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ABSTRACT

In this work, we propose a new deep imitation
learning (DIL)-driven edge-cloud computation off-
loading framework for MEC networks. A key objec-
tive for the framework is to minimize the offloading
cost in time-varying network environments through
optimal behavioral cloning. Specifically, we first
introduce our computation offloading model for
MEC in detail. Then we make fine-grained offload-
ing decisions for a mobile device, and the problem
is formulated as a multi-label classification prob-
lem, with local execution cost and remote network
resource usage consideration. To minimize the off-
loading cost, we train our decision making engine
by leveraging the deep imitation learning method,
and further evaluate its performance through an
extensive numerical study. Simulation results show
that our proposal outperforms other benchmark
policies in offloading accuracy and offloading cost
reduction. At last, we discuss the directions and
advantages of applying deep learning methods to
multiple MEC research areas, including edge data
analytics, dynamic resource allocation, security,
and privacy, respectively.

INTRODUCTION

With the development of emerging mobile appli-
cations (e.g., augmented reality, 3D gaming, and
various Internet of things [loT] applications), more
and more mobile applications become resource-
thirsty and delay-sensitive. To this end, the Europe-
an Telecommunications Standards Institute (ETSI)
provided a concept of multi-access edge comput-
ing (MEC) in their 5G standard [1]. In the MEC
architecture, distributed MEC servers are located
at the network edge to provide cloud-computing
capabilities and IT services with low latency, high
bandwidth, and real-time processing. The edge
servers can be connected to the remote cloud
through backhaul links to leverage the resource-
ful computation capacities and IT services of
the remote cloud. By the use of the collabora-
tive edge-cloud computation offloading between
mobile users and servers, mobile users’” commu-
nication overhead and execution delay can be
significantly reduced.

Nevertheless, mobile devices usually fail to
make the most appropriate fine-grained offloading
decisions in real time, especially in the time-varying

and uncertain MEC environments. On one hand,
the wireless and backhaul links between the mobile
devices and edge-cloud servers are time-varying
and uncertain. On the other hand, the MEC server
offers only limited radio, storage, and computation-
al resources, especially in hotspot areas.

To this end, a new research area, called intelli-
gent edge learning, is emerging [2, 3], which refers
to the deployment of machine learning algorithms
at the network edge. One of the key motivations
of pushing machine learning toward the edge is to
allow rapid access to the enormous real-time data
generated by mobile users for fast training and fast
response to real-time offloading requirements.

Recently, deep imitation learning (DIL) [4],
which is the problem of training robotic skills from
human demonstration, has attracted the atten-
tion of researchers in the field of robotics (e.g.,
autonomous driving, gesturing, and manipulation).
Compared to traditional machine-learning-based
offloading methods, DIL carries four advantages:

+ Better performance with large data scale

+ Noteworthy accuracy in decision making

+ Fast inference speed

+ Easy and quick to deploy

Thus, it makes sense to deploy a novel DIL-based
offloading schedule in MEC-empowered 5G net-
works.

In this article, we study the issue of making rapid
offloading decisions for a single mobile device in
MEC network environments. Our objective is to
minimize the offloading cost in a time-varying net-
work environment, subject to network resource
constraints. To this end, we propose an intelligent
edge computation offloading framework to make
fine-grained offloading decisions for the mobile
device in the MEC network. The offloading deci-
sions made by the mobile device comprehensively
consider both the execution cost on the mobile
device side and time-varying network conditions
(including available communication and computa-
tion resources, wired and wireless channel condi-
tions) on the MEC side.

In summary, the contributions of this article are
summarized as follows. Based on behavioral clon-
ing [4], which performs supervised learning from
the observation of demonstrations (i.e., the opti-
mal offloading decisions in this article), we design
a DlL-based offloading model for the intelligent
framework. Our model is first trained from learn-
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ing demonstrations in an offline manner. After a
quick and easy deployment, our model can make
near-optimal online offloading decisions at a very
fast inference speed. We discuss potential direc-
tions and advantages for applying deep learning
into multiple MEC research areas.

The rest of this article is organized as follows.
We first introduce the related works in the follow-
ing. Then we present our computation offloading
model. Next, we formulate the optimization prob-
lem and describe the DIL-based offloading model.
Simulation results are then shown. We further dis-
cuss directions and advantages of deep learning
for MEC. Finally, we conclude the article in the
final section.

RELATED WORK

In this section, we first survey the traditional com-
putation offloading strategies. Then we review the
state-of-the-art machine-learning-based computa-
tion offloading strategies. Last but not least, we
introduce DIL The related works are summarized
in Table 1.

TRADITIONAL COMPUTATION QFFLOADING STRATEGIES

From the perspective of a mobile user in the MEC
network, it needs to decide whether and where to
offload its computational tasks to enhance its qual-
ity of service (QoS). However, in practical edge
network environments, the decision making prob-
lem is sophisticated because the network environ-
ments are randomly uncertain and time varying.
Traditional optimization approaches (e.g., game
theory [5], Lyapunov optimization [6]) for making
computation offloading decisions in edge com-
puting environments has been widely studied. For
example, Chen et al. [5] study the computation
offloading problem in multi-user MEC environ-
ments. They prove that it is NP-hard to obtain a
centralized optimal solution, and propose a game
theoretic approach to achieve optimal offloading
decisions in a distributed manner. The authors of
[6] investigate the computation offloading issue
for energy harvesting (EH) devices in MEC envi-
ronments. They exploit Lyapunov optimization
to jointly minimize the execution latency and
task failure for EH devices. The main drawback
of traditional computation offloading strategies is
their high algorithm complexity, especially in the
multi-user multi-server edge computing environ-
ments. Thus, it is hard to deploy the strategies to
practical edge network environments.

REINFORCEMENT-LEARNING-BASED
COMPUTATION OFFLOADING STRATEGIES

Reinforcement learning (RL) can solve the prob-
lem of how a decision engine chooses the optimal
action through interacting with outside environ-
ments. The main objective of RL is to choose an
action for each state of the system in order to
maximize the long-term (delayed) cost. Thus, RL is
suitable for the decision making problem of com-
putation offloading in a stochastic and dynamic
edge computing network. For example, Dinh et
al. [7] studied the computation offloading prob-
lem in time-varying MEC environments. They con-
sider a multi-user multi-MEC-server environment
and propose a model-free reinforcement learn-
ing (RL) offloading scheme. The objective is to
make mobile users learn their long-term offload-

Methods e Advantages Disadvantages

works
Traditional [5, 6] Performance guarantee High complexity
Remfgrcement [7,8] Model-free Curse of dimensionality
learning
Deep_ reinforcement 09 Swt_able for dynamic Long online training time
learning environments
Deep imitation Our work Quick and easy to deploy, Requires a large number of

learning fast online inference speed

offline demonstrations

TABLE 1. Machine-learning-based computation offloading methods.

ing decisions to minimize their long-term cost.
The authors of [8] proposed a Markov decision
process (MDP)-based dynamic offloading frame-
work in a single-user intermittently connected
cloudlet network. Through a value iteration algo-
rithm, their decision engine can obtain an optimal
policy to minimize the long-term offloading costs
(i.e., computation and communication costs). The
main advantage of RL is that it can learn with-
out a priori knowledge (i.e., the model-free fea-
ture). However, with the increase of the number
of system and action states, the computational
complexity of RL will grow rapidly (i.e., the curse
of dimensionality problem). Besides, the perfor-
mance of such offloading framework heavily relies
on hand-crafted features (e.g., the pre-calculated
transition probability of MDP).

Recently, researchers’ attention has turned to
deep reinforcement learning (DRL). DRL, which
combines traditional reinforcement learning and
deep learning, is an emerging area of machine
learning research. DRL is based on representation
learning to automatically extract features from mas-
sive raw data, and can be regarded as an ideal tool
to predict computation offloading decisions. For
example, the authors of [9] jointly optimize net-
working, caching, and computing resources for
a vehicular network. Due to the high complexity
of the joint optimization problem, they propose
a DRL method to solve the problem. The main
advantage of DRL for computation offloading
relates to its online training manner, which is suit-
able in a dynamic network environment. However,
the corresponding training time is very long.

DEEP IMITATION LEARNING

Deep imitation learning is an efficient approach
to teach intelligent agents skills through learning
demonstrations. The authors of [4] consider a vir-
tual reality (VR) scenario to teach a PR2 robot to
learn policies from robotic manipulation demon-
strations. They show that high-quality robotic
manipulation demonstrations play a key role in
DIL. The advantages of DIL relate to its offline
training and online decision making. Thus, a
trained model can be deployed easily and quick-
ly. However, the main limitation is that the train-
ing phase of DIL heavily relies on a large number
of demonstrations, and it is hard to collect the
demonstrations.

In this work, we propose a DIL-based com-
putation offloading strategy for edge computing
networks. We first generate high-quality demon-
strations (i.e., the optimal offloading actions) and
train our model in an offline manner. Then, after a
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TL allows us to deal
with variational envi-
ronments by leveraging
the already existing
labeled data of some
related task or domain.
In practical edge
computing scenarios,
we can combine DIL
and TL to deal with
more complex tasks
(e.g. finding optimal
resource allocation
schemes) that are based
on already trained
models.

quick and easy deployment, our model can make
near-optimal online offloading decisions with a very
fast online inference speed.

Note that DIL is a traditional supervised learning
approach, and its training and evaluation operate
in the same domain. If we want to apply a trained
model to a new domain, we can retrain the model,
or take advantage of transfer learning (TL) [10].
Transfer learning is the ability of a system to rec-
ognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks.
TL allows us to deal with variational environments
by leveraging the already existing labeled data of
some related task or domain. In practical edge
computing scenarios, we can combine DIL and TL
to deal with more complex tasks (e.g., finding opti-
mal resource allocation schemes) that are based
on already trained models.

ComPuTATION QFFLOADING MODEL

We study the computation offloading for a single

mobile device in a small cell-based MEC system.

Note that the small cell-based MEC system con-

sists of:

* Mobile devices

« MEC server, also called small cell cloud-en-
hanced e-Node B (SCceNB)

» Remote cloud

Thus, the mobile device can:

+ Execute its computational tasks locally

+ Offload its tasks to the SCceNB through a wire-
less link

+ Offload its tasks to the remote cloud through
wireless and backhaul links

AppLICATION MoDEL

We model a mobile application A as a weighted
directed graph A = (7, D), where T represents
the sub-tasks, and D the data dependencies (i.e.,
input and output data) between the sub-tasks.
Then we split the application into multiple sub-
tasks by fine-grained partitioning. Note that each
sub-task of the application can be offloaded and
executed independently.

We adopt a parameter tuple (t, &, di_1, die1)
to characterize the mobile application A for the
mobile device, where t is the current sub-task, &(t
€ 1) represents the workload of sub-task t. d;_q
and dy .1 denote the size of input and output data
for sub-task t, respectively. Let p; (in CPU cycles
per byte), denote the complexity of sub-task t. It
denotes the required CPU cycles a CPU core will
perform per byte for the input data processed by
sub-task t. Thus, &; can be given as & = p; - di_q ;.
Note that &, is decided by the nature (e.g., algo-
rithm complexity) of the sub-task t.

EXEcUTION MoDEL

The mobile device can process the mobile appli-
cation A locally. According to the application
parameter tuple, the task execution time for
the mobile device to execute sub-task t locally
is decided by the computation capacity of the
mobile device (in million instructions per second).

For the edge execution, the mobile device can
establish a cellular link with the SCceNB and off-
load its own sub-tasks to the SCceNB via the radio
access network (RAN). Based on the assumptions
above, the delay for sub-task input and output data

transfer through cellular transmission is determined
by the data size of data exchange between sub-
tasks and the cellular data rates. In addition, the
edge execution time (i.e., for the SCceNB to exe-
cute sub-task t) is determined by the total comput-
ing resource of the available CPU cores.

For the remote cloud execution, the end-to-end
(E2E) latency is decided by the RAN and core net-
work as well as the backhaul between them. In this
article, we consider that the E2E delay consists of
wireless and wired delays. Let WW denote the wired
delay between the SCceNB and the remote cloud.
Note that the delay consists of:

+ The backhaul delay between SCceNB and the
core network

+ The processing delay of the core network

+ The communication delay for data transmission
between the core network and remote cloud/

Internet

PROBLEM FORMULATION
DECISION MAKING PROCEDURE

When the mobile device receives the offloading
requirement of application 4, it first sends a mes-
sage on the data size D of the sub-tasks for the
application. The report also includes the current
wireless channel state (e.g., the channel quality
between the mobile device and the SCceNB).

After receiving the message, the SCceNB allo-
cates m subcarriers (m € M) and n CPU cores
(n € N) to each sub-task for the mobile device,
according to the entire available computation and
communication resources and the received mes-
sage. Thus, the current system state of computa-
tion offloading can be denoted by S = (7, D, A, M,
W), which consists of the mobile device’s task pro-
files, network resource status, as well as the wired
delay status.

According to the observed system state S, the
mobile device calculates the immediate costs of
local-edge-cloud executions for each sub-task, and
makes action decisions of either processing the
sub-task locally or offloading to the edge-cloud side
for the current mobile application A.

CompuTATION OFFLOADING OPTIMIZATION PROBLEM
The system state of the MEC network is given as
S. Assume that the action space for computation
offloading optimizationis Z={l, € 0,1, 2}, t € 7,
indicating that the mobile device can execute a
sub-task t locally (/, = 0) or offload the sub-task to
SCceNB (I, = 1) or to the remote cloud server (/;
= 2). Under current system state S, E(S, I,) denotes
the execution cost of sub-task t, which is:
+ The immediate local execution cost if sub-task t
is executed locally
+ The immediate edge offloading costs if the sub-
task is executed at the SCceNB
+ The immediate cloud offloading costs if the sub-
task is executed at the remote cloud server
Apparently, the edge offloading cost consists
of radio and computation resource usage cost,
the SCceNB computation cost (i.e., task execution
time), and the data transmission cost (i.e., trans-
mission delay) for offloading. The cloud offloading
cost consists of radio and wired resource usage
cost, the remote cloud server computation cost
(i.e., task execution time), and the data transmis-
sion cost (i.e., transmission delay) for offloading.
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FIGURE 1. Proposed deep-imitation-learning-based offloading model.

Then the objective of the computation offloading
optimization problem is to obtain a near-optimal
offloading policy f* that can minimize the offload-
ing cost given by Z,c7£(S, I). Note that the offload-
ing cost is the sum of costs for the sub-tasks of
mobile application A, which is not provided imme-
diately. We can obtain the long-term cost when all
the sub-tasks have been processed.

DEEP IMITATION LEARNING FOR
CompuTATION QFFLOADING

The optimization problem of minimizing the off-
loading cost is a combinatorial optimization prob-
lem. Thus, it is impossible to achieve the optimal
solution in real time by using standard optimiza-
tion methods. Another possible approach is to
utilize RL. Nevertheless, since the action space is
defined over the combination of the execution
selections for multiple sub-tasks, it suffers from the
curse of dimensionality and hence converges very
slowly in practical implementation.

To address these challenges, we explore a
novel scheme of autonomous computation off-
loading decision by leveraging DIL. Intuitively, we
first obtain the demonstrations (i.e., the optimal
decision samples) by solving the computation off-
loading optimization problem in an offline manner.
Then, using these demonstrations, we train a DIL
model for imitating the optimal decision patterns
and generate efficient online computation offload-
ing decisions in real time.

DEEP MutTi-LABEL CLASSIFICATION MODEL FOR
CoMPUTATION QFFLOADING

As shown in Fig. 1, the optimization problem can
be formulated as a multi-label classification [11]
problem. Assume that mobile application A con-
sists of T sub-tasks. The input layer of our training
model consists of the observation of the applica-
tion features and network states. Our offloading

decision in the output layer is a T-dimensional vec-
tor for the application. If a sub-task is offloaded,
its value is 2 (cloud) or 1 (edge); otherwise, it is
local. We define the multi-label offloading accu-
racy as the proportion of the predicted correct
labels to the total number of labels. Through the
accuracy, we can evaluate the output (i.e., pre-
dicted offloading actions) with respect to the opti-
mal offloading actions.

Figure 2 illustrates the flowchart of our model.
It consists of three phases: offline demonstration
generation, offline model training, and online
decision making. In the following, we describe
these phases.

Offline Demonstration Generation: Based on
behavioral cloning [4], imitation learning performs
supervised learning through imitating demonstra-
tions (i.e., optimal offloading action). Thus, the
objective of this phase is to generate demonstra-
tions to train our DIL framework. We acquire a
large number of decision samples by leveraging
the offline optimization scheme for solving the opti-
mization problem. In general, when the decision
space is:

+ Small, we can use an exhaustive approach
to obtain the optimal offloading decision by
searching the whole action space (there are 37
possibilities in the space).

* Medium, the problem can be solved by some
mixed integer programming solver (e.g.,
CPLEX).

+ Huge, we can leverage some approximate
offline algorithms to obtain efficient decision
samples.

Then the network state S as well as its optimal

offloading decision are recorded as raw decision

samples to train our framework in the next phase.

Offline Model Training: In this phase, we use
the deep neural network (DNN) to extract and
train the features of training data. We conventional-
ly use the rectified linear unit (ReLU) as the activa-
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the outputs, we can evaluate the offloading accura-
cy and offloading costs of our DIL model.

COMPLEXITY ANALYSIS

Traditionally, using DIL to train an artificial intelli-
gence (Al) model is computation-intensive, espe-
cially in the offline demonstration generation and
offline model training phases. Fortunately, it can
be done using historical data in an offline manner.
Thus, we can offload the data to the resourceful
remote cloud data center when the associated
computational overhead is high.

In the offline demonstration generation phase,
the complexity for this phase is O(|Z|7), where
|Z| represents the size of the action space Z, and
T denotes the number of sub-tasks for the mobile
application. The complexity for the offline model
training phase is only O(T3Q3), where Q represents
the number of neurons in each hidden layer. After
the offline training, our model can be deployed on
either the mobile side or the edge server side, in
order to make realtime offloading decisions. In the
online decision making phase, our decision model
has constant complexity O(1), which is highly scal-
able and realtime.

In order to alleviate the tension between
resource-intensive DNNs and resource-poor edge
servers, DNN compression can reduce the model
complexity and resource requirement. Two typi-

framework. cal DNN compression technologies can be used:
weight pruning, which can remove redundant
11 weights (i.e., connections between neurons) from
1'0 ROS a trained DNN, and data quantization, which can
‘ GOSs reduce the computation overhead by using a more
0.9 LOS compact format to represent layer inputs, weights,
0.8 125 FOS or both.
50.7
20 PROOF-OF-CONCEPT PERFORMANCE EVALUATION
305
< o4 SIMULATION SETTING
03 In order to evaluate the performance of our DIL-
021 based offloading scheme, we consider a MEC
01] oosie | DOBTIS network consisting of a mobile device and a MEC
0.0 Joont mo.ﬂ_ggs@ s server. The number of CPU cores for the SCceNB
Offloading Schemes is set to I_oe 16 (i.e, M = 16). lfor the gdge network,
we consider the Rayleigh-fading environment, and
FIGURE 3. Comparison of offloading decision the total bandwidth is divided into 256 subcarriers
accuracy. (i.e., N = 256). The wired (backhaul) delay between
the SCceNB and the remote cloud is W € [0.01,
0.02] s. FThe mobile application usually consists of
tion function for the hidden layers. Our offloading a few sub-tasks to dozens of sub-tasks in reality. In
model inputs the system state S and outputs off- this article, the mobile application consists of 6 sub-
loading decisions I,(t = 1, 2, ..., T). The sigmoid tasks (i.e., T = 6). The data dependencies and the
function is used as the output of our model. Note workload for the sub-tasks follow uniform distribu-
that it can be formulated as a multi-label classifica- tion, similar to [14]. Note that the random variables
tion problem to maximize the multi-label (i.e., pre-  for different sub-tasks are independent.
dicted offloading actions) accuracy. We consider In the offline demonstration generation phase,
the cross-entropy loss [12] to measure the perfor-  we use MATLAB to generate 100,000 demonstra-
mance of the model, and use the Adam optimizer  tions, which means that the mobile application is
[13] to optimize the neural network. The output executed 100,000 times independently under var-
layer consists of T neurons that represent the off- ious network environments. At the same time, the
loading actions of the T sub-tasks. If an output sample of the optimal offloading scheme can be
neuron is less than 0.5, it denotes local execution; obtained in this phase. In the online decision mak-
otherwise, offloading. ing phase, we evaluate the performance of our
Online Decision Making: Once the offline DlL-based offloading scheme (DIOS) by leveraging
model training phase of the DNN is finished, it can the Jupyter notebook. We consider the following
be used to make real-time computation offload- eight benchmark schemes from the literature.
ing decisions in an online manner. At this time, the Optimal Offloading Scheme: We search the
DNN outputs a sequence of offloading decisions whole action space to find the optimal offloading
for all sub-tasks of the mobile application. Based on scheme (OOS).
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Local Offloading Scheme (LOS): The mobile
application is executed on the mobile device local-
ly. Thus the offloading decision variables are I, = O,
(t=1,2.,7.

Deep-Reinforcement-Learning-Based Offload-
ing Scheme (DROS): This is a computation off-
loading scheme that is based on the DRL method
[91.

Greedy Algorithm-Based Offloading Scheme
(GOS): The mobile device chooses offloading
actions through a greedy algorithm, which means
that the mobile device chooses the sub-action that
can maximize the offloading cost in each sub-task
execution step.

Random Offloading Scheme (ROS): The off-
loading decisions are generated randomly.

Shallow Learning-Based Offloading Scheme
(SOS): The number of hidden layers is set to be 1.

Edge Offloading Scheme (EOS): With coarse
offloading strategies, the entire mobile application
is offloaded to the MEC server side.

Cloud Offloading Scheme (COS): In coarse
offloading strategies, the entire mobile application
is offloaded to the remote cloud side.

EVALUATION RESULTS
Simulation results of our DIOS method are shown
in Figs. 3-5.

Figures 3 and 4 report the offloading accuracy
and corresponding offloading cost of different off-
loading schemes with respect to the OOS. Figure 3
shows that our DIOS outperforms other offloading
schemes in offloading accuracy. At the same time,
DIOS reduces the offloading cost on average by
19.80, 18.24, 23.17, 8.37, 13.61, 1.15, and 2.34
percent compared to the ROS, GOS, LOS, EOS,
COS, DROS, and SOS schemes, respectively. Note
that the EOS (offload computation to the edge)
performs better than COS (offload computation to
the remote cloud) and LOS (local execution). This
proves that the MEC server can reduce energy cost
on the mobile terminal side, as well as the back-
haul usage on the remote cloud side.

Figure 5 shows the task execution time using
different offloading schemes with respect to the
OOS. Note that our DIOS reduces the execution
time by 23.25, 8.77, 47.98, 17.73, 18.70, 11.36,
and 15.14 percent compared to the ROS, GOS,
LOS, EOS, COS DROS, and SOS schemes, respec-
tively.

As a proof of concept, the numerical perfor-
mance evaluation results above corroborate the
feasibility and promise of the proposed DIL-driven
computation offloading scheme. We are working
on exploring other deep neural network architec-
tures such as deep residual learning [15] for further
performance gain and generalizing the approach
to the challenging multi-MEC multi-user scenario.

FUTURE DIRECTIONS ON
INTELLIGENT EDGE COMPUTING

In the sections above, we focus on the deep-
learning-based computation offloading approach
for a MEC system. In this section, we further
introduce several potential directions for apply-
ing deep learning into multiple intelligent edge
computing research areas, including edge data
analytics, dynamic resource allocation, security,
and privacy, respectively.
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EDGE DATA ANALYTICS

Edge data analytics refers to the analysis of data
from the distributed edge servers in a MEC sys-
tem, and usually goes along with 10T applications
and data caching,.

loT Application Scenario: Recently, MEC
has received extensive attention in loT scenarios,
where inexpensive simple devices can generate
huge volumes of raw data for big data process-
ing. When considering the limited computation
and storage resources of each single edge serv-
er, applying traditional machine learning and Al
algorithms (usually compute-intensive) is inefficient.
Thus, one huge problem in this scenario is how to
process such big data in real time. We can apply
deep learning in the MEC in order to improve the
efficiency of data analyzing and processing. Deep
learning can extract accurate information from
the huge loT data in such complex network envi-
ronments. Compared to the traditional machine
learning methods, deep learning outperforms in
processing huge data, since it can precisely learn
high-level features (e.g., faces and voices), extracts
new features automatically for different problems,
and takes much less time to infer information.

Data Caching Scenario: Data caching is one
of the key features of a MEC system [1], and usu-
ally consists of content caching and computation
caching. Content caching refers to caching pop-
ular contents (e.g., segments of popular movies)
at the edge server in order to avoid retransmitting
the same contents. This approach can significantly
reduce the backhaul traffic and transmission delay,
whereas computation caching denotes caching

Because deep learning
can extract accurate
information from the

huge loT data in such

complex network
environments. Com-
pared to the traditional
machine learning meth-
ods, deep learning out-
performs in processing
huge data, since it can
precisely learn high-lev-
el features (e.g. faces
and voices), extracts
new features automati-
cally for different prob-
lems, and takes much
less time to inference
information.
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Deep learning can pro-
vide the privacy pro-
tection by transferring
sensitive training data
into intermediate data.
Such intermediate data
in DNN usually have
different semantics
compared to the sen-
sitive training data. For
example, after extract-
ing the features by the
DNN fileer, hackers
cannot obtain the orig-
inal information from
the hidden layer.

parts of popular computation result data (e.g., rec-
ognized face) that is likely to be reused by others.
This approach can reduce not only the retransmis-
sion delay, but also the re-computation latency.
We can apply the deep supervised learning (DSL)
method to the edge servers to analyze and extract
the features of the collected data from mobile
devices. It makes more precise caching place-
ment decisions than traditional machine learning
approaches. Moreover, the popularity of different
data is usually time-varying. Thus, we need to col-
lect and process large amounts of data to obtain
statistical inference from the data. Thanks to the
model-free feature, we can maximize the long-term
cache hit rate through DSL without knowledge of
the data popularity distribution.

DYNAMIC RESOURCE ALLOCATION

Dynamic resource allocation (DRA) is a key tech-
nology to improve network performance in a
dynamic environment. Note that the MEC perfor-
mance is influenced by a variety of time-varying
factors, including communication and computa-
tion resources, workloads of mobile users, data
caching and power management policies, and
so on, which is a huge project. Therefore, there
is a strong demand on intelligent edge resource
management to maximize long-term resource uti-
lization. DRL has the potential to handle high-di-
mension state spaces of complicated control
problems, and could be used to solve the DRA
problem for MEC. It makes edge servers automat-
ically and efficiently negotiate the most appropri-
ate configuration directly from the complicated
state space. Moreover, it can explore deep con-
nections in the data and obtain accurate prediction
of resource allocation schemes for MEC network.

SECURITY AND PRIVACY

Recently, security and privacy issues pose a tough
challenge for the development of MEC. Security is
becoming an increasingly important issue in MEC-
based applications. Since edge servers are located
at the edge and physically closer to attackers. MEC
systems face multiple security threats such as wire-
less jamming, distributed denial of service (DoS)
attacks, and smart attacks. Due to the sophistica-
tion and selflearning capability, deep learning pro-
vides more accurate and faster processing than
shallow learning algorithms. It can play a key role
in attack detection to deal with attacks. The priva-
cy issue is another important threat for the cloud-
based MEC system, where users risk exposing their
sensitive data by sharing it and allowing edge data
analytics. Moreover, MEC can provide location
awareness services for cellular-network-based appli-
cations, which result in location privacy and tra-
jectory privacy issues. Deep learning can provide
privacy protection by transferring sensitive train-
ing data into intermediate data. Such intermedi-
ate data in DNN usually have different semantics
compared to the sensitive training data. For exam-
ple, as shown in Fig. 1, after extracting the features
through the DNN filter, hackers cannot obtain the
original information from the hidden layer.

CONCLUSION

In this article, we study the fine-grained compu-
tation offloading issues for a single mobile device
within MEC networks, that is, a computation task

can be executed on the mobile device locally,
offloaded to an edge server, or offloaded to the
remote cloud. In particular, we first introduce the
application model and execution model, respective-
ly. Then we present our offloading decision making
procedure, and formulate the optimization prob-
lem to minimize the overall offloading cost. After
that, we propose a deep-imitation-learning-based
algorithm to obtain a near-optimal solution rapidly
for the optimization problem. Numerical results
confirm that our proposal achieves an offloading
accuracy up to 64.79 percent and reduces at most
23.17 percent offloading cost at the same time.
At last, we discuss the important directions and
advantages of applying deep learning methods to
multiple MEC research areas.
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