

Swimming and Sinking Behavior of Warm Water Pelagic Snails

1 **Ferhat Karakas¹, Jordan Wingate², Leocadio Blanco-Bercial², Amy E. Maas² and David**
2 **W. Murphy^{1*}**

3 ¹Department of Mechanical Engineering, University of South Florida, Tampa, FL, USA

4 ²Bermuda Institute of Ocean Sciences, St. Georges, Bermuda

5 *** Correspondence:**

6 David Murphy

7 davidmurphy@usf.edu

8 **Keywords:** Pteropod, zooplankton, heteropod, diel vertical migration, NGDR, Reynolds
9 number, metabarcoding, ZooScan

10 ABSTRACT

11 Swimming and sinking behavior by pelagic snails is poorly studied but is important in their
12 ecology, predator-prey interactions, and vertical distributions. We used a low magnification,
13 high speed stereophotogrammetry system to study the swimming and sinking kinematics of
14 nine warm water pelagic snail species (seven thecosomes, one gymnosome, and one
15 heteropod). As different thecosomatous pteropod species may have coiled, elongated, or
16 globular shell morphologies, we focused on how the shell shape, body geometry, and body
17 size affect their swimming behavior from a fluid mechanics perspective. In addition, ZooScan
18 image analysis and metabarcoding of archived vertically stratified MOCNESS samples were
19 used to relate swimming behaviors to night time and daytime vertical distributions. While
20 different large scale swimming patterns were observed, all species exhibited small scale
21 sawtooth swimming trajectories caused by reciprocal appendage flapping. Thecosome
22 swimming and sinking behavior corresponded strongly with shell morphology and size, with
23 the tiny coiled shell pteropods swimming and sinking the slowest, the large globular shelled
24 pteropods swimming and sinking the fastest, and the medium-sized elongated shell pteropods
25 swimming and sinking at intermediate speeds. However, the coiled shell species had the
26 highest normalized swimming and sinking speeds, reaching swimming speeds of up to 45
27 body lengths s⁻¹. The sinking trajectories of the coiled and elongated shell pteropods were
28 nearly vertical, but globular shell pteropods use their hydrofoil-like shell to glide downwards
29 at approximately 20° from the vertical, thus retarding their sinking rate. The swimming
30 Reynolds number (Re) increased from the coiled shell species ($Re \sim O(10)$) to the elongated
31 shell species ($Re \sim O(100)$) and again for the globular shell species ($Re \sim O(1000)$),
32 suggesting that more recent lineages increased in size and altered shell morphology to access
33 greater lift-to-drag ratios available at higher Re . Swimming speed does not correlate with the
34 vertical extent of migration, emphasizing that other factors, likely including light,
35 temperature, and predator and prey fields, influence this ecologically important trait. Size
36 does play a role in structuring the vertical habitat, with larger individuals tending to live
37 deeper in the water column, while within a species, larger individuals have deeper migrations.

38

39

40 **Includes: 10,025 words, 11 figures and 3 tables.**

41

42 **INTRODUCTION**

43 Pteropods and heteropods are small (mm to cm scale) marine snails that may be found in
44 mesopelagic to surface waters throughout the global ocean. Of the extant holoplanktonic
45 molluscs, heteropods and pteropods are the most numerous and diverse, playing a role in food
46 web structure and in carbon and carbonate export (Gilmer, 1972; Lalli and Gilmer, 1989;
47 Hunt et al., 2008). Thecosomatous pteropods in particular maintain a large biomass in some
48 regions and appear to have a substantial biogeochemical role in carbonate and carbon cycling
49 (Bednaršek et al., 2012; Buitenhuis et al., 2019). Gymnosomes pteropods and heteropods are
50 substantially less abundant but are ecologically important as they are active predators of other
51 zooplankton, including the thecosomes.

52
53 Pteropods consist of two orders that include both the thecosomatous species, which are
54 generally shelled as adults, and the gymnosomatous species, which lose their juvenile shell
55 during development (Lalli and Gilmer, 1989; Peijnenburg et al., 2019). The shells of
56 thecosomes vary dramatically by species, ranging from the basal spiral form, to conical,
57 globular, and gelatinous forms. Two of the three families of heteropods have shells as adults,
58 and although they are consistently spiral in shape, they are distinctly different in size and
59 function. In the most numerous family, the Atlantidae, the adult individuals can retract
60 completely into the dorsoventrally flattened shell, while in the larger more streamlined
61 Carinariidae the dorsally oriented shell is substantially smaller than the body. Despite being
62 from two distinct molluscan lineages, all three groups build shells composed of aragonite
63 during some portion of their development, and use highly flexible appendages that are
64 derived from the basal molluscan foot structure for locomotion (Lalli and Gilmer, 1989). In
65 the pteropods the foot has evolved into a pair of muscular, wing-like appendages, while
66 heteropods have a single muscular swimming appendage which, in Atlantidae, coordinates
67 with the shell for swimming (Karakas et al., 2018).

68
69 These zooplanktonic marine snails are famously difficult to study, and most species currently
70 cannot be cultured (Howes et al., 2014; Thabet et al., 2015). Thus, detailed study of much of
71 their biology, ecology, and behavior has been limited. For instance, in most groups
72 swimming, a key behavior for pelagic organisms, has not been assessed. In the zooplankton,
73 swimming influences predator-prey dynamics, both moderating escape and hunting behavior,
74 but also controlling the process of diel vertical migration. This migratory phenomenon is a
75 common feature in pelagic ecosystems, whereby organisms actively congregate in the surface
76 waters during the night to feed, and then descend to depth during the day. These daily
77 migrations are thought to be energetically expensive, with pteropods and heteropods smaller
78 than 1 cm traveling hundreds of meters per day (Wormuth, 1981; Maas et al., 2012; Wall-
79 Palmer et al., 2018). Despite the costs, the process is believed to provide a number of
80 advantages including niche partitioning, metabolic advantage due to colder temperatures at
81 depth, avoidance of light or high temperatures, and, most importantly, predator avoidance
82 (Hays, 2003; Antezana, 2009).

83
84 Even though it is challenging to study the pelagic marine snails, some previous research has
85 been carried out on marine snail swimming, mostly on polar species with limited
86 morphological or taxonomic diversity. In the gymnosomes, Satterlie et al. (1985) investigated
87 *Clione limacina* swimming and noticed that this gymnosome flaps its wings back and forth in
88 the dorsoventral plane with a high angle of attack and suggested that *C. limacina* may
89 generate lift using the ‘clap-and-fling’ mechanism described by Weis-Fogh (1973) in flying
90 insects. Childress and Dudley (2004) investigated the critical flapping Reynolds number that

enables *Clione antarctica* to propel itself by wing flapping. Borrell et al. (2005) studied the swimming kinematics of *Clione antarctica* and observed a sawtooth path during upward swimming. Szymik and Satterlie (2011) conducted experiments on *C. limacina* at slow and fast swimming speeds, and found that the wingbeat kinematics differ significantly between speeds. In the thecosomes, Chang and Yen (2012) found that *Limacina helicina* ascends along a sawtooth trajectory in mostly linear and sometimes helical swimming paths, but has straight sinking trajectories. *L. helicina* strokes its wings in a characteristic figure-of-eight pattern by extreme rotation of its body to produce lift (Murphy et al., 2016). Similar swimming characteristics such as sawtooth swimming trajectories and extreme body rotation were also observed in the closely related polar species *Limacina helicina antarctica* (Adhikari et al., 2016), and Mohaghar et al. (2019) performed a dimensional analysis of the swimming of this species. Morton (1954) described the swimming behavior of *Limacina retroversa* qualitatively, and more recently Bergan et al. (2017) conducted quantitative measurements of the swimming and sinking kinematics of the same species under the influence of elevated carbon dioxide, which alters shell properties. Karakas et al. (2020) showed that the tropical thecosome *Cuvierina atlantica* uses its highly flexible parapodia in a cylindrical overlap-and-fling mechanism twice during each stroke to generate lift. In the heteropods, Karakas et al. (2018) discovered that, contrary to previous accounts (Lalli and Gilmer, 1989), the atlantid heteropod *Atlanta selvagensis* does not let its shell passively hang beneath it as it swims but instead flaps its shell in coordination with its swimming fin in order to swim. Finally, Zhou and Mittal (Zhou and Mittal, 2017, 2018) used computational fluid dynamics simulations to examine the swimming behavior of the distantly related shell-less marine mollusks *Hexabranchus sanguineus* (the Spanish Dancer) and *Aplysia* (the sea hare), which are much larger than the pteropods and heteropods studied here.

Recent studies suggest that ocean acidification-induced changes to shell thickness or morphology may change pteropod swimming behavior, thus negatively affecting their ability to perform diel vertical migration. For example, Manno et al. (2012) claimed that a lower pH environment in combination with lower salinity negatively affected upward swimming ability of the pteropod *Limacina retroversa*. Ocean acidification may damage the pteropod shell, thus unbalancing the forces and torques involved in the animal swimming and thereby altering the swimming kinematics and fluid dynamics of swimming (Adhikari et al., 2016).

It has been posited that sinking may also be an important behavior for these pelagic marine snails in relation to their daily migration or predator avoidance. The aragonite shells of these animals make them extremely negatively buoyant, and for many species of shelled thecosomes or atlantid heteropods, disturbance causes retraction into the shell and rapid sinking behaviors (Gilmer and Harbison, 1986; Bergan et al., 2017). This negative buoyancy additionally strongly influences their role as important contributors to the active flux of carbon and carbonate from surface waters, as it increases the rate at which dead organisms are removed from the mixed layer and sequestered at depth. Importantly, the rapid sinking may allow shells to penetrate below the aragonite lysocline prior to dissolving, augmenting their export efficiency. Additionally, sinking can be energetically problematic as organisms must counteract their negative buoyancy to avoid sinking away from their desired vertical habitat.

Although thecosomes have been observed making large mucous webs that help them slow their sinking (Harbison and Gilmer, 1992), heteropods do not have this adaptation. However, Bergan et al. (2017) observed reduction in sinking speed when *L. retroversa* was filmed

140 sinking with its wings extended compared to when a live animal sank with wings retracted.
141 This suggests that pelagic snails can use their appendages to reduce their sinking speed.
142
143 Characterizing the behaviors associated with sinking and swimming in these groups thus has
144 both ecological and biogeochemical significance. To date, however, most previous research
145 has focused on high latitude species (e.g. *Limacina helicina*, *Limacina helicina antarctica*,
146 *Limacina retroversa*, *Clione limacina*, and *Clione antarctica*). In polar regions, pteropods in
147 particular are highly abundant, but there is little speciation and thus little variety in shell
148 shape. In contrast, warm water regions are highly diverse, supporting a large variety of
149 marine snails with distinct shell shapes and sizes (Burridge et al., 2017). Here we investigate
150 the swimming and sinking kinematics of a large number of warm water thecosome species.
151 We additionally investigate the swimming kinematics of a co-occurring gymnosome species
152 and one atlantid heteropod species. The objective is to provide basic kinematic parameters
153 across a range of species and to investigate the biomechanics of how swimming and sinking
154 characteristics vary with shell shape and size. We then use imaging and metabarcoding
155 techniques to detail the vertical habitat and migratory patterns of the pteropod species to
156 explore how morphology and swimming biomechanics are related to distribution.

157 MATERIALS AND METHODS

158 Marine snails were collected offshore of Bermuda from a small boat using a Reeve net with
159 150 μm mesh size and a specialized 20 L cod end. Specimens were collected during
160 nighttime cruises in May and September of 2017 and in May 2019. Animals were kept in the
161 collected seawater for less than 1 hour during the transit back to shore where they were
162 quickly and gently isolated from the cod end. Individuals were visually checked for damage
163 and species identification under a stereomicroscope, then stored in 1 L jars containing filtered
164 seawater at an *in situ* temperature of 21 °C and salinity of 36 psu. Data collection began
165 immediately upon return from the cruise, and most experiments were completed within one
166 day of collection.
167

168 A photogrammetry system comprising two synchronized high-speed monochrome
169 Edgertronic cameras (Sanstreak Corp., San Jose, CA, USA) was used to measure the three-
170 dimensional swimming trajectories of the organisms at low magnification (Figure 1)Figure 2.
171 The cameras, lights, and aquarium were mounted on optical rails and a breadboard to rigidly
172 support the system. Two 50 mm Nikon lenses at f/32 aperture and fiber optic illuminators
173 with Fresnel lenses (focal length of 76.2 mm, part #32-593, Edmund Optics) were used to
174 provide the field of view. A variety of pteropod and heteropod species were placed in an
175 aquarium with $152.4 \times 152.4 \times 152.4 \text{ mm}^3$ inner dimensions and 6.35 mm wall thickness. This
176 low magnification system provides a field of view at least ten times larger than the largest
177 animal of interest, thus allowing measurement of 15 to 20 full stroke cycles of upward
178 swimming. The spatial resolution of the cameras was $98.4 \mu\text{m pixel}^{-1}$ and the temporal
179 resolution was 1.67 ms (corresponding to 600 frames per second). In a few videos, a frame
180 rate of 300 frames per second was used. The low magnification stereophotogrammetric
181 system was calibrated using the sparse bundle adjustment (SBA) method (Lourakis and
182 Argyros, 2009) as implemented in Argus 3D (Jackson et al., 2016), in which a calibration
183 wand was moved throughout the tank volume. The camera system was manually triggered
184 when an animal swam into the field of view common to both cameras.
185

186 Ninety five videos of swimming marine snails ranging in length from 2 to 14 s were
187 recorded. Videos were recorded of seven thecosome species (*Heliconoides inflatus*, *Limacina*

188 *bulimoides*, *Cuvierina atlantica*, *Hyalocylis striata*, *Diacria trispinosa*, *Styliola subula*,
189 *Creseis clava*), one gymnosome species *Pneumoderma atlantica*, and one unidentified
190 atlantiid heteropod. Thecosome species which were captured but which could not be recorded
191 swimming included *Diacria quadridentata*, *Diacavolinia longirostris*, *Limacina leuserii* and
192 *Creseis conica*. Recorded videos were divided into segments in which the animal was either
193 sinking or swimming. Sinking was defined as when the animal completely ceased wing
194 motion, resulting in downward motion. A video segment in which any wing motion was
195 observed was classified as swimming, regardless of the resulting swimming direction. Table
196 1 shows the number of swimming and sinking segments recorded for each species. Since
197 many animals were added to the aquarium at once, it was not always possible to determine
198 the individual identity of each animal. Table 1 thus gives the estimated minimum number of
199 individual animals of each species based on factors such as experiment date, animal length,
200 and multiple animals of the same species simultaneously in the camera view. In order to
201 measure swimming trajectories, one point in the center of the animal body was digitized in
202 DLTdv software (versions 5,7, and 8; Hedrick 2008). Three dimensional swimming and
203 sinking trajectories of the animal are thus reconstructed from the 2D camera coordinates. A
204 global (XYZ) coordinate system is defined for trajectory analysis in which the XY plane is
205 horizontal and the positive Z component is directed upward. Figure 2 shows CAD models
206 representing each of the recorded species and the measured body length L. In two species
207 (e.g. *H. inflatus*, *L. bulimoides*), L represents the shell length, which corresponds to the
208 longest dimension of the animal. In the other thecosome species, L includes the shell and the
209 proximal portions of the parapodia. The length L was measured by digitizing the two
210 corresponding points on the animal over at least 20 consecutive frames in DLTdv5 software
211 (Hedrick, 2008). The wingspan L_f (measured from wingtip to wingtip at the time point when
212 the wings were fully extended) was similarly measured for *D. trispinosa*, *S. subula*, *C. clava*,
213 *Pneumoderma atlantica*, and the heteropod species. Values of L_f for the other four species
214 were similarly obtained from videos from the high magnification photogrammetry system
215 described in Karakas et al. (2018).
216

217 Instantaneous swimming or sinking speed was calculated using the forward difference
218 technique across consecutive time points. Mean swimming speed U and sinking speed U_{sink}
219 for each trajectory were calculated by averaging the animal's speed over the entire extent of
220 that trajectory. Species-specific swimming and sinking speeds \bar{U} and \bar{U}_{sink} were calculated
221 by averaging the mean values of U and U_{sink} across all recorded trajectories for each species.
222 Normalized swimming speeds U' and sinking speeds U'_{sink} were calculated for each trajectory
223 by dividing the U or U_{sink} by the corresponding animal's length L. Species-specific
224 normalized swimming and sinking speeds \bar{U}' and \bar{U}'_{sink} were calculated by averaging the
225 mean values of U' and U'_{sink} across all recorded trajectories of each species in the same life
226 stage. The vertical component of sinking speeds \bar{U}_{sink} and \bar{U}'_{sink} also were calculated. A
227 mean body length \bar{L} was calculated for each species by averaging L across all recorded
228 trajectories. Mean beat frequency f for each trajectory was determined in ImageJ as the
229 average beat frequency over at least 10 full wingbeat cycles. Videos from the high
230 magnification photogrammetry system described in Karakas et al. (2018) also were used to
231 acquire additional data on wingspan, and wingbeat frequency. In addition, the net-to-gross
232 displacement ratio (NGDR), a measure of trajectory tortuosity, was determined for swimming
233 behaviors. NGDR is defined as the ratio of the distance between the starting and ending
234 points of the trajectory divided by the total distance traveled between the starting and ending
235 points. Because this metric is scale dependent, NGDR was calculated over a distance of five
236 body lengths for each species. Thus, NGDR was calculated for five body length along each
237 trajectory starting from the beginning of that trajectory. NGDR values could not be calculated

238 for all recorded trajectories because some trajectories were less than five body lengths.
239 Because many of the animals experienced some horizontal displacement as they sank, a glide
240 angle α was also measured for the sinking trajectories, where α is the acute angle between the
241 vertical axis and a line representing the total displacement. Finally, the body-based Reynolds
242 number $Re=UL/v$ of each swimming animal was calculated, where the kinematic viscosity v
243 of seawater at 21° C is taken as $1.02 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$. A sinking Reynolds number $Re_{sink}=U_{sink}L/v$
244 also was calculated.

245
246 One-way analysis of variance (ANOVA) was used to examine differences in the mean
247 swimming speed, mean sinking speed, mean normalized swimming speed, mean normalized
248 sinking speed, glide angle, and NGDR among the different thecosome shell groups (e.g.
249 coiled, elongated, and globular), with a significance testing value of 0.05. Further, the Tukey-
250 Kramer pair wise comparison test was used for multiple comparisons of these parameters
251 among these groups. All statistical calculations and evaluations of data were performed in
252 MATLAB (v9.6 R2019a, The MathWorks Inc., MA).

253
254 To provide ecological context for our measurements we analyzed the vertical distribution of
255 pteropods and heteropods using archived 1 m Multiple Opening/Closing Net and
256 Environmental Sensing System (Wiebe et al., 1985) samples. These samples were collected
257 with 150 μm nets that were deployed during the mid-day and mid-evening on cruises carried
258 out in July of 2016, 2017, 2018, and 2019 as well as October 2018, from 0-1000 m in the
259 vicinity of the Bermuda Atlantic Time Series (sampling details provided in Supplementary
260 File 1). This resulted in six night time profiles and eight daytime profiles of the water
261 column. Upon retrieval, the catch from each of the eight discrete nets was divided into splits
262 and half was preserved in buffered 4% formalin in seawater. A subset of this sample was
263 imaged and measured, and marine snails were taxonomically classified using a ZooSCAN
264 ver. 3 at 4,800 dpi and the ZooProcess pipeline (Gorsky et al., 2010; Vandromme et al.,
265 2012). All images representing pelagic snails were identified to species and only those that
266 clearly had a body in the shell (more likely to represent a live individual) were enumerated.
267 These were converted to abundances by applying the volume filtered and split counts to
268 generate daytime and night time vertical distributions of adult individuals. The distribution
269 was plotted as abundance per size bin (using major axis in mm) using the “violin plot” option
270 of the ggplot2 packing in R.

271
272 Although the ZooSCAN method provides numerical counts and size class distributions for
273 individuals, it is constrained by the fact that pteropods are relatively rare members of the
274 zooplankton community. Additionally, it can be difficult to assign a species to some images,
275 particularly for the smaller size classes. To augment our distributional analyses we
276 additionally employed metabarcoding techniques on one MOCNESS tow pair. This tool
277 provides species-specific identification and is more likely to sample rare individuals in the
278 tows. Ethanol-preserved samples from July 2017 were analyzed following a metabarcoding
279 protocol similar to Blanco-Bercial (2020) but interrogating the V1-V2 region of the 18S
280 rDNA gene, using the primers described in Fonseca et al. (2010). Briefly, half of the ethanol
281 sample was ground with a homogenizer, treated with proteinase K, and DNA was extracted
282 using a SDS-chloroform protocol (OMEGA EZNA DNA Mollusk kit). Three PCR reactions
283 were done for each sample with custom adapters and the resulting products were pooled by
284 sample and sent to University of Rochester for sequencing using the MiSeq Reagent Kit v2
285 (500-cycles; 2 x 300) V2 chemistry.

287 Sequence data was processed as in Blanco-Bercial (2020), with initial cleaning and alignment
288 with MOTHUR (Schloss et al., 2009). Relative counts for all samples were standardized to
289 20,000 reads sample⁻¹ and values below 1 discarded. Taxonomic units were built at 100%
290 similarity after accounting for PCR error using Deblur (Amir et al., 2017) and a SILVA-
291 derived custom 18S database was used to feed MOTHUR for the OTU assignment using the
292 nr database from SILVA (see Blanco-Bercial, 2020). Pteropod taxonomy was confirmed by
293 BLAST (March 22, 2020) and by phylogenetic placement using RAxML ver. 8 and mrBayes
294 (Ronquist et al., 2012; Stamatakis, 2014) as in (Maas et al., 2013), using an alignment created
295 with sequences available from GenBank for “Pteropoda 18S” and adding some other
296 Euopisthobranchia as outgroups. The sequence relative abundances were weighed against the
297 measured total live biovolume (calculated from paired image dataset; see above), then
298 calculated per square meter. This results in the proportional contribution of a particular
299 sequence per mm³ of living biovolume throughout the water column. The distribution of
300 OTUs present in more than four samples were analyzed and plotted to assess diel vertical
301 migratory patterns.

302 RESULTS

303 Figure 3 and Figure 4 show representative 3D upward swimming trajectories and Figure 5
304 shows representative 3D sinking trajectories of the marine snails (i.e. 7 thecosomatous
305 pteropods, 1 gymnosomatous pteropod, and 1 atlantiid heteropod) investigated in this study.
306 These trajectories, along with data on shell length, swimming speed, wingbeat frequency, and
307 *Re* presented in Table 2, will be used to describe the swimming kinematics of each species.
308

309 The thecosome *Heliconoides inflatus* (Figure 2a) has a flattened coiled shell with a thickened
310 rib on the outer margin, and a body length of 0.9-1.2 mm and flaps its parapodia at 6.6-11.1
311 Hz, resulting in swimming speeds of 12-51 mm s⁻¹ and *Re*=12-66 (Table 2). As seen in
312 Figure 3, small-scale trajectory oscillations are particularly evident in this species. These
313 oscillations are due to individual power and recovery strokes by the swimming appendages
314 which cause extreme pitching of the shell, resulting in a sawtooth swimming trajectory in
315 which the animal may even sink at the end of each half stroke (Adhikari et al., 2016; Murphy
316 et al., 2016; Karakas et al., 2018). At the large scale, *H. inflatus* exhibits a characteristic
317 upwards helical swimming trajectory and also often exhibits a circular swimming trajectory
318 in the horizontal plane, features that are often seen in other swimming zooplankton such as
319 copepods (Bianco et al., 2014). However, this species may also swim in a straight line, thus
320 showing some behavioral variety in its swimming. Figure 5 shows that *H. inflatus* has a fairly
321 straight downward sinking trajectory, sinking at speeds of 13-22 mm s⁻¹ and corresponding
322 sinking Reynolds number of *Re_{sink}*=12-29 (Table 2). While sinking, the wings of *H. inflatus*
323 remain extended upwards, thus keeping this species largely in an upright posture.
324

325 The thecosome *Limacina bulimoides* (Figure 2b) has a high spiraled shell and a body length
326 of 1.3-1.4 mm and flaps its parapodia at 8.8-12.9 Hz, resulting in swimming speeds of 18-40
327 mm s⁻¹ and *Re*=22-51 (Table 2). This species is similar in size and swimming speed to *H.*
328 *inflatus* and, as seen in Figure 3, exhibits similar small-scale trajectory oscillations. However,
329 at the large scale, *L. bulimoides* does not seem to exhibit the helical swimming patterns seen
330 in *H. inflatus*. Figure 5 shows that *H. inflatus* also has a straight sinking trajectory, sinking at
331 speeds of 16-19 mm s⁻¹ and corresponding sinking Reynolds number of *Re_{sink}*=22-25 (Table
332 2). While sinking, the wings of *L. bulimoides* also remain extended upwards, but the shell is
333 oriented horizontally.
334

335 The thecosome *Cuvierina atlantica* (Figure 2c) has an urn- or bottle-shaped shell and a body
336 length of 8.5-10.6 mm and flaps its parapodia at 4.7-6.2 Hz, resulting in swimming speeds of
337 13-46 mm s⁻¹ and $Re=124-434$ (Table 2). As such, *C. atlantica* is much larger than the two
338 previously described thecosomes but swims at a similar speed, thus operating in a Reynolds
339 number regime that is an order of magnitude higher. In addition, *C. atlantica* flaps its
340 parapodia at a slower rate than the two smaller thecosomes. Similar to the two previously
341 described thecosomes, *C. atlantica* exhibits small-scale oscillations in its trajectory owing to
342 individual power and recovery strokes. In addition, *Cuvierina atlantica* swims in a
343 characteristic upright posture with its seemingly heavy shell hanging downwards and
344 oscillating like a pendulum. At the large scale, *C. atlantica* also often exhibits a spiral
345 upwards swimming trajectory (not shown). This species may also swim sideways, but when
346 doing so, its elongated shell always hangs beneath it. *Cuvierina atlantica* rapidly sinks
347 downwards when it stops flapping, at speeds of 19-53 mm s⁻¹ and corresponding sinking
348 Reynolds number of $Re_{sink}=305-535$ (Table 2). While sinking, the shell of *C. atlantica* usually
349 reorients from a vertical to a horizontal orientation (with wings still extended), often resulting
350 in a significant glide angle. In some cases, the downward sinking trajectory of *C. atlantica*
351 forms a tight spiral (e.g. Figure 5).

352
353 The thecosome *Hyalocylis striata* (Figure 2d) has a very thin ribbed conical shell and a body
354 length of 6.8-6.9 mm and flaps its parapodia at 7.6-8.1 Hz, resulting in swimming speeds of
355 18-28 mm s⁻¹ and $Re=116-191$ (Table 2). With its relatively large shell and high swimming
356 speed, *H. striata* swims at a Reynolds number comparable to that of *C. atlantica*. The
357 thecosome *H. striata* gives the impression of being a much stronger swimmer than the
358 previously described thecosomes. For example, *H. striata*, though of comparable size, is
359 much more maneuverable and agile than *C. atlantica* and does not seem to have a
360 characteristic body position when swimming. Rather, it is capable of easily swimming in any
361 direction and was often observed actively swimming downwards. Further, the small-scale
362 oscillations seen in the previously described thecosomes are almost absent in *H. striata*,
363 leading to a much smoother swimming trajectory (Figure 3). The sinking speed of *H. striata*
364 is in the range of 24-26 mm s⁻¹ with a corresponding sinking Reynolds number of $Re_{sink}=158-$
365 183, and this species largely exhibits a straight downwards sinking trajectory. While sinking,
366 the shell of *H. striata* remains in a vertical position with no shell reorientation. The wings are
367 initially held outwards but later turn upwards, acting to streamline the organism.

368
369 The thecosome *Diacria trispinosa* (Figure 2e) has a globular but dorsoventrally flattened
370 shell with one posterior and two lateral spines. Further, *D. trispinosa* has a body length of
371 11.6-13.9 mm and flaps its parapodia at 4.9-6.8 Hz, resulting in swimming speeds of 58-114
372 mm s⁻¹ and $Re=680-1567$ (Table 2). With the largest body size and highest swimming speed
373 of the marine snails tested, *D. trispinosa* also swims at the highest Reynolds number. *Diacria*
374 *trispinosa* gives the impression of being a much stronger swimmer than the other thecosomes
375 and may easily swim in any direction. This species characteristically swims upwards in a
376 straight line at an average climbing angle of $47.5\pm8.7^\circ$ (mean \pm standard deviation; n=5) to
377 the horizontal plane (Figure 4). The sinking behavior of *D. trispinosa* is unique among the
378 thecosomes. With its wings bending upwards, this species reorients from a vertical to a
379 horizontal shell orientation when sinking, resulting in a trajectory that significantly deviates
380 from the vertical. Thus, *D. trispinosa* sinks with a glide angle of $21.7\pm10.1^\circ$ (mean \pm standard
381 deviation; n=3) from the vertical. This behavior seems to be enabled by the flattened shell of
382 *D. trispinosa*, which acts as a hydrofoil to generate lift during the descent. The sinking speed
383 of *D. trispinosa* is thus in the range of 60-105 mm s⁻¹, with a corresponding sinking Reynolds

384 number of Re_{sink} =830-1150 (Table 2), but would likely be higher in the absence of this
385 gliding behavior.

386
387 The thecosome *Styliola subula* (Figure 2f) has a conical shell, with a thickened longitudinal
388 spine running along the dorsal length. Further, *S. subula* has a body length of 3.6-8.7 mm and
389 flaps its parapodia at 6.1-10.5 Hz, resulting in swimming speeds of 17-63 mm s⁻¹ and Re =60-
390 505 (Table 2). The sinking speed of *S. subula* is 22-52 mm s⁻¹ with a corresponding sinking
391 Reynolds number of Re_{sink} =348-417 (Table 2). The sinking behavior of *S. subula* was similar
392 to that of *H. striata*, with a vertical orientation and the wings extended upwards. The large
393 range of sizes and other parameters for this species reflects the fact that videos of a juvenile
394 and an adult were captured. In general, the morphology and swimming style of *S. subula* are
395 very similar to that of *H. striata* with the exception that the shell of *S. subula* seems bulkier
396 and possibly heavier than that of *H. striata*. This difference is reflected in the larger sinking
397 speed of *S. subula* and in the fact that *S. subula* seems less agile and maneuverable than *H.*
398 *striata*.

399
400 The thecosome *Creseis clava* (Figure 2g) has an extremely elongated, needle-like shell and
401 an extremely short wingspan relative to its body length. Further, *C. clava* has a body length
402 of 6.8-7.2 mm and flaps its parapodia at 10.5-13.8 Hz, resulting in swimming speeds of 33-40
403 mm s⁻¹ and Re =238-278 (Table 2). It is worth noting that *C. clava* has the highest wingbeat
404 frequency of all the studied thecosomes. With its elongated shell, *C. clava* has an upright
405 swimming posture similar to that of *C. atlantica* and is not maneuverable. Further, *C. clava*
406 exhibits high frequency small-scale oscillations in its trajectory similar to those of *C.*
407 *atlantica* (Figure 4). No videos of *C. clava* sinking behavior were acquired.

408
409 The gymnosome *Pneumoderma atlantica* (Figure 2h) has an elongated soft body without the
410 protection of a shell. *Pneumoderma atlantica* has a body length of 11.5-13.1 mm and flaps its
411 wings at 3.5-4.5 Hz, resulting in swimming speed of 11-34 mm s⁻¹ and Re =134-438 (Table
412 2). Similar to many of the thecosome species, this gymnosome exhibited small-scale
413 oscillations in its trajectory as a result of individual wing strokes. This agile species was often
414 observed swimming upwards in a spiral but was also observed to hover in an upright posture
415 at the same elevation for long periods of time and to actively swim downwards. No videos of
416 sinking behavior were acquired for this species, but, due to its lack of shell, its sinking speed
417 would presumably be much less than that of the shelled pteropods.

418
419 The heteropod species (Figure 2i) has a single swimming fin above the body and a downward
420 hanging shell which functions as a second appendage that flaps synchronously with the fin to
421 propel the animal (Karakas et al., 2018). The heteropod has a body length of 2.3-3.3 mm and
422 flaps its parapodia at 9.3-9.6 Hz, resulting in swimming speeds of 22-35 mm s⁻¹ and Re =52-
423 117 (Table 2). Small-scale side-to-side oscillations are observed in this animal's trajectory
424 owing to individual strokes of its fin and shell. Though this heteropod species is negatively
425 buoyant, no sinking behavior was observed in the current study.

426
427 Figure 6a and Figure 6b show the mean and standard deviation of the swimming speeds U
428 and U' , respectively, as a function of body length L for each recorded trajectory for all the
429 marine snail species. Figure 6c and Figure 6d show swimming speeds \bar{U} and \bar{U}' for each
430 species as a function of \bar{L} . Figure 6a shows that L is tightly grouped into three classes
431 corresponding to thecosome shell morphology. Coiled shell thecosomes (*H. inflatus* and *L.*
432 *bulimoides*) have shell sizes ranging from 0.9 to 1.4 mm. Elongated shell thecosomes (*H.*
433 *striata*, *C. atlantica*, *C. clava*, and *S. subula*) have shell sizes ranging from 6.8 to 10.6 mm

(with the exception of a juvenile *S. subula* excluded from the calculation of \bar{L}). The single globular shell species (*D. trispinosa*) has shell sizes ranging from 11.6 to 14.0 mm. The mean of each of these groups also is shown in Figure 6c and Figure 6d. Swimming speeds of individual species within these three classes do not differ much from each other. For example, no significant difference was found among the four species comprising the elongated shell group ($P > 0.05$, one-way ANOVA). However, swimming speed across the groups differs significantly as shown in Figure S1A ($F=75.62$, $P < 0.001$). The coiled shell, elongated shell, and globular shell pteropods have mean swimming speeds of 27.2, 33.5, and 83.7 mm s⁻¹, respectively, thus showing an increase with body length. A follow up Tukey-Kramer pairwise comparison test shows that all three shell groups are significantly different from the others (Table S1). However, the normalized swimming speeds of the coiled shell pteropods are greatest, with $\bar{U}'=22.7$ BL s⁻¹ and a maximum U' of 45 BL s⁻¹ for one individual of *H. inflatus*. In contrast, the normalized swimming speeds of the elongated shell pteropods are the least (4.3 BL s⁻¹), and the normalized swimming speeds of the globular shell pteropods are in between (6.6 BL s⁻¹). The coiled shell group has a significantly larger normalized mean swimming speed as confirmed by the one-way ANOVA ($F=123.25$, $P < 0.001$, Figure S1B), and the paired Tukey-Kramer test shows a significant difference between the coiled and elongated shell groups and between the coiled and globular shell groups ($P < 0.001$), but there is no statistically significant difference between the elongated and globular shell groups ($P=0.495$, Table S1). The heteropod has a coiled shell which is similar in size that of the coiled shell thecosomes and a mean swimming speed of 28.7 mm s⁻¹. However, owing to its completely different swimming style, the heteropod does not group with the coiled shell thecosomes in Figure 6. In addition, the gymnosome, though shell-less and of similar size to *D. trispinosa*, swims much slower (18.1 mm s⁻¹). As expected, swimming speed generally increases with increasing beat frequency for all species, as shown in Figure S2 (though this trend is not seen for *D. trispinosa*).

Figure 7a and Figure 7b show the mean and standard deviation of the sinking speeds U_{sink} and U' , respectively, as a function of body length L for each recorded trajectory for all the marine snail species. Figure 7c and Figure 7d show sinking speeds \bar{U} and \bar{U}' for each species as a function of \bar{L} . In each panel, the hollow symbols represent the sinking speed and the filled symbols represent the vertical component of sinking speed. As seen in Figure 7a, sinking speeds generally fall into three classes corresponding to coiled, elongated, and globular shell morphologies. However, in contrast to swimming speed, sinking speed clearly increases with body size. Mean sinking speed across the groups differs significantly as shown in Figure S1C ($F=129.56$, $P < 0.001$) as the globular shell pteropod has a higher sinking speed (86.2 mm s⁻¹) than the elongated (40.9 mm s⁻¹) and coiled (17.1 mm s⁻¹) shell groups. Similar to the mean swimming speed, the mean sinking speed between each pair is also significantly different from each other ($P < 0.001$ for each pair, Table S1). For both the coiled and elongated shell pteropods, minimal differences are seen between the sinking speed and the vertical component of the sinking speed (vertical components are 96% and 87% of the sinking speed, respectively). These minor differences are possibly due to drag and lift forces on the shells and outstretched wings as the animals sink. These unbalanced forces may cause, for example, the helical sinking trajectories observed for *C. atlantica*. In contrast, the globular species *D. trispinosa* has a much larger difference between its sinking speed and the vertical component of its sinking speed (83%) due to the gliding behavior described earlier. A similar pattern for normalized swimming speed among the three groups is also seen for the normalized sinking speed. The coiled shell species have the largest normalized sinking speed (13.7 BL s⁻¹) whereas the elongated shell group has the smallest (4.1 BL s⁻¹), and the globular shell species

483 falls between (6.0 BL s⁻¹). Similar to the normalized mean swimming speed, there are also
484 significant difference in the normalized mean sinking speed between different groups
485 (F=105.79, P < 0.001, Figure S1D). Again, the normalized mean sinking speeds of the coiled
486 shell and elongated shell pair and the coiled shell and globular shell pair are significantly
487 different (P<0.001 for both pairs), whereas that of the elongated shell and globular shell pair
488 are not significantly different (P=0.393, Table S1).

489
490 Figure 8a shows the glide angle α measured from each recording as a function of L. Figure 8b
491 shows the mean glide angle for each species and each shell morphology as a function of \bar{L} .
492 The coiled shell species *H. inflatus* and *L. bulimoides* have α <10°, reflecting the fact that they
493 sink almost vertically. As a group, the coiled shell pteropods have a mean glide angle of 4.1°
494 (Figure S3A). Values of α for the elongated species are slightly greater, with most falling in
495 the range of 1°< α <15° and a few outliers with values up to almost 30° (Figure S3A). The
496 mean glide angle for the elongated shell pteropods is 7.7°. The globular shell species *D.*
497 *trispinosa* sinks at glide angles up to 31.6° and has a mean glide angle value of 21.7° (Figure
498 S3A). This large glide angle is due to lift generated by the unique shell shape of *D. trispinosa*
499 and by its partially outstretched wings. The one-way ANOVA test shows that a significant
500 difference exists in the glide angles of the coiled, elongated, and globular shell groups
501 (F=14.57, P < 0.001, Figure S3A). Further, the Tukey-Kramer pairwise tests showed
502 significant differences between each pair (Table S1).

503
504 Figure 9 shows mean values of NGDR over a distance of five body lengths for each species
505 as a function of \bar{L} . Values of NGDR for all thecosome species except for *D. trispinosa* are
506 fairly similar and fall within the range of 0.6 to 0.7. The one-way ANOVA test showed a
507 significant difference among the three shell groups for the mean NGDR values (F=6.23, P =
508 0.003, Figure S3B). A follow up pairwise comparison showed there is no significant
509 difference between the coiled shell and elongated shell groups (P=0.636, Table S1) but that
510 there is a significant difference between the globular shell group and the other two groups.
511 These relatively low values for the coiled and elongated shell species represent the tortuous
512 ‘sawtooth’ trajectories induced by individual power and recovery strokes. In contrast, *D.*
513 *trispinosa* has a much higher NGDR of 0.89. This species is a much stronger swimmer,
514 operating at an order of magnitude higher Reynolds number (Table 2), and its dorsoventrally
515 flattened shell may help damp out the small-scale pitching oscillations observed in smaller
516 pteropods. The heteropod had an elevated NGDR value of 0.81, whereas *P. atlantica* had a
517 NGDR value (0.65) that was more similar to the thecosomes. Because NGDR was calculated
518 over only five body lengths, these values represent the small-scale oscillations in their
519 swimming trajectories and not large-scale swimming patterns. Values of NGDR at larger
520 spatial scales would be useful but could not be calculated here because recorded swimming
521 trajectories varied in length. Using all recorded trajectories regardless of length would have
522 introduced a bias since NGDR is a scale-dependent parameter (Seuront et al., 2004). Bergan
523 et al. (2017) calculated tortuosity, which is the inverse of NGDR, for the coiled shell species
524 *Limacina retroversa* which is morphologically similar to *L. bulimoides* and *H. inflatus*. These
525 authors found corresponding mean NGDR values of 0.49 to 0.79. While these values are
526 similar to those of the coiled shell pteropods, it is difficult to make a direct comparison
527 because these authors do not report the trajectory lengths over which NGDR was calculated.

528
529 Only four of the species we filmed were sufficiently abundant in the MOCNESS samples to
530 allow for statistically meaningful assessment of their size-based distributions (Figure 10). Of
531 the remainder of the groups they could either not be identified to species via the images
532 (gymnosomes and atlantid heteropods), or were sampled too infrequently to reliably

533 determine size-based day and night distributions. For some species there was a clear
534 difference in depth habitat based on size with longer individuals found at deeper depths,
535 including *H. inflatus*, *C. clava*, and *S. subula*.

536
537 Metabarcoding analyses confirmed the species identification made by the ZooSCAN and
538 additionally allowed for better discrimination between taxa that are morphologically similar,
539 providing a better context for the vertical distribution of the various species. Despite the fact
540 that metabarcoding analyses were conducted on only one of the day and night pairs of
541 MOCNESS tows that were analyzed for images, the patterns in distribution were similar
542 overall and were consistent with findings in the previous literature (Table 3; Supplementary
543 Figure S4). Discrepancies between molecular methods and previous findings appear to be
544 more common in the larger species that are rare and therefore more poorly sampled. The use
545 of paired image and barcoding allowed for greater understanding of the dataset, suggesting,
546 for example, two gymnosome species with non-overlapping vertical distributions. The first,
547 identified as *Pneumoderma atlantica*, was likely the species captured and used for our video
548 analysis. Adults of this group appear to migrate from a daytime depth of 50-200 m to a night
549 time habitat of 0-200 m. The other, an unidentified gymnosome, has a midwater habitat from
550 300-700 m. An uncertain problem is that metabarcoding did not detect *Limacina bulimoides*,
551 despite its documented presence in the samples. The most plausible explanation would be a
552 highly divergent sequence for this species, which might have affected its amplification
553 efficiency during the PCR protocols due to mutations in the primer regions.

554
555 Of the species filmed in this study, there were a range of migratory patterns. The species with
556 the widest vertical distribution (found abundantly from 50-400 m, but as deep as 550-700 m)
557 was *D. trispinosa*. Similarly, *C. atlantica* (barcoded as *C. columnella*) was found from 0-400
558 m, although it was found most abundantly at 300-400 m. These two larger species were rarely
559 captured in images, and both were under sampled at night (particularly in the metabarcoding
560 analysis) making definitive characterization of diel migration patterns difficult. Our data
561 suggests that all species used in this study are migratory, traveling 50 to 300 m per day. The
562 extent of migration was not correlated with average species length, the swimming speed, or
563 sinking speed.

564 DISCUSSION

565 Planktonic marine snails in warm waters have diverse shell and body geometries and sizes
566 which affect their swimming abilities and sinking characteristics. Indeed, within a shell group
567 (i.e. coiled, elongated, or globular), the various thecosome species studied here had similar
568 sinking and swimming characteristics. Coiled shell species are the smallest thecosomes and
569 swim and sink the slowest but have the highest normalized swimming and sinking speeds.
570 These species thus also operate in a highly viscous regime at Reynolds numbers less than
571 100. These species thus experience both high frictional drag as well as pressure drag. Indeed,
572 Vogel (2013) showed that the flow begins to separate around a circular cylinder (which is a
573 good model of the shell shape of *H. inflatus*) at Reynolds numbers as low as 40. In addition,
574 these species have a high pitching amplitude when swimming, a pattern which is facilitated
575 by the coiled shell shape, which has low moment of inertia and low rotational drag (Murphy
576 et al., 2016). This combination of translation and rotation used by coiled shell species may
577 move the stagnation point on the shell to a different position (similar to the Magnus effect),
578 thus increasing the lift to drag ratio. Coiled shell species that are sinking will presumably
579 have a drag coefficient different from when they are swimming. At the sinking Reynolds
580 numbers observed here, the wake behind an object in oncoming flow is symmetric, lacking

581 the Karman vortex street in an object's wake which would be present at higher Re . This
582 presumably symmetric wake thus explains why the sinking trajectories of the coiled shell
583 species are straight. It should be noted that the sinking pteropods recorded here sank with
584 extended wings. Pteropods escaping with retracted wings would sink faster and at a higher Re
585 (Gilmer and Harbison, 1986). For example, Bergan et al (2017) found that the coiled shell
586 species *Limacina retroversa* in the size range of 0.56-2.37 mm sank at speeds of 16-19 mm/s
587 with wings withdrawn and speeds of 13-16 mm/s with wings extended. These sinking values
588 are similar those of the coiled shell thecosome species studied here (Table 2).

589 The elongated shell pteropods have larger shells and swim at speeds slightly faster than the
590 coiled shell species, thus resulting in normalized swimming speeds an order of magnitude
591 lower than the coiled shell species. The elongated shell species thus operate at a Reynolds
592 number an order of magnitude higher (100-600) than that of the coiled shell species. Pressure
593 drag is thus more important for the elongated shell pteropods at this Re as compared to the
594 coiled shell species. Similar to the coiled shell species, the elongated shell species also
595 exhibit forward-backwards body pitching with every wing stroke, but the pitching amplitude
596 seems to be less for the elongated shell species. For example, Karakas et al. (2020) showed
597 that *C. atlantica* has a pitching angle of 25°, which is much less than pitching amplitudes
598 previously measured for the coiled shell species *L. helicina* (up to 60°) and *L. helicina*
599 *antarctica* (up to 110°; Murphy et al 2016, Adhikari et al 2016). The lower pitching
600 amplitude of the elongated shell species makes sense because these shells have greater
601 rotational drag and rotational inertia as compared to coiled shells. The elongated shell
602 thecosomes are larger and weigh more and are generally less maneuverable than the coiled
603 shell thecosomes, likely because rotational and translational acceleration theoretically can be
604 scaled as $mass^{-2/3}$ and $mass^{-1/3}$ respectively (Vogel, 1988; Dudley, 2002). Inside the elongated
605 shell group, there are also large differences in maneuverability. For example, though *H.*
606 *striata* and *S. subula* have similarly shaped shells, the shell of *H. striata* seems more delicate,
607 corresponding with its greater swimming over *S. subula*. Similarly, *C. atlantica*, with its large
608 shell, is the least maneuverable of the elongated shell thecosomes. The higher swimming
609 speeds and maneuverability of some species could be one reason why they are less sampled
610 in net tows.

612 The sinking behavior (e.g. glide angle, trajectory, stability) of the various species depends on
613 factors including size, shell shape, and the relative locations of the center of mass (center of
614 gravity) and the geometric center (center of buoyancy). Indeed, in a study of the sinking
615 behavior of simple cylindrical shapes, Chu et al. (2005) found that the relative locations of
616 the center of mass and center of geometry largely controlled sinking trajectory and
617 orientation and that a larger offset between these two points resulted in less lateral travel
618 while sinking. However, in general, the descent angle cannot be predicted from this offset
619 because instantaneous hydrodynamic forces (e.g. lift, drag, vortices created by flow past the
620 object) could impact the trajectory (Chu et al., 2005), and the relative importance of these
621 fluid forces increase with the Reynolds number. In considering pteropod shells, non-uniform
622 mass distributions (e.g. differences in shell thickness) and complex geometries (e.g. changing
623 wing positions) make knowledge of the locations of the center of mass and the geometric
624 center extremely difficult. Nonetheless, we suspect that the coiled species, which sink at a
625 low Re , always have their center of mass located below their geometric center (which
626 includes the wings), and this may explain their stability and steep angle of descent while
627 sinking. In contrast, elongated shell species may either rotate towards a horizontal orientation
628 with the wings outstretched (e.g. *C. atlantica*) or may sink in a vertical position with the
629 wings held upwards in a streamlined position (e.g. *H. striata* and *S. subula*). These different
630

631 orientations will differentially affect the coefficient of drag. The species *C. atlantica* is larger
632 than the other elongated species and thus may energetically benefit from a larger coefficient
633 of drag resulting from its more horizontal sinking position, which slows its sinking (Field et
634 al., 1997; Amin et al., 2019). For those elongated species that tend to rotate to a horizontal
635 position while sinking, we suspect that their center of mass is located close to or above their
636 geometric center. In addition, an order of magnitude increase in sinking *Re* from the coiled
637 shell species to the elongated shell species also plays an important role in shell reorientation
638 as the boundary layer separation starts to occur in this *Re* (10^2) regime and the resulting drag
639 and lift forces introduce a non-negligible deflecting moment which alters the animal's
640 trajectory, thus corresponding to the higher glide angles found for these species as a group.
641 Further, Chamberlain and Weaver (1978) theoretically showed that sinking behavior is
642 largely controlled by shell geometry. This finding also is observed in our study as the sinking
643 behavior of these pteropod species naturally grouped by shell geometry.
644

645 The globular shell shape species *D. trispinosa* has the largest shell size among the thecosome
646 groups studied here. It also appears to be a strong swimmer as well. This globular shell
647 species operates at a Reynolds number an order of magnitude higher (700-1600) than that of
648 the elongated shell species and two orders of magnitude greater than coiled ones. These *Re*
649 numbers represent the upper limit of the intermediate *Re* regime, where both inertia and
650 viscosity are important, and the lower end of the *Re* regime where inertia effects dominate.
651 The pressure drag is thus dominant for the globular shell pteropods at this *Re* as compared to
652 the coiled shell species and elongated shell species. Distinct from the coiled shell and
653 elongated shell species, this globular shell species does not exhibit forward-backwards body
654 pitching with each half wing stroke. Instead, the dorso-ventrally flattened shell of *D.*
655 *trispinosa* appears to be adapted for lift generation as it has a large planform and the cross-
656 sectional profile of a cambered airfoil. Indeed, unlike most of the coiled and elongated shell
657 species, which swim almost vertically upwards with their shell hanging downwards like a
658 pendulum, *D. trispinosa* species swims upward with an average climbing angle of $47.5 \pm 8.7^\circ$.
659 This characteristic shell orientation thus likely allows the shell to generate lift which would
660 aid its ascent. With its high lift generation capability *D. trispinosa* has a high maneuverability
661 compared to other thecosome groups. When sinking, this globular shell species glides with its
662 wings partially folded. Considering the relatively high Reynolds number regime at which *D.*
663 *trispinosa* sinks, it likely benefits from the large flat surface area that the shell provides, thus
664 slowing down the sinking rate in the water column. The lift force on the flat shell and wings
665 of the globular species may also cause greater horizontal deviation in their downward
666 trajectories, a pattern which matches the higher glide angles observed for the *D. trispinosa*,
667 since the shell shape is more aerodynamically streamlined and is always observed to orient in
668 a horizontal position which maximizes the projected area in the sinking direction. Finally, it
669 should be noted that there is only one globular species analyzed here which may not be fully
670 representative of the globular shell shaped group which are often less dorsoventrally
671 compressed. More species need to be studied to reach more representative results.
672

673 As seen in Table 2, *Pneumoderma atlantica* studied here is larger than its co-occurring
674 thecosome species except for *D. trispinosa*, which is the same size. Further, the swimming
675 speed of *P. atlantica* is less than the swimming speeds of these thecosomes. These low
676 swimming speeds reflect the fact that *P. atlantica*, without external disturbance in the lab
677 environment, spent most of its time hovering or slowly translating in a small area.

678 *Pneumoderma atlantica* can hover for an extended amount of time partly because the lack of
679 heavy calcareous shells, which make these animal less negatively buoyant. Though fast-
680 swimming escape or hunting behaviors were not observed here, it has been reported that
681 some gymnosome species can swim as fast as 1000 mm s^{-1} for short time intervals (Hamner
682 et al., 1975; Lalli and Gilmer, 1989), resulting in high Reynolds numbers comparable to that
683 of fast-swimming fishes and some flying birds ($Re=10,000$). Thus, their streamlined body
684 shape, which is more efficient because of the low drag coefficient this body geometry
685 provides in this Re regime, is advantageous for gymnosomes. Further, all gymnosomes
686 studied to date have wings with short wingspans and low aspect ratios as compared to the
687 thecosome pteropods. These low aspect ratio wings are useful for generating high levels of
688 thrust and acceleration, which are useful for the quick maneuvers necessary for these
689 predators to capture thecosomes. Interestingly, though of comparable body length with the
690 temperate gymnosome species *C. limacina* and the polar species *C. antarctica* (Satterlie et
691 al., 1985; Borrell et al., 2005; Szymik and Satterlie, 2011), the warm water species *P.*
692 *atlantica* studied here has larger wingbeat frequency than its cold water counterparts. Other
693 researchers have found that flies reared at high temperatures have lower body mass and
694 smaller wings and exhibit higher beat frequencies than those reared at low temperatures, a
695 trend related to the decreased wing loading and resonance and increased wing moment of
696 inertia and induced power requirements to move larger wings (Barnes and Laurie-Ahlberg,
697 1986; Pétavy et al., 1997; Lehmann, 1999; Dillon and Dudley, 2004; Frazier et al., 2008). It
698 is not known how the wing surface area compares among polar and tropical gymnosome
699 species. In addition, water viscosity likely plays an important role in modulating flapping
700 frequency since the kinematic viscosity of seawater changes greatly between polar and
701 tropical temperatures.

702 The atlantiid heteropods studied here are larger than the coiled shell thecosomes but smaller
703 than the elongated and globular shell thecosomes. Further, though they have a distinct body
704 geometry and swimming style (Karakas et al., 2018), these heteropods have comparable
705 swimming speeds to all but the fastest swimming thecosomes. It is known that atlantiid
706 heteropods are visual predators and have large, complex eyes with a narrow retina and
707 narrow field of view which they may actively rotate up and down through a 90° arc to scan
708 the surrounding environment for prey (Seapy, 1980; Land, 1982, 1999). However, there is
709 disagreement in the literature regarding their prey, with Thiriot-Quievreux (1973) and Lalli
710 and Gilmer (1989) suggesting that thecosomes are primary prey and Wall-Palmer (2016)
711 suggesting otherwise using fossil evidence. Based on the swimming speeds and body sizes
712 measured here, it seems possible that this small atlantiid heteropod would be capable of
713 preying on small thecosomes in the coiled shell group such as *H. inflatus* and *L. bulimoides*.
714 Larger thecosomes from the elongated and globular shell groups may be susceptible as prey
715 to correspondingly larger atlantiid heteropods. Indeed, one such large unidentified atlantiid
716 heteropod species (likely *Oxygyrus inflatus*) was observed preying on a *Clio pyramidata*
717 while both were lying on the floor of an aquarium (Supplementary Movie S1).

718
719
720 The swimming and sinking characteristics described here will significantly bear on the diel
721 vertical migration and vertical distributions of these marine snails. Figure 11 shows
722 representative times needed to swim up or sink down 100 m in the water column. Upward
723 swimming times and downward sinking times are based on the vertical component of the

724 average swimming speed and the vertical component of the average sinking speed,
725 respectively. Both plots assume continuous sinking or swimming (i.e. no breaks in that
726 behavior). The thecosome groups roughly follow a negative correlation of swimming time
727 versus average body length, with the large globular species swimming that distance in about
728 40 minutes and small coiled species taking about 2 hours. In contrast, the sinking time has a
729 strong negative relation with the average body length, with the large globular species sinking
730 100 m over about 20 minutes and the small coiled shell species taking 1.7 hours. Although
731 this figure does not necessarily represent the real distance across which these marine snails
732 migrate or the time required for that migration, it gives insight into their vertical distribution
733 in the water column and into the energy required for diel vertical migration. Larger species
734 sink down and swim up much faster and thus can be active at much greater depths whereas
735 the slower and smaller species are limited to shallower depths.

736
737 Besides its relevance to maintenance of vertical habitat, predator/prey interactions and
738 migratory behavior, the rate of thecosome pteropod sinking is biogeochemically important as
739 shells from dead thecosome sink to the deep ocean and dissolve in high pressure, contributing
740 an estimated 12-13% of the carbonate flux globally (Berner and Honjo, 1981; Tsurumi et al.,
741 2005) and greater than 50% of the carbonate flux in the Southern Ocean (Hunt et al., 2008).
742 The sinking rates measured here, although likely slower than that of dead or empty shells,
743 give insight into how shell size may affect carbon flux rate. These findings may be important
744 as we seek to understand changes to flux due to anthropogenic forcings. Using time series
745 observations, shifts in planktonic community composition, including pole-ward movement of
746 centers of abundance have been demonstrated (Southward et al., 1995; Oviatt, 2004; Mackas
747 et al., 2007) including in pteropods (Beaugrand et al., 2012) . Due to basic thermodynamic
748 principles, warmer conditions tend to be more favorable for smaller species and smaller
749 individuals within a species (Berger, 1978; Berner and Honjo, 1981; Almogi-Labin et al.,
750 1988; Fabry, 1990; Fabry and Deuser, 1991; Daufresne et al., 2009). Not only do smaller
751 individuals carry less carbonate to depth, but our results demonstrate that they also sink
752 slower, providing a greater window of time for dissolution effects to reduce the vertical
753 extent of their carbonate export. Thus, changes in the species or size class composition could
754 reduce both the amount and depth of calcium carbonate export. Ocean acidification, which
755 degrades fragile aragonite shells and reduces calcification, may additionally alter these
756 sinking rates, as well as pteropod swimming and sinking behavior, in the future (Sabine et al.,
757 2004; Manno et al., 2010; Orr, 2011; Chang and Yen, 2012; Comeau et al., 2012; Adhikari et
758 al., 2016; Murphy et al., 2016; Bergan et al., 2017; Bednaršek et al., 2019).
759

760 Body length has previously been analyzed as a predictor for vertical migration extent based
761 on the idea that migration is a balance between the energetics of swimming and the ability of
762 an individual to hide from visual predators. These constraints both scale with size, but in
763 opposite directions. Consequently, it has been demonstrated that there is a U-shaped curve to
764 the extent of vertical migration for copepods in the California current (Ohman and
765 Romagnan, 2016), with both longer and shorter individuals having small migrations, and
766 intermediate sized organisms migrating the most. Longer individuals in the study by Ohman
767 and Romagnan (2016) had a deeper overall habitat, while shorter individuals were present
768 higher in the water column. Our dataset has substantially less sampling, however, the
769 preferred depth habitat patterns are consistent with these previous findings. Longer species

770 >7mm tended to have deeper distributions (*C. atlantica*, *D. trispinosa*, *Pneumoderma*
771 *atlantica*), while smaller species < 3 mm (*H. inflatus*, *L. bulimoides*) are found abundantly in
772 the upper water column (Supplementary Figure S4A). However, the vertical extent of
773 migration patterns of the pteropods analyzed here do not have the same U-shaped curve, with
774 some of the smaller species having long migrations (*H. inflatus*; 200 m) and one of the larger
775 species having the shortest migration (*C. clava*; 50 m). This suggests that for pteropods there
776 are factors other than length driving migratory behavior. It is very likely that for the
777 negatively buoyant pteropods shell morphology and mass play a bigger role than for the
778 neutrally buoyant copepods. For example, *Creseis clava*, although quite long, is substantially
779 less heavy than similarly sized individuals of other species owing to its needle like
780 morphology, while *H. inflatus* is known to have a thinner and lighter shell than similarly
781 sized *Creseis* species (Lalli and Gilmer, 1989).

782

783 Size does, however, play a strong role in the extent of migration within a species in our
784 dataset, with longer individuals of *S. subula*, *C. clava*, *C. pyramidata*, and *H. inflatus* having
785 substantially deeper distributions than smaller individuals of the same species. Ontogenetic
786 partitioning of the water column has been observed previously in cephalopods, fish and
787 crustaceans (i.e. Hunt and Seibel, 2000; Titelman and Fiksen, 2004; Maas et al., 2014), but
788 has not previously been quantified in pteropods. The interplay between the energetics of
789 vertical migration, the threat of visual predation and the size of an individual clearly strongly
790 structure the habitat of pelagic species. Understanding these evolutionary constraints will
791 only be possible with further analyses that interrogate migratory patterns by considering all of
792 these factors with the addition of additional environmental parameters including prey
793 availability, temperature and midwater oxygen.

794 CONCLUSIONS

795 In this paper, we studied the swimming and sinking kinematics, biomechanics, and depth
796 distributions of a variety of warm water marine snail species, with a particular focus on how
797 the shell shape, body geometry, and body size affect their locomotion from a fluid mechanics
798 perspective. Among the thecosomes, the tiny coiled species, intermediate elongated species,
799 and large globular shell species have distinct locomotion characteristics which correspond
800 strongly with shell morphology and size. Swimming speeds, sinking speeds, and glide angles
801 are positively correlated with shell size and thus also strongly depend on shell morphology,
802 whereas small-scale oscillations in swimming trajectories are lower in the largest, globular
803 species. These changes in locomotion characteristics tightly correspond to changes in the Re
804 and the governing fluid dynamics, with Re increasing by an order of magnitude from the
805 coiled shell species to the elongated shell species and again by another order of magnitude
806 from the elongated shell species to the globular shell species. These differences in Re
807 strongly affect the flow fields around the animal's wings and body and may point towards
808 more recent lineages evolving shell shapes and swimming styles to produce better swimming
809 performance by maximizing lift and minimizing drag. Speed of swimming does not,
810 however, equate to the vertical extent of migration, emphasizing that other factors, likely
811 including light, temperature, and predator and prey fields, have a strong influence on this
812 ecologically important trait. Size does play a role in structuring the vertical habitat, with
813 larger individuals tending to live deeper in the water column, while within a species, the
814 extent of migration is greater in larger individuals.

815

816

817 **Author Contributions**

818 F.K., D.M., and A.M. conceived and designed the experiment. F.K. and D.M. carried out
819 experimental work and data analysis. A.M. procured and identified the animals. F.K., D.M.,
820 and A.M. wrote the manuscript. J.W. helped digitize the videos. A.M and L.B-B. analyzed
821 depth distributions. All authors approved the final manuscript.

822

823 **Funding**

824 Funding was provided by a National Science Foundation CAREER grant to D.W.M. (CBET
825 #1846925), a grant from the National Academies of Science Keck Futures Initiative (NAKFI)
826 to A.E.M and D.W.M, a University of South Florida (USF) New Researcher Grant to
827 D.W.M, a USF Nexus Grant to D.W.M., and a Bermuda Institute of Ocean Sciences Grant in
828 Aid to D.W.M. Distributional studies were funded through Simons Foundation
829 International's BIOSSCOPE project (A.E.M and L.B-B.).

830

831 **Acknowledgments**

832 The authors gratefully acknowledge Kuvvat Garayev, Joseph Bello, Josh Arandia for
833 assistance in collecting the animals and in conducting experiments, Paola Rossi Bruttini,
834 Tristen Mee and Muhammad Shaikh for assistance with digitization, and Daniel D'Oliveira
835 for assistance with creating 3D models. We appreciate the expertise and efforts of Hannah
836 Gossner who assisted in the creation of the distributional plots.

837

838 **Conflict of Interest**

839 The authors declare that the research was conducted in the absence of any commercial or
840 financial relationships that could be construed as a potential conflict of interest.

841

842 **Supplementary Material**

843 Supplementary File 1: MOCNESS net sampling methods.

844 Supplementary Table S1: Tukey-Kramer pairwise comparison test between the three
845 pteropod shell shape groups. C - coiled shell, E – elongated shell, G – globular shell groups.
846 Bold values show $P < 0.05$.

847

848 Supplementary Figure S1: Box plots of mean swimming speed, normalized mean swimming
849 speed, sinking speed, and normalized mean sinking speed for three different shell shape
850 groups. A) Mean swimming speed. B) Normalized mean swimming speed. C) Mean sinking
851 speed. D) Normalized mean swimming speed plot. Groups which do not share a letter are
852 statistically different from each other ($p < 0.05$) as determined by a one way ANOVA test
853 and Tukey-Kramer pairwise comparisons. Outliers are demarcated as a plus sign (+).

854 Supplementary Figure S2: Swimming speed U of individual marine snails as a function of
855 wing flapping frequency f for various marine snail species.

856 Supplementary Figure S3: Box plots of glide angle and swimming NGDR results for three
857 different shell shape groups. A) Glide angle. B) NGDR. Groups which do not share a letter
858 are statistically different from each other ($p < 0.05$) as determined by a one way ANOVA test
859 and Tukey-Kramer pairwise comparisons. Outliers are demarcated as a plus sign (+).

860 Supplementary Figure S4: Vertical distributions based on image data and molecular data. A)
861 Day and Night vertical distribution based on the relative proportion of the population within a
862 particular size bin (mm). B) Average day and night biomass profiles based on imaging. C)
863 Average day and night biomass profiles based on molecular barcoding.

864 Supplementary Movie S1: Video of a large unidentified atlantiid heteropod species (likely
865 *Oxygyrus inflatus*) preying on the pteropod *Clio pyramidata* while both were lying on the
866 floor of an aquarium. Video shakiness was removed by using Warp Stabilizer effect in Adobe
867 Premiere Pro CC 2018.

868

869

870

871

872 **REFERENCES**

873 Adhikari, D., Webster, D. R., and Yen, J. (2016). Portable tomographic PIV measurements of
874 swimming shelled Antarctic pteropods. *Exp. Fluids* 57, 1–17. doi:10.1007/s00348-016-
875 2269-7.

876 Almogi-Labin, A., Hemleben, C., and Deuser, W. G. (1988). Seasonal variation in the flux of
877 euthecosomatous pteropods collected in a deep sediment trap in the Sargasso Sea. *Deep
878 Sea Res.* 35, 441464.

879 Amin, K., Huang, J. Mac, Hu, K. J., Zhang, J., and Ristroph, L. (2019). The role of shape-
880 dependent flight stability in the origin of oriented meteorites. *Proc. Natl. Acad. Sci. U. S.
881 A.* 116, 16180–16185. doi:10.1073/pnas.1815133116.

882 Amir, A., Daniel, M., Navas-Molina, J., Kopylova, E., Morton, J., Xu, Z. Z., et al. (2017).
883 Deblur rapidly resolves single-nucleotide community sequence patterns. *MSystems* 2, 1–
884 7.

885 Antezana, T. (2009). Species-specific patterns of diel migration into the Oxygen Minimum
886 Zone by euphausiids in the Humboldt Current Ecosystem. *Prog. Oceanogr.* 83, 228–
887 236. doi:10.1016/j.pocean.2009.07.039.

888 Barnes, P. T., and Laurie-Ahlberg, C. C. (1986). Genetic variability of flight metabolism in
889 *Drosophila melanogaster*. III. Effects of GPDH allozymes and environmental
890 temperature on power output. *Genetics* 112, 267–294.

891 Bé, A. W. H., and Gilmer, R. W. (1977). A zoogeographic and taxonomic review of
892 euthecosomatous Pteropoda. *Ocean. Micropaleontol.* 1, 773–808.

893 Beaugrand, G., Mcquatters-Gollop, A., Edwards, M., and Goberville, E. (2012). Long-term
894 responses of North Atlantic calcifying plankton to climate change. *Nat. Clim. Chang.* 3,
895 263–267. doi:10.1038/nclimate1753.

896 Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B., Kessouri, F., León, P., et al. (2019).
897 Systematic review and meta-analysis towards synthesis of thresholds of ocean
898 acidification impacts on calcifying pteropods and interactions with warming. *Front.
899 Mar. Sci.* 6, 1–16. doi:10.3389/fmars.2019.00227.

900 Bednaršek, N., Možina, J., Vogt, M., O'Brien, C., and Tarling, G. A. (2012). The global
901 distribution of pteropods and their contribution to carbonate and carbon biomass in the
902 modern ocean. *Earth Syst. Sci. Data* 5, 167–186. doi:10.5194/essd-5-1-2013.

903 Bergan, A. J., Lawson, G. L., Maas, A. E., and Wang, Z. A. (2017). The effect of elevated
904 carbon dioxide on the sinking and swimming of the shelled pteropod *Limacina
905 retroversa*. *ICES J. Mar. Sci.* 74, 1893–1905. doi:10.1093/icesjms/fsx008.

906 Berger, W. H. (1978). Deep-sea carbonate: pteropod distribution and the aragonite
907 compensation depth. *Deep Sea Res.* 25, 447–452.

908 Berner, R. A., and Honjo, S. (1981). Pelagic Sedimentation of Aragonite: Its Geochemical
909 Significance. *Science (80-).* 211, 940–942.

910 Bianco, G., Mariani, P., Visser, A. W., Mazzocchi, M. G., and Pigolotti, S. (2014). Analysis
911 of self-overlap reveals trade-offs in plankton swimming trajectories. *J. R. Soc. Interface*
912 11. doi:10.1098/rsif.2014.0164.

913 Blanco-Bercial, L. (2020). Metabarcoding Analyses and Seasonality of the Zooplankton
914 Community at BATS. *Front. Mar. Sci.* 7, 1–16. doi:10.3389/fmars.2020.00173.

915 Borrell, B. J., Goldbogen, J. a, and Dudley, R. (2005). Aquatic wing flapping at low
916 Reynolds numbers: swimming kinematics of the Antarctic pteropod, *Clione antarctica*.
917 *J. Exp. Biol.* 208, 2939–2949. doi:10.1242/jeb.01733.

918 Buitenhuis, E. T., Le Quéré, C., Bednaršek, N., and Schiebel, R. (2019). Large Contribution
919 of Pteropods to Shallow CaCO₃ Export. *Global Biogeochem. Cycles* 33, 458–468.
920 doi:10.1029/2018GB006110.

921 Burridge, A. K., Goetze, E., Wall-Palmer, D., Le Double, S. L., Huisman, J., and
922 Peijnenburg, K. T. C. A. (2017). Diversity and abundance of pteropods and heteropods
923 along a latitudinal gradient across the Atlantic Ocean. *Prog. Oceanogr.* 158, 213–223.
924 doi:10.1016/j.pocean.2016.10.001.

925 Chamberlain, J. A., and Weaver, J. S. (1978). Equations of motion for post-mortem sinking
926 of cephalopod shells. *J. Int. Assoc. Math. Geol.* 10, 673–689. doi:10.1007/BF01031898.

927 Chang, Y., and Yen, J. (2012). Swimming in the Intermediate Reynolds Range: Kinematics
928 of the Pteropod *Limacina helicina*. *Integr. Comp. Biol.* 52, 597–615.
929 doi:10.1093/icb/ics113.

930 Childress, S., and Dudley, R. (2004). Transition from ciliary to flapping mode in a swimming
931 mollusc: flapping flight as a bifurcation in Re. *J. Fluid Mech.* 498, 257–288.
932 doi:10.1017/S002211200300689X.

933 Chu, P. C., Gilles, A., and Fan, C. (2005). Experiment of falling cylinder through the water
934 column. *Exp. Therm. Fluid Sci.* 29, 555–568. doi:10.1016/j.expthermflusci.2004.08.001.

935 Comeau, S., Gattuso, J.-P., Nisumaa, A.-M., and Orr, J. (2012). Impact of aragonite
936 saturation state changes on migratory pteropods. *Proc. R. Soc. B Biol. Sci.* 279, 732–
937 738. doi:10.1098/rspb.2011.0910.

938 Daufresne, M., Lengfellner, K., and Sommer, U. (2009). Global warming benefits the small
939 in aquatic ecosystems. *Proc. Natl. Acad. Sci.* 106, 12788–12793.
940 doi:10.1073/pnas.0902080106.

941 Dillon, M. E., and Dudley, R. (2004). Allometry of maximum vertical force production
942 during hovering flight of neotropical orchid bees (Apidae: Euglossini). *J. Exp. Biol.* 207,
943 417–425. doi:10.1242/jeb.00777.

944 Dudley, R. (2002). Mechanisms and implications of animal flight maneuverability. *Integr.*
945 *Comp. Biol.* 42, 135–140. doi:10.1093/icb/42.1.135.

946 Fabry, V. J. (1990). Shell growth rates of pteropod and heteropod molluscs and aragonite
947 production in the open ocean: implications for the marine carbonate system. *J. Mar. Res.*
948 48, 209–222. doi:10.1357/002224090784984614.

949 Fabry, V. J., and Deuser, W. G. (1991). Aragonite and magnesian calcite fluxes to the deep
950 Sargasso Sea. *Deep Sea Res. Part A. Oceanogr. Res. Pap.* 38, 713–728.

951 Field, S. B., Klaus, M., Moore, M. G., and Nori, F. (1997). Chaotic dynamics of falling disks.
952 *Nature* 388, 252–254. doi:10.1038/40817.

953 Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., et al.

954 (2010). Second-generation environmental sequencing unmasks marine metazoan
955 biodiversity. *Nat. Commun.* 1. doi:10.1038/ncomms1095.

956 Frazier, M. R., Harrison, J. F., Kirkton, S. D., and Roberts, S. P. (2008). Cold rearing
957 improves cold-flight performance in *Drosophila* via changes in wing morphology. *J.*
958 *Exp. Biol.* 211, 2116–2122. doi:10.1242/jeb.019422.

959 Gilmer, R. W. (1972). Free-Floating Mucus Webs: A Novel Feeding Adaptation for the Open
960 Ocean. *Science (80-)*. 176, 1239–1240.

961 Gilmer, R. W., and Harbison, G. R. (1986). Morphology and field behavior of pteropod
962 molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae
963 (Gastropoda: Thecosomata). *Mar. Biol.* 91, 47–57. doi:10.1007/BF00397570.

964 Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J. B., et al.
965 (2010). Digital zooplankton image analysis using the ZooScan integrated system. *J.*
966 *Plankton Res.* 32, 285–303. doi:10.1093/plankt/fbp124.

967 Hamner, W. M., Madin, L. P., Alldredge, A. L., Gilmer, R. W., and Hamner, P. P. (1975).
968 Underwater observations of gelatinous zooplankton: Sampling problems, feeding
969 biology, and behavior. *Limnol. Oceanogr.* 20, 907–917. doi:10.4319/lo.1975.20.6.0907.

970 Harbison, G. R., and Gilmer, R. W. (1992). Swimming, buoyancy and feeding in shelled
971 pteropods: A comparison of field and laboratory observations. *J. Molluscan Stud.* 58,
972 337–339. doi:10.1093/mollus/58.3.337.

973 Hays, G. C. (2003). A review of the adaptive significance and ecosystem consequences of
974 zooplankton diel vertical migrations. *Hydrobiologia* 503, 163–170.
975 doi:10.1023/B:HYDR.0000008476.23617.b0.

976 Hedrick, T. L. (2008). Software techniques for two- and three-dimensional kinematic
977 measurements of biological and biomimetic systems. *Bioinspir. Biomim.* 3, 034001.
978 doi:10.1088/1748-3182/3/3/034001.

979 Howes, E. L., Bednaršek, N., Büdenbender, J., Comeau, S., Doubleday, A., Gallager, S. M.,
980 et al. (2014). Sink and swim: A status review of thecosome pteropod culture techniques.
981 *J. Plankton Res.* 36, 299–315. doi:10.1093/plankt/fbu002.

982 Hunt, J. C., and Seibel, B. A. (2000). Life history of *Gonatus onyx* (Cephalopoda:
983 Teuthoidea): Ontogenetic changes in habitat, behavior and physiology. *Mar. Biol.* 136,
984 543–552. doi:10.1007/s002270050714.

985 Hunt, B. P. V., Pakhomov, E. A., Hosie, G. W., Siegel, V., Ward, P., and Bernard, K. (2008).
986 Pteropods in Southern Ocean ecosystems. *Prog. Oceanogr.* 78, 193–221.
987 doi:10.1016/j.pocean.2008.06.001.

988 Jackson, B. E., Evangelista, D. J., Ray, D. D., and Hedrick, T. L. (2016). 3D for the people:
989 multi-camera motion capture in the field with consumer-grade cameras and open source
990 software. *Biol. Open* 5, 1334–1342. doi:10.1242/bio.018713.

991 Karakas, F., D’Oliveira, D., Maas, A. E., and Murphy, D. W. (2018). Using a shell as a wing:
992 pairing of dissimilar appendages in atlantiid heteropod swimming. *J. Exp. Biol.* 221,
993 jeb192062. doi:10.1242/jeb.192062.

994 Karakas, F., Maas, A. E., and Murphy, D. W. (2020). A novel cylindrical overlap-and-fling
995 mechanism used by sea butterflies. *J. Exp. Biol.*, jeb.221499. doi:10.1242/jeb.221499.

996 Lalli, C. M., and Gilmer, R. W. (1989). *Pelagic snails: the biology of holoplanktonic*
997 *gastropod mollusks*. Stanford University Press.

998 Land, M. F. (1982). Scanning eye movements in a heteropod mollusc. *J. Exp. Biol.* 96, 427–
999 430.

1000 Land, M. F. (1999). Motion and vision: Why animals move their eyes. *J. Comp. Physiol. - A*
1001 *Sensory, Neural, Behav. Physiol.* 185, 341–352. doi:10.1007/s003590050393.

1002 Lehmann, F. O. (1999). Ambient temperature affects free-flight performance in the fruit fly
1003 *Drosophila melanogaster*. *J. Comp. Physiol. - B Biochem. Syst. Environ. Physiol.* 169,
1004 165–171. doi:10.1007/s003600050207.

1005 Lourakis, M. I., and Argyros, A. A. (2009). SBA: A software package for generic sparse
1006 bundle adjustment. *ACM Trans. Math. Softw.* 36, 2. doi:10.1145/1486525.1486527.

1007 Maas, A. E., Blanco-Bercial, L., and Lawson, G. L. (2013). Reexamination of the Species
1008 Assignment of Diacavolinia Pteropods Using DNA Barcoding. *PLoS One* 8.
1009 doi:10.1371/journal.pone.0053889.

1010 Maas, A. E., Frazar, S. L., Outram, D. M., Seibel, B. A., and Wishner, K. F. (2014). Fine-
1011 scale vertical distribution of macroplankton and micronekton in the Eastern Tropical
1012 North Pacific in association with an oxygen minimum zone. *J. Plankton Res.* 36, 1557–
1013 1575. doi:10.1093/plankt/fbu077.

1014 Maas, A. E., Wishner, K. F., and Seibel, B. A. (2012). Metabolic suppression in
1015 thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern
1016 tropical North Pacific. *Mar. Biol.* 159, 1955–1967. doi:10.1007/s00227-012-1982-x.

1017 Mackas, D. L., Batten, S., and Trudel, M. (2007). Effects on zooplankton of a warmer ocean:
1018 Recent evidence from the Northeast Pacific. *Prog. Oceanogr.* 75, 223–252.
1019 doi:10.1016/j.pocean.2007.08.010.

1020 Manno, C., Morata, N., and Primicerio, R. (2012). *Limacina retroversa*'s response to
1021 combined effects of ocean acidification and sea water freshening. *Estuar. Coast. Shelf*
1022 *Sci.* 113, 163–171. doi:10.1016/j.ecss.2012.07.019.

1023 Manno, C., Tirelli, V., Accornero, A., and Fonda Umani, S. (2010). Importance of the
1024 contribution of *Limacina helicina* faecal pellets to the carbon pump in terra nova bay
1025 (Antarctica). *J. Plankton Res.* 32, 145–152. doi:10.1093/plankt/fbp108.

1026 Mohaghar, M., Adhikari, D., and Webster, D. R. (2019). Characteristics of swimming shelled
1027 Antarctic pteropods (*Limacina helicina antarctica*) at intermediate Reynolds number
1028 regime. *Phys. Rev. Fluids* 4, 1–10. doi:10.1103/PhysRevFluids.4.111101.

1029 Morton, J. E. (1954). The Biology of *Limacina Retroversa*. *J. Mar. Assess. U.K.* 3, 297–312.
1030 doi:10.1017/S002531540000833X.

1031 Murphy, D. W., Adhikari, D., Webster, D. R., and Yen, J. (2016). Underwater flight by the
1032 planktonic sea butterfly. *J. Exp. Biol.* 219, 535–543. doi:10.1242/jeb.129205.

1033 Ohman, M. D., and Romagnan, J. B. (2016). Nonlinear effects of body size and optical
1034 attenuation on Diel Vertical Migration by zooplankton. *Limnol. Oceanogr.* 61, 765–770.
1035 doi:10.1002/lno.10251.

1036 Orr, J. C. (2011). “Recent and future changes in ocean carbonate chemistry,” in *Ocean*

1037 *acidification*, 41–66.

1038 Oviatt, C. A. (2004). The changing ecology of temperate coastal waters during a warming
1039 trend. *Estuaries* 27, 895–904.

1040 Peijnenburg, K. T., Janssen, A. W., Wall-Palmer, D., Goetze, E., Maas, A., Todd, J. A., et al.
1041 (2019). The origin and diversification of pteropods predate past perturbations in the
1042 Earth’s carbon cycle. *bioRxiv*, p.813386. doi:<https://doi.org/10.1101/813386>.

1043 Pétavy, G., Morin, J. P., Moreteau, B., and David, J. R. (1997). Growth temperature and
1044 phenotypic plasticity in two *Drosophila* sibling species: Probable adaptive changes in
1045 flight capacities. *J. Evol. Biol.* 10, 875–887. doi:10.1007/s000360050059.

1046 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al.
1047 (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across
1048 a large model space. *Syst. Biol.* 61, 539–542. doi:10.1093/sysbio/sys029.

1049 Sabine, C. C. L., Feely, R. R. A., Gruber, N., Key, R. M. R., Lee, K., Bullister, J. L., et al.
1050 (2004). The Oceanic Sink for Anthropogenic CO₂. *Science* (80-.). 305, 367–371.
1051 doi:10.1126/science.1097403.

1052 Satterlie, R. A., Labarbera, M., and Spencer, A. N. (1985). Swimming in the Pteropod
1053 Mollusk, *Clione Limacina* .1. Behavior and Morphology. *J. Exp. Biol.* 116, 189–204.

1054 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al.
1055 (2009). Introducing mothur: Open-source, platform-independent, community-supported
1056 software for describing and comparing microbial communities. *Appl. Environ.*
1057 *Microbiol.* 75, 7537–7541. doi:10.1128/AEM.01541-09.

1058 Seapy, R. R. (1980). Predation by the epipelagic heteropod mollusk *Carinaria cristata* forma
1059 *japonica*. *Mar. Biol.* 60, 137–146. doi:10.1007/BF00389157.

1060 Seuront, L., Brewer, M. C., and Strickler, J. R. (2004). “Quantifying Zooplankton Swimming
1061 Behavior: The Question of Scale,” in *Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation*, 333–360.

1062 Southward, A. J., Hawkins, S. J., and Burrows, M. T. (1995). Seventy years’ observations of
1063 changes in distribution and abundance of zooplankton and intertidal organisms in the
1064 western English Channel in relation to rising sea temperature. *J. Therm. Biol.* 20, 127–
1065 155. doi:10.1016/0306-4565(94)00043-I.

1066 Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis
1067 of large phylogenies. *Bioinformatics* 30, 1312–1313. doi:10.1093/bioinformatics/btu033.

1068 Szymik, B. G., and Satterlie, R. a (2011). Changes in wingstroke kinematics associated with a
1069 change in swimming speed in a pteropod mollusk, *Clione limacina*. *J. Exp. Biol.* 214,
1070 3935–47. doi:10.1242/jeb.058461.

1071 Thabet, A. A., Maas, A. E., Lawson, G. L., and Tarrant, A. M. (2015). Life cycle and early
1072 development of the thecosomatous pteropod *Limacina retroversa* in the Gulf of Maine,
1073 including the effect of elevated CO₂ levels. *Mar. Biol.* 162, 2235–2249.
1074 doi:10.1007/s00227-015-2754-1.

1075 Thiriot-Quiévreux, C. (1973). Heteropoda. *Ocean. Mar. Biol. Ann. Rev* 11, 237–261.

1076 Titelman, J., and Fiksen, Ø. (2004). Ontogenetic vertical distribution patterns in small

1078 copepods: Field observations and model predictions. *Mar. Ecol. Prog. Ser.* 284, 49–63.
1079 doi:10.3354/meps284049.

1080 Tsurumi, M., Mackas, D. L., Whitney, F. A., Dibacco, C., Galbraith, M. D., and Wong, C. S.
1081 (2005). Pteropods , eddies , carbon flux , and climate variability in the Alaska Gyre.
1082 *Deep Sea Res. Part II Top. Stud. Oceanogr.* 52, 1037–1053.
1083 doi:10.1016/j.dsr2.2005.02.005.

1084 Vandromme, P., Lars, S., García-Comas, C., Berline, L., Sun, X., and Gorsky, G. (2012).
1085 Assessing biases in computing size spectra of automatically classified zooplankton from
1086 imaging systems: A case study with the ZooScan integrated system. *Methods Oceanogr.*
1087 1–2, 3–21. doi:10.1016/j.mio.2012.06.001.

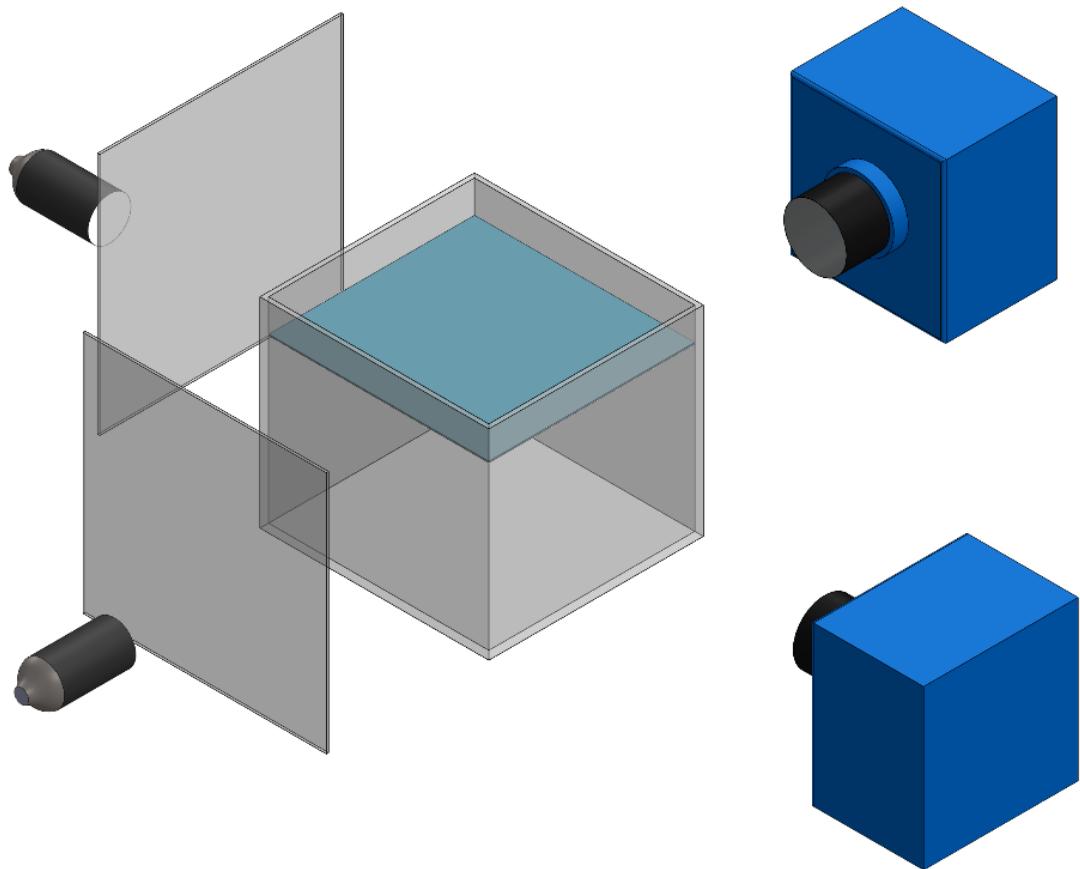
1088 Vogel, S. (1988). *Life's devices: the physical world of animals and plants*. Princeton
1089 University Press.

1090 Vogel, S. (2013). *Comparative biomechanics: life's physical world*. Princeton University
1091 Press.

1092 Wall-Palmer, D., Metcalfe, B., Leng, M. J., Sloane, H. J., Ganssen, G., Vinayachandran, P.
1093 N., et al. (2018). Vertical distribution and diurnal migration of atlantid heteropods. *Mar.*
1094 *Ecol. Prog. Ser.* 587, 1–15. doi:10.3354/meps12464.

1095 Wall-Palmer, D., Smart, C. W., Kirby, R., Hart, M. B., Peijnenburg, K. T. C. A., and Janssen,
1096 A. W. (2016). A review of the ecology, palaeontology and distribution of atlantid
1097 heteropods (Caenogastropoda: Pterotracheoidea: Atlantidae). *J. Molluscan Stud.* 82,
1098 221–234. doi:10.1093/mollus/eyv063.

1099 Wiebe, P. H., Morton, A. W., Bradley, A. M., Backus, R. H., Craddock, J. E., Barber, V., et
1100 al. (1985). New development in the MOCNESS, an apparatus for sampling zooplankton
1101 and micronekton. *Mar. Biol.* 87, 313–323. doi:10.1007/BF00397811.

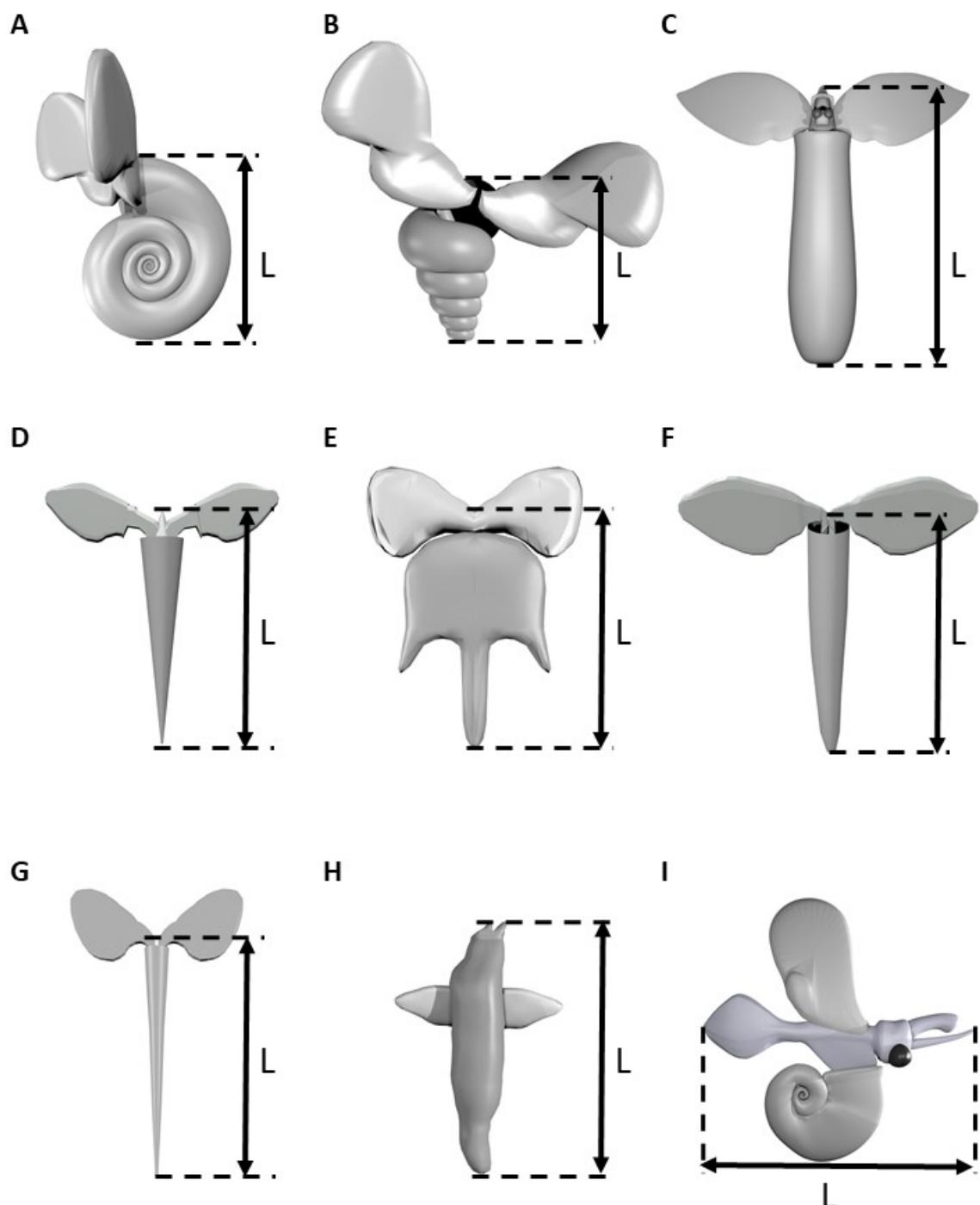

1102 Wormelle, R. L. (1962). A Survey of the Standing Crop of Plankton of the Florida
1103 Current.VI. A Study of the Distribution of the Pteropods of the Florida Current. *Bull.*
1104 *Mar. Sci.* 12, 95–136.

1105 Wormuth, J. H. (1981). Vertical distributions and diel migrations of Euthecosomata in the
1106 northwest Sargasso Sea. *Deep Sea Res. Part A, Oceanogr. Res. Pap.* 28, 1493–1515.
1107 doi:10.1016/0198-0149(81)90094-7.

1108 Zhou, Z., and Mittal, R. (2017). Swimming without a Spine: Computational Modeling and
1109 Analysis of the Swimming Hydrodynamics of the Spanish Dancer. *Bioinspir. Biomim.*
1110 13, p.015001. doi:10.1088/1748-3190/aa9392.

1111 Zhou, Z., and Mittal, R. (2018). Swimming performance and unique wake topology of the sea
1112 hare (*Aplysia*). *Phys. Rev. Fluids* 3, 33102. doi:10.1103/PhysRevFluids.3.033102.

1113

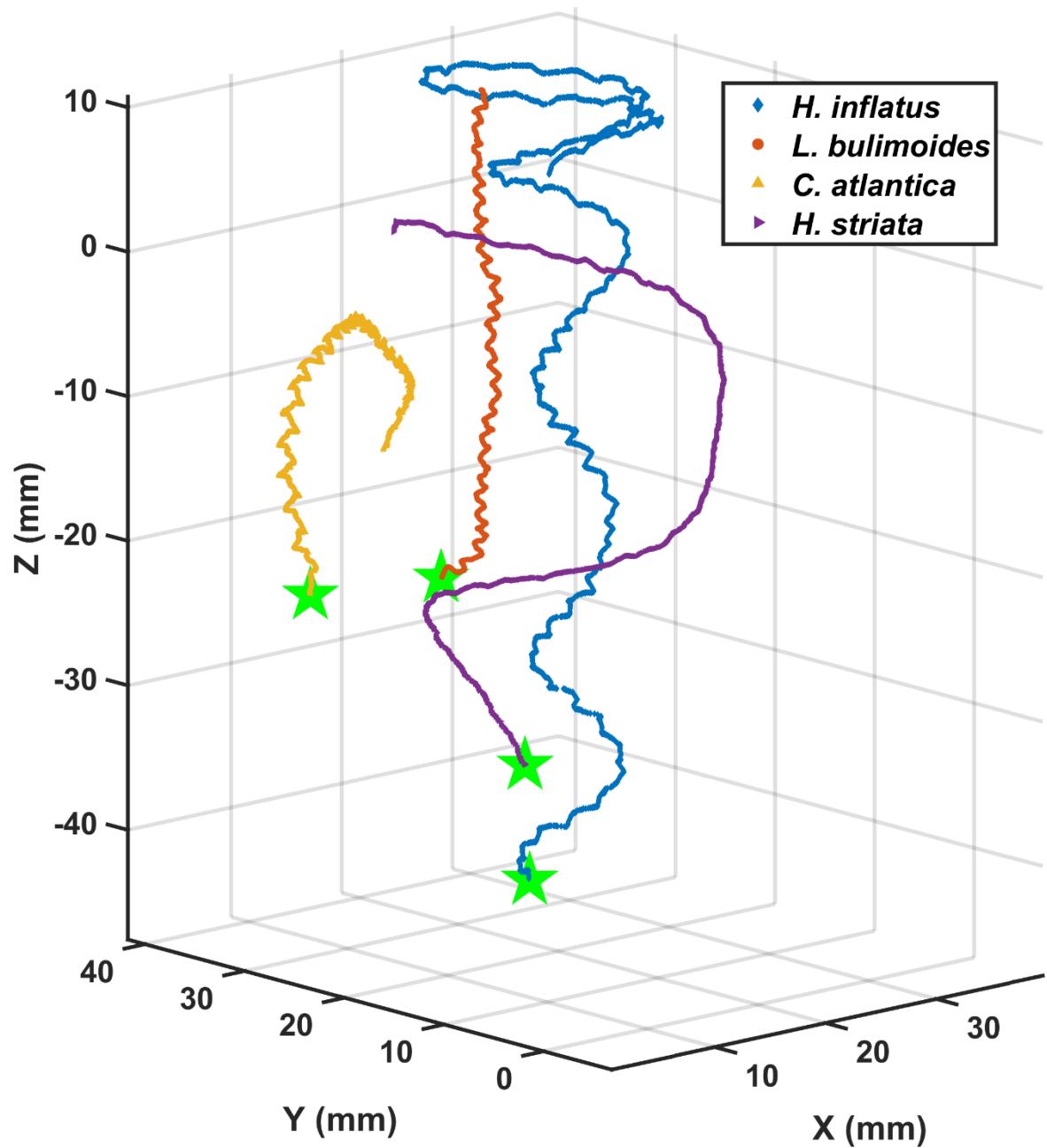

1114

1115 Figure 1: Schematic of low magnification stereophotogrammetry system using to record
1116 swimming trajectories of various marine snails

1117

1118

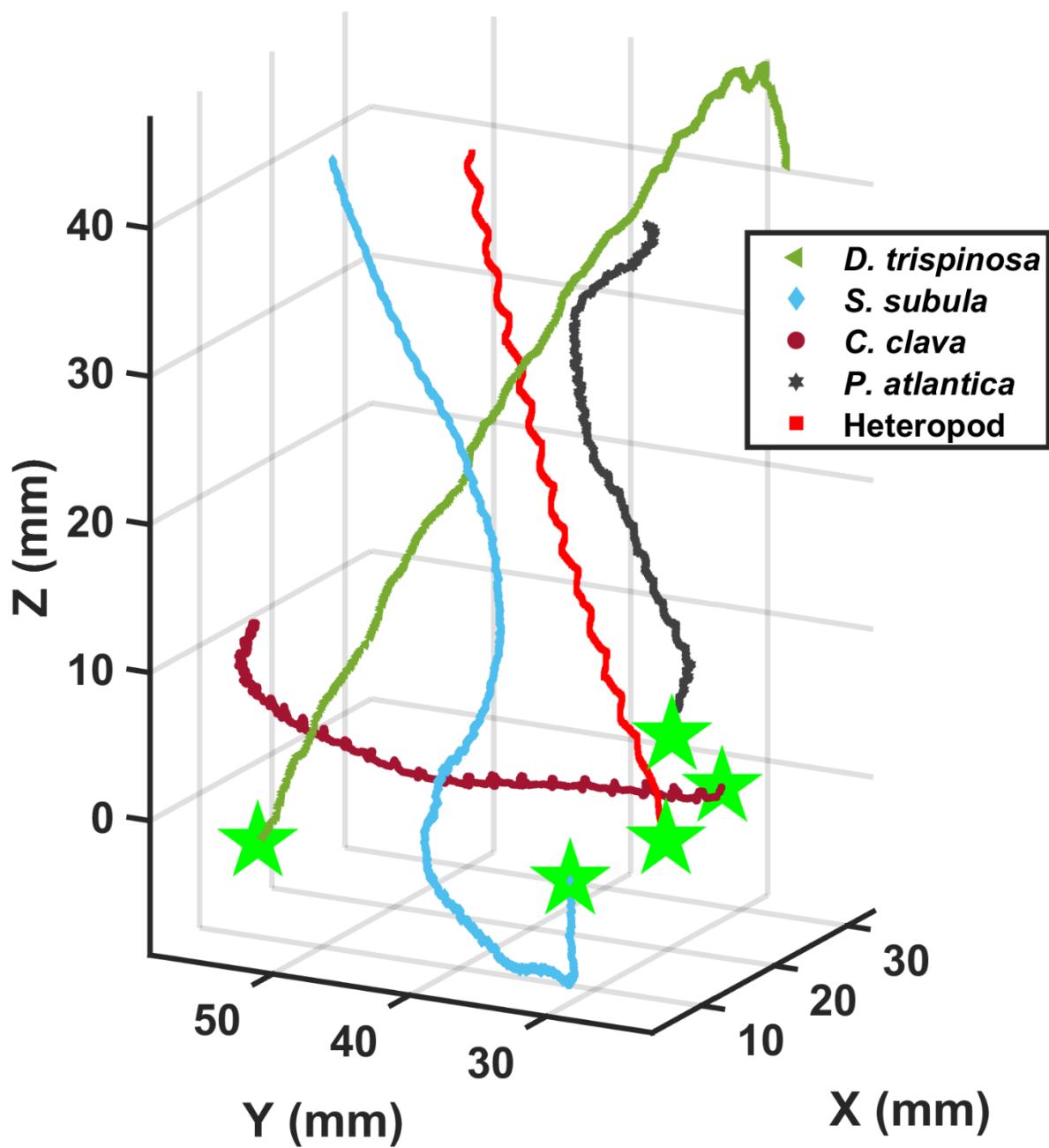
1119



1120

1121 Figure 2: Three-dimensional models of various marine snail species. A) *Heliconoides*
 1122 *inflatus*, B) *Limacina bulimooides*, C) *Cuvierina atlantica*, D) *Hyalocylis striata*, E)
 1123 *Diacria trispinosa*, F) *Styliola subula*, G) *Creseis clava*, H) *Pneumoderma atlantica*, I) *Heteropod* sp.
 1124 Models are not drawn to scale.

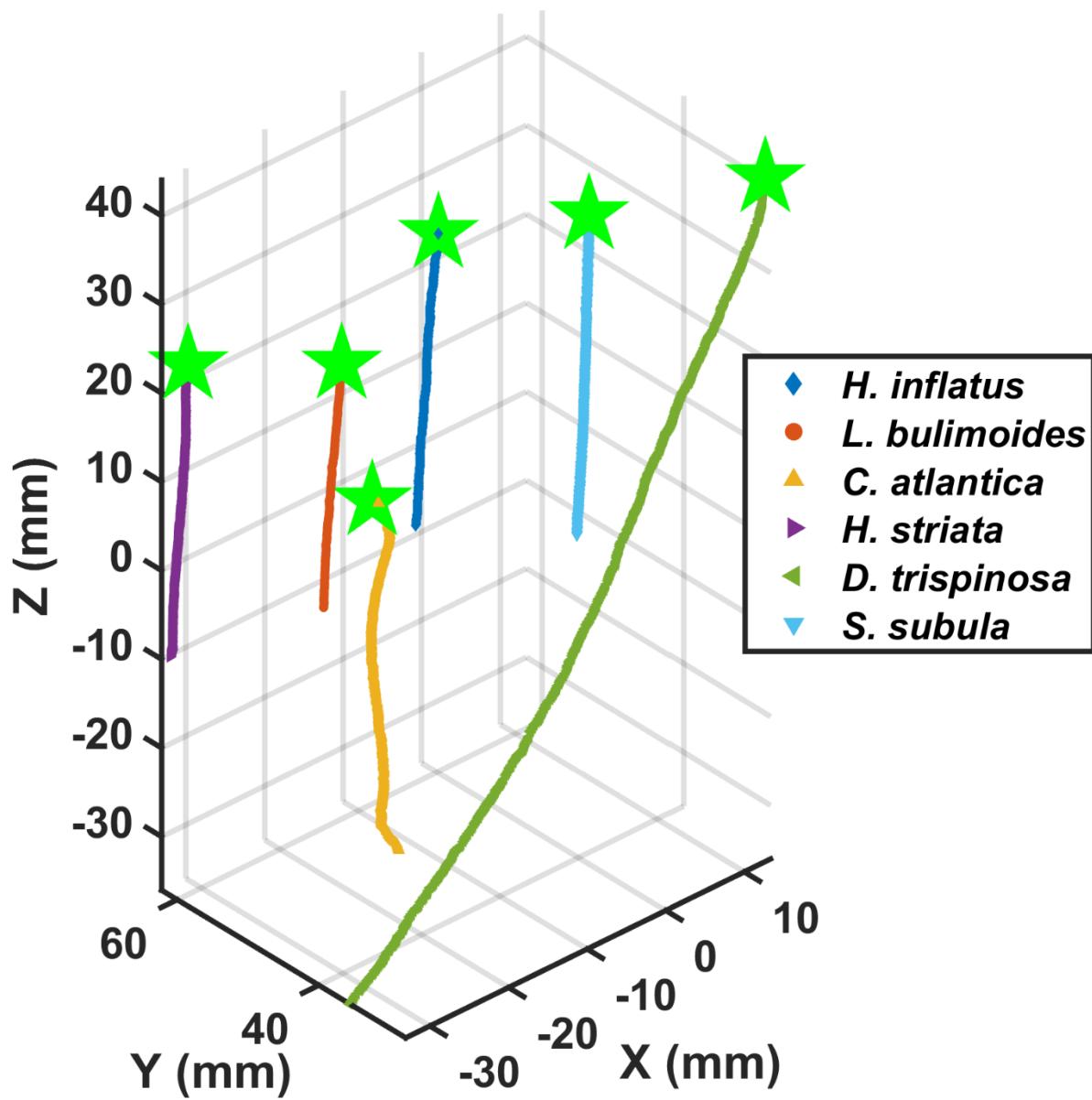
1125


1126

1127

1128 Figure 3: Three-dimensional upward swimming trajectories of four thecosomatous pteropod
 1129 species.

1130

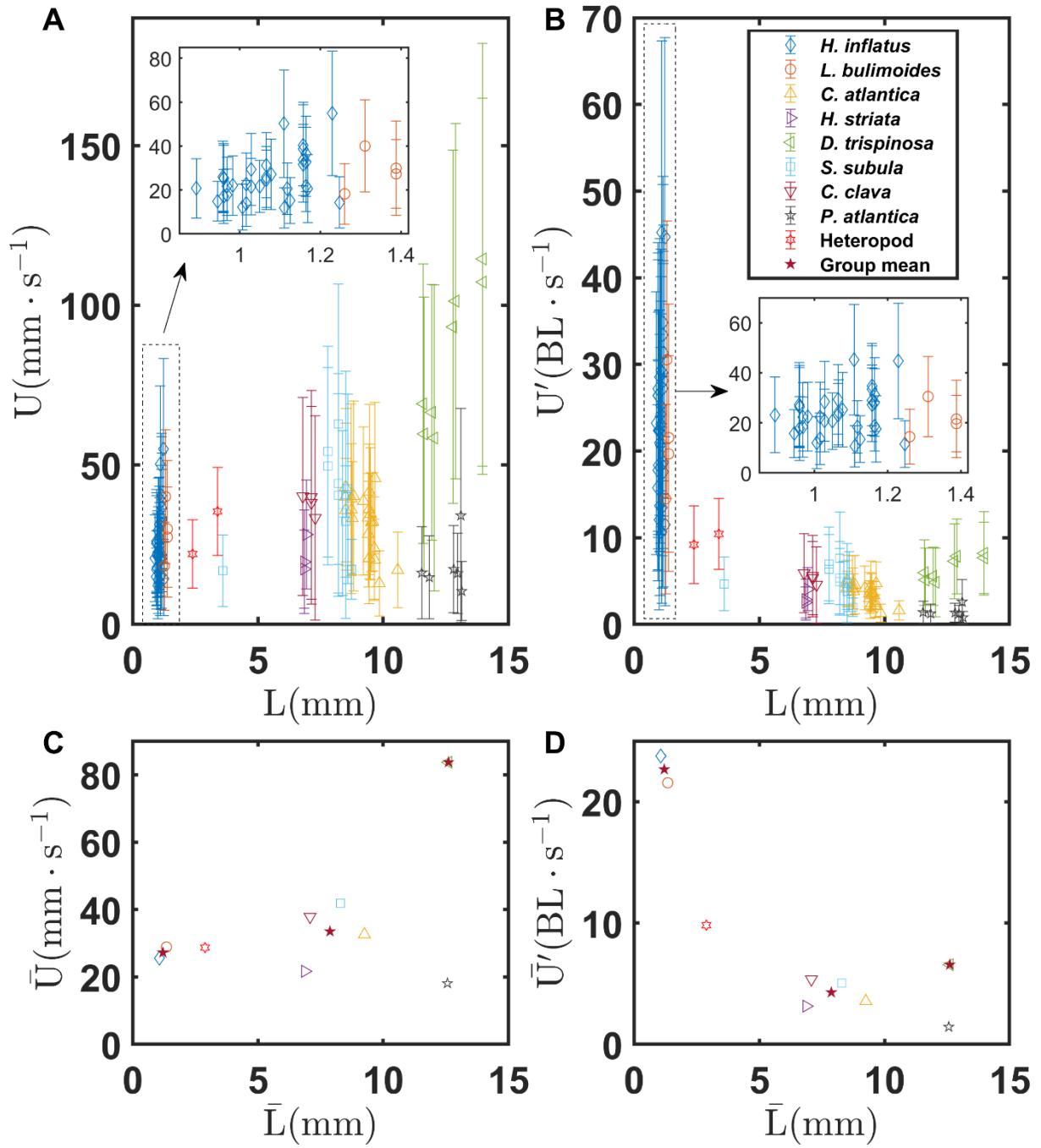

1131

1132 Figure 4: Three-dimensional upward swimming trajectories of three thecosomatous pteropod
 1133 species, one gymnosomatous pteropod species, and one atlantiid heteropod species.

1134

1135

1136


1137

1138 Figure 5: Three-dimensional downward sinking trajectories of six thecosomatous pteropod
 1139 species.

1140

1141

1142

1143

1144 Figure 6: A) Mean and standard deviation of swimming speed U of individual marine snails
1145 as a function of body length L for various marine snail species. B) Normalized mean and
1146 standard deviation of swimming speed U' of individual marine snails as a function of body
1147 length L for various marine snail species. C) Mean swimming speed \bar{U} of various marine
1148 snail species as a function of mean body length \bar{L} . D) Mean swimming speed \bar{U}' of various
1149 marine snail species as a function of mean body length \bar{L} . Stars in C) and D) indicate group
1150 means of coiled, elongated, and globular shelled thecosome species.

1151

1152

1153

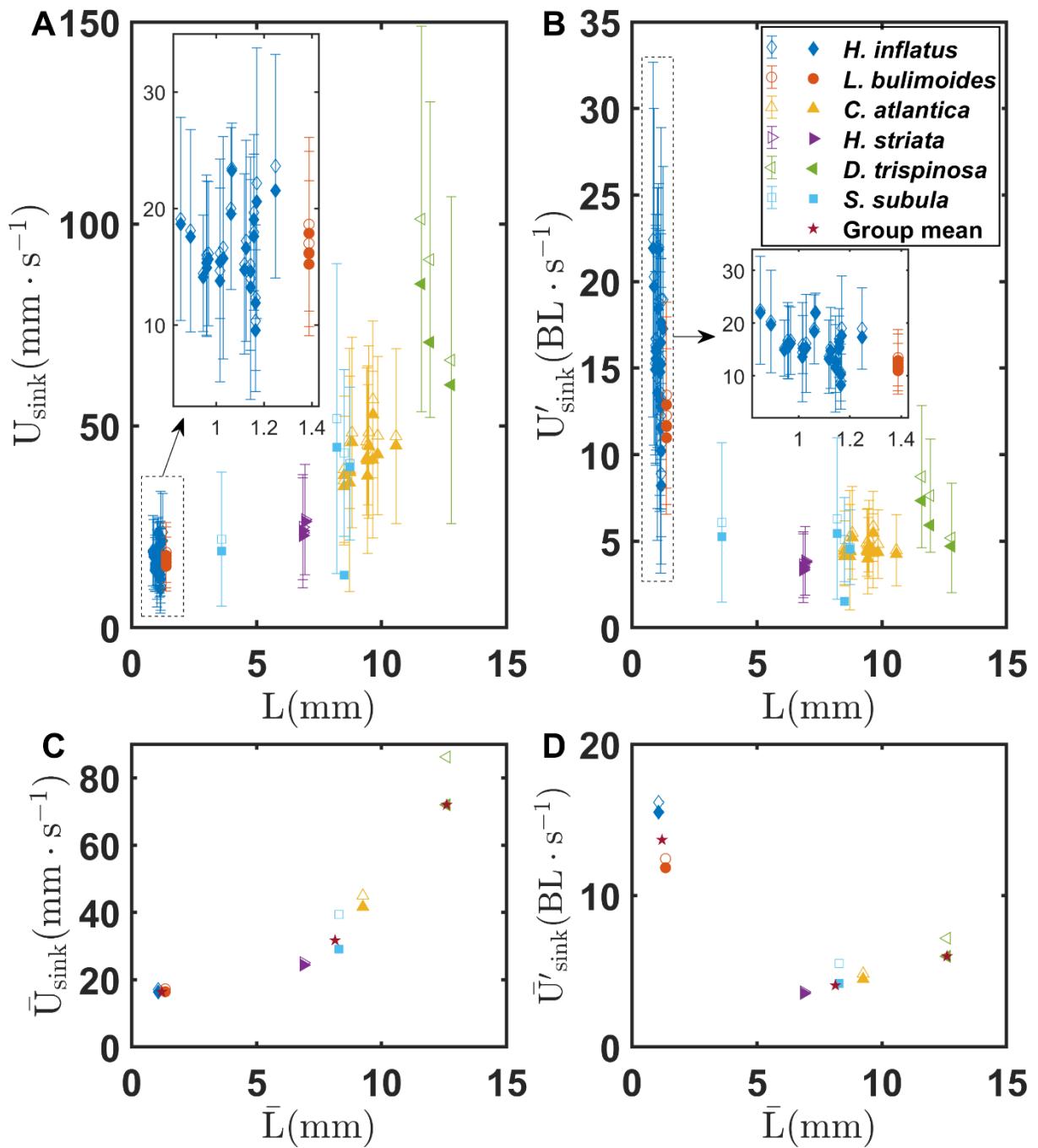
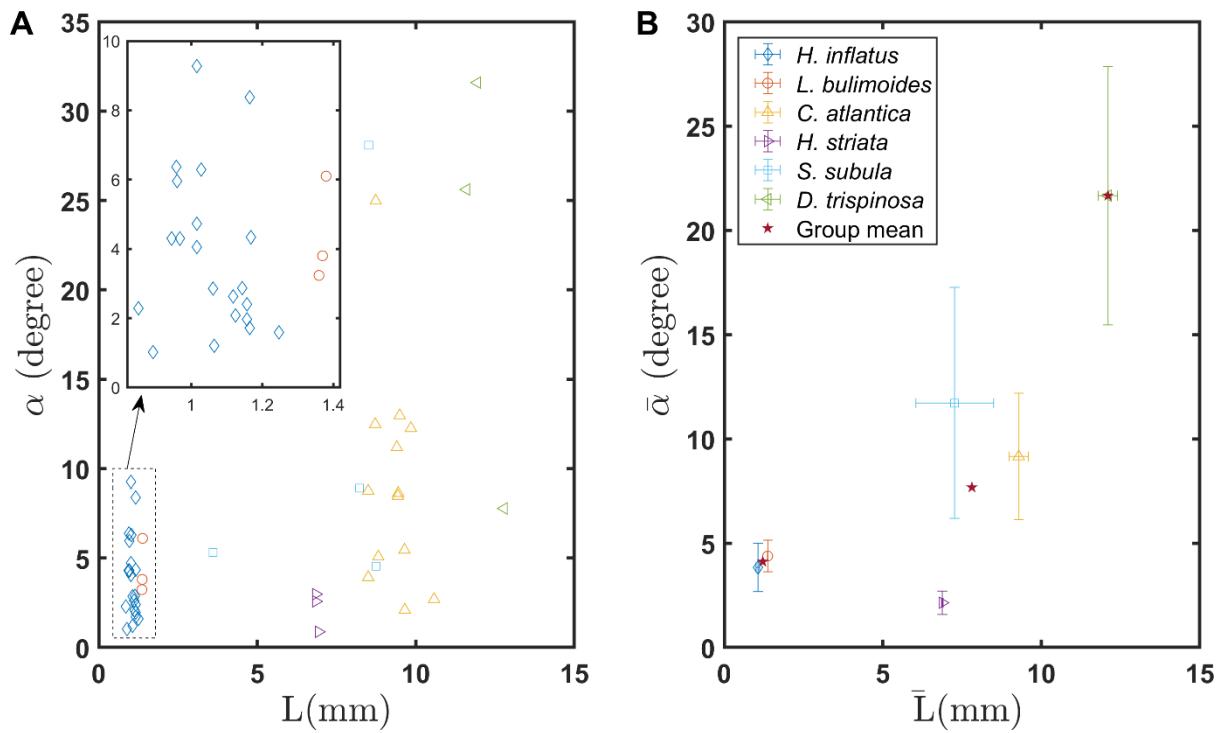
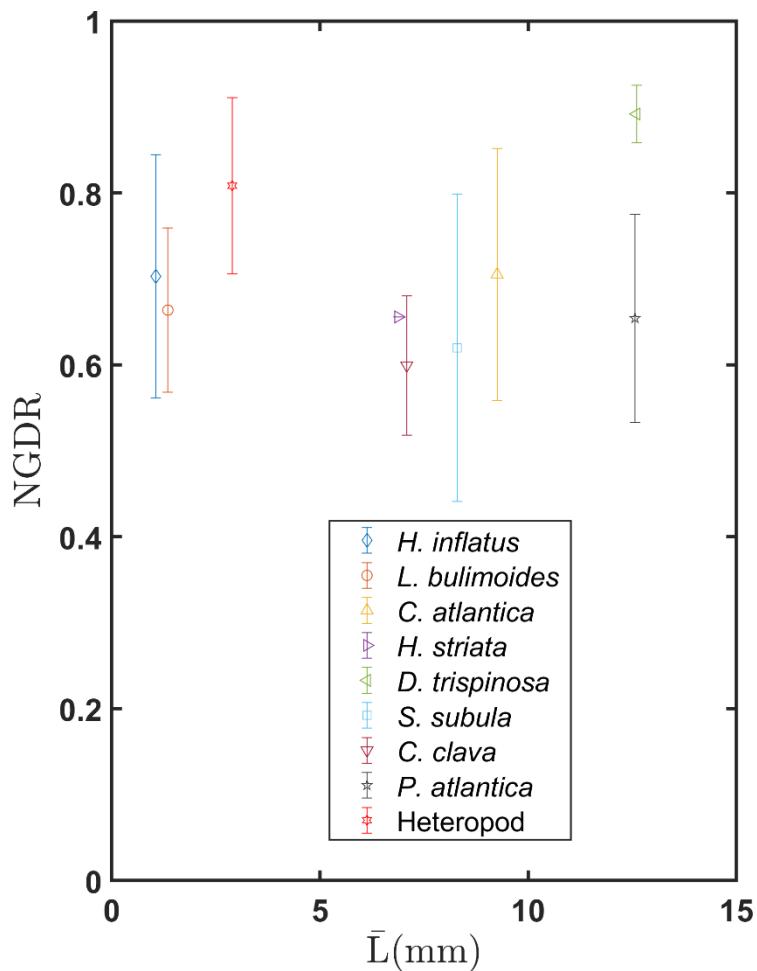



Figure 7: A) Mean and standard deviation of sinking speed U_{sink} of individual marine snails as a function of body length L for various marine snail species. B) Normalized mean and standard deviation of sinking speed U'_{sink} of individual marine snails as a function of body length L for various marine snail species. C) Mean sinking speed \bar{U}_{sink} of various marine snail species as a function of mean body length \bar{L} . D) Mean sinking speed \bar{U}'_{sink} of various marine snail species as a function of mean body length \bar{L} . Stars in C) and D) indicate group means of coiled, elongated, and globular shelled thecosome species.


1165

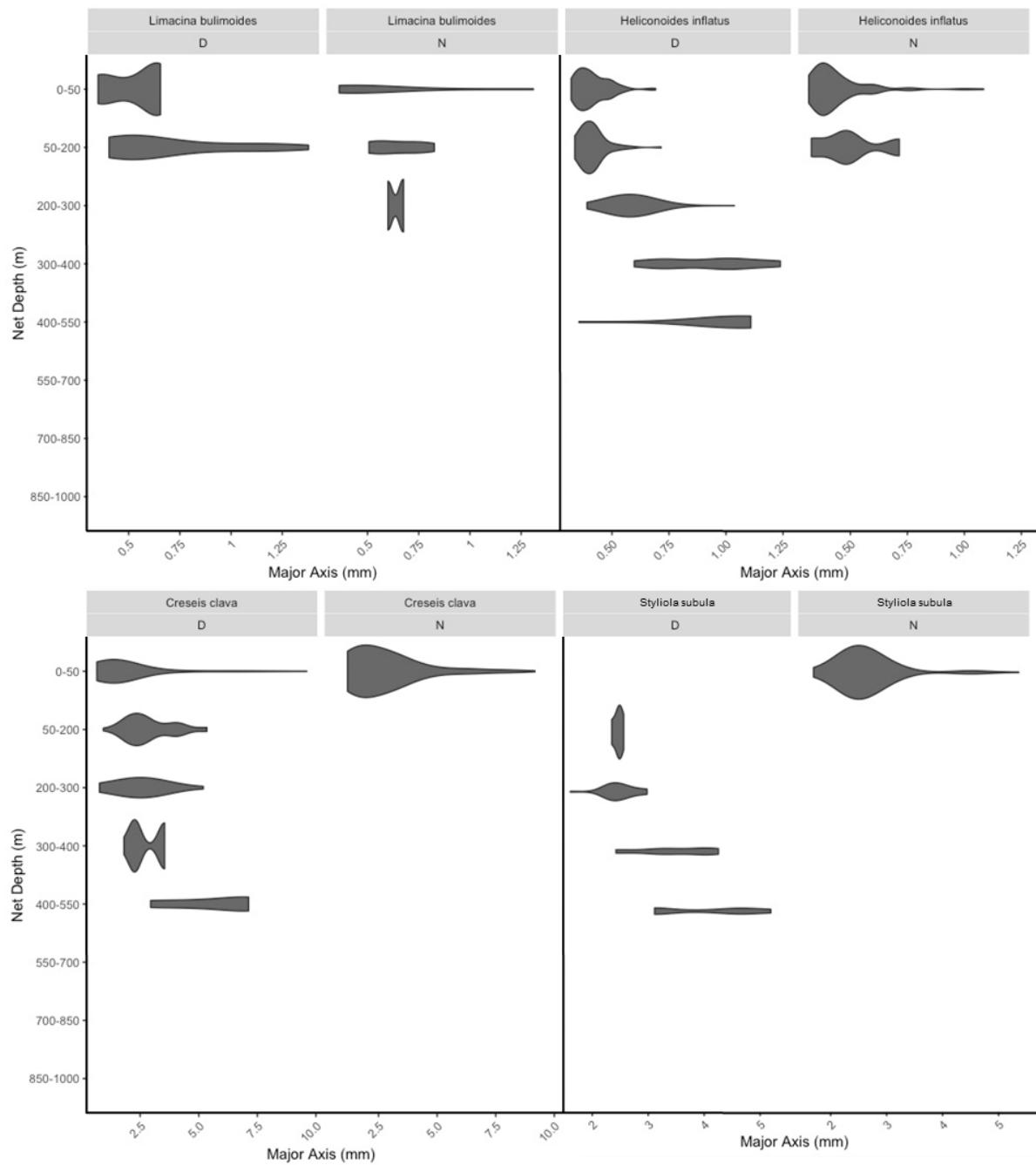
1166 Figure 8: A) Gliding angle of individual marine snails as a function of body length L , B)
1167 Mean gliding angles of various marine snail species as a function of mean body length \bar{L} .
1168 Stars in B) indicate group means of coiled, elongated, and globular shelled thecosome
1169 species.

1170

1171

1172

1173

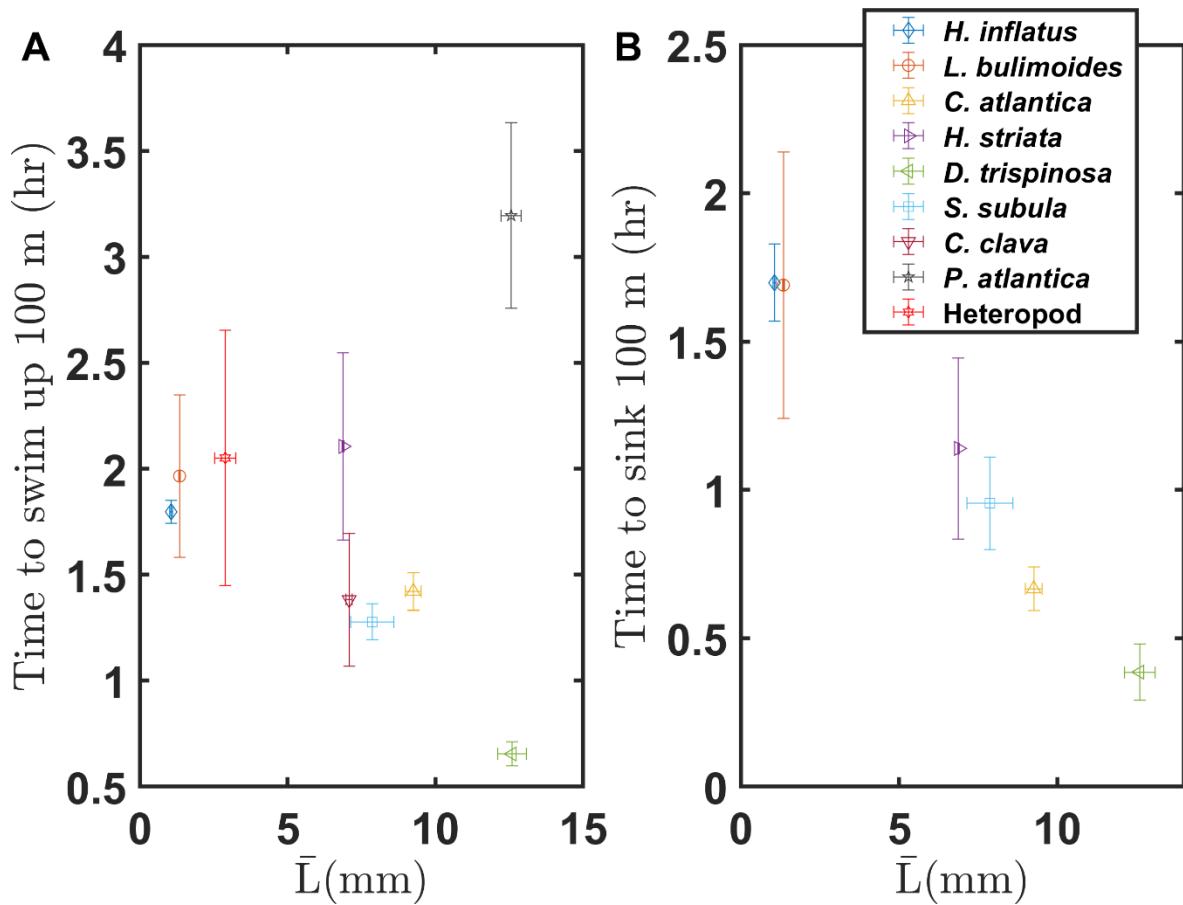

1174 Figure 9: Mean and standard deviation of NGDR measured over five body lengths for various
 1175 marine snail species as a function of mean body length \bar{L} .

1176

1177

1178

1179


1180

1181 Figure 10: Day and Night vertical distribution of species from MOCNESS net image data.
 1182 The length of the organisms (x-axis) is plotted versus the median depth of the net of
 1183 collection (y-axis) to demonstrate size-based differences in habitat selection. The width of the
 1184 bar corresponds to relative abundance of individuals in that size bin.

1185

1186

1187

1188

1189 Figure 11: A) Upward and B) downward migration times over a distance of 100 m for various
 1190 marine snail species, based on the mean swimming and sinking speeds measured here.

1191

1192

1193

1194 Table 1: Number of individual animals, videos, and video segments analyzed for each marine snail species

Order	Species	Minimum Number of Individual Species	Number of Videos	Number of Video Segments	Number of Videos Analyzed for Swimming	Number of Videos Analyzed for Sinking
Thecosome	<i>Heliconoides inflatus</i>	5	34	54	33	21
	<i>Limacina bulimoides</i>	2	4	7	4	3
	<i>Cuvierina atlantica</i>	3	28	34	21	13
	<i>Hyalocylis striata</i>	1	2	6	3	3
	<i>Diacria trispinosa</i>	3	8	11	8	3
	<i>Creseis clava</i>	1	4	4	4	0
	<i>Styliola subula</i>	2	7	15	10	5
Gymnosome	<i>Pneumoderma atlantica</i>	2	6	6	6	0
Heteropod	Atlantiid heteropod	2	2	2	2	0

1195

1196

1197

1198
1199

Table 2: Comparison of morphological and swimming characteristics of various marine snail species from the current study and the literature. Values indicate mean and range (in parentheses).

Species	Reference	Body Length L (mm)	Wing Span L _f (mm)	Swimming Speed U (mm s ⁻¹)	Wingbeat Frequency f (Hz)	Re	Sinking Speed U _{sink} (mm s ⁻¹)	Re _{sink}
<i>Clione limacina</i>	Satterlie et al. (1985)	Up to 20	>5mm	100	1-3	Up to 1093	7-10	77-109
	Szymik and Satterlie (2011)	3-7	3.4-7.7	Tethered	1.1-3.2	NA	NA	NA
<i>Clione antarctica</i>	Borrell et al. (2005)	7-22	2.4-4.5	1-7	0.8-1.6	6-49	NA	NA
<i>Limacina helicina</i>	Chang and Yen (2012)	1-3.4	1-4	13-44	4.5-9.4	20-110	5-45	2-135
	Murphy et al. (2016)	1.6-2.0	2.1-2.9	15-26	4.3-4.7	19-42	NA	NA
<i>Limacina helicina antarctica</i>	Adhikari et al. (2016)	2.2	NA	21	2.9	29	NA	NA
	Mohaghar et. al. (2019)	1.5-4.5	5.0-9.0	14-30	1.9-3.0	13-55	NA	NA
<i>Heliconoides inflatus</i>		1.1 (0.9-1.2)	2.4 (2.3-2.4)	26 (12-55)	8.8 (6.6-11.1)	27 (12-66)	17 (13-22)	18 (12-29)
<i>Limacina bulimoides</i>		1.3 (1.3-1.4)	2.3 (2.1-2.7)	29 (18-40)	10.8 (10.1-11.5)	38 (22-51)	17 (16-19)	23 (22-25)
<i>Cuvierina atlantica</i>		9.3 (8.5-10.6)	9.1 (8.5-9.5)	33 (13-46)	5.5 (4.7-6.2)	294 (124-434)	45 (19-53)	411 (303-535)
<i>Hyalocylis striata</i>	Current study	6.9 (6.8-6.9)	6.6 (6.5-6.7)	22 (18-28)	7.9 (7.6-8.1)	146 (116-191)	25 (24-26)	169 (158-183)
<i>Diacria trispinosa</i>		12.6 (11.6-13.9)	12.3 (11.6-12.9)	84 (58-114)	6.1 (4.9-6.8)	1051 (680-1567)	86 (60-105)	1016 (830-1150)
<i>Styliola subula</i>		8.3 (3.6-8.7)	3.7 (1.6-4.0)	42 (17-63)	8.4 (6.1-10.5)	338 (148-505)	39 (22-52)	375 (348-417)
<i>Creseis clava</i>		7.1 (6.8-7.2)	3.8 (3.6-4.0)	38 (33-40)	12.0 (10.5-13.8)	262 (238-278)	NA	NA
<i>Pneumoderma atlantica</i>		12.6 (11.5-13.1)	5.1 (5.0-5.2)	18 (11-34)	4.0 (3.7-4.3)	224 (134-438)	NA	NA
Heteropod		2.9 (2.3-3.3)	1.7 (1.6-1.8)	29 (22-35)	9.5 (9.3-9.6)	84 (52-117)	NA	NA
<i>Atlanta selvagensis</i>	Karakas et al. (2018)	2.2	2.1	27	9.1	59	NA	NA

1200 Table 3: MOCNESS distributions of species used in this study. The minimum (min) and maximum (max) depth (m) in which a large number of
 1201 individuals of each group was observed in our image and molecular datasets. The depth of DVM was estimated from our data as well as from
 1202 prior literature. Where inferred species names deviate from the molecular database due to recent changes in nomenclature are noted with a +.
 1203 Information that was inferred from molecular datasets and applied to image or filming datasets are demarcated with a *.

Species	filmed	image min	image max	molecular min	molecular max	DVM extent	Literature source
<i>Heliconoides inflatus</i>	Y	0-50	250-400	Not identified in barcoding		~200 m	(Wormuth, 1981)
<i>Limacina bulimoides</i>	Y	0-50	150-250	Not identified in barcoding		~100 m	(Wormuth, 1981)
<i>Cuvierina atlantica</i> +	Y	0-50	300-400	0-50	300-400	~300 m	(Wormelle, 1962)
<i>Hyalocylis striata</i>	Y	50-200	50-200	0-50	50-200	~200 m	(Maas et al., 2012)
<i>Diacria trispinosa</i>	Y	50-200	300-400	50-200	300-400	~100 m	(Wormelle, 1962)
<i>Styliola subula</i>	Y	0-50	400-500	Not identified in barcoding		~250 m	(Wormuth, 1981)
<i>Creseis clava</i>	Y	0-50	50-200	0-50	50-200	~50	(Wormuth, 1981)
<i>Pneumoderma atlantica</i> *	Y*	0-50*	0-50*	0-50	200-300	~100 m	
<i>Gymnosomata</i> sp.*	N	500-700*	500-700*	300-400	550-700	None	
<i>Heteropoda</i>	Y	0-50	400-500			multiple species	
<i>Clio pyramidata</i>	N	50-200	550-700	50-200	50-200	~400 m	(Wormuth, 1981)
<i>Creseis conica</i> +	N	0-50	50-200	Not identified in barcoding		~100 m	(Wormuth, 1981)
<i>Diacria quadridentata</i>	N	Not identified in MOCNESS		50-200	50-200	None	(Bé and Gilmer, 1977)
<i>Limacina leuseruii</i>	N	Not identified in MOCNESS		0-50	300-400	~200 m	(Wormuth, 1981)

1204

1205