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ABSTRACT: Excited-state catalysis, a process that involves one 

or more excited catalytic species, has emerged as a powerful tool 

in organic synthesis because it allows access to the excited-state 

reaction landscape for the discovery of novel chemical reactivity. 

Herein, we report the first excited-state palladium-catalyzed 1,2-

spin-center shift reaction that enables site-selective functionaliza-

tion of carbohydrates. The strategy features mild reaction condi-

tions with high levels of regio- and stereoselectivity that tolerate a 

wide range of functional groups and complex molecular architec-

tures. Mechanistic studies suggest a radical mechanism involving 

the formation of hybrid palladium species that undergoes a 1,2-

spin-center shift followed by the reduction, deuteration, and io-

dination to afford functionalized 2-deoxy sugars. The new reactiv-

ity will provide a general approach for the rapid generation of 

natural and unnatural carbohydrates. 

Visible-light-induced excited-state palladium catalysis has 

emerged as a promising strategy for developing valuable reac-

tions.1 Seminal work by Gevorgyan,2 Fu,3 and Yu4 showed that 

photoexcited Pd-complexes undergo rapid, radical oxidative addi-

tion into aryl/alkyl-halide bonds, forming aryl/alkyl-Pd species 

with hybrid reactivity in which the closed-shell Pd(II) complex is 

in equilibrium with an open-shell alkyl radical/Pd(I) intermediate 

through a reversible photoexcitation/recombination process 

(Figure 1).5 This hybrid reactivity has been exploited in a range of 

transformations, such as desaturation reactions,2a, 6 Mizoroki-

Heck reactions,2b, 3, 7 difunctionalization of conjugated dienes,8 

and others.4, 9 Despite these recent advances, the application of 

either ground-state or excited-state Pd-catalysis to mediate 1,2-

spin-center shift (SCS)10 remains elusive. We envisioned that with 

a functional group such as acyloxy at the β-position, the alkyl 

radical/Pd(I) species could undergo a 1,2-SCS, accessing a new 

reaction site for further functionalization (Figure 1).11 The estab-

lishment of such reactivity is significant because it will (i) enable 

unique reactions capable of the rapid generation of molecular 

complexity and late-stage functionalization of complex mole-

cules; (ii) provide new strategic bond formation that leads to oth-

erwise difficult or unobtainable molecular architecture; and (iii) 

guide the design and development of new chemical reactions.  

Carbohydrates, the most abundant biomolecules, have indispen-

sable roles in a wide range of biological processes, including cell-

cell recognition, protein folding, neurobiology, inflammation, and 

infection.12 The possibility of modifying sugar structure(s) to 

enhance or otherwise alter the physiological properties of the 

parent molecule is therefore highly attractive.13 Selective C-2 

functionalization of carbohydrates has attracted significant inter-

est because the resulting 2-deoxy sugar derivatives, in which the 

C-2 hydroxyl group of sugar has been replaced by other function-

al groups, are ubiquitous in nature and are found in medicine, 

molecular imaging, cell engineering, and catalysis.14 Conventional 

methods to access C-2 functionalized 2-deoxy sugars rely on the 

derivatization of advanced intermediates such as glycals and 1,2-

epoxy- or 1,2-cyclopropyl-sugars.15 These protocols often involve 

multi-step precursor syntheses and harsh reaction conditions, and 

have limited reaction scope. We envisaged that the establishment 

of excited-state Pd-catalyzed 1,2-SCS reactivity would enable a 

general, controllable, and selective catalytic strategy for C-2 func-

tionalization of carbohydrates using readily available 1-

halosugars.16  

 

Figure 1. Development and exploitation of excited-state palladi-

um-catalyzed 1,2-spin-center shift for selective C-2 functionaliza-

tion of carbohydrates. 

The mechanistic hypothesis of the proposed transformation is 

outlined in Figure 2. We envisioned that photoexcited palladium 

catalyst [Pd(0)]* undergoes radical oxidative addition with 1-halo 

sugar 1, generating the hybrid 1-glycosyl-Pd-X complexes IIa and 

IIb.2b, 3 The glycosyl radical IIa favors the B2,5 boat conformation 

(IIIa) because of the hyperconjugation between the singly occu-

pied molecular orbital (SOMO) and σ*C-O orbital of the C-2–OAc 

group.17 Such an interaction is more pronounced in glycosyl radi-

cals because the lone pair electron of the endocyclic-O (ηO, ano-

meric interaction) raises the SOMO energy level.  Such an ex-

tended anomeric interaction weakens the C-2–OAc bond and 

promotes the 1,2-SCS through a concerted [2,3]-acyloxy rear-

rangement with a cyclic five-membered ring transition state 

IIIb,11b, 17a forming the deoxypyranosan-2-yl radical IVa that 



 

prefers the 4C-1 chair conformation.18 Although the anomeric 

radical is more stable than the secondary alkyl radical, the molec-

ular stability gained from the formation of an anomeric C–O bond 

in IVa drives the desired 1,2-SCS.19 Under visible-light irradia-

tion, the intermediate IVa is in equilibrium with alkyl-Pd(II)X 

complex IVb, which allows access to both open- and closed-shell 

reactivities. We anticipate that these hybrid Pd species can engage 

in a wide range of cross-coupling reactions through processes 

such as (i) transmetalation followed by reductive elimination, or 

(ii) radical coupling or atom/group transfer followed by reduction 

of Pd(I)X to furnish the desired C-2 functionalized carbohydrate 2 

and regenerate Pd(0) catalyst, completing the catalytic cycle. 

 

Figure 2. Proposed catalytic cycle for the excited-state Pd-

catalyzed C-2 functionalization of carbohydrates. 

With this hypothesis in mind, we started our investigations us-

ing readily available α-glucosyl bromide (1a) as a model sub-

strate. Initial experiments showed that upon exposing 1a to 24 W 

blue light-emitting diodes (LED) in the presence of Pd(PPh3)4 

(5.00 mol%), N, N-diisopropylethylamine (DIPEA, 2.00 equiv) in 

isopropyl acetate (i-PrOAc, 0.05 M) at room temperature for 20 h, 

we observed 94% yield of α-only product 2a with >20:1 C-2 se-

lectivity (Table S1, entry 1). The Pd(PPh3)4 catalyst was shown to 

be critical for the desired reactivity because replacing it with 

PPh3, Pd(PPh3)Cl2,  led to no reaction or significantly lower yield 

and selectivity (entries 2 & 3). We recognized that the relative 

rates of the intramolecular 1,2-SCS and the intermolecular hydro-

gen atom transfer must be controlled to achieve high levels of 

regioselectivity. It was envisioned that the unique inner-sphere 

coordination interaction between the Pd catalyst and alkyl radical 

could stabilize and modulate the reactivity of radical intermedi-

ates, thus minimizing the premature C-1 reduction.1e, 20 Indeed, 

the use of other common Ru-, Ir-, and organic-based photoredox 

catalysts, where inner-sphere coordination is not feasible, proved 

to be ineffective and afforded the product with low yields and 

selectivity (entries 4-6). Reactions in acetonitrile were sluggish 

and were accompanied by the erosion of the regioselectivity (en-

try 7). Control experiments showed that DIPEA, an oxygen-free 

environment, and light were all essential for the desired reactivity 

(entries 8-10). 

With the optimized conditions in hand, we next examined the 

scope of the reaction. In general, a wide range of α-bromosugars 

afforded the desired 2-deoxy sugars with up to 95% yield and 

>20:1 regioselectivity (Table 1A).21 α-Glucosyl bromides with 

different ester protecting groups such as acetyl, benzoyl, or 

pivaloyl worked well (2a-2c). Other α-bromosugars, including 

those derived from acetylated L-fucose, D-xylose, and D-

galactose, were also viable substrates (2d-2f).22 Substrates with 

benzyl-, methyl-, and the acid-sensitive tert-butyldimethylsilyl-

protected C-6 hydroxyl groups were well tolerated, affording the 

desired products 2g-2i in 72-91% yields with >20:1 C-2 selectivi-

ty. A free C-6 hydroxyl group, which is useful for further func-

tionalization and often serves as a glycosyl acceptor, reacted 

smoothly and gave product 2j in 72% yield. A fused ring structure 

also proved to be compatible with the reaction conditions (2k). 

The structure of the migratory ester group has little effect on the 

reaction efficiency because C-2 esters substituted with alkyl, aryl, 

or heteroaryl groups underwent excited-state Pd-catalyzed 1,2-

SCS smoothly, forming the corresponding products 2l-2q in 74-

90% yields. A melibiose derivative gave the desired 2-deoxy-

disaccharide 2r in 89% yield. Notably, the reaction affords the α-

2-deoxyglycosides exclusively, and the corresponding β-isomers 

were not observed.  

The synthetic utility of this process is further highlighted by its 

amenability to (i) a late-stage modification of functionally dense 

natural product- and drug-conjugated sugar derivatives and (ii) the 

synthesis of deuterated 2-deoxy sugars (Table 1). For example, α-

Bromoglucose derivatives of oleanolic acid, Indomethacin, 

Probenecid, Bezafibrate, Febuxostat, Zaltoprofen, Ibuprofen, and 

Adapalene reacted and afforded the desired products 2s-2z in 

good yields and excellent levels of regioselectivity, demonstrating 

that the method can be used in the preparation of pharmaceutical-

ly relevant compounds. Furthermore, deuterium-labeled sugars 

are versatile probes for the study of biological processes such as 

metabolic and biosynthetic pathways, 23 and useful chiral building 

blocks for the synthesis of chiral deuterated precursors of bioac-

tive molecules.24 Using d8-THF as the solvent and Cs2CO3 as the 

base under otherwise identical reaction conditions, we successful-

ly obtained a series of (2-2H1)-2-deoxy sugars d-2a, d-2d, d-2e, d-

2i, d-2k, and d-2r in yields of 88-98% and with high levels of 

regioselectivity and deuterium incorporation (Table 1B). 

The reaction can be further extended to the synthesis of 2-iodo-

2-deoxy sugars using α-iodosugars as starting materials (Table 

1C). For example, α-iodosugar derivatives of D-galactose, D-

glucose, L-fucose, and D-xylose were converted to the 

corresponding 2-iodo-2-deoxy sugars 4a-4d with good  yields and 

up to >20:1 equatorial/axial selectivity. The electronic nature of 

the migrating group had a negligible impact on reaction efficiency 

and stereoselectivity, as demonstrated by substrates 3e-3f that 

afforded the desired products 4e-4f in similar yields and 

diastereoselectivity. Disaccharide and D-galactose derivatives of 

pharmaceuticals such as Ibuprofen, Probenecid, Febuxostat, and 

Zaltoprofen could be used to generate the corresponding products 

4h-4l with >20:1 equatorial/axial ratios in good yield. Notably, 

other photocatalysts such as Ru(bpy)3
2+, Ir(ppy)3, and Eosin Y 

failed to catalyze this iodination reaction. Given that 2-iodo-2-

deoxy sugars are (i) excellent glycosyl donors that control the 

stereochemistry of the newly formed glycosidic bond25 and (ii) 

versatile intermediates for further sugar derivatizations,26 our 

protocol will find a useful application in the synthesis of complex 

glycans for the discovery and development of new bioactive com-

pounds. 

 

 

 



 

Table 1. Scope of C-2 reduction, deuteration, and iodination of α-glycosyl halides via excited-state Pd-catalysis.a 

 
aSee Supporting Information for experimental details. b% of deuterium incorporation, C-2:C-1 ratio, and equatorial:axial (eq:ax) ratio were 

determined by 1H-NMR. bBenzene instead of tBuOH was used as a solvent. 



 

 

Figure 3. Mechanistic studies of excited-state Pd-catalyzed C-2 functionalization of carbohydrates. See Supporting Information for exper-

imental details. % of deuterium incorporation, C-2:C-1 ratio, and reaction yields were determined by 1H-NMR using CH2Br2 as an internal 

standard. 

Our mechanistic hypothesis of the excited-state Pd-catalyzed C-

2 functionalization of carbohydrates depicted in Figure 2 is sup-

ported by UV-Vis measurements, Stern-Volmer quenching stud-

ies, radical trapping experiments, deuterium labeling studies, 

quantum yield measurements, radical clock and cross-over exper-

iments, and kinetic studies (Figure 3). UV-Vis measurements 

showed the absence of any reaction between the acetylated α-

glucosyl bromide (1a) and the ground-state Pd(PPh3)4 (Figure 

3A). Irradiation of the reaction mixture with blue LED light for 5 

min, however, led to a significant bathochromic shift (∆λabs = 43 

nm) with a λabs at 362 nm. The UV-Vis data suggested that an 

excited Pd(PPh3)4 catalyst readily undergoes a radical oxidative 

addition with 1a, generating a putative Pd(II)-species.4 Stern-

Volmer quenching studies demonstrated that only 1-halosugar 

quenches the excited Pd(PPh3)4 (Fig. S2). The radical nature of 

the reaction is further supported by a radical trapping experiment 

(Figure 3B). Deuterium labeling studies where Cs2CO3 was re-

placed by DIPEA under deuteration reaction conditions shifted 

the 2a:d-2a ratio from 1.0:7.3 to 1.9:1.0, showing that DIPEA 

serves as a hydrogen atom donor (Figure 3C). Because the quan-

tum yields of the C-2 reduction and iodination reactions were 0.09 

and 0.24, respectively, an extended radical chain propagation is 

unlikely under our reaction conditions (Fig. S9 and Fig. S10). 

The key 1,2-spin-center shift involving the acyloxy migration 

may proceed through one of the following reaction pathways: 

(P1) fragmentation to an acyloxy radical and an alkene with 

subsequent recombination; (P2) formation of a cyclic 1,3-

dioxolanyl radical followed by ring-opening; (P3) fragmentation 

to an alkene radical cation and an acyloxy anion followed by 

recombination; or (P4) a concerted process involving a cyclic 

five-membered ring transition state (Figure 3D).11b The P1 

pathway can be eliminated because the decarboxylation of an 

acyloxy radical (k = 109 s-1)27 is much faster than the migration (k 

= 102 s-1),19 and no decarboxylation was observed in the reaction. 

Pathway P2 is also unlikely because a radical clock experiment 

using a substrate bearing the cyclopropyl acetate group (1m) 

afforded the desired product 2m without the formation of a ring-

opening side product 2m’. No cross-over products 5a and 5b were 

formed in cross-over experiments using substrates 1a and 1b, 

indicating that the reaction could proceed through either pathway 

P3 with an “in-cage” recombination or pathway P4. Since the 

electronics of the migrating group has a negilible effect on the 

reaction rate, the acyloxy migration most likely proceeds through 

the natural, concerted pathway P4, and this agrees with the DFT 

calculations.28 

In summary, we established and exploited the first excited-state 

Pd-catalyzed 1,2-SCS reaction for the synthesis of C-2 

functionalized carbohydrates from readily available 1-halosugars. 

The reaction features high levels of regio- and stereoselectivity, 

broad substrate scope, and mild reaction conditions that tolerate a 

wide range of functional groups and complex molecular 

structures. Detailed mechanistic studies suggest a non-chain 

radical reaction mechanism involving an excited Pd catalytic 

species and a 1,2-SCS via a concerted [2,3]-acyloxy 

rearrangement. Given the versatile reactivity of Pd catalysts in 

carbon-carbon and carbon-heteroatom bond forming reactions, we 

anticipate that our strategy will (i) offer a general, catalytic 

approach for the C-2 selective functionalization of carbohydrates 



 

to access a wide array of unexplored carbohydrate mimics, 

establish tools that tackle fundamental questions in glycobiology, 

and aid the discovery and development of new therapeutics; and 

(ii) guide the design and development of new synthetic strategies 

beyond carbohydrate chemistry. 
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