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Learning a Spatial Field in Minimum
Time With a Team of Robots

Varun Suryan , Student Member, IEEE, and Pratap Tokekar , Member, IEEE

Abstract—In this article, we study an informative path-planning
problem where the goal is to minimize the time required to learn a
spatially varying entity. We use Gaussian process (GP) regression
for learning the underlying field. Our goal is to ensure that the GP
posterior variance, which is also the mean square error between
the learned and actual fields, is below a predefined value. We
study three versions of the problem. In the placement version, the
objective is to minimize the number of measurement locations while
ensuring that the posterior variance is below a predefined thresh-
old. In the mobile robot version, we seek to minimize the total time
required to visit and collect measurements from the measurement
locations using a single robot. We also study a multirobot version
where the objective is to minimize the time required by the last
robot to return to a common starting location called depot. By ex-
ploiting the properties of GP regression, we present constant-factor
approximation algorithms. In addition to the theoretical results, we
also compare the empirical performance using a real-world dataset,
with other baseline strategies.

Index Terms—Gaussian Process (GP) regression, informative
path planning (IPP).

I. INTRODUCTION

S ENSING, modeling, and tracking various spatially varying

entities can improve our knowledge and understanding of

them. This can have significant economic, environmental, and

health implications. For example, knowing the content of various

nutrients in the soil of a farm can help the farmers better under-

stand soil chemistry. Understanding soil chemistry is helpful for

the farmers to improve the yield and reduce the application of

fertilizers [1]. An overload of certain chemicals inside a water

body may have a significant impact on marine life. Knowing the

spatial extent of the spill is necessary for effective control and

mitigation strategies [2]. Understanding the spatial variation of

rock minerals can help in efficient mining strategies [3]. In all

such applications, a key first step is the collection of data using

appropriate sensors which can then be used to build models

of the underlying phenomenon. However, collecting data can
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Fig. 1. Single quadcopter can fly over a farm and measure the height of the
crop using a LIDAR sensor.

be tedious and often requires careful human planning. Manual

data collection can also be dangerous. For example, volcano

monitoring data help to see where previous lava flows have

gone and previous ash fall has occurred. However, volcanic ash

is usually pulverized rocks and glass particles and potentially

catastrophic for the people engaged in monitoring [4]. One

alternative which would alleviate the human risks of manual

data collection is the use of robots equipped with appropriate

sensors to collect data.

There are many factors to consider when deploying robots

for data collection. Usually, a tradeoff must be made between

the quantity of sensing resources (e.g., number of deployed

robots, energy consumption, mission time) and the quality of

data collected. The robots can be deployed to act as stationary

or mobile sensors depending on the application (see Fig. 1).

Deploying robots to function as mobile sensors is especially

challenging because of the need for path planning. While de-

ploying mobile robotic sensors, one needs to plan the most

informative resource-constrained observation paths to minimize

the uncertainty in modeling and tracking the spatial phenomena.

Planning informative resource-constrained observation paths

for robot sensors to estimate a spatially varying entity, often

known as informative path planning (IPP), has received recent

attention in the robotics community [5]–[10]. IPP deals with

the problem of deciding an autonomous robot path along which

maximum possible information about a quantity of interest can

be extracted while operating under a set of resource constraints.

In this article, our quantity of interest is a spatially varying

phenomenon, often represented by a spatial field.1 Generally, the

underlying spatial field is specified by a probabilistic model. One

of the commonly used probabilistic models is Gaussian process

1In this article, a spatial field is a function f(x), x ∈ U , that is defined over
a spatial domain, U ⊂ R2.
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(GP) [11]. GPs provide an mathematically convenient way of

performing nonparametric regression while making fewer as-

sumptions on the underlying field. They allow for expressing

domain knowledge through the choice of kernel functions. In

particular, for spatially varying fields, numerous studies have

shown the efficacy of modeling with GPs [12]. An alternative

would be geometric models which make strong assumptions and

cannot represent the stochastic noise in the measurements di-

rectly [5]. Thus, probabilistic models make a suitable candidate

for such scenarios.

Once the underlying spatial field is modeled, the next task

is to plan a robot path based on that model. The robot travels

along a path planned in this step. Several metrics can be used to

perform the planning step. An information-theoretic metric, such

as mutual information (MI), entropy, or variance, is typically

used as a criterion to drive the robot to sampling locations [13].

Generally, the information-theoretic metrics are submodular

and hence, an approximation guarantee can be given on the

performance of the resulting algorithms [5]. Unfortunately, the

information-theoretic metrics, such as entropy, MI, etc., are

indirect and do not consider the accuracy of the predictions.

Unlike these works, we study how to ensure that the GP predicted

mean2 is accurate and present a constant-factor approximation

algorithm if the hyperparameters of the GP kernel do not change.

We use variance of GP prediction as the metric to perform the

planning step. Predictive variance also turns out to be the mean

square error (MSE) in GP prediction if the hyperparameters are

known [14]. Our goal in this work is to plan the informative

paths such that the predictive variance at all locations is below

a predefined threshold Δ, after collecting measurements using

mobile sensors. This leads to same guarantees on MSE as well.

We study the following three related problems, that of:

1) finding measurement locations to make measurements;

2) planning a tour for a single robot to visit those measure-

ment locations;

3) planning tours for multiple mobile robots.

This to ensure that the predictive variance is below Δ. The

objective is to minimize the number of measurement locations in

the first problem and the total tour time in the second problem.

With multiple robots, the objective is to minimize the maxi-

mum time taken among all the robots. The total tour time is

given by the measurement time and the travel time between

measurement locations. The measurement time depends on the

number of measurements taken at each location as well as the

time to take a single measurement. Depending on the sensor,

the measurement time can be zero (e.g., cameras) or nonzero

(e.g., soil probes measuring organic content). We show that a

nonadaptive algorithm suffices to solve the problem and yields

a polynomial-time constant-factor approximation to the optimal

algorithm. While other algorithms have been proposed before

for estimating spatial fields, this is the first result that provides

the theoretical guarantees on the total time for ensuring predic-

tive accuracy at all points. Our main contributions include the

following:

2We use predicted mean and estimated mean interchangeably since the
function is independent of time.

1) introducing stationary sensor placement and mobile sen-

sor algorithms for ensuring that the predictive variance,

and hence MSE, at each location in the environment is

below a predefined threshold;

2) providing polynomial-time constant-factor approximation

guarantees on their performance;

3) showing their performance on a real-world dataset com-

prising of OM concentrations at various locations within

a farm.

Similar problems have been studied in the literature. For

example, Yfantis et al. [15] studied a stationary sensor problem.

Their approach considers and investigates only three types of

predefined placement designs while for a general case none of

them may be a good design. The algorithms presented in this

work are not restricted to any predefined placement strategy.

Further, we are not aware of any existing theoretical guarantees

on the mobile sensor problems studied in this article.

The rest of the article is organized as follows: In Section II,

we present a discussion on related works and background on

the problems studied. In Section III, we formally present the

problems and their solutions. Simulation results are presented

in the Section IV. Section V concludes this article.

A preliminary version of this work was presented at the

13th International Workshop on the Algorithmic Foundations

of Robotics (WAFR’18) [16]. In the preliminary version, we

provided guarantees for the chance constraints of incorrect

predictions using an aggregate measure of prediction error. In

current work, a more direct performance criterion, MSE at

each location of the environment, is considered which leads

to stronger theoretical guarantees. Also, an extension of the

algorithms for the multirobot case is presented.

II. RELATED WORK AND BACKGROUND

We begin by reviewing the related work in sensor placement

where the goal is to cover a given environment using sensors

placed at fixed locations and mobile sensing where sensors can

move and collect measurements from different locations.

A. Stationary Sensor Placement

When monitoring a spatial phenomenon, such as temperature

or humidity in an environment, selection of a limited number of

sensors and their locations is an important problem. The goal

in this problem is to select the best k out of n possible sensor

locations and use the measurements from these to make predic-

tions about the spatial phenomenon. The typical formulation of a

sensor selection problem makes it NP-hard [17]. Previous work

used global optimization techniques such as branch and bound

to exactly solve this problem [18], [19]. However, these exact

approaches are often computationally intensive.

One can solve the task as an instance of the art-gallery

problem [20], [21]—find the minimum set of guards inside a

polygonal workspace from which the entire workspace is visible.

However, this version of the problem only covers vision-based

sensors and does not consider noisy measurements [5].

An alternative approach from spatial statistics is to learn a

model of the phenomenon, typically as a GP [22], [23]. The
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learned GP model can then be used to predict the effect of placing

sensors at locations, and thus, optimize their placement. For a

given GP model, many criteria including information-theoretic

ones have been proposed to evaluate the quality of placement.

Shewry and Wynn [24] introduced the maximum entropy crite-

rion where the sensors are placed sequentially at the locations of

highest entropy. Ko et al. [25] proposed a greedy algorithm by

formulating the entropy maximization as maximizing the deter-

minant of the covariance matrix. However, the entropy criterion

tends to place the sensors at the boundary of the environment thus

wasting sensed information [26]. MI can be used as well [22],

[27], [28]. Krause et al. [5] studied the problem of maximizing

MI for optimizing sensor placement problem. They presented a

polynomial-time approximation algorithm with constant factor

guarantee by exploiting submodularity [29]. Eventually, they

showed that MI criterion leads to improved accuracy with a fewer

number of sensors compared to other common design criteria

such as entropy [24], A-optimal, D-optimal, and E-optimal

design [30].

The abovementioned methods estimate the prediction error

indirectly. Nguyen et al. [31] considered choosing a set of n
potential sensor measurements such that the root mean square

prediction error is minimized. They presented an annealing-

based algorithm for the sensor selection problem. Their algo-

rithm started by selecting a potential subset of cardinality k from

the entire population of sensor locations. After that, it iteratively

attempted to substitute the members of the selected subset by its

neighbors according to an optimization criterion.

None of the criteria discussed above cannot directly make

any guarantees on the MSE in predictions at each point in the

environment. Instead, we design a sensor placement algorithm

which results in an accurate reconstruction of the spatial field

using the collected sensor measurements. Most works in the past

have focused on optimizing an objective function (entropy, MI,

etc.) given the resource constraints (limited energy, number of

sensors, and time, etc.). We optimize the resource requirement

given the objective constraint (MSE below a predefined thresh-

old Δ), predictive accuracy more than a predefined threshold in

our case.

B. Mobile Sensing

The goal in the mobile sensing problem, also known as

IPP, is to compute paths for robots acting as mobile sensors.

Paths are being computed in order to accurately estimate some

underlying phenomenon, typically a spatial field [32], [33]. A

central problem in IPP is to identify the hotspots in a large-scale

spatial field. Hotspots are the regions in which the spatial field

measurements exceed a predefined threshold. In many applica-

tions, it is necessary to assess the spatial extent and shape of

the hotspot regions accurately. Low et al. [34] presented a de-

centralized active robotic exploration strategy for probabilistic

classification/labeling of hotspots in a GP-based spatial field.

The time needed by their strategy is independent of the map

resolution and the number of robots, thus making it practical

for in situ, real-time active sampling. Another formulation in

hotspot identification is that of level set identification [35].

Previous works on level set boundary estimation and track-

ing [36]–[38] have primarily focused on communication of the

sensor nodes, without giving much attention to individual sam-

pling locations. Bryan et al. [39] proposed the straddle heuristic,

which selects sampling locations by trading off uncertainty and

proximity to the desired threshold level, both estimated using

GPs. However, no theoretical justification had been given for

its use and its extension to composite functions [40]. Gotovos

et al. [41] proposed a level set estimation algorithm, which

utilizes GPs to model the target function and exploits its inferred

confidence bounds to drive the selection process. They provided

an information-theoretic bound on the number of measurements

needed to achieve a certain accuracy, when the underlying

function is sampled from a GP.

In many mobile sensing problems, it is not enough to identify

only a few specific regions but estimate the entire spatial field

accurately. It can be formulated as a path planning problem

to observe a spatial field at a set of sampling locations, and

then making inference about the unobserved locations [42].

Choosing and visiting the sample locations so that one can

have an accurate prediction (point prediction and/or prediction

interval) is of great importance in soil science, agriculture, and

air pollution monitoring [28]. The objective functions used are

usually submodular, and thus, exhibit a diminishing returns

property. Submodularity arises since nearby measurement lo-

cations are correlated [43]. Chekuri and Pal[44] introduced a

quasi-polynomial time algorithm for maximizing a submodular

objective along the path using a recursive greedy strategy. This

algorithm was further extended by Binney et al. [45] for spa-

tiotemporal fields using average variance reduction [46] as the

objective function.

Zhang and Sukhatme [47] proposed an adaptive sampling

algorithm consisting of a set of static nodes and a mobile robot

tasked to reconstruct a scalar field . They assumed that the mobile

robot can communicate with all the static nodes and acquire

sensor readings from them. Based on this information, a path

planner generates a path such that the resulting integrated MSE

is minimized subject to the constraint that the boat has a finite

amount of energy.

An important issue in designing robot paths is deciding the

next measurement location [6], [48]–[50], often referred to as
the exploration strategy. Traditionally, conventional sampling

methods [51], such as raster scanning, simple random sampling,

and stratified random sampling, have been used for single-robot

exploration. Low et al. [52] presented an adaptive exploration

strategy called adaptive cluster sampling. It was demonstrated

to reduce mission time and yield more information about the

environment. Their strategy performs better than a baseline

sampling scheme called systematic sampling [53] using root

mean squared error as a metric. A different adaptive multirobot

exploration strategy called MASP was presented in [54] which

performs both wide-area coverage and hotspot sampling using

nonmyopic path planning. MASP allows for varying adaptivity

and its performance is theoretically analyzed. Further, it was

demonstrated to sample efficiently from a GP and logGP. How-

ever, the time complexity of implementing it depends on the

map resolution, which limits its large-scale use. To alleviate this

Authorized licensed use limited to: Univ of Waikato. Downloaded on February 01,2021 at 22:33:25 UTC from IEEE Xplore.  Restrictions apply. 



SURYAN AND TOKEKAR: LEARNING A SPATIAL FIELD IN MINIMUM TIME WITH A TEAM OF ROBOTS 1565

computational difficulty, an information-theoretic approach was

presented in [55]. The time complexity of the new approach

was independent of the map resolution and less sensitive to

the increasing robot team size. Garnett et al. [56] considered

the problem of active search, which is also about sequential

sampling from a domain of two (or more) classes. Their goal was

to sample as many points as possible from one of the classes.

Yilmaz et al. [57] solved the adaptive sampling problem

using mixed integer linear programming. Popa et al. [49] posed

the adaptive sampling problem as a sensor fusion problem

within the extended Kalman filter framework. Hollinger and

Sukhatme [8] proposed a sampling-based motion planning al-

gorithm that generates maximal informative trajectories for the

mobile robots to observe their environment. Their information

gathering algorithm extends ideas from rapidly-exploring ran-

dom graphs. Using branch and bound techniques, they achieve

efficient optimization of information gathering while also allow-

ing for operation in continuous space with motion constraints.

Cao et al. [58] presented two approaches to solve IPP for

in situ active sensing of GP-based anisotropic spatial fields.

Their proposed algorithms can tradeoff active sensing perfor-

mance with computational efficiency. Ling et al. [9] proposed

a nonmyopic adaptive GP planning framework endowed with

a general class of Lipschitz continuous reward functions. Their

framework can unify some active learning/sensing and Bayesian

optimization criteria and offer practitioners flexibility to specify

choices for defining new tasks. Tan et al. [59] introduced the

receding-horizon cross-entropy trajectory optimization. Their

focus was to sample around regions that exhibit extreme sensory

measurements and much higher spatial variability, denoted as the

region of interest. They used GP-UCB [60] as the optimization

criteria which helps in exploring initially and converging on

regions of interest eventually.

A naive implementation of GP prediction scales poorly with

increasing training dataset size. Sparse GP frameworks can

overcome this problem by using only a subset of the data to

provide accurate estimates. A state-of-the-art sparse GP variant

is SPGP [61]–[64]. The SPGP framework learns a pseudosub-

set that best summarizes the training data. Mishra et al. [65]

introduced an online IPP framework AdaPP which uses SPGP.

C. Sensing With Multiple Robots

Mobile sensing can be made faster by distributing the task

among several robots. Multirobot systems can do complex tasks

and have been widely used in environmental sampling [66],

coverage [67]. Robots can use local communication or control

laws to achieve some collective goals.

Singh et al. [6] proposed a sequential allocation strategy that

uses GP regression, which can be used to extend any single robot

planning algorithm for the multirobot problem. Their procedure

approximately generalizes any guarantees for the single-robot

problem to the multirobot case. However, the approach works

only when MI is the optimization objective. Cao et al. [58]

presented two approaches along with their complexity analy-

sis addressing a tradeoff between active sensing performance

and time efficiency. Luo and Sycara [68] combined adaptive

sampling with information-theoretic criterion into the cover-

age control framework for model learning and simultaneous

locational optimization. They presented an algorithm allowing

for collaboratively learning the generalized model of density

function using a mixture of GPs with hyperparameters learned

locally from each robot. Kemna et al. [69] created a decentral-

ized coordination approach which first splits the environments

into Voronoi partitions and makes each vehicle then run within

their own partition. Other multirobot approaches used in other

domains, e.g., exploration and estimation with ground vehicles,

include auction-based methods [70]–[72] and spatial segrega-

tion, typically through Voronoi partitioning [73], [74].

Tokekar et al. [10] presented a constant factor approximation

algorithm for the case of accurately classifying each point in

a spatial field. The first step in the algorithm is to determine

potentially misclassified points and then to find a tour visiting

neighborhoods of each potentially misclassified point. In this

article, we study a regression version of the problem where

every point is of interest. We exploit the properties of GP and

squared-exponential kernel to find a constant-factor approxima-

tion algorithm. Before the details of the algorithms, we review

some relevant background and useful properties of GPs and

MSE.

D. Gaussian Processes

In GP regression, the posterior variance at any test location x
is given by

σ̂2
x|X = k(x, x)− k(x,X)

[
K(X,X) + ω2I

]−1
k(X,x) (1)

where K(X,X) is the kernel matrix with entries, Kpq =

k(xp, xq) = σ2
0 exp(

||xp−xq ||2
2 l2 ). Here, σ2

0 , l, ω
2 are signal vari-

ance, length scale, and additive independent and identically dis-

tributed Gaussian measurement noise, respectively [11]. We use

the same value of length scale along each input dimension. Note

that the posterior variance at a particular location x conditioned

on set of observations at locations X = {x1, . . . , xn} does not

depend on the actual observation but only on the locations

from where the observations are collected. Multiple observations

at a location is equivalent to that location being counted as

many times as the number of measurements. The kernel is a

function that measures the similarity between two measurement

locations [11].

Since the posterior variance is a function of only the mea-

surement locations, the posterior variance for all points in the

environment can be computed a priori, if the measurement

locations are known, even without making any observations. In

many implementations [13], [33], [75], the hyperparameters for

the kernel k are tuned online as more data is gathered. As such,

the hyperparameters may change with the observed data and the

posterior variance will depend on the data observed, which may

require adaptive planning. We assume that the hyperparameters

are estimated a priori. This is done using prior data from the

same or similar environments or a pilot deployment over a

smaller region, as described in [5], [76], and [77]. Example

applications are underwater inspection [76] and occupancy map
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building [77], where prior data are used for determining hy-

perparameters before the actual deployment. Nevertheless, one

can perform sensitivity analysis of the presented algorithms by

varying the hyperparameters [78], [79].

The posterior mean μ̂x|X at a locationx is given by a weighted

linear combination of the observed data

μ̂x|X = k(x,X)
[
K(X,X) + ω2I

]−1
y (2)

where y = {y1, . . . , yn} denotes the observations at locations

X = {x1, . . . , xn}.

E. Mean Square Error

MSE measures the expected squared difference between an

estimator and the parameter the estimator is designed to esti-

mate [80]. The MSE at a location x for an estimator f̂ is

MSE
(
f̂(x)

)
= V ar

(
f̂(x)

)
+
(
E[f̂(x)− f(x)]

)2

(3)

where (3) is the bias-variance expression for the estimator. GP

predicted value f̂(x) at a location x is an unbiased estimator

of the true value f(x) [15] and has a normal distribution with

mean given by (2), and variance given by (1). Among all linear

and nonlinear estimators, GP is the best in terms of minimizing

MSE [14], [81]. Further, GPs are unbiased and hence, the MSE

at a location x is equal to the posterior variance of the predicted

value, i.e.,

MSE(x) = σ̂2
x|X . (4)

From (4), one can deduce that MSE for GPs is same as the

posterior variance and hence, any guarantees for the posterior

variance hold for MSE as well.

III. ALGORITHMS

In this section, we formally define the problems and the algo-

rithms. We assume that the environment is a two-dimensional

(2-D) areaU ⊂ R2 and the underlying spatial field is an instance

of a GP F [15]. F has an isotropic covariance function of the

form

CZ(x, x
′) = σ2

0 exp

(
− (x− x′)2

2 l2

)
; ∀x, x′ ∈ U (5)

defined by a squared-exponential kernel where the hyperparam-

eters σ2
0 and l are known a priori. Let X denote the set of

measurement locations within U produced by an algorithm.

Problem 1 (Placement): Find the minimum number of mea-

surement locations, such that the MSE at each location in U is

below Δ< σ2
0 , i.e.,

minimize |X|

subject to MSE(x) ≤ Δ, ∀x ∈ U

where |X| is the cardinality of X and MSE(x) is the MSE at

location x.

Problem 2 (Mobile): Find the minimum time trajectory for

a mobile robot that obtains a finite set of measurements at one

or more locations in U , such that the MSE at each location in U

is less than Δ, i.e.,

minimize len(τ) + ηn(X)

subject to MSE(x) ≤ Δ ∀x ∈ U.

τ denotes the tour of the robot. Robot travels at unit speed,

obtains one measurement in η units of time and obtains n(X)
total measurements.

The robot may be required to obtain multiple measurements

from a single location. Therefore, the number of measurements

n(X) can be more than |X|. For multiple robots, their tours can

start at the same starting location (often referred to as a depot)
or can start at different locations. In this article, our focus is on

the former case. The latter case is more appropriate when the

robots must persistently monitor the environment.

Problem 3 (Multirobot): For k robots starting from a given

starting location (depot), design a set of trajectories that collec-

tively obtain a finite set of measurements at one or more locations

in U , such that the MSE at each location in U is less than Δ, i.e.,

minimize max
i∈{1,...,k}

len(τi) + ηn(Xi)

subject to MSE(x) ≤ Δ ∀x ∈ U

where τi denotes the tour of the ith robot and Xi the subset

of measurement locations covered by the ith robot. The robots

travel at unit speed, obtain one measurement in η units of time.

ith robot obtains n(Xi) total measurements.

The solution for Problem 1 is a subset of the solution to

Problem 2. Further, the solution for Problem 3 is derived from the

solution for Problem 2. The three algorithms build on top of each

other by: (1) finding a finite number of measurement locations

for the robot; (2) finding a tour to visit all the measurement loca-

tions; and (3) splitting the tour from step 2 in multiple subtours

for k robots. We exploit the properties of squared-exponential

kernel to find the measurement locations. By knowing the value

at a certain point within some tolerance, values at nearby points

can be predicted albeit up to a larger tolerance.

A. Necessary and Sufficient Conditions

We start by deriving necessary conditions on how far a test

location can be from its nearest measurement location. A test

location corresponds to a point in the environment where we

would like to make a prediction.

Lemma 1 (Necessary Condition): For any test location x, if

the nearest measurement location is at a distance rmax away, and

rmax > l

√
− log

(
1− Δ

σ2
0

)
(6)

then it is not possible to bring down the MSE below Δ at x.

Proof: Consider the posterior variance σ̂2
x(n) at x [which

is also equal to the MSE at x from (4)] after collecting n
measurements, possibly from different locations. A lower bound

on σ̂2
x(n) can be obtained by assuming that all measurements

were collected at the nearest location xi to x. This is based

on the fact that the closer the observation, lower the predictive

variance. A mathematical proof for this is provided in Appendix.
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Let the nearest measurement location xi is distance r away from

x. Assuming that all nmeasurements were collected at xi, lower

bound for posterior variance at x can be calculated using (1)

σ̂2
x(n) ≥ σ2

0 −
[
k(x, xi), . . . , k(x, xi)

]

×

⎡
⎢⎢⎣
σ2
0 + ω2 σ2

0

. . .

σ2
0 σ2

0 + ω2

⎤
⎥⎥⎦
−1 ⎡

⎢⎢⎣
k(x, xi)

...

k(x, xi)

⎤
⎥⎥⎦ . (7)

It is worth mentioning that the square matrix in (7) is of order

n× n since there are n measurements. Substituting the value

for k(x, xi) = σ2
0 exp(− r2

2 l2 ) in (7) and performing the required

matrix operations, we get

σ̂2
x(n) ≥ σ2

0 −
σ4
0

ω2
exp

(−r2

l2

)[
1, . . . , 1

]

×

⎡
⎢⎢⎢⎢⎣
1− 1

n+ω2

σ2
0

−1

n+ω2

σ2
0

. . .
−1

n+ω2

σ2
0

1− 1

n+ω2

σ2
0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
1
...

1

⎤
⎥⎥⎦ . (8)

Therefore

σ̂2
x(n) ≥ σ2

0 −
σ4
0

ω2

(
n

(
1− 1

n+ ω2

σ2
0

)
− n(n− 1)

n+ ω2

σ2
0

)
(9)

≥ σ2
0

⎛
⎝1−

exp
(
− r2max

l2

)
1 + ω2

nσ2
0

⎞
⎠ . (10)

Even if we had collected infinitely many measurements at the

nearest location xi, the posterior variance will still be lower

bounded as

σ̂2
x(n) > lim

n→∞σ2
0

⎛
⎝1−

exp
(
− r2max

l2

)
1 + ω2

nσ2
0

⎞
⎠ (11)

= σ2
0

(
1− exp

(
−r2max

l2

))
. (12)

If the posterior variance at x even with the infinitely many

measurements collected at the nearest measurement location xi

[see (12)] is greater than Δ, i.e.,

Δ < σ2
0

(
1− exp

(
−r2max

l2

))
⇒

rmax > l

√
− log

(
1− Δ

σ2
0

)
(13)

then it is not possible to bring down the MSE at x below Δ in

any circumstance. �
Next, we prove a sufficient condition that if every point in the

environment where no measurement is obtained (test location) is

sufficiently close to a measurement location, then we can make

accurate predictions at each point.

Fig. 2. Collectingnα measurements at O suffices to make accurate predictions
at all points inside disk D2 (sufficient condition). No number of measurements
at O can ensure predictive accuracy on points outside disk D1 (necessary
condition).

Lemma 2 (Sufficient Condition): For a test location x ∈ U ,

if there exists a measurement location xi ∈ X , r distance away

from x with nsuff measurements at xi, such that

r ≤ l

√
− log

((
1 +

ω2

nsuffσ2
0

)(
1− Δ

σ2
0

))
(14)

then GP predictions at x will be accurate, i.e., MSE at x will be

smaller than Δ.

Proof: From (10), we have an expression for variance of the

posterior predictive distribution at x. Taking the other measure-

ment locations into consideration can not increase the posterior

variance at x. Information never hurts [82]! To prove the suffi-

ciency, we consider nsuff measurements at xi only and discard

others knowing that the other locations can not increase the

posterior variance at x. Bounding the expression in (10) with

Δ results in

Δ ≥ σ2
0

⎛
⎝1−

exp
(
− r2

l2

)
1 + ω2

nsuffσ2
0

⎞
⎠ (15)

exp

(
−r2

l2

)
≥

(
1 +

ω2

nsuffσ2
0

)(
1− Δ

σ2
0

)
(16)

r ≤ l

√
− log

((
1 +

ω2

nsuffσ2
0

)(
1− Δ

σ2
0

))
.

(17)

�
Lemma 2 gives a sufficient condition for GP predictions to

be accurate at any given test location x ∈ U . The following

lemma shows that a finite number of measurements nsuff =nα,

are sufficient to ensure predictive accuracy in a smaller disk of

radius 1
αrmax around xi, where α > 1 (see Fig. 2).

Lemma 3: Given a disk of radius 1
αrmax centered at xi, nα

measurements at xi suffice to make accurate predictions for all

points inside the disk, where

nα ≥

⎡
⎢⎢⎢⎢
ω2

σ2
0

1(
1− Δ

σ2
0

) 1
α2 −1

− 1

⎤
⎥⎥⎥⎥ . (18)
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Algorithm 1: DISKCOVER.

1: Procedure
2: Input: An environment.

3: Output: Measurement locations.

4: begin
1) Design a set X of disks of radii rmax which

covers the environment and calculate a Maximal

Independent Set (MIS) I of X greedily i.e.,
I = MIS(X ).

2) Place disks of radii 3rmax concentric with disks in

I. Let the set of 3rmax radii disks is X̄ .

3) Cover each disk in X̄ with disks of radii 1
αrmax as

shown in Fig. 3 and label centers of all disks of

radii 1
αrmax.

4) Return all the labeled points in previous step as

measurement locations.

end procedure

Proof: We want a sufficiency condition on the number of

measurements nα inside a disk of radius 1
αrmax. Lemma 2 gives

an upper bound on the radius of a disk such that all points inside

the disk will be accurately predicted after nα measurements at

the center. We construct a disk (D2 in Fig. 2), whose radius is

equal to 1
αrmax such that

1

α
rmax ≤ l

√
− log

((
1 +

ω2

nασ2
0

)(
1− Δ

σ2
0

))
. (19)

Plugging in the value of rmax from Lemma 1, squaring both

sides in (19) and rearranging for nα gives the required bound

stated in Lemma 3. Ceiling function in (18) accounts for the fact

that nα is an integer. �
A packing of disks of radius rmax gives a lower bound on the

number of measurements required to ensure predictive accuracy.

On the other hand, a covering of disks of radius 1
αrmax gives

us an upper bound on the number of measurements required. To

solve Problem 1, what remains is to relate the upper and lower

bound and present an algorithm to place the disks of radii 1
αrmax.

B. Placement of Sensors for Problem 1

We use an algorithm similar to the one presented by Tekdas

and Isler [83] for stationary sensor placement in order to track

a target using bearing sensors. In their case, the goal is to

place sensors such that irrespective of where the target is in the

environment, there are at least three sensors forming a triangle

that get good quality bearing information of the target. The show

how to cover the environment with disks and place a triangle of

sensors within each disk. The setup is different from the one

we have; however, we use a similar disk coverage strategy as a

subroutine here. The exact procedure is outlined in Algorithm 1.

Theorem 1: DISKCOVER (Algorithm 1) gives an 18α2-

approximation for Problem 1 in polynomial time.

Proof: Denote the set of measurement locations computed

by the optimal algorithm to solve the Problem 1 by X∗. The

function MIS in Step 1 of Algorithm 1 computes a maximally

Fig. 3. We cover each3rmax radius disk with 1
α rmax radii disks (smaller gray

disks) in lawn-mower pattern. 18α2 disks suffice to cover the bigger disk. The
locations of disks of radii 1

α rmax inside a disk of radius 3rmax are obtained by
covering the square circumscribing bigger disk with smaller squares inscribed
in smaller disks. The centers of smaller squares coincide with the centers of
smaller disks.

independent set of disks: the disks in I are mutually noninter-

secting (independent) and every disk in X\I intersects at least

one disk in I (maximal). The set I can be computed by a simple

polynomial greedy procedure: choose an arbitrary disk d from

X , add it to I, remove all disks in X which intersect d, and

repeat the procedure until no such d exists.

An optimal algorithm will collect measurements from at least

as many measurement locations as the cardinality of I. This

can be proved by contradiction. Suppose an algorithm visits

measurement locations fewer than the number of disks in I. In

that case, there will exist at least one disk of radius rmax in I
which will not contain a measurement location. This means that

there will be at least a point in that disk which will be more than

rmax away from each measurement location. From Lemma 1,

the robot can never make accurate predictions at that point and

hence violating the constraint in Problem 1. Hence

|I| ≤ |X∗|. (20)

Every disk in X intersects at least one disk in I and hence, lies

within 3rmax of the center of a disk in I. As a result, X̄ disks

cover all the X disks and hence, the entire environment.3

Collecting measurements from 18α2 locations inside a 3rmax

disk suffice to make accurate predictions in that disk (satisfying

the Problem 1 constraint for points belonging to that disk) as

illustrated in Fig. 3. DISKCOVER collects measurement from

18α2 such locations per disk in X̄ . It collects measurements from

a total of 18α2|X̄ | locations, hence, satisfying the constraint for

all points in the area covered by union of X̄ disks. Since, union

of X̄ disks covers the entire environment, DISKCOVER satisfies

the constraint for all points in the environment. Multiplying both

sides of (20) with 18α2, we get, 18α2|I| ≤ 18α2|X∗|. Note that

|X̄ | = |I|. Hence

18α2|X̄ | ≤ 18α2|X∗| (21)

nDISKCOVER ≤ 18α2|X∗| (22)

3Note that 3rmax is the minimum radius of the bigger disks to guarantee
that the entire environment is always covered. In specific instances, it may be
possible to cover the environment with smaller than 3rmax by selecting the MIS
using a well-designed heuristic. However, there are environments where 3rmax

will be necessary.

Authorized licensed use limited to: Univ of Waikato. Downloaded on February 01,2021 at 22:33:25 UTC from IEEE Xplore.  Restrictions apply. 



SURYAN AND TOKEKAR: LEARNING A SPATIAL FIELD IN MINIMUM TIME WITH A TEAM OF ROBOTS 1569

Algorithm 2: DISKCOVERTOUR.

1: Procedure
2: Input: A set of measurement locations calculated

from Algorithm 1.

3: Output: An approximate optimal tour visiting all the

measurement locations.

4: begin
1) Calculate approximate TSP tour visiting centers

of the 3rmax radius disks (set X̄ ) disks.

2) Cover X̄ disk containing the starting location in

lawn-mower pattern visiting the centers of

corresponding disks of radius 1
αrmax and make

nα measurements at each center point.

3) Move to the center of next X̄ disk along the tour

calculated in Step 1.

4) Repeat Steps 2 and 3 until all X̄ disks are

covered.

end procedure

where nDISKCOVER is the number of measurement locations for

DISKCOVER. �

C. Finding an Approximate Optimal Trajectory for Problem 2

The algorithm for Problem 2 builds on the algorithm presented

in the previous section. The locations where measurements are

to be made become the locations that are to visited by the robot.

The robot must obtain at least nα measurements at the center

of each disk of radius 1
αrmax. A pseudocode of the algorithm is

presented in the Algorithm 2.

Theorem 2: DISKCOVERTOUR (Algorithm 2) yields a

constant-factor approximation algorithm for Problem 2 in poly-

nomial time.

Proof: From Theorem 1, we have a constant approximation

bound on number of measurement locations. Let the time (travel

and measurement time) taken by the optimal algorithm be T ∗
1 .

Using notation from Theorem 1, we assume that the optimal

traveling salesperson with neighborhoods (TSPN) time to visit

disks in I be T ∗
I . In TSPN, we are given a set of geometric

neighborhoods, and the objective is to find the shortest tour

that visits at least one point in each neighborhood (disks in this

case) [10]. The optimal algorithm will visit at least all disks once

in I which gives the following minimum bounds on the optimal

travel time (T ∗
travel) and optimal measurement time (T ∗

measure)

T ∗
I ≤ T ∗

travel; η|I| ≤ T ∗
measure. (23)

Let the optimal time to visit the centers of disks in I be

T ∗
IC . An upper bound on T ∗

IC can be established by the fact

that upon visiting each disk, the robot can visit the center of

that disk and return back by adding an extra tour length of

2rmax, i.e., a detour of maximum length |I| × 2rmax for all

disks in I. As a result: T ∗
IC ≤ T ∗

I + 2rmax|I|. Using inequality

from (23): T ∗
IC ≤ T ∗

travel + 2rmax|I|. For any disk in X̄ , the

length of lawn-mower path starting from the its center and

return back (see Fig. 3) after visiting all center points of 1
αrmax

disks will be of order O(α2)rmax. Hence, the total travel time

for DISKCOVERTOUR is: TC + |I|O(α2)rmax, where TC is the

(1 + ε)-approximated time with respect to the optimal TSP tour

returned by the (1 + ε)-approximation algorithm to visit the

centers of the disks in X̄ (or I disks since they are concentric).

TC can be calculated in polynomial time [84] having bounds:

TC ≤ (1 + ε)T ∗
IC , withT ∗

IC being the optimal TSP time to visit

the centers of X̄ disks. Measurement time for DISKCOVERTOUR

is 18α2ηn2|I|. Hence, the total time T 1
alg for DISKCOVERTOUR

is

T 1
alg = TC + |I|O(α2)rmax + 18α2ηn2|I| (24)

≤ (1 + ε) T ∗
IC +O(α2)rmax|I|+ 18α2ηn2|I| (25)

≤ (1 + ε) (T ∗
travel + 2rmax|I|) +O(α2)rmax|I|

+ 18α2ηn2|I|
(26)

where n2 is the number of sufficient measurements required

inside a disk of radius 1
2rmax (Lemma 3 with α = 2). Length of

any tour that visits k nonoverlapping equal size disks of radii r is

at least 0.24 kr [85], which gives0.24rmax|I| ≤ T ∗
I . Combining

this result with (23) modifies the bounds in (26) as

T 1
alg ≤

(
(1 + ε)

(
1 +

2

.24

)
+

O(α2)

.24

)
T ∗
travel

+ 18α2n2 T ∗
measure (27)

≤ max

(
9.33(1 + ε) +

82

.24
, 72n2

)
(T ∗

travel + T ∗
measure),

(28)

≤ max

(
9.33(1 + ε) +

O(α2)

.24
, 18α2n2

)
T ∗
1 (29)

≤ cT ∗
1 (30)

where c, a constant, is larger one of the two quantities inside the

bracket in (30). �
Note that the Algorithm 2 collects same number of measure-

ments from each measurement location. There may be another

algorithm that collects different number of measurements from

different locations which may result in better performance. This

modification is an avenue for future work.

D. Finding an Approximate Optimal Trajectory for Problem 3

When one robot can not handle a large territory, to speed up the

task, k robots can be sent to collectively visit1 all measurement

locations. A natural objective is to ensure that no robot has too

large of a task. Hence, we choose our optimization criterion

as minimizing the maximum of the k-robot tour costs. This is

equivalent to minimizing the time taken by the last robot to return

back to the common starting location. Our proposed algorithm

only works if the robots start and return back to the same location

called depot. Any measurement location can be chosen as the

depot but in our case, we assume that the robots start from and

return back to a predefined depot.

We now describe an algorithm which employs a tour-splitting

heuristic to plan for k robots. We modify the heuristic proposed
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Fig. 4. Splitting the tour for one robot (τ ) into 5 subtours. The solid line shows
an initial single robot tour τ starting and ending at x1. The dotted lines denote
the individual robot subtours starting and ending at x1 obtained by splitting the
single tour τ .

Algorithm 3: k -DISKCOVERTOUR.

1: Procedure
2: Input: Tour calculated from Algorithm 2, Depot

location x1.

3: Output: k approximate optimal paths visiting all

measurement locations collectively.

4: begin
1) For jth robot, 1 ≤ j < k, find the last

measurement location xp(j) such that the time

taken to travel from x1 to xp(j) along τ is not

greater than
j
k (T

1
alg − (2lmax + ηn2)) + (lmax + ηn2).

2) Obtain k subtours as R1 = (x1, . . . , xp(1), x1),
R2 = (x1, xp(1)+1, . . . , xp(2), x1), . . .
Rk = (x1, xp(k−1)+1 . . . , xn, x1).

end procedure

by Frederickson et al. [86] to account for the measurement time,

and not just the travel time.

Let the output tour of the robot from Algorithm 2 be denoted

by τ and lmax be the distance of farthest measurement location

from the depot.

Theorem 3: k -DISKCOVERTOUR (Algorithm 3) yields a (c+
2) approximation algorithm for Problem 3 in polynomial time,

given a c-approximation algorithm for Problem 2.

Proof: First, we prove that the time taken along every sub-

tour is bounded and eventually show that the bound is within

a constant factor of the optimal time. With k robots, let the

subtours for first and kth robot are x1 → xp(1) −→ x1 and x1 →
xp(k−1)+1 → x1, respectively (an example with k = 5 is shown

in Fig. 4). Subtours for the remaining robots can be denoted by

x1 → xp(j−1)+1 → xp(j) → x1, where 1 < j < k.

Substituting j = 1 in Algorithm 3, the time to travel

from x1 to xp(1) along τ , T (x1
τ−→ xp(1)) is no greater than

1
k (T

1
alg − (2lmax + ηn2)) + (lmax + ηn2). Time for the first

subtour is hence bounded by T (x1
τ−→ xp(1)) + T (xp(1) −→ x1),

i.e., 1
k (T

1
alg − (2lmax + ηn2)) + (lmax + ηn2) + lmax. From

the condition in Algorithm 3, we know that xp(k−1) is the last

location such that

T
(
x1

τ−→ xp(k−1)

)
≤ k − 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) (31)

and hence

T
(
x1

τ−→ xp(k−1)+1

)
≥ k − 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) . (32)

Subtracting both sides from T 1
alg

T 1
alg − T

(
x1

τ−→ xp(k−1)+1

)
≤ T 1

alg −
k − 1

k

(
T 1
alg − (2lmax

+ηn2)) + (lmax + ηn2)
(33)

which gives

T
(
xp(k−1)+1

τ−→ x1

)
≤ 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (3lmax + 2ηn2) , (34)

and hence, time for the last subtour is bounded by

T (x1 −→ xp(k−1)+1) + T (xp(k−1)+1
τ−→ x1), i.e., 1

k (T
1
alg −

(2lmax + ηn2)) + (3lmax + 2ηn2) + lmax. Similar inequalities

can be derived for remaining subtours as follows. For

1 ≤ j ≤ k − 2, following inequalities hold from Algorithm 3:

T (x1
τ−→ xp(j)+1) ≥ j

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) , (35)

T (x1
τ−→ xp(j+1)) ≤ j + 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (lmax + ηn2) . (36)

Subtracting (35) from (36) results in

T (xp(j)+1
τ−→ xp(j+1)) ≤ 1

k

(
T 1
alg − (2lmax + ηn2)

)
(37)

i.e., the time taken along remaining subtours, T (x1 →
xp(j−1)+1

τ−→ xp(j) → x1), where 1 < j < k, is also bounded

by 1
k (T

1
alg − (2lmax + ηn2)) + 2lmax. Hence, we can conclude

that the time taken along each subtour does not exceed 1
k (T

1
alg −

(2lmax + ηn2)) + (4lmax + 2ηn2).
Let T k

alg be the time taken for largest of the k subtours

generated by the Algorithm 3, and T ∗
k be the cost of the largest

subtour in an optimal solution to Problem 3. We have

T k
alg ≤ 1

k

(
T 1
alg − (2lmax + ηn2)

)
+ (4lmax + 2ηn2) (38)

≤ T 1
alg

k
+ (2lmax + ηn2)

(
2− 1

k

)
(39)

from the triangle inequality T ∗
k ≥ 1

kT
∗
1 . It is natural to think

that at least one robot will have to go to the farthest location

from the depot and come back from there after collecting n2
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Fig. 5. Actual and predicted OM content comparison. The farm is shown as the colored region with the colorbar denoting concentrations at different locations.
All distance units are in meter. (a) Actual OM content (ppm). (b) Predicted OM content (ppm). (c) Prediction error between the actual and the predicted OM content
(ppm).

measurements which gives us a lower bound on the output of

the optimal algorithm, i.e., 2lmax + ηn2 ≤ T ∗
k . Combining these

results with (30), we get

T k
alg ≤ c

k
T ∗
1 + T ∗

k

(
2− 1

k

)
(40)

≤
(
c+ 2− 1

k

)
T ∗
k (41)

≤ (c+ 2)T ∗
k . (42)

�

IV. EMPIRICAL EVALUATION

In this section, we report results from empirical evaluation

of the theoretical results. We show qualitative and quantitative

comparison of our algorithms with other baseline strategies

through simulations using precision agriculture as our motivat-

ing example.

Dataset: We use a real-world dataset [87], collected from a

farm, consisting of organic matter (OM) measurements manu-

ally collected from several hundred locations within the farm.

The maximum and minimum values of the underlying field are

54.6 parts per million (ppm) and 25.4 ppm, respectively shown

by the colorbar [see Fig. 5(a)]. Taking this into account, we set

Δ to be equal to 4 which is 10% of the average of maximum and

minimum field values. We use a simulated sensor that returns a

noisy version of the ground truth measurement with an additive

Gaussian noise of variance ω = 0.0361.

The squared-exponential kernel has three hyperparameters—

length scale (l), signal variance (σ2
0), and noise variance (ω2).

The values of l, σ0, and ω2 were estimated to be 8.33 m,

12.87, and 0.0361, respectively by minimizing the negative

log-marginal likelihood of the manually collected data. We

assume that the estimated values are the true values of the kernel

hyperparameters. In a general application where some prior data

are available, the hyperparameters can be estimated in a similar

way. We used the GPML toolbox to perform the necessary GP

operations [88].

A. Qualitative Example

Stationary Sensor Placement: The final predicted OM content

after performing inference using the measurements obtained is

shown in Fig. 5(b). This predicted OM content is the average

of ten trials. In each trial, the reported value by the sensor can

be different even at the same location because of the simulated

noise. Fig. 5(c) shows a plot of the prediction error averaged over

those ten trials. We observe that the average prediction error is

below Δ = 4 ppm at each location in the environment. It is

important to mention that average prediction error is not same

as the MSE. The MSE at a location is the expected squared

error in prediction at that location. The average prediction

error, referred as empirical MSE in the following text, is an

empirical estimate of that expectation. As the number of runs

increases, the empirical MSE will converge to the actual MSE.

We verify it through simulations and report the results later.

Our theoretical guarantees hold for the MSE and not for the

empirical MSE. However, one can expect that the empirical

MSE will also be less than the predefined threshold Δ given

enough trials. The regions where the OM content changes

sharply tend to be more erroneously predicted as shown by the

lighter colored regions in Fig. 5(c). This can be attributed to

the inherent smoothness assumptions of a squared-exponential

kernel.

Single and Multirobot Tours: The measurement locations

computed by the DISKCOVERTOUR are shown in Fig. 6(a).

As postprocessing, we removed the redundant measurement

locations in overlapping 3rmax radii disks. After performing

this step, the total number of measurement locations was 2320.

A covering of the farm with disks of radii 3rmax and an ap-

proximate optimal tour visit the centers of those disks cal-

culated by DISKCOVERTOUR is shown in Fig. 6(b). We com-

pute the optimal TSP tour since this is a reasonably sized

instance. The lawn-mower detours visiting individual 3rmax

disks have been omitted to make the figure more legible. For

the multirobot version, we assume that we have three robots.

Splitting of a single robot tour [see Fig. 6(b)] in three sub-

tours is shown in Fig. 6(c). The robots start from a common

depot.

Varying Values of Δ: In some applications, one may be

interested in having more accurate predictions in some parts of

the environment than others. Our algorithms provides a way to

choose locations and plan paths in such applications as well. To

demonstrate this, we divide the farm in three subenvironments

that have different Δ tolerances. The left-most, middle, and

right-most regions have thresholds of Δ = 6, 4, and 2 ppm,
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Fig. 6. Measurement locations and the tours computed by DISKCOVER and k-DISKCOVERTOUR. For Fig. 6(b) and (c), the complete tours that take detours to visit
all the locations in Fig. 6(a) have been omitted to make the figures more legible. (a) Measurement locations calculated by the DISKCOVER algorithm. There are
1012 measurement locations. (b) Red disks are of radii 3rmax which are concentric with disks of radii rmax in I. The depot is denoted by O. (c) All robots start
from and return to the depot after making measurements.

Fig. 7. Measurement locations for different values of Δ.

Fig. 8. Approximate TSP tour to visit the 3rmax disks. rmax values depend
on Δ (13) and hence, vary in different Δ subregions. Note the shrinking size of
disks as one moves toward right.

respectively. We solve for the measurement locations

independently in each region. The corresponding rmax values

were calculated to be 4.97, 3.93, and 2.70 m, respectively using

(13). Fig. 7 shows the measurement locations. One can quali-

tatively observe that the algorithm places fewer measurement

locations in the left-most subenvironment which allows for the

highest error tolerance.

An approximate TSP tour visiting the centers of all 3rmax

disks, in all three regions, is shown in Fig. 8. The size of the

Fig. 9. Average posterior variance for varying degree of lawn-mower
resolutions.

disks shrinks as one moves to the right-most subregion which

has the least tolerance for prediction error. The TSP tour goes

outside the environment in this case, which may be feasible if an

aerial robot is used to monitor the farm. In case of applications,

where the robot must stay inside the environment, we can enforce

this constraint by replacing the Euclidean edge weights in the

TSP input graph with the length of the shortest path between

two vertices inside the environment.

B. Comparisons With Predefined Lawn-Mower Tours

One can observe from Fig. 6(a) that the measurement location

pattern closely resembles a lawn-mower pattern. It motivated

us to compare the performance of our algorithms and with

lawn-mower plan. Figs. 9 and 10 show the average posterior

variance and average empirical (for ten trials) MSE respec-

tively for a predefined lawn-mower pattern with varying grid

resolutions on a semilogarithmic scale. Note that the posterior

variance at a test location is always same in each trial because

it is not a function of the actual measurement value. The blue

horizontal line corresponds to DCT and is shown for the sake of

comparison.

A plot of the time taken by the robot to cover lawn-mower

patterns with various grid resolutions is shown in Fig. 11. The
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Fig. 10. Average empirical MSE for varying degree of lawn-mower
resolutions.

Fig. 11. Time spent by the robot with lawn-mower planners of different grid
resolutions.

Fig. 12. Average posterior variance as a function of time spent by the robot.

lawn-mower lines in Figs. 9–11 intersect the DCT lines at

approximately a resolution of 2 m. It suggests that one would

need to create a grid of approximately that resolution to achieve

same performance as DCT. Fig. 12 shows the average posterior

variance for DCT and a predefined lawn-mower of resolution

2.4 m as a function time elapsed along a deployment (averaged

over 10 deployments). We chose a resolution of 2.4 m since a

lawn-mower planner with this resolution has approximately the

same number of measurement locations as DISKCOVERTOUR.

We observe that both perform almost the same empirically.

One may wonder why we cannot simply use the lawn-mower

pattern, instead of DISKCOVERTOUR. To create a lawn-mower

pattern, one would need to pick a grid resolution. There is no

systematic way of picking this resolution without enumerating

a few combinations to analyze the tradeoff between time and

posterior variance or MSE. This can be wasteful. Instead, we

present a systematic way of planning the measurement locations

and give explicit theoretical guarantees on time and MSE or

variance.

C. Comparison With Other Baselines

A comparison between DISKCOVERTOUR and two baselines,

entropy-based, and MI-based planner is shown in Fig. 13. The

measurement locations for the entropy-based and MI-based

planners were calculated greedily, i.e., picking the next loca-

tion at the point of maximum entropy and MI, respectively as

described in [5]. We study the average posterior variance and

average empirical MSE in prediction as a function of the total

time (measurement plus traveling) spent by the robot on the farm

for each planner. After finding the measurement locations for

each planner separately, TSP tours visiting those locations were

calculated. The X-axis in Fig. 13 shows the time taken along

a tour and the Y -axis shows the respective metrics based on

measurements collected until that point in time along the tour

(averaged over ten trials). We observe that DISKCOVERTOUR

performs at par with other planners. The entropy-based planner

results in the most significant reduction in posterior variance and

average empirical MSE initially. This can be explained by the

fact that the entropy-based planning tends to spread the measure-

ment locations far from each other resulting in covering a bigger

portion of the environment initially. However, DISKCOVERTOUR

converges to a lower value of average empirical MSE and

average posterior variance.

D. MSE and Variance

We verify our hypothesis that MSE is equal to the posterior

variance for GPs. A plot of the mean percent difference between

the empirical MSE and the posterior variance is shown in Fig. 14.

The mean is computed over approximately 5600 test locations

which are different from the measurement locations and placed

on a grid. As the number of trials increases, the mean difference

between empirical MSE, which is essentially the MSE given

enough number of trials, and the posterior variance decreases

implying that the empirical MSE converges to the posterior

variance asymptotically. In each trial, the measurement loca-

tions, test locations, and the hyperparameters are same, and

therefore the variance estimates are same as well. However, the

predicted value in each trial, and hence the prediction error,

may be different since the actual measurement collected can be

different in each trial due to the simulated noise. The effect of

noise will decrease as one computes empirical estimate over a

larger number of trials.
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Fig. 13. DISKCOVERTOUR performs comparably with entropy-based and MI-based strategies. The shaded regions correspond to the standard deviation taken over
ten trials. (a) Average empirical MSE. (b) Average posterior variance.

Fig. 14. Mean percentage difference between the empirical MSE and the
posterior variance.

V. CONCLUSION

In this article, we studied several problems—placing the

minimum number of stationary sensors to track a spatial field,

mapping a spatial field by a single as well as multiple robots

while minimizing the time taken by the robots. For all the prob-

lems, we proposed polynomial-time approximation algorithms

to ensure that the MSE in prediction the underlying spatial field

was smaller than a predefined threshold at each point. We also

derived the lower bounds on the performance of any algorithm

(including optimal) to solve respective problems are provided.

We showed that it was possible to learn a given spatial field

accurately with high confidence without planning adaptively.

Note that, if the kernel parameters were optimized online, then,

one would require an adaptive strategy.

The algorithms suggested in this article performed compar-

atively with the baseline planners developed earlier. Our algo-

rithms had theoretical bounds on their performance. The algo-

rithms could also be generalized to 3-D mapping, even though

we illustrated using 2-D examples. The disks in the 2-D case

would be replaced by spheres in 3-D. The disk packing/covering

problem became a sphere packing/covering. The tour would

need to visit points in 3-D, as opposed to 2-D. The existing

TSP algorithms already apply to the 3-D case [42]. Our ongoing

work is on developing competitive strategies for spatio-temporal

learning and deriving similar guarantees for adaptive cases.

APPENDIX

Proof: Consider two measurement locationsx1, x2 and a test

location x such that x1 is closer to x. The posterior variance at

x if a measurement was collected at x1 can be computed as

follows:

σ̂2
x|x1

= k(x, x)− k(x, x1)K(x1, x1)
−1k(x1, x) (43)

= σ2
0

(
1− exp

(
−||x− x1||2

l2

))
. (44)

Similarly, the posterior variance at x if a measurement was

collected at x2

σ̂2
x|x2

= σ2
0

(
1− exp

(
−||x− x2||2

l2

))
. (45)

From ||x− x1||2 < ||x− x2||2 and f(x) = − exp (−x) being

a monotonically increasing function, we have

− exp

(
−||x− x1||2

l2

)
< − exp

(
−||x− x2||2

l2

)
. (46)

Using this to compare (44) and (45) one can easily see that

σ̂2
x|x1

< σ̂2
x|x2

. �
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