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Abstract—Neuromorphic computing with non-volatile memory
(NVM) can significantly improve performance and lower energy
consumption of machine learning tasks implemented using spike-
based computations and bio-inspired learning algorithms. High
voltages required to operate certain NVMs such as phase-change
memory (PCM) can accelerate aging in a neuron’s CMOS circuit,
thereby reducing the lifetime of neuromorphic hardware. In
this work, we evaluate the long-term, i.e., lifetime reliability
impact of executing state-of-the-art machine learning tasks on
a neuromorphic hardware, considering failure models such as
negative bias temperature instability (NBTI) and time-dependent
dielectric breakdown (TDDB). Based on such formulation, we
show the reliability-performance trade-off obtained due to peri-
odic relaxation of neuromorphic circuits, i.e., a stop-and-go style
of neuromorphic computing.

Index Terms—Neuromorphic Computing, Non-Volatile Mem-
ory (NVM), Phase-Change Memory (PCM), NBTI, TDDB

I. INTRODUCTION

Spiking neural network (SNN) [1] is a machine learning
technique designed using spike-based computation and bio-
inspired learning algorithms [2]. Neuromorphic hardware such
as DYNAP-SE [3], TrueNorth [4], and Loihi [5] can exe-
cute SNN-based machine learning tasks in an energy-efficient
manner, thanks to low-power neuron circuits [6], distributed
implementation of computing and storage as crossbars [7], and
the integration of non-volatile memory (NVM) for synaptic
storage [8], [9]. Several techniques are recently proposed to
map and execute SNNs on to neuromorphic hardware [10]-
[15]. These techniques mostly target performance (e.g., accu-
racy) and energy of neuromorphic computing. Unfortunately,
neuromorphic hardware are prone to reliability issues such
as limited programming endurance, read disturbance of NVM
cells, and aging of CMOS-based neuron circuits [16]-[18]. In
this work, we focus on the circuit aging due to negative bias
temperature instability (NBTI) and time-dependent dielectric
breakdown (TDDB) failure mechanisms [19]-[21].

Due to the high voltage operating requirement of NVM,
CMOS devices in a neuron circuit are exposed to high-voltage
induced stress when propagating excitation (i.e., current)
through an NVM synapse. This impacts the long-term, i.e.,
lifetime reliability of neuromorphic hardware. As memory pro-
cess technology scales down to smaller dimensions, reliability
issues are expected to exacerbate due to the following three
reasons. First, the electric field and power density increase in
scaled nodes, exceeding their corresponding maximum value
for reliable operation. Second, increasing power density also
leads to higher chip temperatures and consequently, an even
faster acceleration of the degradation mechanisms. Third, new
materials like high-k dielectrics and novel devices such as
multi-gate field-effect transistor (FET) that are commonly
used for the neuron circuit in neuromorphic hardware have
unknown reliability behavior and they introduce new failure
mechanisms at scaled nodes. In our recent work [22], we have
analyzed NBTI failure in neuromorphic computing. This work
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extends our earlier work in the following three directions. First,
we consider other failure mechanisms such as TDDB and show
the impact of system-level design decisions on the circuit aging
in neuromorphic hardware. Second, we consider aging in a
neuron circuit, which drives current into a crossbar to read
synaptic weights stored in its NVM cells. Third, we show
the performance-reliability trade-off in periodic relaxation of
neuron excitations in neuromorphic hardware using state-of-
the-art machine learning applications.

II. MODELING RELIABILITY OF CROSSBARS
A. NBTI Issues in Neuromorphic Computing

This is a failure mechanism of CMOS devices inside
a neuron, when positive charges are trapped at the oxide-
semiconductor boundary underneath the gate of a CMOS [23].
NBTI manifests as 1) decrease in drain current and transcon-
ductance, and 2) increase in off current and threshold voltage.
The lifetime of a CMOS device is measured in terms of its
mean time to failure (MTTF) as MTTFygn = % e KT, where
A and ~ are material-related constants, E, is the activation
energy, K is the Boltzmann constant, T is the temperature,
and V is the overdrive gate voltage of the CMOS device.

Recent studies suggest that a portion of the threshold voltage
can be recovered by annealing at high temperatures if the
NBTT stress voltage is removed. Figure 1 illustrates the stress
and recovery of threshold voltage of a CMOS device due to
NBTI failure mechanism on application of a high (V;e,s = 1.8V)
and a low voltage (Vig. = 1.2V) to a CMOS device in a neuron
circuit. We observe that both stress and recovery depends on
the time of exposure to the corresponding voltage [24].
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Fig. 1. Demonstration of degradation due to NBTL

B. TDDB Issues in Neuromorphic Computing

This is a failure mechanism in a CMOS device, when the
gate oxide breaks down as a result of long-time application
of relatively low electric field (as opposed to immediate
breakdown, which is caused by strong electric field) [25]. The
TDDB lifetime of a CMOS device is MTTFmpg = A.e~7VV,
where A and ~ are material-related constants, and V is the
overdrive gate voltage of the CMOS device [26].

C. Circuit Aging in Neuromorphic Computing

To illustrate the degradation caused by these failure mech-
anisms, we take the example of a single neuron of the LeNet
convolutional neural network (CNN) [27] used for handwritten
digit recognition and illustrate its spike times within the first
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100ms in Figure 2a. The voltage required to propagate these
spikes through the neuron’s fanout synapses are shown in
Figure 2b. Figures 2c and 2d show the NBTI and TDDB aging
of a CMOS device inside the neuron’s circuit, respectively. As
can be clearly seen, both aging increases with time as more
spikes are generated by the neuron. If CMOS devices in the
neuron circuit are not de-stressed regularly, the aging (both
NBTI and TDDB) in a neuron continues to increase, eventually
leading to transient, intermittent, or permanent faults in the
neuromorphic hardware.
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(a) Spike times of a neuron in LeNet CNN.
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(b) Voltage of the neuron to process the spike train.
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(c) NBTI aging (in log scale) of the neuron.
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(d) TDDB aging (in log scale) of the neuron.

Fig. 2. (a) Spike times of a neuron in LeNet, (b) voltages needed to propagate
these spikes through its fanout synapses, (c) NBTI degradation (in arbitrary
units), and (d) TDDB degradation (in arbitrary units) of CMOS devices.

To de-stress a neuron, all CMOS devices in the neuron must
be programmed with a voltage lower than the threshold voltage
Vin, Which forces them to operate in the sub-threshold region,
relieving their stress. Once discharged, a neuron requires
several clock cycles to boost its voltage back to the required
voltage level, before it can safely be used to generate spikes
again. This introduces performance overhead.

ITI. PERIODIC RELAXATION OF NEUROMORPHIC CIRCUITS

To improve the long-term, i.e., the lifetime reliability of
neuromorphic computing, we propose periodic relaxation of a
neuromorphic architecture, where we de-stress all neurons in
the hardware at fixed intervals. To compute the overhead due to
such de-stress operations, we assume that the controller issues
a de-stress command to a crossbar once every tDSI, which
is known as the de-stress interval. Each de-stress operation
completes within a time interval tDSC, known as the de-
stress cycle time. Hence, the performance overhead (i.e., spike
throughput loss) due to periodic de-stress is

de-stress overhead = ¢DSC//tDSI. (1

Figure 3 shows an example where four spikes (S1, S2, S3,
& S4) generated by a neuron. These spikes have some idle
time between them. The neuron circuits are de-stressed after
every ¢DSI, such that the aging due to NBTI and TDDB
(indicated by Arppg and Anpri, respectively) are lower than
1000 units. Using this approach, the de-stress operation is
initiated upon generating S3, which increases the latency of

S4 due to the non-zero latency of the de-stress operation
(indicated by ¢tDSC). Increase in spike latency can lead to
information loss in SNNs and degrade the quality of response.
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Fig. 3. Performance impact due to periodic relaxation.

We introduce two key performance metrics in SNNs that
are affected due to periodic de-stressing of neuromorphic
architectures — inter-spike interval (ISI) and disorder spike
count. These are defined as follows.

« Inter-spike interval distortion: Performance of super-
vised machine learning is measured in terms of accu-
racy, which can be assessed from inter-spike intervals
(ISIs) [28]. To define ISI, we let {ti,t2,---,tx} be a
neuron’s firing times in the time interval [0,7]. The
average ISI of this spike train is given by [28]:

K
= Z(tz —ti—1)/(K —1). 2
i=2

o Disorder spike count: This is defined for SNNs where
information is encoded in terms of spike rate. We for-
mulate spike disorder as follows. Let F* = {F{,--- ,F} }
be the expected spike arrival rate at neuron  and F? =
{F},.-- ,Fi } be the actual spike rate considering de-stress
latencies. The spike disorder is computed as

Mg
spike disorder = > "[(F} — F})?]/n; 3)
j=1

IV. EVALUATION

We evaluate 10 standard machine learning applications,

which are listed in Table 1.
TABLE 1
APPLICATIONS USED TO EVALUATE OUR APPROACH [10].

Class Applications Synapses Neurons Topology Accuracy
EdgeDet 272,628 1,372  FeedForward (4096, 1024, 1024, 1024)| 100%
MLP ImgSmooth 136,314 980  FeedForward (4096, 1024) 100%
MLP-MNIST 79,400 984  FeedForward (784, 100, 10) 95.5%
CNN-MNIST 159,553 5,576  CNN 96.7%
CNN LeNet-MNIST 1,029,286 4,634 CNN 99.1%
LeNet-CIFAR 2,136,560 18,472 CNN 84.0%
HeartClass [29], [30]]2,396,521 24,732 CNN 85.12%
HeartEstm [31] 636,578 6,952  Recurrent Reservoir 99.2%
RNN SpeechRecog 636,578 6,952  Recurrent Reservoir 96.8%
VisualPursuit 636,578 6,952  Recurrent Reservoir 89.0%

A. Reliability

Figures 4a and 4b plot respectively, the NBTI and TDDB
aging of the 10 machine learning applications when increasing
the tDSI from 10ms to 50ms. We make the following three
key observations. First, both NBTI and TDDB aging increases
with increase in tDSI. This is because, a neuron accrues higher
aging when its CMOS devices are kept active for longer
duration (i.e., for higher tDSI). Second, the increase in aging
is application-dependent. For CNN-MNIST, increasing tDSI
from 10ms to 50ms leads to 50% increase in NBTI aging,
compared to VisualPursuit, where the NBTI aging increase
by 5x. This is because, the number of spikes generated in
CNN-MNIST is far fewer than in VisualPursuit, which leads
to lower aging in neuron circuits. Therefore, the impact of
increasing tDSI for CNN-MNIST is less significant compared
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to VisualPursuit. Third, compared to NBTI, the increase of
TDDB aging is consistent across different applications for
the same range of tDSI. This is due to the difference in the
two mechanisms. NBTI-induced stress (e.g., Vi, shift) recovers
partially when the neuron is idle. On the other hand, a CMOS
devices encounters low-voltage TDDB stress even when idle.
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(a) NBTI aging for 10 machine learning applications.
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Fig. 4. (a) Normalized NBTI aging, and (b) Normalized TDDB aging for
tDSI of 10ms, 20ms, 30ms, 40ms, and 50ms.

B. Performance

Figures 5a and 5b plot respectively, the ISI distortion
and disorder spike count (DSC) of the 10 machine learning
applications when increasing the tDSI from 10ms to 50ms.
We observe that both ISI and DSC reduce with increase in
tDSI. This reduction is due to the reduction of the de-stress
overhead (Equation 1) with an increase in tDSI.

tDSI = 10

ez 20

(a) ISI distortion for 10 machine learning applications.
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(b) Disorder spike count for 10 machine learning applications.

Fig. 5. ISI, disorder for tDSI of 10ms, 20ms, 30ms, 40ms, and 50ms.

C. Thermal Impact

The results of Sections IV-A are obtained at nominal tem-
perature of 300K. Prior works such as [32] show the impact
of temperature on reliability of conventional multiprocessor
system. Figure 6 shows the increase of aging with temperature.
Average circuit aging at 325K and 350K is higher than that at
300K by an average of 7% and 26%, respectively.

22 325K
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Fig. 6. Average circuit aging at 325K and 350K normalized to aging at 300K.

V. CONCLUSION

We evaluate circuit aging in the neurons of neuromorphic ar-
chitectures considering NBTI and TDDB failure mechanisms.
We then propose a simple approach to improve reliability by

periodically de-stressing its neurons. This introduces latency,
which degrades key performance metrics such as inter-spike
interval and disorder spike count, which correlates directly
to the performance of machine learning models. We evaluate
reliability-performance trade-offs for 10 state-of-the-art ma-
chine learning applications. We conclude that the proposed
work will enable intelligent reliability optimization strategies
in neuromorphic computing.
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