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Learning a Spatial Field in Minimum
Time With a Team of Robots

Varun Suryan

Abstract—1In this article, we study an informative path-planning
problem where the goal is to minimize the time required to learn a
spatially varying entity. We use Gaussian process (GP) regression
for learning the underlying field. Our goal is to ensure that the GP
posterior variance, which is also the mean square error between
the learned and actual fields, is below a predefined value. We
study three versions of the problem. In the placement version, the
objective is to minimize the number of measurement locations while
ensuring that the posterior variance is below a predefined thresh-
old. In the mobile robot version, we seek to minimize the total time
required to visit and collect measurements from the measurement
locations using a single robot. We also study a multirobot version
where the objective is to minimize the time required by the last
robot to return to a common starting location called depot. By ex-
ploiting the properties of GP regression, we present constant-factor
approximation algorithms. In addition to the theoretical results, we
also compare the empirical performance using a real-world dataset,
with other baseline strategies.

Index Terms—Gaussian Process (GP) regression, informative
path planning (IPP).

I. INTRODUCTION

ENSING, modeling, and tracking various spatially varying
S entities can improve our knowledge and understanding of
them. This can have significant economic, environmental, and
health implications. For example, knowing the content of various
nutrients in the soil of a farm can help the farmers better under-
stand soil chemistry. Understanding soil chemistry is helpful for
the farmers to improve the yield and reduce the application of
fertilizers [1]. An overload of certain chemicals inside a water
body may have a significant impact on marine life. Knowing the
spatial extent of the spill is necessary for effective control and
mitigation strategies [2]. Understanding the spatial variation of
rock minerals can help in efficient mining strategies [3]. In all
such applications, a key first step is the collection of data using
appropriate sensors which can then be used to build models
of the underlying phenomenon. However, collecting data can
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Fig. 1. Single quadcopter can fly over a farm and measure the height of the
crop using a LIDAR sensor.

be tedious and often requires careful human planning. Manual
data collection can also be dangerous. For example, volcano
monitoring data help to see where previous lava flows have
gone and previous ash fall has occurred. However, volcanic ash
is usually pulverized rocks and glass particles and potentially
catastrophic for the people engaged in monitoring [4]. One
alternative which would alleviate the human risks of manual
data collection is the use of robots equipped with appropriate
sensors to collect data.

There are many factors to consider when deploying robots
for data collection. Usually, a tradeoff must be made between
the quantity of sensing resources (e.g., number of deployed
robots, energy consumption, mission time) and the quality of
data collected. The robots can be deployed to act as stationary
or mobile sensors depending on the application (see Fig. 1).
Deploying robots to function as mobile sensors is especially
challenging because of the need for path planning. While de-
ploying mobile robotic sensors, one needs to plan the most
informative resource-constrained observation paths to minimize
the uncertainty in modeling and tracking the spatial phenomena.

Planning informative resource-constrained observation paths
for robot sensors to estimate a spatially varying entity, often
known as informative path planning (IPP), has received recent
attention in the robotics community [S]-[10]. IPP deals with
the problem of deciding an autonomous robot path along which
maximum possible information about a quantity of interest can
be extracted while operating under a set of resource constraints.
In this article, our quantity of interest is a spatially varying
phenomenon, often represented by a spatial field.! Generally, the
underlying spatial field is specified by a probabilistic model. One
of the commonly used probabilistic models is Gaussian process

!n this article, a spatial field is a function f (z),z € U, that is defined over
a spatial domain, U C R2.
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(GP) [11]. GPs provide an mathematically convenient way of
performing nonparametric regression while making fewer as-
sumptions on the underlying field. They allow for expressing
domain knowledge through the choice of kernel functions. In
particular, for spatially varying fields, numerous studies have
shown the efficacy of modeling with GPs [12]. An alternative
would be geometric models which make strong assumptions and
cannot represent the stochastic noise in the measurements di-
rectly [5]. Thus, probabilistic models make a suitable candidate
for such scenarios.

Once the underlying spatial field is modeled, the next task
is to plan a robot path based on that model. The robot travels
along a path planned in this step. Several metrics can be used to
perform the planning step. An information-theoretic metric, such
as mutual information (MI), entropy, or variance, is typically
used as a criterion to drive the robot to sampling locations [13].
Generally, the information-theoretic metrics are submodular
and hence, an approximation guarantee can be given on the
performance of the resulting algorithms [5]. Unfortunately, the
information-theoretic metrics, such as entropy, MI, etc., are
indirect and do not consider the accuracy of the predictions.
Unlike these works, we study how to ensure that the GP predicted
mean? is accurate and present a constant-factor approximation
algorithm if the hyperparameters of the GP kernel do not change.

We use variance of GP prediction as the metric to perform the
planning step. Predictive variance also turns out to be the mean
square error (MSE) in GP prediction if the hyperparameters are
known [14]. Our goal in this work is to plan the informative
paths such that the predictive variance at all locations is below
a predefined threshold A, after collecting measurements using
mobile sensors. This leads to same guarantees on MSE as well.
We study the following three related problems, that of:

1) finding measurement locations to make measurements;

2) planning a tour for a single robot to visit those measure-

ment locations;

3) planning tours for multiple mobile robots.

This to ensure that the predictive variance is below A. The
objective is to minimize the number of measurement locations in
the first problem and the total tour time in the second problem.
With multiple robots, the objective is to minimize the maxi-
mum time taken among all the robots. The total tour time is
given by the measurement time and the travel time between
measurement locations. The measurement time depends on the
number of measurements taken at each location as well as the
time to take a single measurement. Depending on the sensor,
the measurement time can be zero (e.g., cameras) or nonzero
(e.g., soil probes measuring organic content). We show that a
nonadaptive algorithm suffices to solve the problem and yields
a polynomial-time constant-factor approximation to the optimal
algorithm. While other algorithms have been proposed before
for estimating spatial fields, this is the first result that provides
the theoretical guarantees on the total time for ensuring predic-
tive accuracy at all points. Our main contributions include the
following:

2We use predicted mean and estimated mean interchangeably since the
function is independent of time.
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1) introducing stationary sensor placement and mobile sen-
sor algorithms for ensuring that the predictive variance,
and hence MSE, at each location in the environment is
below a predefined threshold;

2) providing polynomial-time constant-factor approximation
guarantees on their performance;

3) showing their performance on a real-world dataset com-
prising of OM concentrations at various locations within
a farm.

Similar problems have been studied in the literature. For
example, Yfantis et al. [15] studied a stationary sensor problem.
Their approach considers and investigates only three types of
predefined placement designs while for a general case none of
them may be a good design. The algorithms presented in this
work are not restricted to any predefined placement strategy.
Further, we are not aware of any existing theoretical guarantees
on the mobile sensor problems studied in this article.

The rest of the article is organized as follows: In Section II,
we present a discussion on related works and background on
the problems studied. In Section III, we formally present the
problems and their solutions. Simulation results are presented
in the Section IV. Section V concludes this article.

A preliminary version of this work was presented at the
13th International Workshop on the Algorithmic Foundations
of Robotics (WAFR’18) [16]. In the preliminary version, we
provided guarantees for the chance constraints of incorrect
predictions using an aggregate measure of prediction error. In
current work, a more direct performance criterion, MSE at
each location of the environment, is considered which leads
to stronger theoretical guarantees. Also, an extension of the
algorithms for the multirobot case is presented.

II. RELATED WORK AND BACKGROUND

We begin by reviewing the related work in sensor placement
where the goal is to cover a given environment using sensors
placed at fixed locations and mobile sensing where sensors can
move and collect measurements from different locations.

A. Stationary Sensor Placement

When monitoring a spatial phenomenon, such as temperature
or humidity in an environment, selection of a limited number of
sensors and their locations is an important problem. The goal
in this problem is to select the best k& out of n possible sensor
locations and use the measurements from these to make predic-
tions about the spatial phenomenon. The typical formulation of a
sensor selection problem makes it NP-hard [17]. Previous work
used global optimization techniques such as branch and bound
to exactly solve this problem [18], [19]. However, these exact
approaches are often computationally intensive.

One can solve the task as an instance of the art-gallery
problem [20], [21]—find the minimum set of guards inside a
polygonal workspace from which the entire workspace is visible.
However, this version of the problem only covers vision-based
sensors and does not consider noisy measurements [5].

An alternative approach from spatial statistics is to learn a
model of the phenomenon, typically as a GP [22], [23]. The
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learned GP model can then be used to predict the effect of placing
sensors at locations, and thus, optimize their placement. For a
given GP model, many criteria including information-theoretic
ones have been proposed to evaluate the quality of placement.
Shewry and Wynn [24] introduced the maximum entropy crite-
rion where the sensors are placed sequentially at the locations of
highest entropy. Ko et al. [25] proposed a greedy algorithm by
formulating the entropy maximization as maximizing the deter-
minant of the covariance matrix. However, the entropy criterion
tends to place the sensors at the boundary of the environment thus
wasting sensed information [26]. MI can be used as well [22],
[27], [28]. Krause ef al. [5] studied the problem of maximizing
MI for optimizing sensor placement problem. They presented a
polynomial-time approximation algorithm with constant factor
guarantee by exploiting submodularity [29]. Eventually, they
showed that MI criterion leads to improved accuracy with a fewer
number of sensors compared to other common design criteria
such as entropy [24], A-optimal, D-optimal, and E-optimal
design [30].

The abovementioned methods estimate the prediction error
indirectly. Nguyen et al. [31] considered choosing a set of n
potential sensor measurements such that the root mean square
prediction error is minimized. They presented an annealing-
based algorithm for the sensor selection problem. Their algo-
rithm started by selecting a potential subset of cardinality & from
the entire population of sensor locations. After that, it iteratively
attempted to substitute the members of the selected subset by its
neighbors according to an optimization criterion.

None of the criteria discussed above cannot directly make
any guarantees on the MSE in predictions at each point in the
environment. Instead, we design a sensor placement algorithm
which results in an accurate reconstruction of the spatial field
using the collected sensor measurements. Most works in the past
have focused on optimizing an objective function (entropy, MI,
etc.) given the resource constraints (limited energy, number of
sensors, and time, etc.). We optimize the resource requirement
given the objective constraint (MSE below a predefined thresh-
old A), predictive accuracy more than a predefined threshold in
our case.

B. Mobile Sensing

The goal in the mobile sensing problem, also known as
IPP, is to compute paths for robots acting as mobile sensors.
Paths are being computed in order to accurately estimate some
underlying phenomenon, typically a spatial field [32], [33]. A
central problem in IPP is to identify the hotspots in a large-scale
spatial field. Hotspots are the regions in which the spatial field
measurements exceed a predefined threshold. In many applica-
tions, it is necessary to assess the spatial extent and shape of
the hotspot regions accurately. Low et al. [34] presented a de-
centralized active robotic exploration strategy for probabilistic
classification/labeling of hotspots in a GP-based spatial field.
The time needed by their strategy is independent of the map
resolution and the number of robots, thus making it practical
for in situ, real-time active sampling. Another formulation in
hotspot identification is that of level set identification [35].
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Previous works on level set boundary estimation and track-
ing [36]-[38] have primarily focused on communication of the
sensor nodes, without giving much attention to individual sam-
pling locations. Bryan et al. [39] proposed the straddle heuristic,
which selects sampling locations by trading off uncertainty and
proximity to the desired threshold level, both estimated using
GPs. However, no theoretical justification had been given for
its use and its extension to composite functions [40]. Gotovos
et al. [41] proposed a level set estimation algorithm, which
utilizes GPs to model the target function and exploits its inferred
confidence bounds to drive the selection process. They provided
an information-theoretic bound on the number of measurements
needed to achieve a certain accuracy, when the underlying
function is sampled from a GP.

In many mobile sensing problems, it is not enough to identify
only a few specific regions but estimate the entire spatial field
accurately. It can be formulated as a path planning problem
to observe a spatial field at a set of sampling locations, and
then making inference about the unobserved locations [42].
Choosing and visiting the sample locations so that one can
have an accurate prediction (point prediction and/or prediction
interval) is of great importance in soil science, agriculture, and
air pollution monitoring [28]. The objective functions used are
usually submodular, and thus, exhibit a diminishing returns
property. Submodularity arises since nearby measurement lo-
cations are correlated [43]. Chekuri and Pal[44] introduced a
quasi-polynomial time algorithm for maximizing a submodular
objective along the path using a recursive greedy strategy. This
algorithm was further extended by Binney er al. [45] for spa-
tiotemporal fields using average variance reduction [46] as the
objective function.

Zhang and Sukhatme [47] proposed an adaptive sampling
algorithm consisting of a set of static nodes and a mobile robot
tasked to reconstruct a scalar field . They assumed that the mobile
robot can communicate with all the static nodes and acquire
sensor readings from them. Based on this information, a path
planner generates a path such that the resulting integrated MSE
is minimized subject to the constraint that the boat has a finite
amount of energy.

An important issue in designing robot paths is deciding the
next measurement location [6], [48]—[50], often referred to as
the exploration strategy. Traditionally, conventional sampling
methods [51], such as raster scanning, simple random sampling,
and stratified random sampling, have been used for single-robot
exploration. Low et al. [52] presented an adaptive exploration
strategy called adaptive cluster sampling. It was demonstrated
to reduce mission time and yield more information about the
environment. Their strategy performs better than a baseline
sampling scheme called systematic sampling [53] using root
mean squared error as a metric. A different adaptive multirobot
exploration strategy called MASP was presented in [54] which
performs both wide-area coverage and hotspot sampling using
nonmyopic path planning. MASP allows for varying adaptivity
and its performance is theoretically analyzed. Further, it was
demonstrated to sample efficiently from a GP and logGP. How-
ever, the time complexity of implementing it depends on the
map resolution, which limits its large-scale use. To alleviate this
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computational difficulty, an information-theoretic approach was
presented in [55]. The time complexity of the new approach
was independent of the map resolution and less sensitive to
the increasing robot team size. Garnett et al. [56] considered
the problem of active search, which is also about sequential
sampling from a domain of two (or more) classes. Their goal was
to sample as many points as possible from one of the classes.

Yilmaz et al. [57] solved the adaptive sampling problem
using mixed integer linear programming. Popa et al. [49] posed
the adaptive sampling problem as a sensor fusion problem
within the extended Kalman filter framework. Hollinger and
Sukhatme [8] proposed a sampling-based motion planning al-
gorithm that generates maximal informative trajectories for the
mobile robots to observe their environment. Their information
gathering algorithm extends ideas from rapidly-exploring ran-
dom graphs. Using branch and bound techniques, they achieve
efficient optimization of information gathering while also allow-
ing for operation in continuous space with motion constraints.
Cao et al. [58] presented two approaches to solve IPP for
in situ active sensing of GP-based anisotropic spatial fields.
Their proposed algorithms can tradeoff active sensing perfor-
mance with computational efficiency. Ling et al. [9] proposed
a nonmyopic adaptive GP planning framework endowed with
a general class of Lipschitz continuous reward functions. Their
framework can unify some active learning/sensing and Bayesian
optimization criteria and offer practitioners flexibility to specify
choices for defining new tasks. Tan et al. [59] introduced the
receding-horizon cross-entropy trajectory optimization. Their
focus was to sample around regions that exhibit extreme sensory
measurements and much higher spatial variability, denoted as the
region of interest. They used GP-UCB [60] as the optimization
criteria which helps in exploring initially and converging on
regions of interest eventually.

A naive implementation of GP prediction scales poorly with
increasing training dataset size. Sparse GP frameworks can
overcome this problem by using only a subset of the data to
provide accurate estimates. A state-of-the-art sparse GP variant
is SPGP [61]-[64]. The SPGP framework learns a pseudosub-
set that best summarizes the training data. Mishra et al. [65]
introduced an online IPP framework AdaPP which uses SPGP.

C. Sensing With Multiple Robots

Mobile sensing can be made faster by distributing the task
among several robots. Multirobot systems can do complex tasks
and have been widely used in environmental sampling [66],
coverage [67]. Robots can use local communication or control
laws to achieve some collective goals.

Singh et al. [6] proposed a sequential allocation strategy that
uses GP regression, which can be used to extend any single robot
planning algorithm for the multirobot problem. Their procedure
approximately generalizes any guarantees for the single-robot
problem to the multirobot case. However, the approach works
only when MI is the optimization objective. Cao et al. [58]
presented two approaches along with their complexity analy-
sis addressing a tradeoff between active sensing performance
and time efficiency. Luo and Sycara [68] combined adaptive
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sampling with information-theoretic criterion into the cover-
age control framework for model learning and simultaneous
locational optimization. They presented an algorithm allowing
for collaboratively learning the generalized model of density
function using a mixture of GPs with hyperparameters learned
locally from each robot. Kemna et al. [69] created a decentral-
ized coordination approach which first splits the environments
into Voronoi partitions and makes each vehicle then run within
their own partition. Other multirobot approaches used in other
domains, e.g., exploration and estimation with ground vehicles,
include auction-based methods [70]-[72] and spatial segrega-
tion, typically through Voronoi partitioning [73], [74].

Tokekar et al. [10] presented a constant factor approximation
algorithm for the case of accurately classifying each point in
a spatial field. The first step in the algorithm is to determine
potentially misclassified points and then to find a tour visiting
neighborhoods of each potentially misclassified point. In this
article, we study a regression version of the problem where
every point is of interest. We exploit the properties of GP and
squared-exponential kernel to find a constant-factor approxima-
tion algorithm. Before the details of the algorithms, we review
some relevant background and useful properties of GPs and
MSE.

D. Gaussian Processes

In GP regression, the posterior variance at any test location x

is given by

62 x = k(z,x) — k(z, X) [K(X, X) +w2] " k(X,2) (1)
where K (X, X) is the kernel matrix with entries, K,, =
k(zp,xq) = o} exp(%). Here, 03, [, w? are signal vari-
ance, length scale, and additive independent and identically dis-
tributed Gaussian measurement noise, respectively [11]. We use
the same value of length scale along each input dimension. Note
that the posterior variance at a particular location x conditioned
on set of observations at locations X = {x1,...,2,} does not
depend on the actual observation but only on the locations
from where the observations are collected. Multiple observations
at a location is equivalent to that location being counted as
many times as the number of measurements. The kernel is a
function that measures the similarity between two measurement
locations [11].

Since the posterior variance is a function of only the mea-
surement locations, the posterior variance for all points in the
environment can be computed a priori, if the measurement
locations are known, even without making any observations. In
many implementations [13], [33], [75], the hyperparameters for
the kernel k are tuned online as more data is gathered. As such,
the hyperparameters may change with the observed data and the
posterior variance will depend on the data observed, which may
require adaptive planning. We assume that the hyperparameters
are estimated a priori. This is done using prior data from the
same or similar environments or a pilot deployment over a
smaller region, as described in [5], [76], and [77]. Example
applications are underwater inspection [76] and occupancy map
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building [77], where prior data are used for determining hy-
perparameters before the actual deployment. Nevertheless, one
can perform sensitivity analysis of the presented algorithms by
varying the hyperparameters [78], [79].

The posterior mean /i, x atalocation x is given by a weighted
linear combination of the observed data

fiapx = k(z, X) [K(X, X) + 1]y )

where y = {y1,...,yn} denotes the observations at locations

X =A{x1,...,2n}

E. Mean Square Error

MSE measures the expected squared difference between an
estimator and the parameter the estimator is designed to esti-
mate [80]. The MSE at a location x for an estimator f is

MSE (f@)) = Var (f@) + (Bf@) - 1)) &)

where (3) is the bias-variance expression for the estimator. GP
predicted value f (z) at a location z is an unbiased estimator
of the true value f(x) [15] and has a normal distribution with
mean given by (2), and variance given by (1). Among all linear
and nonlinear estimators, GP is the best in terms of minimizing
MSE [14], [81]. Further, GPs are unbiased and hence, the MSE
at a location z is equal to the posterior variance of the predicted
value, i.e.,

“

From (4), one can deduce that MSE for GPs is same as the
posterior variance and hence, any guarantees for the posterior
variance hold for MSE as well.

MSE(x) = 62 -

III. ALGORITHMS

In this section, we formally define the problems and the algo-
rithms. We assume that the environment is a two-dimensional
(2-D)area U C R? and the underlying spatial field is an instance
of a GP F' [15]. F has an isotropic covariance function of the
form

(v — )2

Cz(z,2') = 0f exp (— 52

> Vo, o' e U (5)
defined by a squared-exponential kernel where the hyperparam-
eters 02 and [ are known a priori. Let X denote the set of
measurement locations within U produced by an algorithm.

Problem 1 (Placement): Find the minimum number of mea-
surement locations, such that the MSE at each location in U is
below A< 0, i.e.,

X

minimize

subject to MSE(x) < ANz eU

where | X| is the cardinality of X and M SE(x) is the MSE at
location .

Problem 2 (Mobile): Find the minimum time trajectory for
a mobile robot that obtains a finite set of measurements at one
or more locations in U, such that the MSE at each location in U
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is less than A, i.e.,

minimize

len(T) + nn(X)

subject to MSE(x) <A Vxel.

7 denotes the tour of the robot. Robot travels at unit speed,
obtains one measurement in 7 units of time and obtains n(X)
total measurements.

The robot may be required to obtain multiple measurements
from a single location. Therefore, the number of measurements
n(X) can be more than | X |. For multiple robots, their tours can
start at the same starting location (often referred to as a depot)
or can start at different locations. In this article, our focus is on
the former case. The latter case is more appropriate when the
robots must persistently monitor the environment.

Problem 3 (Multirobot): For k robots starting from a given
starting location (depot), design a set of trajectories that collec-
tively obtain a finite set of measurements at one or more locations
in U, such that the MSE at each location in U is less than A, i.e.,

minimize max len(r;) + nn(X;)
ie{l,...,k}
subject to MSE(x) <A VYaxaelU

where 7; denotes the tour of the ith robot and X; the subset
of measurement locations covered by the ith robot. The robots
travel at unit speed, obtain one measurement in 7 units of time.
ith robot obtains n(X;) total measurements.

The solution for Problem 1 is a subset of the solution to
Problem 2. Further, the solution for Problem 3 is derived from the
solution for Problem 2. The three algorithms build on top of each
other by: (1) finding a finite number of measurement locations
for the robot; (2) finding a tour to visit all the measurement loca-
tions; and (3) splitting the tour from step 2 in multiple subtours
for k robots. We exploit the properties of squared-exponential
kernel to find the measurement locations. By knowing the value
at a certain point within some tolerance, values at nearby points
can be predicted albeit up to a larger tolerance.

A. Necessary and Sufficient Conditions

We start by deriving necessary conditions on how far a test
location can be from its nearest measurement location. A test
location corresponds to a point in the environment where we
would like to make a prediction.

Lemma 1 (Necessary Condition): For any test location z, if
the nearest measurement location is at a distance 7,,,x away, and

Tmax > I [ —log <1 — A2> (6)
90

then it is not possible to bring down the MSE below A at x.
Proof: Consider the posterior variance 62(n) at x [which
is also equal to the MSFE at = from (4)] after collecting n
measurements, possibly from different locations. A lower bound
on 62(n) can be obtained by assuming that all measurements
were collected at the nearest location x; to x. This is based
on the fact that the closer the observation, lower the predictive

variance. A mathematical proof for this is provided in Appendix.
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Let the nearest measurement location z; is distance r away from
x. Assuming that all n measurements were collected at x;, lower
bound for posterior variance at x can be calculated using (1)

x

62(n) = o = [k(w,2),.., Ko, 0)|
08 + w? ol - k(x,x;)
X : . (7

o3 03 + w? k(x,x;)

It is worth mentioning that the square matrix in (7) is of order
n X n since there are n measurements. Substituting the value

2 . . .
for k(x,2;) = 0§ exp(—55z) in (7) and performing the required
matrix operations, we get

1 - 1 2 712
n+:—2 n+:—2 1
0 0
X - e ®
-1 1
1-— 1
n+‘:—§ n-‘r%
0] 0
Therefore
4
. o 1 n(n—1
Gin) > o5 ——5 (n(l-——=| - ( wﬁ ©)
w n—+ = n—+ =
g O'O
7,2
(s oelir)
> |1 — (10)

Even if we had collected infinitely many measurements at the
nearest location x;, the posterior variance will still be lower
bounded as

(-
exp | — rlnzax)
2 1 — N - 7

~92 .
62(n) > lim o (11)
x n—00 0 ]__i_n%:g
2
=0} (1 — exp (—r?;‘x)> . (12)

If the posterior variance at z even with the infinitely many
measurements collected at the nearest measurement location x;
[see (12)] is greater than A, i.e.,

2
A <o} (1 — exp (—?;")) =
A
Tmax > ([ —log (1 — 2)
90

then it is not possible to bring down the MSE at = below A in
any circumstance. u

Next, we prove a sufficient condition that if every point in the
environment where no measurement is obtained (test location) is
sufficiently close to a measurement location, then we can make
accurate predictions at each point.

13)
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Fig.2. Collecting n, measurements at O suffices to make accurate predictions
at all points inside disk D3 (sufficient condition). No number of measurements
at O can ensure predictive accuracy on points outside disk D; (necessary
condition).

Lemma 2 (Sufficient Condition): For a test location x € U,
if there exists a measurement location z; € X, r distance away
from x with ng.s measurements at x;, such that

2 A
<l —10g(<1+ © 2> (1—2)) (14)
TsuffO () g

then GP predictions at x will be accurate, i.e., MSE at x will be
smaller than A.

Proof: From (10), we have an expression for variance of the
posterior predictive distribution at 2. Taking the other measure-
ment locations into consideration can not increase the posterior
variance at z. Information never hurts [82]! To prove the suffi-
ciency, we consider ng,; measurements at x; only and discard
others knowing that the other locations can not increase the
posterior variance at . Bounding the expression in (10) with
A results in

[, oo ()
Aol |1-— 7 (15)
nsuffa'g

o r2 > (14 w? 1 A
<o [ —— _ =
P 2) = Nsufi0a o}
w? A
r <l —log((l—i—nquﬁa(%) (1—0(2)))

a7

(16)

|
Lemma 2 gives a sufficient condition for GP predictions to
be accurate at any given test location x € U. The following
lemma shows that a finite number of measurements ngufr =7,
are sufficient to ensure predictive accuracy in a smaller disk of
radius érmax around x;, where a > 1 (see Fig. 2).
Lemma 3: Given a disk of radius érmax centered at x;, n,
measurements at z; suffice to make accurate predictions for all
points inside the disk, where

Y

(18)

No
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Algorithm 1: DISKCOVER.

1:  Procedure

2: Input: An environment.

3:  Output: Measurement locations.
4: begin

1) Design a set A" of disks of radii 7,,x Which
covers the environment and calculate a Maximal
Independent Set (MIS) Z of X greedily i.e.,

7 =MIS(X).

2) Place disks of radii 37y, concentric with disks in
Z. Let the set of 3r,.x radii disks is X .

3) Cover each disk in X with disks of radii + = Tmax a8
shown in Fig. 3 and label centers of all dlsks of
radii 4 = Tmax-

4) Return all the labeled points in previous step as
measurement locations.

end procedure

Proof: We want a sufficiency condition on the number of
measurements n,, inside a disk of radius + = Tmax- Lemma 2 gives
an upper bound on the radius of a disk such that all points inside
the disk will be accurately predicted after n, measurements at
the center. We construct a disk (D- in Fig. 2), whose radius is
equal to 27y, such that

L < l\/—log ((1 s ) <1 — AZ)) (19)
! Nao? og

Plugging in the value of 7, from Lemma 1, squaring both
sides in (19) and rearranging for n,, gives the required bound
stated in Lemma 3. Ceiling function in (18) accounts for the fact
that n,, is an integer. |

A packing of disks of radius 7,,,x gives a lower bound on the
number of measurements required to ensure predictive accuracy.
On the other hand, a covering of disks of radius 1 > Tmax ZIVes
us an upper bound on the number of measurements requ1red. To
solve Problem 1, what remains is to relate the upper and lower
bound and present an algorithm to place the disks of radii érmax.

B. Placement of Sensors for Problem 1

We use an algorithm similar to the one presented by Tekdas
and Isler [83] for stationary sensor placement in order to track
a target using bearing sensors. In their case, the goal is to
place sensors such that irrespective of where the target is in the
environment, there are at least three sensors forming a triangle
that get good quality bearing information of the target. The show
how to cover the environment with disks and place a triangle of
sensors within each disk. The setup is different from the one
we have; however, we use a similar disk coverage strategy as a
subroutine here. The exact procedure is outlined in Algorithm 1.

Theorem 1: DISKCOVER (Algorithm 1) gives an 18a2-
approximation for Problem 1 in polynomial time.

Proof: Denote the set of measurement locations computed
by the optimal algorithm to solve the Problem 1 by X*. The
function MIS in Step 1 of Algorithm 1 computes a maximally
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Fig.3. Wecovereach 37,5 radius disk with érmax radii disks (smaller gray
disks) in lawn-mower pattern. 18a.2 disks suffice to cover the bigger disk. The
locations of disks of radii érmax inside a disk of radius 37, are obtained by
covering the square circumscribing bigger disk with smaller squares inscribed
in smaller disks. The centers of smaller squares coincide with the centers of
smaller disks.

independent set of disks: the disks in Z are mutually noninter-
secting (independent) and every disk in X'\Z intersects at least
one disk in Z (maximal). The set Z can be computed by a simple
polynomial greedy procedure: choose an arbitrary disk d from
X, add it to Z, remove all disks in X which intersect d, and
repeat the procedure until no such d exists.

An optimal algorithm will collect measurements from at least
as many measurement locations as the cardinality of Z. This
can be proved by contradiction. Suppose an algorithm visits
measurement locations fewer than the number of disks in Z. In
that case, there will exist at least one disk of radius 7« in Z
which will not contain a measurement location. This means that
there will be at least a point in that disk which will be more than
max away from each measurement location. From Lemma 1,
the robot can never make accurate predictions at that point and
hence violating the constraint in Problem 1. Hence

7] < [X7). (20)

Every disk in & intersects at least one disk in 7 and hence, lies
within 37, of the center of a disk in Z. As a result, X disks
cover all the X disks and hence, the entire environment.>

Collecting measurements from 18c? locations inside a 3rmax
disk suffice to make accurate predictions in that disk (satisfying
the Problem 1 constraint for points belonging to that disk) as
illustrated in Fig. 3. DISKCOVER collects measurement from
18 such locations per disk in X It collects measurements from
a total of 18| X' | locations, hence, satisfying the constraint for
all points in the area covered by union of X’ disks. Since, union
of X’ disks covers the entire environment, DISKCOVER satisfies
the constraint for all points in the environment. Multiplying both
sides of (20) with 182, we get, 180¢2|Z| < 18a2|X*|. Note that
|X| = |Z|. Hence

18a2%| X|

IN

1802 | X*| (21)

A

TNDISKCOVER (22)

18a%| X*|

3Note that 37y, is the minimum radius of the bigger disks to guarantee
that the entire environment is always covered. In specific instances, it may be
possible to cover the environment with smaller than 37, ,x by selecting the MIS
using a well-designed heuristic. However, there are environments where 37 ax
will be necessary.
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Algorithm 2: DISKCOVERTOUR.

1:  Procedure

2: Input: A set of measurement locations calculated
from Algorithm 1.

3:  Output: An approximate optimal tour visiting all the
measurement locations.

4: begin

1) Calculate approximate TSP tour visiting centers
of the 3rmax radius disks (set X') disks.

2) Cover X disk containing the starting location in
lawn-mower pattern visiting the centers of
corresponding disks of radius irmax and make
n, measurements at each center point.

3) Move to the center of next X’ disk along the tour
calculated in Step 1.

4) Repeat Steps 2 and 3 until all X’ disks are
covered.

end procedure

where npiskcover 18 the number of measurement locations for
DISKCOVER. |

C. Finding an Approximate Optimal Trajectory for Problem 2

The algorithm for Problem 2 builds on the algorithm presented
in the previous section. The locations where measurements are
to be made become the locations that are to visited by the robot.
The robot must obtain at least n, measurements at the center
of each disk of radius érmax. A pseudocode of the algorithm is
presented in the Algorithm 2.

Theorem 2: DISKCOVERTOUR (Algorithm 2) yields a
constant-factor approximation algorithm for Problem 2 in poly-
nomial time.

Proof: From Theorem 1, we have a constant approximation
bound on number of measurement locations. Let the time (travel
and measurement time) taken by the optimal algorithm be 77.
Using notation from Theorem 1, we assume that the optimal
traveling salesperson with neighborhoods (TSPN) time to visit
disks in Z be T7;. In TSPN, we are given a set of geometric
neighborhoods, and the objective is to find the shortest tour
that visits at least one point in each neighborhood (disks in this
case) [10]. The optimal algorithm will visit at least all disks once
in Z which gives the following minimum bounds on the optimal
travel time (1},,...;) and optimal measurement time (1},

T7 < Thavei 121 < T3,

travel’

EClS’IJ/I"S)

(23)

easure*

Let the optimal time to visit the centers of disks in Z be
T;c. An upper bound on T7. can be established by the fact
that upon visiting each disk, the robot can visit the center of
that disk and return back by adding an extra tour length of
2 max, 1.€., a detour of maximum length |Z| X 27,y for all
disks in Z. As aresult: T < T} 4 2ryax|Z]. Using inequality
from (23): T7c < T}, o1 + 27max|Z|. For any disk in X, the
length of lawn-mower path starting from the its center and
return back (see Fig. 3) after visiting all center points of érmax
disks will be of order O(a?)r .. Hence, the total travel time
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for DISKCOVERTOUR is: T¢ + |Z|O(a?)rmax, Where Tt is the
(1 + €)-approximated time with respect to the optimal TSP tour
returned by the (1 + ¢)-approximation algorithm to visit the
centers of the disks in X’ (or Z disks since they are concentric).
T can be calculated in polynomial time [84] having bounds:
Te < (1+¢€) Tc, with T being the optimal TSP time to visit
the centers of X disks. Measurement time for DISKCOVERTOUR
is 18a*nn2|Z|. Hence, the total time T, for DISKCOVERTOUR
is

Tn}lg =Tc + |Z|O(0®)rmax + 18 nna|Z| (24)
<(1+¢) Tze + 0(042)7’max|1'\ + 180427m2|I| (25)
S (1 + 6) (Tt*ravel + 2rnlax‘I‘) + 0(042)7"max|I| (26)

+ 18 nns|Z|

where no is the number of sufficient measurements required
inside a disk of radius %rmax (Lemma 3 with o = 2). Length of
any tour that visits k£ nonoverlapping equal size disks of radii r is
atleast0.24 kr [85], which gives 0.247,.x|Z| < T’;. Combining
this result with (23) modifies the bounds in (26) as

2 O(a?)
1 *
Talg < <(1 + E) (1 + 24) + 24 travel

+ 180[2712 T;:zeasure 27
82 " «
S max 933(1 + 6) + ﬂa 72”2 (Ttravel + Tmeasure)7
(28)
O 2
< max (9.33(1 +e)+ (26; >7 18a2n2> Ty (29)
< T (30)

where c, a constant, is larger one of the two quantities inside the
bracket in (30). |

Note that the Algorithm 2 collects same number of measure-
ments from each measurement location. There may be another
algorithm that collects different number of measurements from
different locations which may result in better performance. This
modification is an avenue for future work.

D. Finding an Approximate Optimal Trajectory for Problem 3

When one robot can not handle a large territory, to speed up the
task, k robots can be sent to collectively visitl all measurement
locations. A natural objective is to ensure that no robot has too
large of a task. Hence, we choose our optimization criterion
as minimizing the maximum of the k-robot tour costs. This is
equivalent to minimizing the time taken by the last robot to return
back to the common starting location. Our proposed algorithm
only works if the robots start and return back to the same location
called depot. Any measurement location can be chosen as the
depot but in our case, we assume that the robots start from and
return back to a predefined depot.

We now describe an algorithm which employs a tour-splitting
heuristic to plan for £ robots. We modify the heuristic proposed
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Fig.4.  Splitting the tour for one robot (7) into 5 subtours. The solid line shows
an initial single robot tour 7 starting and ending at 1. The dotted lines denote
the individual robot subtours starting and ending at 1 obtained by splitting the
single tour 7.

Algorithm 3: k -DISKCOVERTOUR.
1:  Procedure
2: Input: Tour calculated from Algorithm 2, Depot
location 7.
3:  Output: k approximate optimal paths visiting all
measurement locations collectively.
4:  begin
1) For j*" robot, 1 < j < k, find the last
measurement location x5 such that the time
taken to travel from z; to ;) along 7 is not
greater than
%(Tallg - (2lmax + an)) + (lmax + 77”?)-

2) Obtain k subtours as Ry = (21, . .., Tp(1), T1),
R2 = (xlvxp(1)+l7 e 7I’p(2)a Il)’ e
Ry = (21, Tp(h-1)41 -+ Tn, T1).

end procedure

by Frederickson et al. [86] to account for the measurement time,
and not just the travel time.

Let the output tour of the robot from Algorithm 2 be denoted
by 7 and [,,,,x be the distance of farthest measurement location
from the depot.

Theorem 3: k-DISKCOVERTOUR (Algorithm 3) yields a (¢ +
2) approximation algorithm for Problem 3 in polynomial time,
given a c-approximation algorithm for Problem 2.

Proof: First, we prove that the time taken along every sub-
tour is bounded and eventually show that the bound is within
a constant factor of the optimal time. With k robots, let the
subtours for first and kth robot are z; — Tp(1) = T1 and r1 —
Tp(k—1)+1 — T1, respectively (an example with k = 5 is shown
in Fig. 4). Subtours for the remaining robots can be denoted by
T1 = Tp(j—1)41 — Tp(j) — 1, where 1 < j < k.

Substituting 7 =1 in Algorithm 3, the time to travel
from 1 to x,(;) along 7, T'(z; N Tp(1)) is no greater than

(Tallg (2lmax +1n2)) + (Imax + 1n2). Time for the first
subtour is hence bounded by T'(z1 = (1)) + T(zp(1) — 1)s

ie., (lelg (2lmax +1m2)) + (Imax + nn2) + lnax. From
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the condition in Algorithm 3, we know that Tp(k—1) is the last
location such that

T (xl N J;p(k,l)> < — k- (leg

> A ( lmax + Tln2))
+ (lmax + 77’)12)

€29

and hence
k—1
k

+ (lmax + 77”2) .

T (xl L> xp(k—1)+1> > — (Talg (2lmax + an))

(32
Subtracting both sides from T,

. k-
Ty =T (o1 5 wpe1y1) < Thy = —— L, -

+77n2)) + (lmax + an)
(33)

( lmax

which gives

T (xp(kfl)+1 ; xl) = k (Talg ( Imax + an))

+ (3lmax + 277”2) ) (34)

and hence, time for the last subtour is bounded by
T(x1 = Tpp—1)+1) + T(Tpr—1)+1 Loxy), e, (Tallg
(2lmax +1m2)) + (Blmax + 2nn2) + lnax. Similar 1nequahtles
can be derived for remaining subtours as follows. For
1 <j <k — 2, following inequalities hold from Algorithm 3:

T(x1 = Tpi)+1) = T z (Talg (2lmax + nng))
+ (lmax + 77”2) ) (35)
T _7 +1
T(ry — xp(j-&-l)) Tk (Talg (2lmax + 77”2))
+ (lmax + 7777/2) . (36)
Subtracting (35) from (36) results in
- 1
T(xp(j)Jrl - xP(J”rl)) % (Talg (2lmax + 77n2)) (37
i.e., the time taken along remaining subtours, 7'(z; —

Tp(j— 1)“ N Tp(j) — v1), where 1 < j <k, is also bounded
by k( alg — (2lmax + mn2)) + 2lmax. Hence, we can conclude
that the time taken along each subtour does not exceed + (Tall o
(2lmax + nn2)) + (4lmax + 277”2)

Let Ta’ﬁg be the time taken for largest of the k subtours
generated by the Algorithm 3, and T7; be the cost of the largest
subtour in an optimal solution to Problem 3. We have

1

Talg <z (Toe — (2lmax + 7m2)) + (dmax + 27n2)  (38)
Talg 1

S T + (2lmax + 77”2) 2— E (39)

from the triangle inequality T} > %Tl* It is natural to think
that at least one robot will have to go to the farthest location
from the depot and come back from there after collecting no
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Actual and predicted OM content comparison. The farm is shown as the colored region with the colorbar denoting concentrations at different locations.

All distance units are in meter. (a) Actual OM content (ppm). (b) Predicted OM content (ppm). (¢) Prediction error between the actual and the predicted OM content

(ppm).

measurements which gives us a lower bound on the output of
the optimal algorithm, i.e., 2.« + N2 < 7). Combining these
results with (30), we get

Th, < %Tl* T (2 - i) (40)
< <c+2—]1> i @1)
<(c+2)Ty. (42)

n

IV. EMPIRICAL EVALUATION

In this section, we report results from empirical evaluation
of the theoretical results. We show qualitative and quantitative
comparison of our algorithms with other baseline strategies
through simulations using precision agriculture as our motivat-
ing example.

Dataset: We use a real-world dataset [87], collected from a
farm, consisting of organic matter (OM) measurements manu-
ally collected from several hundred locations within the farm.
The maximum and minimum values of the underlying field are
54.6 parts per million (ppm) and 25.4 ppm, respectively shown
by the colorbar [see Fig. 5(a)]. Taking this into account, we set
A to be equal to 4 which is 10% of the average of maximum and
minimum field values. We use a simulated sensor that returns a
noisy version of the ground truth measurement with an additive
Gaussian noise of variance w = 0.0361.

The squared-exponential kernel has three hyperparameters—
length scale (1), signal variance (o), and noise variance (w?).
The values of I, oo, and w? were estimated to be 8.33 m,
12.87, and 0.0361, respectively by minimizing the negative
log-marginal likelihood of the manually collected data. We
assume that the estimated values are the true values of the kernel
hyperparameters. In a general application where some prior data
are available, the hyperparameters can be estimated in a similar
way. We used the GPML toolbox to perform the necessary GP
operations [88].

A. Qualitative Example

Stationary Sensor Placement: The final predicted OM content
after performing inference using the measurements obtained is

shown in Fig. 5(b). This predicted OM content is the average
of ten trials. In each trial, the reported value by the sensor can
be different even at the same location because of the simulated
noise. Fig. 5(c) shows a plot of the prediction error averaged over
those ten trials. We observe that the average prediction error is
below A = 4 ppm at each location in the environment. It is
important to mention that average prediction error is not same
as the MSE. The MSE at a location is the expected squared
error in prediction at that location. The average prediction
error, referred as empirical MSE in the following text, is an
empirical estimate of that expectation. As the number of runs
increases, the empirical MSE will converge to the actual MSE.
We verify it through simulations and report the results later.
Our theoretical guarantees hold for the MSE and not for the
empirical MSE. However, one can expect that the empirical
MSE will also be less than the predefined threshold A given
enough trials. The regions where the OM content changes
sharply tend to be more erroneously predicted as shown by the
lighter colored regions in Fig. 5(c). This can be attributed to
the inherent smoothness assumptions of a squared-exponential
kernel.

Single and Multirobot Tours: The measurement locations
computed by the DISKCOVERTOUR are shown in Fig. 6(a).
As postprocessing, we removed the redundant measurement
locations in overlapping 3r,.x radii disks. After performing
this step, the total number of measurement locations was 2320.
A covering of the farm with disks of radii 3ry,.x and an ap-
proximate optimal tour visit the centers of those disks cal-
culated by DISKCOVERTOUR is shown in Fig. 6(b). We com-
pute the optimal TSP tour since this is a reasonably sized
instance. The lawn-mower detours visiting individual 37p,.x
disks have been omitted to make the figure more legible. For
the multirobot version, we assume that we have three robots.
Splitting of a single robot tour [see Fig. 6(b)] in three sub-
tours is shown in Fig. 6(c). The robots start from a common
depot.

Varying Values of A: In some applications, one may be
interested in having more accurate predictions in some parts of
the environment than others. Our algorithms provides a way to
choose locations and plan paths in such applications as well. To
demonstrate this, we divide the farm in three subenvironments
that have different A tolerances. The left-most, middle, and
right-most regions have thresholds of A =6, 4, and 2 ppm,
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Fig. 6. Measurement locations and the tours computed by DISKCOVER and k-DISKCOVERTOUR. For Fig. 6(b) and (c), the complete tours that take detours to visit
all the locations in Fig. 6(a) have been omitted to make the figures more legible. (a) Measurement locations calculated by the DISKCOVER algorithm. There are
1012 measurement locations. (b) Red disks are of radii 37max Which are concentric with disks of radii 7max in Z. The depot is denoted by O. (c) All robots start

from and return to the depot after making measurements.
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Fig. 8. Approximate TSP tour to visit the 3rmax disks. rmax values depend

on A (13) and hence, vary in different A subregions. Note the shrinking size of
disks as one moves toward right.

respectively. We solve for the measurement locations
independently in each region. The corresponding 7,ax values
were calculated tobe 4.97, 3.93, and 2.70 m, respectively using
(13). Fig. 7 shows the measurement locations. One can quali-
tatively observe that the algorithm places fewer measurement
locations in the left-most subenvironment which allows for the
highest error tolerance.

An approximate TSP tour visiting the centers of all 3ry,.x
disks, in all three regions, is shown in Fig. 8. The size of the
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Fig. 9. Average posterior variance for varying degree of lawn-mower
resolutions.

disks shrinks as one moves to the right-most subregion which
has the least tolerance for prediction error. The TSP tour goes
outside the environment in this case, which may be feasible if an
aerial robot is used to monitor the farm. In case of applications,
where the robot must stay inside the environment, we can enforce
this constraint by replacing the Euclidean edge weights in the
TSP input graph with the length of the shortest path between
two vertices inside the environment.

B. Comparisons With Predefined Lawn-Mower Tours

One can observe from Fig. 6(a) that the measurement location
pattern closely resembles a lawn-mower pattern. It motivated
us to compare the performance of our algorithms and with
lawn-mower plan. Figs. 9 and 10 show the average posterior
variance and average empirical (for ten trials) MSE respec-
tively for a predefined lawn-mower pattern with varying grid
resolutions on a semilogarithmic scale. Note that the posterior
variance at a test location is always same in each trial because
it is not a function of the actual measurement value. The blue
horizontal line corresponds to DCT and is shown for the sake of
comparison.

A plot of the time taken by the robot to cover lawn-mower
patterns with various grid resolutions is shown in Fig. 11. The
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Fig. 12.  Average posterior variance as a function of time spent by the robot.

lawn-mower lines in Figs. 9-11 intersect the DCT lines at
approximately a resolution of 2 m. It suggests that one would
need to create a grid of approximately that resolution to achieve
same performance as DCT. Fig. 12 shows the average posterior
variance for DCT and a predefined lawn-mower of resolution
2.4 m as a function time elapsed along a deployment (averaged
over 10 deployments). We chose a resolution of 2.4 m since a
lawn-mower planner with this resolution has approximately the
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same number of measurement locations as DISKCOVERTOUR.
We observe that both perform almost the same empirically.

One may wonder why we cannot simply use the lawn-mower
pattern, instead of DISKCOVERTOUR. To create a lawn-mower
pattern, one would need to pick a grid resolution. There is no
systematic way of picking this resolution without enumerating
a few combinations to analyze the tradeoff between time and
posterior variance or MSE. This can be wasteful. Instead, we
present a systematic way of planning the measurement locations
and give explicit theoretical guarantees on time and MSE or
variance.

C. Comparison With Other Baselines

A comparison between DISKCOVERTOUR and two baselines,
entropy-based, and MI-based planner is shown in Fig. 13. The
measurement locations for the entropy-based and MI-based
planners were calculated greedily, i.e., picking the next loca-
tion at the point of maximum entropy and MI, respectively as
described in [5]. We study the average posterior variance and
average empirical MSE in prediction as a function of the total
time (measurement plus traveling) spent by the robot on the farm
for each planner. After finding the measurement locations for
each planner separately, TSP tours visiting those locations were
calculated. The X-axis in Fig. 13 shows the time taken along
a tour and the Y-axis shows the respective metrics based on
measurements collected until that point in time along the tour
(averaged over ten trials). We observe that DISKCOVERTOUR
performs at par with other planners. The entropy-based planner
results in the most significant reduction in posterior variance and
average empirical MSE initially. This can be explained by the
fact that the entropy-based planning tends to spread the measure-
ment locations far from each other resulting in covering a bigger
portion of the environment initially. However, DISKCOVERTOUR
converges to a lower value of average empirical MSE and
average posterior variance.

D. MSE and Variance

We verify our hypothesis that MSE is equal to the posterior
variance for GPs. A plot of the mean percent difference between
the empirical MSE and the posterior variance is shown in Fig. 14.
The mean is computed over approximately 5600 test locations
which are different from the measurement locations and placed
on a grid. As the number of trials increases, the mean difference
between empirical MSE, which is essentially the MSE given
enough number of trials, and the posterior variance decreases
implying that the empirical MSE converges to the posterior
variance asymptotically. In each trial, the measurement loca-
tions, test locations, and the hyperparameters are same, and
therefore the variance estimates are same as well. However, the
predicted value in each trial, and hence the prediction error,
may be different since the actual measurement collected can be
different in each trial due to the simulated noise. The effect of
noise will decrease as one computes empirical estimate over a
larger number of trials.
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V. CONCLUSION

In this article, we studied several problems—placing the
minimum number of stationary sensors to track a spatial field,
mapping a spatial field by a single as well as multiple robots
while minimizing the time taken by the robots. For all the prob-
lems, we proposed polynomial-time approximation algorithms
to ensure that the MSE in prediction the underlying spatial field
was smaller than a predefined threshold at each point. We also
derived the lower bounds on the performance of any algorithm
(including optimal) to solve respective problems are provided.
We showed that it was possible to learn a given spatial field
accurately with high confidence without planning adaptively.
Note that, if the kernel parameters were optimized online, then,
one would require an adaptive strategy.

The algorithms suggested in this article performed compar-
atively with the baseline planners developed earlier. Our algo-
rithms had theoretical bounds on their performance. The algo-
rithms could also be generalized to 3-D mapping, even though
we illustrated using 2-D examples. The disks in the 2-D case
would be replaced by spheres in 3-D. The disk packing/covering
problem became a sphere packing/covering. The tour would
need to visit points in 3-D, as opposed to 2-D. The existing
TSP algorithms already apply to the 3-D case [42]. Our ongoing
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DISKCOVERTOUR performs comparably with entropy-based and MI-based strategies. The shaded regions correspond to the standard deviation taken over

work is on developing competitive strategies for spatio-temporal
learning and deriving similar guarantees for adaptive cases.

APPENDIX

Proof: Consider two measurement locations 1, x2 and a test
location x such that x; is closer to z. The posterior variance at
x if a measurement was collected at x1 can be computed as
follows:

62 =k(z, ) — k(z,21)K (21, 21)  k(21, )

Oz,
xr—x 2
=a; (1 — exp <_| 2 il )> .

Similarly, the posterior variance at x if a measurement was
collected at z»

2
N L — T2
O'ilmz =0 <1 —exp (—le|>) .

From ||z — 21||? < ||z — x2||* and f(z) = —exp (—x) being
a monotonically increasing function, we have

_ 2 _ 2
—exp <||95 ple ><exp <|~T l2$2|| ) (46)

Using this to compare (44) and (45) one can easily see that
<62 [ ]

z|xo®

(43)

(44)

(45)
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