograde signaling pathways and PDANGs of ONPS.

Chloroplast retrograde signaling in ONPS

Recent efforts have focused on elucidating the mechanism of ONPS. Knockdown of the gene encoding the chloroplast ribosomal protein uL15c led to defective chloroplast translation and increased PD-mediated trafficking [46], supporting previous observations that chloroplast translation impinged on PD function [47]. In a more comprehensive approach to understanding the relationship between chloroplast signaling and PD function, several nuclear genes encoding chloroplast RNA-processing proteins (*RH39*, *RH22*, *RH3*, *ISE2*, *IPI1*, *RNaseJ*, *PNPase*) were silenced in *Nicotiana benthamiana* (Figure 2). Reduced expression of *RH22* and one of the two *N. benthamiana* *PNPase* homologs, *PNPaseA*, resulted in increased intercellular trafficking of GFP [48[•]]. In contrast, knockdown of *RNaseJ*, *IPI1*, *RH3* or both *PNPase* homologs led to decreased intercellular trafficking. One important finding from this study is that there is no correlation between leaf chlorosis and intercellular trafficking, as plants with similar levels of chlorosis can display dramatic differences in PD flux, as illustrated


by silencing different *PNPase* homeologs [48[•]]. Expression analysis of PhANGs revealed unique patterns of altered gene expression in each plant, suggesting that there may be unique signaling signatures generated by distinct defects in chloroplast RNA processing. This collection of silenced plants can be utilized for further studies to identify and characterize CRS pathways in ONPS. Another important observation made in this study was the positive correlation between PD and the extent of intercellular trafficking [48[•]]. This simple relationship seems intuitive and had been suggested by earlier observations [49]. However, other experimental evidence argues against this positive correlation. One prominent example is the reduced trafficking in source tissues with elaborately branched PD compared with the extensive trafficking in sink tissues with simple, single pores [50]. It is possible that PD structure per se is not the sole determinant of PD permeability, and that other factors like whether PD are primary (formed during cytokinesis) or secondary (post-cytokinetic) also determine trafficking capacity.

Chloroplast and mitochondrial redox status correlate with PD function. Decreased *ISE2* expression led to reduced chloroplasts, and decreased *ISE1* expression resulted in oxidized mitochondria and reduced chloroplasts compared to wild-type chloroplasts [51], (Figure 2). Similar effects on PD function were found upon treatment with chemicals inducing production of reactive oxygen species (ROS) in either chloroplasts or mitochondria. Several *gat* mutants also have altered chloroplast redox states [52]. Somewhat discordant with these findings, the barley (*Hordeum vulgare*) and *Arabidopsis chlorina* mutants lacking *chlorophyllide-a-oxygenase (cao)* and chlorophyll b have increased chloroplast ROS levels, increased intercellular trafficking and enhanced PD formation with more PD connecting leaf mesophyll cells or the L1 layer of the shoot apical meristem [53]. Thus, different ROS in varying quantities and combinations could act as signals to control PD formation and function [54], via retrograde signaling or as direct signals to the PD, as may happen with the callose-modulating protein, PDLP5 [24]. However, the situation with chloroplast oxidation may not be straightforward as ROS signaling since changes in NADPH and ATP production are associated with ROS production. Silencing expression of a subunit of the chloroplast ATPase, *AtpC*, by VIGS resulted in increased cell-to-cell movement of GFP [55^{••}] and also plant viruses [56]. Further critical examination of ATP and NADPH metabolism in mutants already known to have defects in PD will help clarify the importance of ROS in ONPS and may identify new components of ONPS.

ONPS in plant physiology and metabolism

At the core of ONPS is the idea that the balance between carbon supply from photosynthesis and PD development/function is regulated by chloroplasts. For carbon

Figure 2

ONPS in plant physiology and metabolism. (1) Intercellular trafficking is higher in the day than night, and this is under circadian control (LHY) but likely does not involve callose metabolism. (2) Light regulation of PD may also involve of the MECPP CRS pathway and the phytochrome (PHY) photoreceptors. (3) Defects in chloroplast processing, exemplified by the *ise2* mutation, lead to CRS possibly via tetrapyrroles and other pathways and increases PD formation and intercellular trafficking. Other RNA processing mutants can decrease intercellular trafficking. (4) The *gat1* mutation oxidizes the chloroplasts by increasing ROS production, and these ROS may themselves act as CRS or trigger other CRS pathways to decrease intercellular trafficking. (5) The *ise1* mutation leads to more reduced mitochondria and generates signals that trigger CRS or MRR that change PDANG expression to increase intercellular trafficking. (6) The balance of ATP and sugars from the chloroplasts and mitochondria activate the TOR kinase, and under conditions of abundance; this leads to decreased intercellular trafficking. (7) An MCTP protein localized to PD is important for PD formation, and controlling intercellular trafficking. *GSD1* also localizes to PD and the *gsd1* mutant shows increased intercellular trafficking.

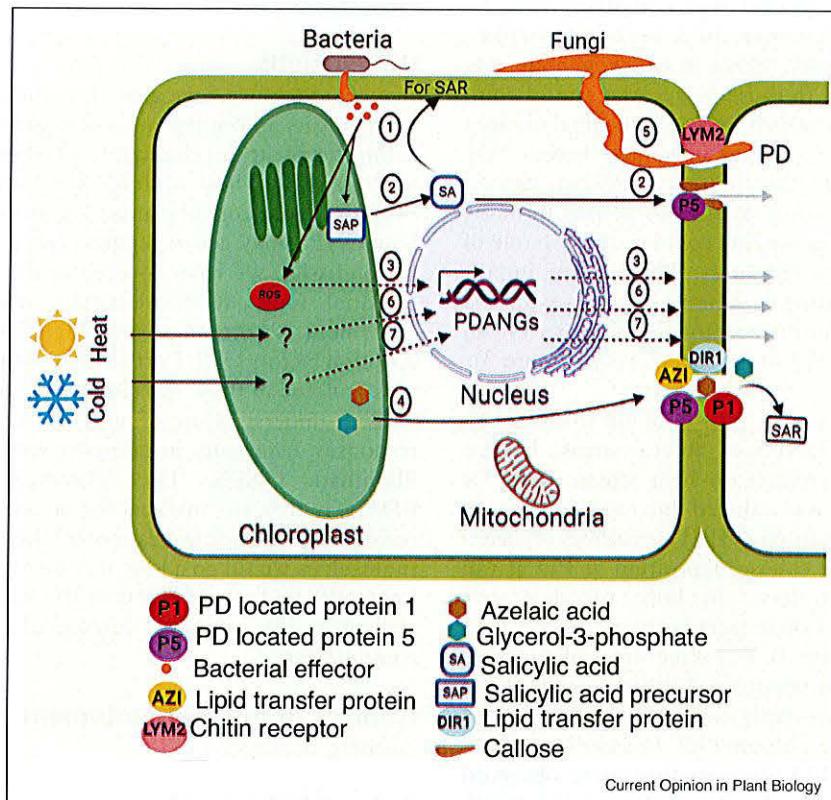
partitioning in a plant to be effective carbon fixation and transport must be coordinated [57,58]. The cell-to-cell trafficking of this fixed carbon is largely via PD, and when PD function is perturbed or insufficient carbohydrates may accumulate in leaves, leading to feed-back inhibition of photosynthesis, as described in Section 'Developing the ONPS hypothesis' for the *sxd1* mutant. In contrast, if too great a proportion of a plant's carbon resources is allocated to transport structures, carbon use efficiency is compromised. Both scenarios can lead to adverse outcomes in plant growth, development and yield [59,60]. Besides *sxd1*, four other maize mutants with defects in carbohydrate partitioning have been identified [61]. In the *tie-dyed(tdy)1* [62] and *tdy2* mutants [63], and the *carbohydrate partitioning defective(cpdl)* [64] and *cpd33*

[61[•]] mutants sucrose export to the phloem is reduced. The carbohydrate export defect was due to callose accumulation at PD at the mesophyll-phloem interface [25] or at sieve pores in the phloem (*cpd1* [64]), or by defects in PD formation (*cpd33*) [61[•]], although no obvious defects in PD were observed in the *tdy* mutants [62].

Callose dynamics at the PD are not the only means for controlling carbohydrate partitioning. *CPD33* encodes a Multiple C2 domains and transmembrane region (MCTP) protein [61[•]]. MCTPs are broadly distributed across eukaryotes and tether the ER to the PM. In *Arabidopsis*, MCTPs are also found to localize to PD and to control intercellular trafficking [65]. PM proteins like the MCTPs may, therefore, be important for PD

formation, as revealed by the reduced numbers of PD in *cpd33* [61*], (Figure 2). Phloem loading was defective in the rice (*Oryza sativa*) grain setting defect1-Dominant (*gsd1-D*) mutant [66]. *GSD1* encodes a putative Remorin protein that localizes to the plasma membrane and PD of phloem companion cells, and correct localization depends on S-acylation [67]. *GSD1* interacts with actin (OsACT1) at the PD to negatively regulate PD permeability (Figure 2). Another rice mutant, *sugar accumulation 1 (ossac1)* mutant has impaired sugar partitioning [68]. *OsSAC1* was expressed at the bottoms of young leaves and in the developing leaf sheath and *OsSAC1* localizes to the ER. Interestingly, *OsGSD1* was detected in young leaves and developing leaf sheaths of the *ossac1* mutant. This suggests that *OsSAC1* and *GSD1* may act together to regulate sugar partitioning in young leaves and developing leaf sheaths. These examples highlight the interplay between PD and photosynthesis in carbon partitioning, and these mutants may be used for further examination of the mechanisms of ONPS.

Exciting recent data regarding the TARGET OF RAPAMYCIN (TOR) kinase signaling in plants further support that ONPS contributes to carbon partitioning. The TOR kinase complex acts by regulating mRNA transcription and translation in response to external signals and nutrient availability to promote development under favorable growth conditions, and its role extends throughout a plant's life [69–71]. The same genetic screen that identified *ise1* and *ise2* [28], also identified *ise3* and *ise4*, later cloned and determined to be alleles of *At2g25570* and *At5g67630*, respectively [72**]. *At5g67630* encodes Repitin, a chaperone that is a component of the R2TP ATPase complex that contributes to TOR activation [72**,73]. Through a comprehensive approach involving forward and reverse genetics as well as drug treatments, Brunkard *et al.* demonstrate that active TOR signaling negatively regulates intercellular trafficking [72**]. In addition, through use of chemical inhibitors, TOR signaling was revealed to promote the sink-to-source transition in leaves. TOR is significantly more active in mature leaves that produce excess sugars than in young growing leaves that must import sugars, and this increase in TOR activity in mature leaves correlates with decreased rates of PD transport (Figure 2). Another interesting finding from this study was that the mitochondrial SEL1-like repeat containing (SLR) protein encoded by *At2g25570/ise3*, putatively involved in ATP synthesis during oxidative phosphorylation, is necessary for TOR activity. This supports the involvement of mitochondria in regulating PD-mediated intercellular signaling, previously described for *ise1* [30], (Figure 2). Comparative gene expression analysis in the *ise3*, *ise4* and characterized *tor* mutants confirmed that defects in TOR signaling pathways were the primary defect in all the mutants. But an intriguing observation was that while changes in transcript levels of PDANGs were observed, the patterns of expression could not


always be correlated with observed changes in intercellular trafficking, particularly as related to callose metabolism. This observation highlights not only the probable involvement of mechanisms besides callose in regulating PD during development, but there likely remain many undiscovered PDANGs.

Light has a profound effect on plant growth and development, and it is, therefore, not unexpected that light can modulate PD function and symplastic transport. Surprisingly, there are few studies that directly examine the effects of light on PD. Early work reported that white-light irradiation inhibited lateral transport from the stele into the cortex in etiolated maize mesocotyls, suggesting that as chloroplast biogenesis initiated, PD trafficking was decreased [74]. In contrast, at high light intensities, several species of C4 grasses showed higher photosynthetic efficiency along with higher PD frequency at Kranz mesophyll/bundle sheath interface in leaves [75]. An important recent study directly addressed the effects of light on PD trafficking in plants. Using differing photoperiods for growth and a minimally invasive GFP movement assay in *N. benthamiana* leaves, Brunkard and Zambryski found that PD trafficking is higher in the day than night [55**]. This increased daytime trafficking was not only dependent on the light but also involved the circadian clock as revealed by knockdown of the clock component *LHY* [55**], (Figure 2). An interesting observation of this study was that differences in PD trafficking between day and night were not mediated by callose dynamics, suggesting that the situation is not always as clear cut as described in the literature, where callose deposition limits PD permeability. These findings are consistent with unexpected new findings about the roles of callose in modulating the properties of the cell wall. Addition of callose to cellulose hydrogels *in vitro* increased the elasticity of cellulose [76], a change would not be expected to constrict PD. Future studies examining callose–cellulose interactions and their interactions with other cell wall components as well as their effects on plant cells should bring novel insight into PD function and how callose regulates PD. Also noteworthy are recent studies demonstrating that chloroplasts use the MEcPP CRS pathway to influence light detection by the phytochrome photoreceptors [77,78], (Figure 2), and light regulates expression of genes encoding the MEP biosynthesis pathway [79]. The role of the MEcPP CRS pathway in mediating PD flux in response to light remains to be examined.

ONPS in response to biotic and abiotic stress

PD have important roles in mediating plant responses to biotic and abiotic stresses. Plants encounter multiple biotic stresses and have acquired adaptive tools of defense to respond to them. Chloroplasts are critical players in plant responses to biotic challenges, and include production of both defense molecules and chemicals that attract

Figure 3

ONPS and PD in stress responses. (1) Infection by pathogens including bacteria leads to the production of defense hormones which ultimately causes a defense response. For example, SA production is induced in the chloroplast and then SA enters the apoplast for SAR. (2) SA also triggers accumulation of callose at PD via PDLP5 and reduces intercellular trafficking. (3) Chloroplast ROS are also produced during defense to reduce intercellular trafficking. (4) AzA and G-3-P are induced in the chloroplast by pathogen infection and they move systemically via the symplast to mediate SAR together with SA. PD proteins PDLP1 and PDLP5 together with the AZI1-DIR1 heterodimer coordinate the symplastic trafficking of AzA and G-3-P. (5) Some PD-mediated defense responses, for example, those mediated by LYM2 in response to fungi and chitin, are local and the role of ONPS in those remains unknown. (6) Heat stress inhibits PD-mediated intercellular trafficking, reducing carbohydrate export from leaves and decreasing photosynthesis rates. (7) Cold stress causes changes to PD ultrastructure and reduces intercellular trafficking but the role of ONPS remains to be determined.

beneficial microbes and animals as reviewed [80–82]. Salicylic acid (SA), jasmonic acid (JA), and ABA are phytohormones that are partially synthesized in the chloroplast and act as defense hormones. Further, CRS components are important for defense responses to pathogens. An *Arabidopsis ceh1* mutant that accumulates MEcPP (Box 1) constitutively produces SA and constitutively expresses JA-responsive genes in an MEcPP-dependent manner [83]. In contrast, in *sall* mutants (Box 1), SA-mediated and JA-mediated defense responses were defective, leading to increased susceptibility to pathogen infection [84].

Besides launching local defense programs in the cells encountering an invading microbe, JA and SA are also important for systemic defense responses. The role of SA in systemic acquired resistance (SAR) has been controversial, but recent results provide very strong evidence

supporting its importance to SAR [85**]. In addition to SA, chloroplasts also produce the signaling molecules azelaic acid (AzA) and glycerol-3-phosphate (G3P) in response to pathogenic attack to mediate SAR [86]. AzA functions upstream of G3P and AzA-G3P branch functions in parallel to SA-derived signaling during SAR [87]. AzA and G3P move cell-cell via PD through the action of the lipid transfer proteins, AZI1 and DIR1, while SA moves via the apoplast in the cuticle under the control of transpiration [85**,86] (Figure 3). Interestingly, SA stimulates callose deposition at PD through the action of PD-LOCATED PROTEINS PDLP1 and PDLP5 to negatively regulate PD trafficking during pathogen infection [2], (Figure 3). PDLP1 and PDLP5 are essential for SAR as well as the stability of AZI1, which is required for AzA-induced and G3P-induced SAR [86]. Loss of either PDLP1 or PDLP5 increases chloroplast localization of AZI1, similar to pathogen infection

[88], suggesting that plastidial localization or partitioning of AZI1 between the plastid and cytoplasm may be important for SAR. However, in a seeming paradox, treatment of *Arabidopsis* leaves with exogenous SA-induced PD formation. In those leaves, the rate of complex PD formation is increased, although the final number of PD formed was the same as in control leaves [89]. These studies highlight the interplay between chloroplasts and PD in mediating defense responses to biotic stresses, and further experiments could clarify the role of CRS and ONPS in these responses. While PD are important for systemic signaling in defense, studies with the PD-localized LYM2 chitin receptor reveal that PD can also act locally to respond to pathogens [90] (Figure 3).

Compared to knowledge of ONPs in biotic stress, much less is known about ONPS in abiotic stress. In rice varieties tolerant or sensitive to heat stress, 40°C for 12 days, kernel weight was reduced due to the inhibition of the assimilate distribution [91]. The authors reported that heat stress caused callose deposition at PD at the mesophyll-phloem interfaces in both the leaf and the sheath with more callose accumulating in the heat sensitive variety (Figure 3). PD structure and function also respond to low temperatures. Chilling maize plants at 14°C inhibited photosynthesis and restricted photo-assimilate export to the phloem [92]. In a chilling-sensitive line, changes in PD ultrastructure were observed particularly at the bundle sheath and Kranz mesophyll, and the bundle sheath and vascular parenchyma interfaces. These studies implicated calreticulin as responsible for the short-term restriction of PD trafficking and implied that callose was only later involved in modifying PD trafficking [92]. Low temperatures also induced expression of PDANGs in maize, including *GRMZM2G081949* encoding a putative Remorin gene [93]. While studies on PD structure and function during stress are uncommon, it should be noted that the hormone ABA mediates plant responses to drought and numerous other abiotic stresses [94]. ABA also regulates PD function during the breaking of bud dormancy [95]. Thus, it is possible that ABA regulates PD in response to abiotic stresses, although this remains to be experimentally verified.

Interestingly, ER stress has also been found to involve PD-mediated systemic signaling. In *Arabidopsis* plants the transcription factor bZIP60 was found to move systemically from the root to the shoot during the unfolded protein response (UPR) induced by tunicamycin [96]. The cell-to-cell trafficking of bZIP60 was inhibited by callose accumulation at PD, suggesting that the movement of this transcription factor is via the symplast. In the future it will be interesting determine whether the bZIP60 transcription factor regulates PDANGs to control PD and the extent of ER stress-associated systemic signaling. Regardless, these results demonstrate that

organelles besides chloroplasts and mitochondria mediate their effects via PD.

Conclusions

In recent years we have gained significant insight into the mechanisms and importance of organelle retrograde signaling for plant development, physiology and responses to stress [97*]. These findings along with studies into the evolutionary history of plants have made new insights into how ONPS may act to regulate intercellular trafficking. Beyond what we have covered in this review, PD have essential roles in development, allowing cell-to-cell movement of hormones, small signaling RNAs and transcription factors [3,4]. Further investigations into how PD are regulated in these developmental processes as well as a better understanding of how PD are involved in stress responses, especially in non-photosynthetic tissues, will illuminate ONPS. The identification of signature PDANGs that are markers for organelle retrograde signaling and the identification of the retrograde signals themselves would go a long way toward fully characterizing ONPS and the interplay of PD with all other cellular processes that involve intercellular movement and communication.

Conflict of interest statement

Nothing declared.

Acknowledgements

We thank Mr. Brandon Reagan for critical reading of the manuscript and helpful suggestions. This work was supported by the United States National Science Foundation (MCB 1846245).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Brunkard JO, Zambryski PC: **Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity.** *Curr Opin Plant Biol* 2017, **35**:76-83 <http://dx.doi.org/10.1016/j.pbi.2016.11.007>.
2. Ganusova EE, Burch-Smith TM: **Review: plant-pathogen interactions through the plasmodesma prism.** *Plant Sci* 2019, **279**:70-80 <http://dx.doi.org/10.1016/j.plantsci.2018.05.017>.
3. Sager RE, Lee JY: **Plasmodesmata at a glance.** *J Cell Sci* 2018, **131** <http://dx.doi.org/10.1242/jcs.209346>.
4. Reagan BC, Ganusova EE, Fernandez JC, McCray TN, Burch-Smith TM: **RNA on the move: the plasmodesmata perspective.** *Plant Sci* 2018, **275**:1-10 <http://dx.doi.org/10.1016/j.plantsci.2018.07.001>.
5. Leijon F, Melzer M, Zhou Q, Srivastava V, Bulone V: **Proteomic analysis of plasmodesmata from *populus* cell suspension cultures in relation with callose biosynthesis.** *Front Plant Sci* 2018, **9**:1681 <http://dx.doi.org/10.3389/fpls.2018.01681>.
6. Fernandez-Calvino L, Faulkner C, Walsh J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A: ***Arabidopsis* plasmodesmal proteome.** *PLoS One* 2011, **6**:e18880 <http://dx.doi.org/10.1371/journal.pone.0018880>.
7. Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V et al.: **Specific**

membrane lipid composition is important for plasmodesmata function in *Arabidopsis*. *Plant Cell* 2015, 27:1228-1250 <http://dx.doi.org/10.1105/tpc.114.135731>.

8. Burch-Smith TM, Stonebloom S, Xu M, Zambryski PC: **Plasmodesmata during development: re-examination of the importance of primary, secondary, and branched plasmodesmata structure versus function.** *Protoplasma* 2011, 248:61-74 <http://dx.doi.org/10.1007/s00709-010-0252-3>.
9. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D et al.: **Phloem unloading in *Arabidopsis* roots is convective and regulated by the phloem-pole pericycle.** *eLife* 2017, 6 <http://dx.doi.org/10.7554/eLife.24125>.
10. Hernandez-Hernandez V, Benitez M, Boudaoud A: **Interplay between turgor pressure and plasmodesmata during plant development.** *J Exp Bot* 2020, 71:768-777 <http://dx.doi.org/10.1093/jxb/erz434>.
11. Burch-Smith TM, Zambryski PC: **Plasmodesmata paradigm shift: regulation from without versus within.** *Annu Rev Plant Biol* 2012, 63:239-260 <http://dx.doi.org/10.1146/annurev-arplant-042811-105453>.
12. Kim I, Kobayashi K, Cho E, Zambryski PC: **Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during *Arabidopsis* embryogenesis.** *Proc Natl Acad Sci U S A* 2005, 102:11945-11950 <http://dx.doi.org/10.1073/pnas.0505622102>.
13. Cui W, Lee JY: ***Arabidopsis* callose synthases CalS1/8 regulate plasmodesmal permeability during stress.** *Nat Plants* 2016, 2:16034 <http://dx.doi.org/10.1038/nplants.2016.34>.
14. Levy A, Erlanger M, Rosenthal M, Epel BL: **A plasmodesmata-associated beta-1,3-glucanase in *Arabidopsis*.** *Plant J* 2007, 49:669-682 <http://dx.doi.org/10.1111/j.1365-313X.2006.02986.x>.
15. Zavaliel R, Levy A, Gera A, Epel BL: **Subcellular dynamics and role of *Arabidopsis* beta-1,3-glucanases in cell-to-cell movement of tobamoviruses.** *Mol Plant Microbe Interact* 2013, 26:1016-1030 <http://dx.doi.org/10.1094/MPMI-03-13-0062-R>.
16. White RG, Barton DA: **The cytoskeleton in plasmodesmata: a role in intercellular transport?** *J Exp Bot* 2011, 62:5249-5266 <http://dx.doi.org/10.1093/jxb/err227>.
17. Diao M, Ren S, Wang Q, Qian L, Shen J, Liu Y, Huang S: ***Arabidopsis* formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata.** *eLife* 2018, 7 <http://dx.doi.org/10.7554/eLife.36316>.
18. Oulehlova D, Kollarova E, Cifrova P, Pejchar P, Zarsky V, Cvrckova F: ***Arabidopsis* class I formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata.** *Plant Cell Physiol* 2019, 60:1855-1870 <http://dx.doi.org/10.1093/pcp/pcz102>.
19. Lee J-Y, Lucas WJ: **Phosphorylation of viral movement proteins—regulation of cell-to-cell trafficking.** *Trends Microbiol* 2001, 9:5-8 [http://dx.doi.org/10.1016/s0966-842x\(00\)01901-6](http://dx.doi.org/10.1016/s0966-842x(00)01901-6).
20. Hyun TK, Uddin MN, Rim Y, Kim JY: **Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata.** *Protoplasma* 2011, 248:101-116 <http://dx.doi.org/10.1007/s00709-010-0225-6>.
21. Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ: **Plasmodesmal-associated protein kinase in tobacco and *Arabidopsis* recognizes a subset of non-cell-autonomous proteins.** *Plant Cell* 2005, 17:2817-2831 <http://dx.doi.org/10.1105/tpc.105.034330>.
22. Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC: **Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata.** *Proc Natl Acad Sci U S A* 2011, 108:E1451-1460 <http://dx.doi.org/10.1073/pnas.1117226108>.
23. Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, Hearn S, Jackson D: **Control of *Arabidopsis* meristem development by thioredoxin-dependent regulation of intercellular transport.** *Proc Natl Acad Sci U S A* 2009, 106:3615-3620 <http://dx.doi.org/10.1073/pnas.0808717106>.
24. Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H et al.: **A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in *Arabidopsis*.** *Plant Cell* 2011, 23:3353-3373 <http://dx.doi.org/10.1105/tpc.111.087742>.
25. Botha CEJ, Cross RHM, van Bel AJE, Peter CJ: **Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface.** *Protoplasma* 2000, 214:65-72 <http://dx.doi.org/10.1007/BF02524263>.
26. Provencher LM, Miao L, Sinha N, Lucas WJ: **Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling.** *Plant Cell* 2001, 13:1127-1141 <http://dx.doi.org/10.1105/tpc.13.5.1127>.
27. Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D: **Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function.** *Plant Physiol* 2003, 132:2184-2195 <http://dx.doi.org/10.1104/pp.103.024257>.
28. Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC: **Identification of a developmental transition in plasmodesmal function during embryogenesis in *Arabidopsis thaliana*.** *Development* 2002, 129:1261-1272.
29. Kobayashi K, Otegui MS, Krishnakumar S, Mindrinos M, Zambryski P: **INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEHV box RNA helicase involved in plasmodesmata function during *Arabidopsis* embryogenesis.** *Plant Cell* 2007, 19:1885-1897 <http://dx.doi.org/10.1105/tpc.106.045666>.
30. Stonebloom S, Burch-Smith T, Kim I, Meinke D, Mindrinos M, Zambryski P: **Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata.** *Proc Natl Acad Sci U S A* 2009, 106:17229-17234 <http://dx.doi.org/10.1073/pnas.0909229106>.
31. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ: **Plasmodesmata: gateways to local and systemic virus infection.** *Mol Plant Microbe Interact* 2010, 23:1403-1412 <http://dx.doi.org/10.1094/MPMI-05-10-0116>.
32. Wang Y, Selinski J, Mao C, Zhu Y, Berkowitz O, Whelan J: **Linking mitochondrial and chloroplast retrograde signalling in plants.** *Philos Trans R Soc Lond B Biol Sci* 2020, 375:20190410 <http://dx.doi.org/10.1098/rstb.2019.0410>.
33. Sanchez-Baracaldo P, Raven JA, Pisani D, Knoll AH: **Early photosynthetic eukaryotes inhabited low-salinity habitats.** *Proc Natl Acad Sci U S A* 2017, 114:E7737-E7745 <http://dx.doi.org/10.1073/pnas.1620089114>.
34. Benitez M, Hernandez-Hernandez V, Newman SA, Niklas KJ: **•• Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants.** *Front Plant Sci* 2018, 9:871 <http://dx.doi.org/10.3389/fpls.2018.00871>. A theoretical discussion of the genetic, molecular, and physical components that are critical for the evolution of multicellularity. The authors find that in plants, symplastic continuity via PD was essential for multicellularity and the evolution of complex body plans.
35. Niklas KJ, Cobb ED, Crawford DR: **The evo-devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity.** *Evol Dev* 2013, 15:466-474 <http://dx.doi.org/10.1111/ede.12055>.
36. Niklas KJ: **The evolutionary-developmental origins of multicellularity.** *Am J Bot* 2014, 101:6-25 <http://dx.doi.org/10.3732/ajb.1300314>.
37. Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK, Weijers D: **• Origin and evolution of the nuclear auxin response system.** *eLife* 2018, 7 <http://dx.doi.org/10.7554/eLife.33399>. A phylogenomic analysis of genes in the auxin response system reveals the ancient origins of the system, and identifies several key innovations and refinements during the evolution of land plants.
38. Couder Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ: **Three ancient hormonal cues co-ordinate shoot branching in a moss.** *eLife* 2015, 4 <http://dx.doi.org/10.7554/eLife.06808>.
39. Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, Kang BH, Lucas WJ, Kim JY: **Auxin-callose-mediated plasmodesmal gating is**

essential for tropic auxin gradient formation and signaling. *Dev Cell* 2014, 28:132-146 <http://dx.doi.org/10.1016/j.devcel.2013.12.008>.

40. Sager R, Wang X, Hill K, Yoo BC, Caplan J, Nedo A, Tran T, Bennett MJ, Lee JY: Auxin-dependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. *Nat Commun* 2020, 11:364 <http://dx.doi.org/10.1038/s41467-019-14226-7>.

The role of auxin in controlling lateral root emergence via regulating PD function is demonstrated. PDLP5, a well-characterized PD protein, is revealed to be modulate auxin accumulation in lateral root primordia.

41. Gao C, Liu X, De Storme N, Jensen KH, Xu Q, Yang J, Liu X, Chen S, Martens HJ, Schulz A et al.: Directionality of plasmodesmata-mediated transport in *Arabidopsis* leaves supports auxin channeling. *Curr Biol* 2020, 30:1970-1977 <http://dx.doi.org/10.1016/j.cub.2020.03.014> e1974.

A combination of genetics, microscopy, and mathematical modeling are used to demonstrate the role of intercellular flux in establishing auxin gradients. They suggest that PD permeability is selectively controlled by cells to give directionality to movement, and in this way establish gradients, as shown here for auxin.

42. Mellor NL, Voss U, Janes G, Bennett MJ, Wells DM, Band LR: Auxin fluxes through plasmodesmata modify root-tip auxin distribution. *Development* 2020, 147 <http://dx.doi.org/10.1242/dev.181669>.

Experimental results are used to refine mathematical models for auxin distribution in the root tip. Models including PD trafficking of auxin provided better agreement with experimental data, and changes in PD permeability resulted in changes in auxin distribution patterns.

43. Jiang J, Rodriguez-Furlan C, Wang JZ, de Souza A, Ke H, Pasternak T, Lasok H, Ditengou FA, Palme K, Dehesh K: Interplay of the two ancient metabolites auxin and MEcPP regulates adaptive growth. *Nat Commun* 2018, 9:2262 <http://dx.doi.org/10.1038/s41467-018-04708-5>.

The MEcPP CRS pathway is revealed to regulate auxin stress homeostasis, revealing crosstalk between the ancient and evolutionarily conserved signaling pathway. The authors posit that plastid signals could in this way be the main director of plant adaptive growth.

44. Pornsiriwong W, Estavillo GM, Chan KX, Tee EE, Ganguly D, Crisp PA, Phua SY, Zhao C, Qiu J, Park J et al.: A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. *eLife* 2017, 6 <http://dx.doi.org/10.7554/elife.23361>.

45. Zhao C, Wang Y, Chan KX, Marchant DB, Franks PJ, Randall D, Tee EE, Chen G, Ramesh S, Phua SY et al.: Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. *Proc Natl Acad Sci U S A* 2019, 116:5015-5020 <http://dx.doi.org/10.1073/pnas.1812092116>.

Genetic analyses across phylogenies reveal the origins of SAL1-PAP CRS in the streptophyte algal ancestors of land plants, before the evolution of stomata. PAP induced stomatal closure and related stomatal signaling across evolutionary clades, from Sphagnum moss to angiosperms.

46. Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM: The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. *New Phytol* 2019, 221:850-865 <http://dx.doi.org/10.1111/nph.15427>.

47. Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM: The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in *Arabidopsis thaliana*. *Plant J* 2017, 91:114-131 <http://dx.doi.org/10.1111/tpj.13550>.

48. Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM: Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. *Philos Trans R Soc Lond B Biol Sci* 2020, 375:20190408 <http://dx.doi.org/10.1098/rstb.2019.0408>.

The role for various aspects of RNA processing in initiating diverse CRS and modulating PD trafficking is demonstrated. The authors demonstrate a positive correlation between PD density and PD flux, in contrast to existing ideas in the field.

49. Burch-Smith TM, Zambryski PC: Loss of INCREASED SIZE EXCLUSION LIMIT (ISE1 or ISE2 increases the formation of secondary plasmodesmata. *Curr Biol* 2010, 20:989-993 <http://dx.doi.org/10.1016/j.cub.2010.03.064>.

50. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B: Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. *Cell* 1999, 97:743-754 [http://dx.doi.org/10.1016/s0008-8674\(00\)80786-2](http://dx.doi.org/10.1016/s0008-8674(00)80786-2).

51. Stonebloom S, Brunkard JO, Cheung AC, Jiang K, Feldman L, Zambryski P: Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata. *Plant Physiol* 2012, 158:190-199 <http://dx.doi.org/10.1104/pp.111.186130>.

52. Benitez-Alfonso Y, Jackson D: Redox homeostasis regulates plasmodesmal communication in *Arabidopsis* meristems. *Plant Signal Behav* 2009, 4:655-659 <http://dx.doi.org/10.4161/psb.4.7.8992>.

53. Dmitrieva VA, Ivanova AN, Tyutereva EV, Evtakina AI, Klimova EA, Voitsekhovskaja OV: Chlorophyllide-a-Oxygenase (CAO) deficiency affects the levels of singlet oxygen and formation of plasmodesmata in leaves and shoot apical meristems of *barley*. *Plant Signal Behav* 2017, 12:e1300732 <http://dx.doi.org/10.1080/15592324.2017.1300732>.

54. Rutschow HL, Baskin TI, Kramer EM: Regulation of solute flux through plasmodesmata in the root meristem. *Plant Physiol* 2011, 155:1817-1826 <http://dx.doi.org/10.1104/pp.110.168187>.

55. Brunkard JO, Zambryski P: Plant cell-cell transport via plasmodesmata is regulated by light and the circadian clock. *Plant Physiol* 2019, 181:1459-1467 <http://dx.doi.org/10.1104/pp.19.00460>.

This work addresses the longstanding question of how PD trafficking differs in the day versus night. Reverse genetic approaches reveal that PD trafficking is higher in day light and the observed periodicity in PD function is under circadian control. Callose is not implicated in this physiological PD function.

56. Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Sumner LW, Nelson RS: Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. *Plant Physiol* 2013, 161:134-147 <http://dx.doi.org/10.1104/pp.112.207860>.

57. Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW: Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. *Proc Natl Acad Sci U S A* 2005, 102:12968-12973 <http://dx.doi.org/10.1073/pnas.0503784102>.

58. Braun DM, Slewinski TL: Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. *Plant Physiol* 2009, 149:71-81 <http://dx.doi.org/10.1104/pp.108.129049>.

59. Ainsworth EA, Bush DR: Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. *Plant Physiol* 2011, 155:64-69 <http://dx.doi.org/10.1104/pp.110.167684>.

60. Braun DM, Wang L, Ruan YL: Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. *J Exp Bot* 2014, 65:1713-1735 <http://dx.doi.org/10.1093/jxb/ert416>.

61. Tran TM, McCubbin TJ, Bihmidine S, Julius BT, Baker RF, Schauflinger M, Weil C, Springer N, Chomet P, Wagner R et al.: Maize carbohydrate partitioning defective33 encodes an MCTP protein and functions in sucrose export from leaves. *Mol Plant* 2019, 12:1278-1293 <http://dx.doi.org/10.1016/j.molp.2019.05.001>.

MCTP proteins are newly described as players in PD. This work demonstrates their importance for PD functioning in a physiological context.

62. Ma Y, Baker RF, Magallanes-Lundback M, DellaPenna D, Braun DM: Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves. *Planta* 2008, 227:527-538 <http://dx.doi.org/10.1007/s00425-007-0636-6>.

63. Slewinski TL, Baker RF, Stubert A, Braun DM: **Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves.** *Plant Physiol* 2012, **160**:1540-1550 <http://dx.doi.org/10.1104/pp.112.202473>.

64. Julius BT, Slewinski TL, Baker RF, Tzin V, Zhou S, Bihmidine S, Jander G, Braun DM: **Maize carbohydrate partitioning defective1 impacts carbohydrate distribution, callose accumulation, and phloem function.** *J Exp Bot* 2018, **69**:3917-3931 <http://dx.doi.org/10.1093/jxb/ery203>.

65. Brault ML, Petit JD, Immel F, Nicolas WJ, Glavier M, Brocard L, Gaston A, Fouche M, Hawkins TJ, Crowet JM *et al.*: **Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata.** *EMBO Rep* 2019, **20**:e47182 <http://dx.doi.org/10.15252/embr.201847182>.

66. Blanco NE, Guinea-Diaz M, Whelan J, Strand A: **Interaction between plastid and mitochondrial retrograde signaling pathways during changes to plastid redox status.** *Philos Trans R Soc Lond B Biol Sci* 2014, **369**:20130231 <http://dx.doi.org/10.1098/rstb.2013.0231>.

67. Gui J, Zheng S, Shen J, Li L: **Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal.** *Front Plant Sci* 2015, **6**:804 <http://dx.doi.org/10.3389/fpls.2015.00804>.

68. Zhu X, Shen W, Huang J, Zhang T, Zhang X, Cui Y, Sang X, Ling Y, Li Y, Wang N *et al.*: **Mutation of the OsSAC1 gene, which encodes an endoplasmic reticulum protein with an unknown function, causes sugar accumulation in rice leaves.** *Plant Cell Physiol* 2018, **59**:487-499 <http://dx.doi.org/10.1093/pcp/pcy203>.

69. Schepetilnikov M, Ryabova LA: **Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants.** *Plant Physiol* 2018, **176**:1095-1105 <http://dx.doi.org/10.1104/pp.17.01243>.

70. McCready K, Spencer V, Kim M: **The importance of TOR kinase in plant development.** *Front Plant Sci* 2020, **11**:16.

71. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J: **Glucose-TOR signalling reprograms the transcriptome and activates meristems.** *Nature* 2013, **496**:181-186 <http://dx.doi.org/10.1038/nature12030>.

72. Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P: **TOR dynamically regulates plant cell-cell transport.** *Proc Natl Acad Sci U S A* 2020, **117**:5049-5058 <http://dx.doi.org/10.1073/pnas.1919196117>.
Mutants identified in a screen for genes controlling intercellular trafficking and PD are found to be related to cellular metabolism. *ISE3* and *ISE4* gene products act to sense the cell energy status and activate the essential TOR kinase to limit PD trafficking in response to glucose levels. A role for TOR in regulating leaf development is also revealed.

73. Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY *et al.*: **Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.** *Mol Cell* 2013, **49**:172-185 <http://dx.doi.org/10.1016/j.molcel.2012.10.003>.

74. Epel BL, Erlanger MA: **Light regulates symplastic communication in etiolated corn seedlings.** *Physiol Plant* 1991, **83**:149-153 <http://dx.doi.org/10.1111/j.1399-3054.1991.tb01294.x>.

75. Sowinski P, Bilska A, Baranska K, Fronk J, Kubus P: **Plasmodesmata density in vascular bundles in leaves of C4 grasses grown at different light conditions in respect to photosynthesis and photosynthate export efficiency.** *Environ Exp Bot* 2007, **61**:74-84 <http://dx.doi.org/10.1016/j.enexpbot.2007.03.002>.

76. Abou-Saleh RH, Hernandez-Gomez MC, Armsbury S, Paniagua C, Bourdon M, Miyashima S, Helariutta Y, Fuller M, Budtova T, Connell SD *et al.*: **Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures.** *Nat Commun* 2018, **9**:4538 <http://dx.doi.org/10.1038/s41467-018-06820-y>.

77. Jiang J, Zeng L, Ke H, De La Cruz B, Dehesh K: **Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite.** *Nat Commun* 2019, **10**:2904 <http://dx.doi.org/10.1038/s41467-019-10867-w>.

78. Jiang J, Xiao Y, Chen H, Hu W, Zeng L, Ke H, Ditengou FA, Devisetty U, Palme K, Maloof J *et al.*: **Retrograde induction of phyB orchestrates ethylene-auxin hierarchy to regulate growth.** *Plant Physiol* 2020, **183**:1268-1280 <http://dx.doi.org/10.1104/pp.20.00090>.

79. Chenge-Espinosa M, Cordoba E, Romero-Guido C, Toledo-Ortiz G, Leon P: **Shedding light on the methylerythritol phosphate (MEP)-pathway: long hypocotyl 5 (HY5)/phytochrome-interacting factors (PIFs) transcription factors modulating key limiting steps.** *Plant J* 2018, **96**:828-841 <http://dx.doi.org/10.1111/tpj.14071>.

80. Lim GH, Singhal R, Kachroo A, Kachroo P: **Fatty acid- and lipid-mediated signaling in plant defense.** *Annu Rev Phytopathol* 2017, **55**:505-536 <http://dx.doi.org/10.1146/annurev-phyto-080516-035406>.

81. Lu Y, Yao J: **Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense.** *Int J Mol Sci* 2018, **19** <http://dx.doi.org/10.3390/ijms19123900>.

82. Fernandez JC, Burch-Smith TM: **Chloroplasts as mediators of plant-biotic interactions over short and long distances.** *Curr Opin Plant Biol* 2019, **50**:148-155 <http://dx.doi.org/10.1016/j.pbi.2019.06.002>.

83. Bjornson M, Balcke GU, Xiao Y, de Souza A, Wang JZ, Zhabinskaya D, Tagkopoulos I, Tissier A, Dehesh K: **Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata.** *Plant J* 2017, **91**:70-84 <http://dx.doi.org/10.1111/tpj.13547>.

84. Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS: **The SAL-PAP chloroplast retrograde pathway contributes to plant immunity by regulating glucosinolate pathway and phytohormone signaling.** *Mol Plant Microbe Interact* 2017, **30**:829-841 <http://dx.doi.org/10.1094/MPMI-03-17-0055-R>.

85. Lim GH, Liu H, Yu K, Liu P, Shine MB, Fernandez J, Burch-Smith T, Mobley JK, McLetchie N, Kachroo A *et al.*: **The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance.** *Sci Adv* 2020, **6**:eaaz0478 <http://dx.doi.org/10.1126/sciadv.aaz0478>.
Using a combination of genetic and chemical approaches, the systemic transport of SA in the cuticle under control of transpiration is demonstrated. The authors contribute convincing evidence to the ongoing debate that SA is required for SAR, and the partitioning of SA between the symplast and cuticle is essential for its activity.

86. Lim GH, Shine MB, de Lorenzo L, Yu K, Cui W, Navarre D, Hunt AG, Lee JY, Kachroo A, Kachroo P: **Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants.** *Cell Host Microbe* 2016, **19**:541-549 <http://dx.doi.org/10.1016/j.chom.2016.03.006>.

87. Gao QM, Kachroo A, Kachroo P: **Chemical inducers of systemic immunity in plants.** *J Exp Bot* 2014, **65**:1849-1855 <http://dx.doi.org/10.1093/jxb/eru010>.

88. Cecchini NM, Steffes K, Schlappi MR, Gifford AN, Greenberg JT: **Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming.** *Nat Commun* 2015, **6**:7658 <http://dx.doi.org/10.1038/ncomms8658>.

89. Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K: **A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis.** *Plant Cell* 2013, **25**:57-70 <http://dx.doi.org/10.1105/tpc.112.105890>.

90. Cheval C, Samwald S, Johnston MG, de Keijzer J, Breakspear A, Liu X, Bellandi A, Kadota Y, Zipfel C, Faulkner C: **Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants.** *Proc Natl Acad Sci U S A* 2020, **117**:9621-9629 <http://dx.doi.org/10.1073/pnas.1907799117>.

91. Zhang CX, Feng BH, Chen TT, Fu WM, Li HB, Li GY, Jin QY, Tao LX, Fu GF: **Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship**

and sugars allocation. *Environ Exp Bot* 2018, **155**:718-733 <http://dx.doi.org/10.1016/j.envexpbot.2018.08.021>.

92. Bilska A, Sowinski P: **Closure of plasmodesmata in maize (*Zea mays*) at low temperature: a new mechanism for inhibition of photosynthesis.** *Ann Bot* 2010, **106**:675-686 <http://dx.doi.org/10.1093/aob/mcq169>.

93. Bilska-Kos A, Szczepanik J, Sowinski P: **Cold induced changes in the water balance affect immunocytolocalization pattern of one of the aquaporins in the vascular system in the leaves of maize (*Zea mays* L.).** *J Plant Physiol* 2016, **205**:75-79 <http://dx.doi.org/10.1016/j.jplph.2016.08.006>.

94. Kumar M, Kesawat MS, Ali A, Lee SC, Gill SS, Kim AHU: **Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development.** *Plants (Basel)* 2019, **8** <http://dx.doi.org/10.3390/plants8120592>.

95. Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mahler N, Hvidsten TR, Eklund DM et al.: **Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication.** *Science* 2018, **360**:212-215 <http://dx.doi.org/10.1126/science.aan8576>.

96. Lai YS, Stefano G, Zemelis-Durfee S, Ruberti C, Gibbons L, Brandizzi F: **Systemic signaling contributes to the unfolded protein response of the plant endoplasmic reticulum.** *Nat Commun* 2018, **9**:3918 <http://dx.doi.org/10.1038/s41467-018-06289-9>.

97. Pfannschmidt T, Terry MJ, Van Aken O, Quiros PM: **Retrograde signals from endosymbiotic organelles: a common control principle in eukaryotic cells.** *Philos Trans R Soc Lond B Biol Sci* 2020, **375**:20190396 <http://dx.doi.org/10.1098/rstb.2019.0396>. A comprehensive current review of signaling between endosymbiotic organelles and the nucleus in both heterotrophs and autotrophs. Provides an excellent summary of the current status of the field and is required for both novices and experts in the field.

98. Unal D, Garcia-Caparros P, Kumar V, Dietz KJ: **Chloroplast-associated molecular patterns as concept for fine-tuned operational retrograde signalling.** *Philos Trans R Soc Lond B Biol Sci* 2020, **375**:20190443 <http://dx.doi.org/10.1098/rstb.2019.0443>.

99. Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H et al.: **Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in *Arabidopsis*.** *Plant Cell* 2011, **23**:3992-4012 <http://dx.doi.org/10.1105/tpc.111.091033>.

100. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K: **Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes.** *Cell* 2012, **149**:1525-1535 <http://dx.doi.org/10.1016/j.cell.2012.04.038>.

101. Rhoads DM, Subbaiah CC: **Mitochondrial retrograde regulation in plants.** *Mitochondrion* 2007, **7**:177-194 <http://dx.doi.org/10.1016/j.mito.2007.01.002>.