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ABSTRACT

Developers build programs based on software libraries to reduce

coding effort. If a program inappropriately sets an API parameter,

the program may exhibit unexpected runtime behaviors. To help

developers correctly use library APIs, researchers built tools to mine

API parameter rules. However, it is still unknown (1) what types of

parameter rules there are, and (2) how these rules distribute inside

documents and source files. In this paper, we conducted an empirical

study to investigate the above-mentioned questions. To analyze

as many parameter rules as possible, we took a hybrid approach

that combines automatic localization of constrained parameters

with manual inspection. Our automatic approach—PaRu—locates

parameters that have constraints either documented in Javadoc (i.e.,

document rules) or implied by source code (i.e., code rules). Our

manual inspection (1) identifies and categorizes rules for the located

parameters, and (2) establishes mapping between document and

code rules. By applying PaRu to 9 widely used libraries, we located

5,334 parameters with either document or code rules. Interestingly,

there are only 187 parameters that have both types of rules, and 79

pairs of these parameter rules are unmatched. Additionally, PaRu

extracted 1,688 rule sentences from Javadoc and code. We manually

classified these sentences into six categories, two of which are

overlooked by prior approaches. We found that 86.2% of parameters

have only code rules; 10.3% of parameters have only document

rules; and only 3.5% of parameters have both document and code

rules. Our research reveals the challenges for automating parameter

rule extraction. Based on our findings, we discuss the potentials of

prior approaches and present our insights for future tool design.
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1 INTRODUCTION

Software libraries (e.g., J2SE [4]) are widely used, because they

provide thousands of reusable APIs. Incorrectly using APIs can

cause programming errors, slow down code development, or even

introduce security vulnerabilities to software [20, 44]. Since cor-

rectly using APIs is important for programmer productivity and
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software quality, researchers have built various approaches that

detect or check API usage rules by analyzing code or documen-

tation [27, 46, 54]. For instance, Engler et al. [27] mined frequent

calling sequences of method APIs from the code of operating sys-

tems, and revealed abnormal API usage. As another example, Zhong

et al. [54] inferred API specifications from library documentation.

Although the above approaches mainly focus on API invocation

sequences, the careful selection of legal parameter values is also

important for developers to ensure the correctness of API usage.

In the literature, researchers [28, 80] have proposed approaches

to mine API parameter rules. For instance, Ernst et al. [28] built

Daikon to infer invariants of variables’ values from dynamic pro-

filing of program executions. Zhou et al. [80] detected defects in

API documents using techniques of program analysis and natu-

ral language processing. Both approaches extract rules based on

predefined templates.

Although prior studies (e.g., Polikarpova et al.[56]) show that the

above approaches inferred useful parameter rules, many research

questions in this research line are still open. For instance, what

types of parameter rules are there, and how do those parameter

rules distribute among documents and source files? These questions

are important because without an overview of the API parameter

rules existing in libraries, it is hard to tell how far we are from

the fully automatic approaches that (i) detect constraints on API

parameters, (ii) document the parameter rules reflected by code, and

(iii) reveal any constraint violation in the client code of libraries.

To explore these questions, in this paper, we conducted an ex-

tensive empirical study on parameter rules. Specifically, to reveal

as many parameter rules as possible, we took a hybrid approach

by combining automatic fact revealing and manual inspection. In

particular, given a library, it can be very time-consuming for us

to manually read all code and Javadoc comments to identify and

summarize the parameter rules. Therefore, we built an approach—

PaRu (Parameter Rules)—to locate (1) rule descriptions in Javadoc,

and (2) method APIs whose source code has parameter-related ex-

ception declarations or assert statements. Although PaRu cannot

comprehend or interpret any described or implied rule, it can locate

the parameters with candidate rules for further manual inspection.

Here, a candidate rule is a rule sentence or a parameter-related

exception/assertion located by PaRu.

In the second step, for each parameter located by PaRu, we man-

ually examined the rule description in Javadoc or inspected the

code with related exception or assertion. In this way, we can com-

prehend the meaning of each located candidate rule, and explore

the following research questions:

• RQ1:What is the categorization of API parameter rules? Prior

work shows that there are constraints on the values, value

ranges, or data types of API parameters [80]. However, we

were curious whether there is any parameter rule that does
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not fall into the known categories. This question is important

because by revealing new types of rules, we may shed light

on future rule extraction tools.

• RQ2: How do rules distribute in Javadoc and code implemen-

tation? Our investigation for this question serves multiple

purposes. For instance, if most rules only exist in code, we

need new approaches that generate Javadoc comments from

code to automate rule documentation. If the rules in Javadoc

and source code often conflict with each other, we need new

tools to detect and resolve the contradiction.

By applying PaRu to 9 widely used software libraries that con-

tain in total 14,392 source files, we located 5,334 parameters with

candidate rules. Based on these parameters and their rules, we made

the following major observations.

• There are five major categories of parameter rules, with the

sixth category (i.e., “other”) covering miscellaneous rules.We

analyzed 1,688 rule-related sentences, which are located in

either Javadoc comments or the exception messages of code.

In addition to the known categories such as null-value, con-

stant values, and value ranges, we found that 18.5% of the

studied rules constrain parameters’ formats (e.g., “csvKey-

ValueDelimiter must be exactly 1 character”); while 5.3% of

rules describe the relation between different parameters (e.g.,

“polyLats and polyLons must be equal length” ). The miscella-

neous rules count for 7.0% of the inspected data. In total, we

identified three new rule categories that were unknown.

• The majority of studied rules are implicitly indicated by API

code. Specifically, 86.2% of parameters have rules defined in

code, while 10.3% of parameters’ rules are defined in Javadoc.

The results imply that developers seldom describe parameter

usage explicitly, which can cause significant confusion on

users of the APIs. We only found 2.0% of the parameters to

have consistent rules that are reflected in both Javadoc and

code. Even fewer parameters (1.5%) have inconsistent rules,

i.e., mismatches between the document rules and code rules

for the same parameters. Such inconsistencies are usually not

bugs. Instead, the rules describe different and complementary

constraints on the same parameters.

The rest of this paper is organized as follows. Section 2 intro-

duces the background. Section 3 presents our support tool. Section 4

presents our empirical study. Section 5 interprets our findings. Sec-

tion 6 discuss the potentials of related tools. Section 8 introduces

the related work. Section 9 concludes this paper.

2 BACKGROUND

This section defines terms related to API parameter rules (Sec-

tion 2.1), and overviews rule-mining techniques (Section 2.2).

2.1 Terminologies

API parameter rules describe or reflect the constraints on pa-

rameters of API methods. Such constraints are imposed by either

software library implementation or application domains, and may

limit the value or format of any parameter. Rule violations can

cause coding errors and jeopardize developers’ productivity. In our

1 / ∗ ∗ . . .
2 ∗ @param s e a r c h e r I nd exS e a r ch e r to f i n d n e a r e s t p o i n t s

from .
3 ∗ @param f i e l d f i e l d name . must not be n u l l .
4 ∗ @param l a t i t u d e l a t i t u d e a t the c e n t e r : must be

w i th in s t anda rd +/−90 c o o r d i n a t e bounds .
5 ∗ @param l on g i t u d e l o n g i t u d e a t the c e n t e r : must be

w i th in s t anda rd +/−180 c o o r d i n a t e bounds .
6 ∗ @param n the number o f n e a r e s t ne i ghbo r s to r e t r i e v e
7 ∗ /
8 public s t a t i c TopF ie ldDocs n e a r e s t ( I n d exS e a r ch e r

s e a r che r , S t r i n g f i e l d , double l a t i t u d e , double
l ong i t ud e , in t n ) {

9 GeoU t i l s . c h e c kL a t i t u d e ( l a t i t u d e ) ;
10 GeoU t i l s . checkLong i tude ( l o n g i t u d e ) ;
11 i f ( n < 1 ) {
12 throw new I l l e g a lA r gumen tEx c ep t i o n ( " n ␣ must ␣ be ␣ a t ␣

l e a s t ␣ 1 ; ␣ go t ␣ " + n ) ;
13 }
14 i f ( f i e l d == null ) {
15 throw new I l l e g a lA r gumen tEx c ep t i o n ( " f i e l d ␣ must ␣ not ␣

be ␣ n u l l " ) ;
16 }
17 i f ( s e a r c h e r == null ) {
18 throw new I l l e g a lA r gumen tEx c e p t i o n ( " s e a r c h e r ␣ must ␣

not ␣ be ␣ n u l l " ) ;
19 } . . . }
20 / ∗ ∗ v a l i d a t e s l a t i t u d e va l u e i s w i th in s t anda r d +/−90

c o o r d i n a t e bounds ∗ /
21 public s t a t i c void c h e c kL a t i t u d e ( double l a t i t u d e ) {
22 i f ( Double . isNaN ( l a t i t u d e ) | | l a t i t u d e < MIN_LAT_INCL

| | l a t i t u d e > MAX_LAT_INCL ) {
23 throw new I l l e g a lA r gumen tEx c e p t i o n ( " i n v a l i d ␣

l a t i t u d e ␣ " + l a t i t u d e + " ; ␣ must ␣ be ␣ between ␣ "
+ MIN_LAT_INCL + " ␣ and ␣ " + MAX_LAT_INCL ) ;

24 } }

(a) A piece of API code with rules defined in Javadoc
Parameters:
searcher - IndexSearcher to find nearest points from.
field - field name. must not be null.
latitude - latitude at the center: must be within standard

+/-90 coordinate bounds.
longitude - longitude at the center: must be within

standard +/-180 coordinate bounds.
n - the number of nearest neighbors to retrieve.

(b) The Javadoc of the nearestmethod, which is generated from its

code comments with the @param tags

Figure 1: Example parameter rules

research, we focus on the parameter rules of public APIs, as these

APIs are visible to library users and the rules can affect those users.

As shown in Figure 1a, there is a method API nearest(...) de-

fined in the Lucene library [1]. Among the five parameters de-

fined for the API, one parameter is field. According to the API

implementation, field must not be null, because the code throws

an IllegalArgumentException if the parameter is null. Correspond-

ingly, the library developers described this rule in the Javadoc

comment enclosed by “/**” and “*/”. In particular, when the tag

@param is used in the comment to declare a parameter and describe

the related rule(s) (see Figure 1a), a document on the parameter us-

age can be automatically generated when the method is publicized

as a library method interface [9] (see Figure 1b).

Since parameter rules can be either explicitly mentioned in

Javadoc comments or implicitly indicated by exceptions/assertions

in code, we defined two terms to reflect the data sources of rules.
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Definition 2.1. A document rule is an API parameter rule ob-

served in API Javadoc, tagged with @param.

Definition 2.2. A code rule is an API parameter rule inferred

from API source code.

In Figure 1a, field has both a document rule and a code rule. It is

also possible that a parameter has only one kind of rule or no rule

at all. For instance, the parameter searcher in Figure 1a has a code

rule but no document rule.

Definition 2.3. A rule sentence is a sentence that explicitly de-

scribes constraints on a parameter.

In Javadoc, a document rule always corresponds to a rule sentence.

In API implementation, a code rule may or may not correspond

to a rule sentence. As shown in Figure 1a, an exception message

explicitly mentions a parameter rule—“field must not be null”, so

we consider the message string as a rule sentence. There are also

scenarios where an invalid parameter can trigger an exception in

API implementation, but the exception message does not explicitly

describe any rule. For such cases, there are code rules implied by

the exceptions but there is no rule sentence in the code.

Definition 2.4. Rule localization is the process to identify rules

(i.e., document and code rules) in library implementation.

Definition 2.5. Rule comprehension is the process to interpret

the meaning of a localized rule.

Definition 2.6. Rule extraction/mining involves both rule lo-

calization and rule comprehension.

In our research, we treat rule extraction as a two-step procedure.

To extract a parameter rule, we first localize rules nomatter whether

they are in the format of rule sentences or exception-throwing/assertion

code chunks. Next, for each localized rule, we summarize the mean-

ing or semantics.

2.2 Existing Rule Extraction Techniques

Researchers explored various techniques to extract API parameter

rules from client code, API documents, and/or API code.

MiningClient Code. Client code is the source code that invokes

APIs. Given a software library, many approaches identify client

code of the library in open source projects [23, 28, 49, 70]. Some of

the approaches then compile and execute client projects [23, 28, 70].

They leverage dynamic analysis to collect the execution traces,

gather run-time values of variables, and further infer invariants on

the exact value or value ranges of parameters. Nguyen et al. use a

light-weight, intra-procedural, static analysis technique to analyze

the guard conditions in client code before an API is invoked [49].

This approach is limited by the API parameter rules sensed by

developers of client code.

Mining Library Documents. Library documents describe the

functionalities and usage of APIs in natural languages. Existing ap-

proaches typically analyze such documents with natural language

processing techniques [54, 80]. These approaches usually define

parsing semantic templates to locate specific natural language sen-

tences, and convert those sentences to method specifications. For

Table 1: Subject projects.

Names Files Methods Ex. Para. Doc.

commons-io 246 1,534 413 1,936 1,590

pdfbox 1,295 6,392 484 6,375 3,949

shiro 711 2,090 237 1,960 854

itext 1,503 8,930 1,110 11,089 5,784

poi 3,493 16,599 2,315 17,792 5,218

jfreechart 987 6,847 450 8,728 8,672

lucene 4,124 12,204 3,163 16,022 3,454

asm 269 1,925 274 2,614 1,015

jmonkey 1,764 10,867 1,312 14,470 4,679

total 14,392 67,388 9,758 80,986 35,215

instance, one of the templates defined by Pandita et al. [54] is “(sub-

ject) (verb) (object)”, which can locate rule sentences like “The path

cannot be null”.

Mining Library Code. Library or framework code is the imple-

mentation of class, method, or field APIs. Existing approaches use

static analysis to infer parameter rules fromAPI source code [17, 80].

Specifically, the state-of-the-art approach of parameter rule extrac-

tion was introduced by Zhou et al. [80], who combined document

analysis with code analysis. For document analysis, Zhou et al. de-

fined four parsing semantic templates (e.g., “(subject) equal to null”)

to locate document rules. Meanwhile, for code analysis, they located

exception throwing declarations in the body of any method API

m. Then they related the declarations with any formal parameter

defined by either m or other methods invoked by m. If a parameter p

can trigger a thrown exception in any program execution path, they

generated code rules by synthesizing all constraints on the path(s)

for p’s value. By comparing the document rules and code rules of

the same API parameters, they reported defective document rules.

The approach’s effectiveness is limited by (1) the representativeness

of defined rule templates, and (2) the precision of static analysis.

All above-mentioned techniques can automatically localize and

comprehend certain rules. For this paper, we intended to identify

as many parameter rules as possible in popular libraries, and assess

(1) what types of parameter rules there are, and (2) how parameter

rules distribute among documents and source files.

3 PARU

In this section, we first present our dataset (Section 3.1), and then

introduce how PaRu extracts document rules (Section 3.2) and

code rules (Section 3.3) from source files. Section 3.4 shows the

f-scores of PaRu. PaRu focuses on rule localization instead of rule

comprehension. PaRu borrows ideas from current rule mining tools,

but can locate more diverse parameter rules in a scalable way.

3.1 Dataset

Table 1 shows the nine subject libraries. Column “Names” lists

the names of libraries. In particular, asm [2] is an analysis library

for Java bytecode, and jmonkey [5] is a game engine framework.

Except jfreechart, all the other libraries were collected from the

Apache foundation [8]; these libraries were designed for purposes

like assisting IO functionalities, manipulating different types of files,

and performing security managements. We selected these subjects

because they are widely used in various programming contexts.
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(a) A sentence without rules

(b) A rule sentence

Figure 2: The dependency tree

For instance, a search of the keyword, lucene, returns more than

3,000 projects. Some of these projects (e.g., itext), have been used in

the evaluations of the prior rule-mining approaches [79]. Column

“Files” lists the number of Java source files. Column “Methods”

lists the number of suspicious methods. A suspicious method is a

public method that has either an assert/throw statement or a pa-

rameter document. Column “Ex.” lists the number of assert/throw

statements inside the suspicious methods. Column “Para.” lists the

number of parameters of the suspicious methods. Column “Doc.”

lists the number of parameters that have documents.

3.2 Step 1. Identifying Document Rules

Our extraction focuses on the parameter documentation labeled

with @param tags. PaRu uses the Stanford parser [66] to build part-

of-speech (POS) tags and dependencies among words of sentences.

Figure 2 shows the parsing results of two sentences. The grey

annotations under words denote their POS tags (e.g., NN for noun).

The arrows between words denote their dependencies. For example,

the dobj arrow in Figure 2 implies that the direct object of contain

is parameters. The nsubj arrow shows that the subject of contain

is URL. More definitions of such dependencies are available in the

Stanford parser manual [7]. Although the sentence in Figure 2a has

a modal verb (i.e., must), it does not define any rule. This sentence

describes what a root escher container is and its relation to escher

records, but the sentence does not define any constraint on the

container usage. PaRu determines that a sentence is a document

rule, only if (1) the sentence uses at least one modal verb, and (2)

the modal verb does not appear in sub-clauses. PaRu relies on the

tag MD to identify any modal verb within {must, shall, should, can,

may}, because according to our observation, document rules usually

contain such words.

Some rule-mining approaches [54, 80] define NLP templates

to mine rules, while some other approaches (e.g., a variable can

be null as defined in Zhou et al. [80]) include can and may as

keywords when mining parameter rules. The goal of our study is

not to reveal the implementation flaws in existing approaches, but

to provide insights for follow-up researchers. To achieve this goal,

we tried to reveal as many parameter rules as possible. Thus, we had

to consider what existing approaches have done when designing

PaRu. When the NLP-based approaches [54, 80] rely on parsing

semantic templates to mine rules, they may miss rule sentences that

do not match any predefined template. Thus, we designed PaRu

to use modal verbs instead of templates to locate rules. Although

can and may are less compulsory than the other modal verbs we

1 public Quatern ion fromAxes ( V e c t o r 3 f [ ] a x i s ) {
2 i f ( a x i s . l e ng t h != 3 ) {
3 throw new I l l e g a lA r gumen tEx c e p t i o n ( " Axis ␣ a r r ay ␣

must ␣ have ␣ t h r e e ␣ e l emen t s " ) ;
4 }
5 return fromAxes ( a x i s [ 0 ] , a x i s [ 1 ] , a x i s [ 2 ] ) ;
6 }

(a) The code of the fromAxes method

(b) The SDG of the fromAxes method

(c) A path template that indicates parameter rules

Figure 3: Our analysis on SDGs

use, because the two words were mentioned by prior work [80], we

simply included them in our modal verb set for completeness.

3.3 Step 2. Extracting Code Rules

The basic process of identifying parameter code rules. PaRu

is built upon WALA [12]. PaRu first scans the Abstract Syntax

Trees (AST) of source code to locate throw and assert statements.

If a method API implementation includes such a statement, PaRu

further builds a system dependency graph (SDG) for the API:

Definition 3.1. An SDG is a graph д = 〈V , E〉, where V is a set

of nodes corresponding to code instructions, and E ⊆ V ×V is a

set of directed edges. Any edge, e.g., 〈s1, s2〉 ∈ E, denotes a data or
control dependency from s1 to s2.

Definition 3.2. An exception clique is an SDG subgraph, that

corresponds to an exception-throwing statement or assertion.

To construct an SDG that visualizes any control or data depen-

dencies within Java code, WALA first translates source code into

its intermediate representation called IR [10] by converting each

source line to one or more IR instructions. Next, WALA creates a

node for each instruction, and connects nodes with directed edges

based on the control or data dependencies between instructions.

For the example shown in Figure 3, an exception-throwing state-

ment (see Line 3 in Figure 3a) is converted to three instructions,

corresponding to three nodes in an SDG (see nodes 4©, 5©, and 6©
in Figure 3b). We use exception clique to refer to the subgraph

that consists of these three nodes and any edges in between (see

dashed region in Figure 3b). Similarly, WALA translates each as-

sert statement into three IR instructions, whose nodes compose an

exception clique similar to the one shown in Figure 3b. The only

difference is that an assert statement replaces 4© with a node for

the AssertionError creation instruction. To detect code rules, PaRu

locates both types of exception cliques in SDGs.
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Algorithm 1: findAllPaths Algorithm

Require:

sn is a source node

tn is a target node

Ensure:

paths denotes all the paths from sn to tn

1: nextNodes ← sn .successors

2: for nextNode ∈ nextNodes do

3: if nextNode .equal (tn) and path .isV alid () then

4: stack ← new Stack

5: for node ∈ path do

6: stack .add (node)

7: end for

8: paths .add (stack )

9: else if nextNode � path and path .isPar tialV alid () then

10: path .push(nextNode)

11: f indAllPaths(nextNode , to)

12: path .pop()

13: end if

14: end for

Given the method implementation of a public API, PaRu first

identifies the declared parameters in the method header and locates

all exception cliques in the body. For each located exception clique

in SDG, PaRu checks whether the clique is reachable from any pa-

rameter, i.e., whether there is any path that starts from a parameter

declaration and goes through the exception clique. When such a

path is found, PaRu concludes that the exception clique depends on

the parameter and there is an implicit constraint on the parameter

value. Figure 3c shows an exemplar path that PaRu can find. The

path starts with the declaration of parameter n, goes through an

if-condition that checks the parameter value range, and ends with

an exception clique that prints “n=1” in the error message.

Algorithm 1 shows the details of searching for all the valid paths

from a given source node to a target node. Before adding a path to

the set of valid paths, PaRu checks the path at Line 3. However, if it

only checks the path at Line 3, it has to search many invalid paths

between Line 10 and Line 12. As each statement is split into multiple

nodes in an SDG, SDGs can become quite large if a method is long.

To reduce the search effort, we add another check to Line 9. At this

line, it is infeasible to fully determine whether a path is valid, but

we can remove many invalid paths. For example, if we find that an

if-condition has no data dependency on any parameter, we can stop

the exploration of its successors. As a path is incomplete at Line 9,

at this point, PaRu concludes that a path is invalid if the incomplete

path is not a prefix of a valid path. As shown in Figure 1a, code

rules can have rule sentences. After a valid path is extracted, PaRu

further extracts rule sentences from the thrown message, and such

sentences are later manually analyzed (Sections 4.1.1 and 4.2.1).

Slicing. Algorithm 1 is less effective to find valid paths, if a

graph is quite large. For example, when searching for all the valid

paths from 1© to 4, 5, 6 in Figure 3b, Algorithm 1 will explore the

paths such as 1© −→ 7© and 1© −→ 8©. When an SDG is large, the

exploration is time-consuming. Weiser [72] proposed the concept

of program slicing. Given a program location l and a variable v , the
backward slicing intends to find all the statements of the program

Table 2: The precision, recall, and f-score of PaRu.

Name Precision Recall F-score

commons-io 98.0% 94.2% 96.1%

pdfbox 92.9% 88.1% 90.4%

shiro 95.5% 96.9% 96.2%

itext 89.9% 94.7% 92.2%

poi 98.8% 96.4% 95.2%

jfreechart 95.3% 83.6% 89.1%

lucene 85.2% 100.0% 92.0%

asm 98.9% 96.9% 97.9%

jmonkey 93.8% 88.4% 91.0%

that can affect the value of v at l . For each exception clique, PaRu

locates the backward slice before it searches for all valid paths, in

order to save the search effort. In particular, WALA has a program

slicer [11]. Given a statement and an SDG, the slicer finds all the

statements that appear in the backward slice of the statement. For

each slice, PaRu builds a smaller SDG that contains only nodes of

the slice. After SDGs are sliced, for Figure 3b, Algorithm 1 does not

explore 7© or 8©, since they do not appear in the sliced SDG.

3.4 The F-scores of PaRu

We were curious how effectively PaRu can locate parameter rules,

so we constructed a ground truth data set of parameter rules for

some Java files, and applied PaRu to those files to automatically

locate rules. By comparing PaRu’s reports against our ground truth,

we assessed the precision, recall, and f-score of PaRu.

The setting. The third and the fourth authors are two PhD stu-

dents in Computer Science, who have more than three years of Java

coding experience. To construct the ground truth data set for PaRu

evaluation, the two students read source files in Table 1, and tried

their best to manually recognize parameter rules in those files. As

these students did not read or write any source code for PaRu, so

they have no bias towards PaRu when building the data set. Such

setting ensures the objectiveness of PaRu evaluation.

Although some prior approaches [28, 54] mine parameter rules

from data sources other than source files (e.g., execution profiles),

we believe our ground truth of parameter rules is reasonably good

for two reasons. First, as illustrated in Figure 1, API documents are

automatically generated from the Javadoc comments in code, so the

rules described or implied by source files can always cover those

rules in API documentation. Second, in high-quality software, the

source files usually define or validate constraints on parameters

before using those parameters. It is meaningful to rely on software

implementation to distill parameter rules. Thus, we decided to

manually inspect source code only, instead of also examining other

information resources simultaneously.

Specifically, the two students manually analyzed 20 randomly

selected source files in each project. For each parameterp of method

APIm, the students read the document and implementation ofm to

decide whether p has any document or code rule. Since the value p
may be tested by code insidem or any method called by or calling

m, the students examinedm together with methods that have any

caller-callee relationship withm to infer code rules. After the man-

ual inspection, in our group meeting, the students discussed their

results to reach a consensus. In total, the two students manually
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Table 3: Top ten verbs.

commons-io pdfbox shiro itext poi jfreechart lucene asm jmonkey

be (153) be (35) be (82) be (95) be (157) be (68) be (368) be (102) be (218)

compared (6) include (10) contain (2) retrieved (4) exceed (5) used(36) >= (55) have (6) have (29)

>= (5) enforced (6) used/use (3) have (3) react (4) >= (22) have (21) used (3) loaded (9)

match (2) have (5) represented (1) reuse (3) supplied (4) > (8) <= (14) delegate (3) > (5)

contain (2) use/used (5) create (1) registered (2) aligned (4) contain (5) > (11) updated (1) add (4)

called (1) compressed (4) retained (1) contain (2) belong (3) have (3) change (10) store (1) filled (4)

failed (1) defined (3) null (1) submitted (2) >= (3) <= (2) contain (9) create (1) match (4)

write (1) point (2) examined (1) fit (2) used (3) supplied (2) use (6) contain (1) fall (3)

- support (1) queried (1) opened (1) havel (3) add (2) process (6) updated (1) assigned (3)

- contain (1) retained (1) use (1) override (2) match(1) match (3) sorted(1) contain (2)

identified 135 documented rules and 539 code rules, which were

used as the gold standard. For the 180=20×9 source files, we ap-

plied PaRu to locate any document or code rule. We then compared

the located rules against the gold standard to calculate precisions,

recalls, and f-scores for PaRu.

Results. Table 2 shows the evaluation results. For 8 out of the 9

projects, PaRu acquired f-scores higher than 90%. Both precision

and recall rates are generally high (i.e., 85.2%-98.9% precision and

83.6%-100% recall). The recalls of PaRu are not 100%, because some

rules can only be manually identified in nonstandard ways, but are

very challenging to be located by any automated tool. For instance,

a parameter rule is sometimes described by comments of the whole

method, but not by the Javadoc comment of that parameter. As

Apache projects follow strict regulations, based on our evaluation

results shown in Table 3, the nonstandard scenarios are rare, and

PaRu has detected most parameter rules. Our results imply that the

rules reported by PaRu are very likely to be representative, and we

can rely on these rules to build a taxonomy of parameter rules.

4 EMPIRICAL STUDY

With PaRu, we conducted an empirical study to explore our re-

search questions listed in Section 1. We used PaRu to extract pa-

rameter rules from the dataset in Section 3.1. In the 14,392 files

from 9 real projects, PaRu identified in total 5,334 parameters to

have rules. From these parameters with rules, PaRu extracted 1,688

rule sentences that are described in either Javadoc comments or

exception/assertion messages. There are only 187 parameters that

have both document rules and code rules.

We manually examined the 1,688 rule sentences and rules related

to the above-mentioned 187 parameters. The manual inspection

procedure took several weeks. This section presents our manual

analysis protocols and investigation findings. More details of our

results and the gold standards are listed on our project website:

https://github.com/drzhonghao/parameterstudy.

4.1 RQ1. Rule Categorization

4.1.1 Protocol. To explore RQ1, wemanually classified all the 1,688

rule sentences. Here, if a parameter rule is extracted with no rule

sentence identified (e.g., an exception thrown with the empty mes-

sage body), we do not inspect the rule, because it is too expensive

to understand a parameter solely based on source code. We first

classified rule sentences by the verbs which follow the extracted

modal verbs. Although the result reveals how programmers write

rule sentences, we realized that the verbs do not present an accu-

rate classification. To handle the problem, we manually read all

rule sentences, and classified them based on the semantics. During

the manual inspection, the first and the third authors prepared the

initial inspection results. The other authors checked the results,

until they came to an agreement on all the results.

4.1.2 Result. Table 3 shows the top ten verbs. Our result shows

that developers use limited verbs to define parameter rules. The

commons-io project even does not have ten verbs. In this table, we

highlight verbs that appear in more than half of the projects. Ac-

cording to this definition, only four verbs are commonly used: “be”,

“contain”, “have”, and “use”. It seems that library developers ex-

ploited certain verbs much more frequently than other verbs when

defining parameter rules, so it is infeasible to distinguish parame-

ter rules only based on verbs. Instead, Table 4 shows the results of

manual inspection. In total, we identified six types of rule sentences:

C1. Null. This category is about whether a parameter is allowed or

disallowed to be null. For instance, the code in Figure 1a shows that

an exception is thrown if the field parameter is null; the related

rule sentence is “must not be null.” Additionally, the formatCellValue

method of poi has a document rule: “The cell (can be null)”. C1

corresponds to two categories defined by Zhou et al. [80], including

“Nullness allowed” and “Nullness not allowed”.

C2. Range. This category focuses on the legal ranges of parame-

ter values. When defining ranges, a rule sentence can define both

maximum and minimum values, such as “latitude value: must

be within standard +/-90 coordinate bounds.” Meanwhile, a rule

sentence can also define only the minimum or maximum, such as

“maxMergeCount should be at least 1.”. C2 corresponds to the “range

limitation” category of Zhou et al. [80].

C3. Value. This category is about legal values of parameters. For

example, a rule sentence goes “For STRING type, missing value

must be either STRING_FIRST or STRING_LAST.” The existing ap-

proach Daikon [28] monitors program execution status at runtime,

collects values of variables, and infers value invariants accordingly.

Therefore, it is likely that Daikon can identify rules of C1-C3.

C4. Format. This category focuses on the formats of parameters.

An exemplar rule sentence is “csvKeyValueDelimiter must be ex-

actly 1 character.” Zhou et al. [80] defined a “type restriction” cate-

gory to describe type requirements on parameters, such as “value
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Table 4: Rule sentences

Name Null Range Value Format Relation Others

commons-io 141 22 0 3 4 0

pdfbox 13 6 8 36 0 3

shiro 78 2 0 11 0 1

itext 52 8 28 8 0 11

poi 54 52 13 62 13 13

jfreechart 6 77 5 16 1 4

lucene 87 274 29 55 30 45

asm 14 5 57 18 6 20

jmonkey 54 68 14 103 36 22

total 499 514 154 312 90 119

% 29.6% 30.5% 9.1% 18.5% 5.3% 7.0%

of key must be an boolean.” Generally speaking, type restrictions

are about formats of parameters, so we map this “type restriction”

category to C4. However, the scope of C4 is broader. More samples

are as below.

(1) xmp should end with a processing instruction.

(2) Sheet names must not begin or end with (’).

(3) uid must be byte[16].

(4) The moveFrom must be a valid array index.

(5) Value data source must be numeric.

(6) The length of the data for a ExObjListAtom must be at least 4

bytes.

Since format-related rule sentences have diversified descriptions, it

seems to be very challenging to define one or more templates to

match all those sentences for automatic rule comprehension.

C5. Relation. This category is about relations between parameters.

For example, a rule sentence defines the lengths of two parameters

as “polyLats and polyLons must be equal length. ” More samples

are shown below:

(1) origin and region must both be arrays of length 3.

(2) UserEditAtom and PersistPtrHolder must exist and their off-

set need to match.

(3) Index of last row (inclusive), must be equal to or larger than

firstRow.

(4) maxItemsInBlock must be at least 2*(minItemsInBlock-1).

(5) upper value’s type should be the same as numericConfig

type.

(6) the number of values of a block, must be equal to the block

size of the BlockPackedWriter which has been used to write

the stream.

C6. Other. This category includes miscellaneous rules that do not

belong to any of the above-mentioned categories. For example, a rule

sentence defines the synonyms of parameters: “Synonyms must be

across the same field.” More samples are as follows:

(1) A filename to view must be supplied as the first argument,

but none was given.

(2) RC4 must not be used with agile encryption.

(3) SplineStart must be preceded by another type.

(4) features must be present for TextLogitStream.

(5) This must be well-formed unicode text, with no unpaired

surrogates.

Table 5: Rule sentences from thrown messages.

Name Null Range Value Format Relation Other

commons-io 43 16 0 1 0 0

pdfbox 4 4 8 10 0 1

shiro 76 2 0 8 0 1

itext 8 8 0 0 0 7

poi 31 46 3 43 11 5

jfreechart 3 27 4 10 0 4

lucene 78 198 18 32 27 18

asm 11 5 2 5 1 2

jmonkey 51 53 3 69 34 21

total 305 359 38 178 73 59

% 30.1% 35.5% 3.8% 17.6% 7.2% 5.8%

(6) input automaton must be deterministic.

Among the above categories, C5 and C6 are solely detected by

PaRu. It is more challenging to define templates of C5 and C6 than

those of other rules. The templates of the other categories typically

define usages of single variables, but the templates of C5 define

usages of multiple variables. The prior approaches (e.g., Ernst et

al. [28]) reply on frequencies to mine parameter rules, but the

supports of C6 are too low to be mined.

Table 4 presents the distribution of rule sentences among our

six categories. These sentences are from either Javadoc or code.

The rule categories in our taxonomy are mutually exclusive. If a

parameter has multiple rule sentences, each sentence is analyzed

and classified independently. According to this table, C1 (Null) is

the dominant rule category in projects commons-io, shiro, and itext.

C3 (Value) is the dominant category in project asm. C4 (Format)

dominates the sentences in projects pdfbox, poi, and jmonkey. In

total, the three categories “Null”, “Range”, and “Value” account for

69.1% of rule sentences.

Finding 1. In total, 69.1% of rule sentences define simple rules

such as null values, range limits, and legal values.

We were also curious what types of parameter rules are usually

enforced in code, so we reorganized our manual analysis results

and constructed Table 5 to illustrate the rule distribution among

code of different projects. Overall, the rule distributions shown in

Table 5 are similar to those shown in Table 4. For instance, the top

three categories in Table 5 include C1, C2, and C4, which categories

separately count for 30.1%, 35.5%, and 17.6% of the rules in thrown

messages. Meanwhile, the top three categories in Table 4 are also C1,

C2, and C4, but their percentages are slightly different: 29.6%, 30.5%,

and 18.5%. Interestingly, C3 takes up only 3.8% of the sentences in

thrownmessages, but counts for 9.1% of all inspected rule sentences.

This discrepancy indicates that developers usually document more

Value rules but enforce fewer Value rules in code, probably because

it is tedious and error-prone for developers to enumerate all (il)legal

values of a parameter for checking.

In both tables, C3, C5, and C6 have much fewer rules than the

other three categories. It is tedious and time-consuming for devel-

opers to write code and enforce certain rules (e.g., C6). For instance,

as shown in Figure 6a, “The Strings must be ordered as they appear

in the directory hierarchy of the document ...”. This rule sentence

belongs to C6 and it specifies a particular ordering of strings in the
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1 / ∗ ∗ . . .
2 ∗ @param f i r s t S h e e t I n d e x the scope , must be −2 f o r add

− i n r e f e r e n c e s . . .
3 ∗ /
4 public int addRef ( in t extBookIndex , in t

f i r s t S h e e t I n d e x , in t l a s t S h e e t I n d e x ) {
5 _ l i s t . add (new RefSubRecord ( extBookIndex ,

f i r s t S h e e t I n d e x , l a s t S h e e t I n d e x ) ) ;
6 return _ l i s t . s i z e ( ) − 1 ;
7 }
8 / ∗ ∗ a Con s t r u c t o r f o r making new sub r e co r d ∗ /
9 public RefSubRecord ( in t extBookIndex , in t

f i r s t S h e e t I n d e x , in t l a s t S h e e t I n d e x ) {
10 _ex tBookIndex = extBookIndex ;
11 _ f i r s t S h e e t I n d e x = f i r s t S h e e t I n d e x ;
12 _ l a s t S h e e t I n d e x = l a s t S h e e t I n d e x ;
13 }

(a) Only document rules

1 / ∗ ∗
2 ∗ r e p l a c e s the i n t e r n a l c h i l d l i s t with the c on t e n t s

o f the s u pp l i e d < t t > ch i l dRe co r d s </ t t >
3 ∗ /
4 public void s e tCh i l dR e c o r d s ( L i s t <EscherRecord >

ch i l d R e c o r d s ) {
5 i f ( c h i l dR e c o r d s == _ ch i l dR e c o r d s ) {
6 throw new I l l e g a l S t a t e E x c e p t i o n ( " Ch i l d ␣ r e c o r d s ␣

p r i v a t e ␣ d a t a ␣ member ␣ has ␣ e scaped " ) ;
7 } . . . }

(b) Only code rules

Figure 4: Unmatched parameters rules

parameter array components. Although the description makes sense,

it is difficult to implement the parameter validation logic.

Finding 2. The top three categories of parameter rules include

“Null”, “Range”, and “Format”; the other three categories contain

a lot fewer rules, probably because those rules are harder to

document and implement.

4.2 RQ2. Rule Distribution

4.2.1 Protocol. To explore RQ2, we first investigated how the 5,334

parameter rules localized by PaRu distribute among the subject

projects. Next, for the 187 parameters with both document and

code rules, we further examined how well the two kinds of rules

for each parameter match each other. As we did in RQ1, the first

and the third authors prepared the initial inspection results. The

other authors checked the results, until they came to an agreement

on all results.

4.2.2 Result. Among the 5,334 parameter rules located by PaRu,

550 parameters only have document rules; 4,597 parameters only

have code rules; 108 parameters have document rules matching

code rules; and 79 parameters have unmatched rules. Figure 5 il-

lustrates the rule distributions among projects. In the figure, the

horizontal axis represents the breakdown of parameters in each

project, depending on (1) whether a parameter has one or two kinds

of rules and (2) whether the two kinds of rules match if a parameter

has both. With more details, “only doc” denotes parameters with

only document rules; “only code” denotes parameters with only

code rules; “matched” denotes parameters with matched rules; and

“unmatched” denotes parameters with unmatched rules.

Figure 5: The distribution of detected conflicts

We found that most parameters have only one kind of rules.

Figure 4 shows method samples from poi. Specifically, Figure 4a

contains document rules only, which rules are not enforced in code.

The addRef method has three parameters, and its document defines

a rule for the firstSheetIndex parameter. The rules define that

the parameters must be -2, for add-in references. However, the

code of the method does not check the two parameter rules. The

method calls the RefSubRecordmethod. In Figure 4a, we present the

called code. This method does not check its parameters either. In

contrast, Figure 4b shows a parameter rule that is not documented

but implemented in the code. The setChildRecords method throws

an exception, when an input is identical to its stored record, but its

document does not define the parameter rule.

Finding 3. In total, 86.2% of parameters have only code rules,

and 10.3% of parameters have only document rules.

Researchers have proposed various approaches to recommend

API documents [24] and tomine specifications from documents [79].

Our results reveal a practical problem for these approaches, which

is that API parameter rules are usually not documented. Novick

and Ward [52] complained that programmers are reluctant to read

documents or manuals. Probably due to this fact, instead of writing

documents, API developers often implement parameter-checking

logic in code, and warn client developers of any invalid API param-

eter via exceptions or assertions.

Although exceptions and assertions can potentially assist client

developers, they may fail to warn programmers due to various

issues. First, programmers cannot see any thrown message or as-

sertion failure, if exceptions/assertions are hidden or screened. For

example, DERBY-5396 [3] reports that an exception is swallowed.

Second, client developers may find it difficult to understand why

exceptions are thrown. Among the examined code rules shown

in Figure 5, only 19% of rules have rule sentences to explicitly ex-

plain why exceptions are thrown. Finally, developers need to have

high-quality test cases with good test coverage, in order to trigger

exceptions/assertions related to API parameter usage. However, it

is very unlikely that client developers can always develop good test

suites to satisfy the need.

Figure 5 shows that except commons-io, less than 4% of parameters

have both document rules and code rules (i.e., either matched or

unmatched). In addition, we found that unmatched rules do not

necessarily imply bugs; they were introduced when API developers

specified one set of rules in comments but implemented a distinct

set of rules in code. For example, Figure 6a shows a method from

poi. The method description defines three document rules (e.g.,

the input list must be ordered), but the code checks none of these

rules. Instead, the code checks whether the input list contains null
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1 / ∗ ∗ . . .
2 ∗@param components the S t r i n g s making up the path to a
3 ∗ document . The S t r i n g s must be o rde r ed as they appear
4 ∗ i n the d i r e c t o r y h i e r a r c hy o f the the document −− the
5 ∗ f i r s t s t r i n g must be the name o f a d i r e c t o r y in the
6 ∗ r o o t o f the POIFSF i l eSys tem , and every Nth ( f o r N>1 )
7 ∗ s t r i n g t h e r e a f t e r must be the name o f a d i r e c t o r y in
8 ∗ the d i r e c t o r y i d e n t i f i e d by the (N−1) th s t r i n g . . .
9 ∗ /
10 public POIFSDocumentPath ( f ina l S t r i n g [ ] components )

throws I l l e g a lA r gumen tEx c ep t i o n { . . .
11 for ( in t j = 0 ; j < components . l e ng t h ; j ++) {
12 i f ( ( components [ j ]== null ) | | ( components [ j ] . l e ng t h ( )

==0) ) {
13 throw new I l l e g a lA r gumen tEx c ep t i o n ( " components ␣

cannot ␣ c on t a i n ␣ n u l l ␣ or ␣ empty ␣ s t r i n g s " ) ;
14 } . . . } }

(a) Document rules are more detailed

1 / ∗ ∗ . . .
2 ∗ @param f i l e . . . , must not be n u l l
3 ∗ /
4 public . . . open InputS t ream ( f ina l F i l e f i l e ) . . . {
5 i f ( f i l e . e x i s t s ( ) ) {
6 i f ( f i l e . i s D i r e c t o r y ( ) ) {
7 throw new IOExcep t i on ( " F i l e ␣ . . . ␣ i s ␣ a ␣ d i r e c t o r y " ) ;
8 }
9 i f ( f i l e . canRead ( ) == f a l s e ) {
10 throw new IOExcep t i on ( " F i l e ␣ . . . ␣ cannot ␣ be ␣ r ead " ) ;
11 }
12 } e l se {
13 throw new F i l eNo tFoundExcep t i on ( " F i l e ␣ . . . ␣ does ␣ not ␣

e x i s t " ) ;
14 } . . . }

(b) Code rules are more detailed

Figure 6: Conflicts are not always bugs

values, which rule is not mentioned in Javadoc. Figure 6b shows

another example, which is from the project commons-io. The method

description defines only one document rule, but the code checks

three other rules.

Finding 4. In total, 3.5% of parameters have both document rules

and code rules. Only 1.5% of parameters have inconsistent rules,

and such inconsistencies are often not bugs.

Zhou et al. [80] complained that it is often infeasible to extract ac-

curate method calls when they appear in the branches of condition

statements. As a result, they skip all constraints that are related to

such method calls, and thus ignore the conflicts between documents

and code implementations of corresponding parameters. The distri-

bution of parameter rules reveals that even if an approach can infer

all correct rule conditions, the approach still cannot detect many

rule conflicts because the two types of rules have little overlap.

Meanwhile, our results also highlight the importance of conflict de-

tection tools, such as the one built by Zhou et al. [80]. Programmers

seem reluctant to have consistent rules between Javadoc comments

and source code, probably because it is challenging for them to

maintain the rule consistency. Conflict detection tools can assist

developers to maintain the consistency. Therefore, such tools are

likely to (1) encourage programmers to document more parameter

rules, and (2) reduce the technical barriers for library API adoption.

We found that some methods have document rules but no code

rules, mainly because there are flaws in source code. Namely, pro-

grammers describe those rules in Javadoc, and wait for the flaws to

be fixed before implementing those rules in code. Such scenarios

indeed introduce technical debts. It will be interesting to further

explore these scenarios in the future.

5 THE INTERPRETATION OF OUR FINDINGS

In this section, we interpret our findings:

Data sources. Researchers mined API rules from various data

sources such as client code [28], documents [79], and API code [80].

Our empirical study focuses on a single data source—source files,

because we believe this source to be sufficient to cover most API

parameter rules extractable from other data sources. There are

two reasons to explain our insight. First, lots of API documents

about parameter usage are automatically generated from source

files (i.e., from Javadoc comments). Second, when client developers

invoke APIs, they usually refer to library documentation and/or

API code for correct API usage. Additionally, Finding 4 shows that

the extracted document rules and code rules have little overlap.

This observation justifies our study approach that analyzes both

code and comments of API methods, instead of only inspecting one

type of data in source files.

Mining techniques. As introduced in Section 2.2, existing ap-

proaches typically use predefined parsing semantic templates to

mine parameter rules, while we took a hybrid approach (i.e., refined

keyword-based search + manual inspection) to mine rules. Finding

1 shows that the templates of existing tools can handle at most 69.1%

of parameter rules. Unfortunately, adding more templates does not

necessarily help current tools to retrieve more rules, because the

remaining rules seldom present common sentence structures. If

tool builders would like to define specialized templates to capture

remaining rules, it is quite like that (1) many complicated tem-

plates have to be defined, and (2) many irrelevant sentences may

be wrongly extracted. As mentioned by Legunsen et al. [36], rules

mined based on templates can be superficial or even false.

Hidden and changing rules. For more than half of the studied

source files, PaRu did not localize any parameter rule. However,

it is unsafe to claim that all these source files have no rule at all.

Shi et al. [64] show that even API developers may be unaware of

parameter rules sometimes; once developers realize any missing

rules, they have to rewrite the documentation and/or code to append

rules. In such scenarios, we may miss parameter rules by mining

source files.

6 DISCUSSION ON RELATED TOOLS

Motivation. To assess the effectiveness of existing rule mining

tools, we chose not to apply tools to our dataset, because direct com-

parisons reveal problems of specific tools but such problems may

be not worth further investigation by future research. Instead of

determining the effectiveness of a specific tool, researchers [76, 77]

have estimated the potential of the tool by comparing its techni-

cal assumptions with the nature of data. For instance, Zhong and

Su [77] compared manual fixes with the methodology design of

automatic program repair [29] to estimate the potentials of the

state-of-the-art tools. In our research, we also conducted a similar

theoretical comparison between existing parameter rules and the

907

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 01,2021 at 19:28:37 UTC from IEEE Xplore.  Restrictions apply. 



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Hao Zhong1 , Na Meng2 , Zexuan Li1 , and Li Jia1

potentials of current rule mining tools. As long as the method de-

sign of a tool can reveal some rules in one category, we considered

the tool to be able to handle the whole category given comprehen-

sive extensions. The theoretical comparison puts higher bars for

us to claim our research novelties, but can effectively reveal new

research directions and inspire new tool design.

Comparison between PaRu and current rule mining tools.

Although PaRu is similar to current tools in certain aspects, it is

different in terms of the research objectives, methodologies, and

some approach design choices.

As for research objectives, prior work reveals parameter rules

for (1) dynamic rule checking [23, 28, 49, 70], (2) consistency check-

ing [80], or (3) automatic document comprehension [54]. Researchers

focused on certain types of rules, but never explored the gap be-

tween the rules in the wild and those extractable by current tools.

We designed PaRu to localize as many candidate rules as possible,

in order to identify any rule category overlooked by prior research.

As for methodologies, existing tools automate both rule localiza-

tion and rule comprehension, while PaRu automates rule localiza-

tion only. Because PaRu does not need to automatically comprehend

rules, its approach based on modal verbs is more flexible than prior

work [49, 80]. Consequently, PaRu can locate more candidate rules

than prior work, many of which rules may not match any parsing

semantic template defined before.

As for design choices, Nguyen et al. extracted the if-conditions

before API method invocations in client code, and then leveraged

those frequently checked conditions to infer parameter rules [49].

We designed PaRu to scan library implementation instead of the

client code of library APIs, because there can be APIs that have

not been invoked by any client but still have parameter rules. Ad-

ditionally, Zhou et al. [80] analyzed code statically to reveal the

intra-procedural control/data dependency relationship, while PaRu

conducts inter-procedural program depenency analysis to gather

more context information and ensure higher analysis accuracy.

Theoretical assessment of the effectiveness by current rule

mining tools. JML [19] includes written parameter rules such as

pre- and postconditions. To calculate how many rules can be mined,

the prior approaches (e.g., Nguyen et al. [49]) typically consider JML

as the golden standard of their evaluations. Due to the heavy man-

ual efforts, JML defines parameter rules of only limited J2SE classes.

In addition, as writing JML specifications is too time-consuming

and error-prone, the authors of JML [19] mentioned that they wrote

JML specifications based on what were inferred by Daikon. As a

result, JML can be biased and incomplete. Although our identified

rules are not fully correct, Table 2 shows that their f-scores are

reasonably high. We have released our identified parameter rules

on our website. If researchers remove all wrong parameter rules,

the remaining rules can enrich the gold standard of JML, and re-

searchers can evaluate their tools on the enriched gold standard to

explore the limitations of such tools.

Daikon [28] is the state-of-the-art tool for mining invariants.

Section 5.5 of its manual [6] lists the templates of its supported in-

variants. According to this manual, Daikon has the potential to mine

the parameter rules in the “Range” category (e.g., the EltUpperBound

template), the “Value” category (e.g., the EltOneOf template), and the

“Relation” category (e.g., the Equality template). For the “Null” cat-

egory, Daikon has a related EltNonZero template to define “x � 0”.

It may be feasible to extend this template to detect parameter rules

in the “Null” category. Based on the above templates, we estimate

that Daikon has the potential to mine 74.5% of parameter rules.

However, adding more templates may be sufficient to make only

minor improvements, since the remaining rules are fractional. For

example, we inspected rule sentences of the “Format” category, and

we found that it is infeasible to summarize them into limited rule

templates. Polikarpova et al. [56] found that Daikon inferred about

half of their manually written rules. Their analyzed rules are loop

invariants, preconditions, postconditions, and class invariants. Typi-

cally, these rules fall into the “Null”, “Value”, and “Range” categories.

Considering their results, in practice, Daikon can mine about 30%

of parameter rules, which leaves adequate space for improvement.

Zhou et al. [80] defined four templates to locate parameter rules,

i.e., nullness not allowed, nullness allowed, type restriction, and

range limitation. In Table 4, “Null” and “Range” categories account

for 60% of parameter rules. We consider type restrictions to belong

to the “Format” category, and this category accounts for additional

18.5% of parameter rules. As shown in Section 4.1, “Format” contains

more types of parameter rules than type restrictions. As a result,

the approach by Zhou et al. has the potential of mining about 70%

of parameter rules.

Nguyen et al. [49] extracted preconditions API method invoca-

tions in client code. Similar to PaRu, the technique can locate a

parameter rule if the parameter is checked in client code. After a pa-

rameter rule is located, Nguyen et al. propose techniques to merge

conditions and to infer non-strict inequality preconditions. These

techniques are limited to “Null”, “Range”, and “Value” in Table 4,

since other types of parameter rules (e.g., formats) are difficult to

be merged. In total, the approach by Nguyen et al. can potentially

identify 69.1% of parameter rules.

7 THREATS TO VALIDITY

Threats to internal validity. Our manual inspection of param-

eter rules may be subject to human bias. As introduced in Sec-

tion 4.2.1, if a parameter has both document rules and code rules,

we have to manually determine whether they are identical, which

can introduce errors. As Finding 4 shows that less than 3.5% of

parameters can have unmatched rules, although we need more ad-

vanced techniques to eliminate the threat, the impact of this threat

is low. Additionally, some identified document rules and code rules

may be incorrect due to random errors. To reduce the threat, we

released all found parameter rules on our website. Researchers can

inspect the results and help us further reduce the threat.

Threats to external validity. Although we analyzed thousands

of files of nine popular libraries, the subjects are limited and all in

Java. In addition, eight out of the nine projects are from Apache,

which has a more strict coding convention than other open source

communities. We can mitigate the threat by including more subject

projects [48], and exploiting more sources to extract parameter

rules [55]. However, our major findings may not change much,

since we select different types of projects. Another threat is con-

cerning code rules without any rule sentence. In our study, we did

not manually inspect such rules. Although the limitation has no

908

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 01,2021 at 19:28:37 UTC from IEEE Xplore.  Restrictions apply. 



An Empirical Study on API Parameter Rules ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

impact on Finding 3, it can influence the generalizability of Find-

ings 1 and 2. Zhou et al. [80] showed that even recent approaches

cannot formalize accurate code rules from API code. We need more

advanced techniques or nontrivial manual efforts to reduce the

threat. We listed all the code rules without rule sentences on our

website, so other researchers can help further reduce the threat.

8 RELATEDWORK

Empirical studies on APIs. Researchers conducted empirical

studies to understand various issues about API usages such as the

knowledge on concurrency APIs [53] or deprecated APIs [60], rules

in API documents [45], the evolution of APIs [34, 64, 73], the ob-

stacles to learn APIs [62], the links between software quality and

APIs [39], the impact of API changes on forum discussions [40],

the practice on specific APIs [47], the mappings of APIs [78], the

adoption of trivial APIs [13], and the impact of the type system

and API documents on API usability [26]. Like ours, most of the

above studies focus on the taxonomies of software engineering

data. Usman et al. [68] and Ralph [58] presented guidelines for such

studies. Amann et al. [15] and Legunsen et al. [36] compared the

effectiveness of tools that detect API-related bugs. These studies ex-

plore other angles than our research questions. Zhong and Mei [75]

conducted an empirical study to answer open questions in mining

API call sequences, but our study focuses on parameter rules.

Mining parameter rules. Client code is a major data source

for invariant mining. With test cases, Ernst et al. [28] and Hangal

and Lammine [31] mined invariants from program execution traces.

In particular, Henkel and Diwan [32] mined invariants in algebraic

specifications, and proposed a tool [33] for writing such specifica-

tions. Csallner et al. [21] introduced dynamic symbolic execution

to mine invariants. Wei et al. [70, 71] inferred postconditions based

on Eiffel contracts. Smith et al. [65] inferred relations between

inputs and outputs. API code is also a major data source of invari-

ant mining. Dillig et al. [25] inferred invariants through abductive

inference. Gulwani et al. [30] encoded programs into boolean for-

mulae, and inferred preconditions. API document is another data

source of mining invariants. Zhou et al. [80] inferred four types

of invariants from documents. Pandita et al. [54] combined docu-

ments and API code to infer invariants. Zhou et al. [80] complained

that it is challenging to extract accurate rule conditions from API

code. Partially due to the challenges, researchers [74] conducted

large-scale evaluations only on client code or documents. For API

libraries, invariants typically define parameter rules. Although this

research topic is intensively studied, researchers [56, 67] argued

that some underlying questions are still open. Our study explores

such questions, and our findings are useful to further improve the

state of the art.

Mining sequential rules. Ammons et al. [16] mined automata

for APIs. Follow-up researchers [41, 54] refined this approach, and

others [50, 51] mined similar formats such as graphs. Robillard et

al. [61] showed that automata and graphs are equivalent in the

scenario of specification mining. The research in this line can be

reduced to the grammar inference problem, and can be solved by

corresponding techniques (e.g., the k-tail algorithm [18]). Li and

Zhou [38] mined method pairs, and other researchers [63] improved

their approaches in more complicated contexts. Engler et al. [27]

extracted frequent call sequences, and other researchers [59, 69]

improved their approach with more advanced techniques. Further-

more, researchers [37, 42] encoded mined sequences as temporal

logic. The research in this line can be reduced to sequence min-

ing [14]. Furthermore, Le et al. [35] combined sequences and invari-

ants for more informative specifications, and researchers [22, 57]

used test cases to enrich mined specifications. Mei and Zhang [43]

advocate applying big data analysis for software automation, and

mining sequential rules is one of the key techniques to extract

knowledge from software engineering data. Our empirical study

focuses on parameter rules, but its findings may be useful to these

approaches. For example, the distribution of document rules and

code rules can apply to sequential rules. It is worthy exploring

whether our results are still valid for sequential rules.

9 CONCLUSION AND FUTUREWORK

API libraries have been widely used, but are often poorly docu-

mented. When programmers do not fully understand API usage,

they can introduce API-related bugs into their code. To handle this

issue, researchers have proposed various approaches to facilitate

better API usage. In particular, a popular research area is to mine

parameter rules for APIs. Although some industrial tools are al-

ready implemented, we still do not know (1) how many categories

of API parameter rules there are, and (2) what is the rule distribu-

tion among Javadoc comments and source code. The exploration of

both questions is meaningful and important, because the acquired

knowledge can guide our future tool design for rule mining and

rule enforcement.

To explore both questions, we developed PaRu that localizes

document rules and code rules in library source files. Based on

the localized rules, our study identifies six categories of parameter

rules, and reveals that most parameter rules are defined only in

code, but not in documentation. Based on our results, we summa-

rized four findings, and provided our insights on three topics such

as data sources, mining techniques, and hidden rules. With our

insights, in the future, we plan to work towards better mining and

recommendation techniques for parameter rules.
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