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Abstract—Neurotechnology has traditionally been central to the
diagnosis and treatment of neurological disorders. While these
devices have initially been utilized in clinical and research set-
tings, recent advancements in neurotechnology have yielded devices
that are more portable, user friendly, and less expensive. These
improvements allow laypeople to monitor their brain waves and
interface their brains with external devices. Such improvements
have led to the rise of wearable neurotechnology that is marketed
to the consumer. While many of the consumer devices are marketed
for innocuous applications, such as use in video games, there is
potential for them to be repurposed for medical uses. How do we
manage neurotechnologies that skirt the line between medical and
consumer applications and what can be done to ensure consumer
safety? Here, we characterize neurotechnology based on medical
and consumer applications and summarize currently marketed
uses of consumer-grade wearable headsets. We lay out concerns
that may arise due to the similar claims associated with both
medical and consumer devices, the possibility of consumer devices
being repurposed for medical uses, and the potential for medical
uses of neurotechnology to influence commercial markets related
to employment and self-enhancement.
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I. INTRODUCTION

W ITH the advent of wearable technology, individuals are
readily able to monitor a wide array of characteristics

of their bodies, ranging from movement patterns to heart rate.
While these technologies have been predominately focused
below the neck (e.g., watches, chest straps), a new variant
of wearables have emerged that can monitor the brain. These
devices have enormous implications for the health care industry,
fitness and wellness communities, and possibly the most con-
troversial area of application, the employment sector. Globally,
neurological disorders were estimated to be the leading cause
of disability (estimated as 276 million disability-adjusted-life
years from 1990–2016) [1]. Neurotech Reports projects that
neurotechnology will have a global market of $9.1 billion in
2020 [2]. These technologies have significant potential to reverse
enormous financial losses due to neurological disorders and
injuries, while enhancing the quality of life for affected individ-
uals and their families. However, as this technology becomes
more widespread, there is a potential for the technology to be
repurposed for unintended medical purposes or to be misused
for unethical purposes. As with any emerging technology, there
are many ethical, economical, regulatory, and societal concerns
regarding neurotechnology devices [3]–[7]. In this article, we
discuss how these concerns may arise from the blurred line
between medical and consumer applications.

Within the context of this article, neurotechnology is charac-
terized into three distinct areas: 1) detection; 2) training; and
3) augmentation. While each of these terms has potential to
invite confusion, they were specifically chosen to allow dual
representation of each word within both medical and nonmed-
ical contexts. For detection, neurotechnology can be used for
applications needed to highlight the presence of a neural pat-
tern. In the medical environment, these neural patterns can be
associated with a disorder and lead to subsequent diagnosis.
In the consumer environment, these patterns could be associ-
ated with abstract mental states such as a customer’s interest
in an advertised product, a driver’s drowsiness during vehicle
operation, or a student’s loss of focus in a classroom setting.
Training extends beyond detecting neural patterns and gives the
user the ability to change or strengthen their brain through mental
exercises. In the medical context, this may refer to rehabilitation
paradigms that help patients recover from brain damage caused
by a stroke. Nonmedical applications include exercises that
improve mental skills related to focus, memory, or meditation.
Finally, for augmentation, neurotechnology can be used to help
individuals control devices through monitored brain activity.
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The term augmentation, as used in this article, refers to the use
of technology for the addition or enhancement of a particular
human function. We wish to apply this term to encompass
what traditional medical parlance would label as “restoration”
or “rehabilitation” of a “normal” function that had been lost
due to disease or injury. For spinal cord injury survivors, this
could involve using a thought-controlled leg exoskeleton to
help them walk. Traditionally, “augmentation” referred to using
technology that aimed to enhance human function beyond what
was “normal”—for example, an exoskeleton that could empower
a person to do a 70-foot-high jump. Typically, the term “aug-
mentation” carried a judgment that the enhanced function was
frivolous or unnecessary from a “normal” medical perspective.
This article rejects traditional distinctions between “normal” and
“subnormal” and between traditional concepts of restoration or
rehabilitation versus augmentation. We define augmentation in
the medical context as measures that enhance human functions
beyond the level a patient had when they entered the healthcare
system, without demeaning patients by debating whether they
were “normal” or lacking “normal” functions when they present
themselves for treatment. Augmentation in the medical context
simply focuses on extending or enhancing human functions in
relation to which patients sought medical consultation. Aug-
mentation in the nonmedical context refers to the extension or
enhancement of human functions in ways that usually are not
characterized as “medical” issues—for example, controlling an
air drone or a room light’s colors through a user’s thoughts.

The goals of this article are as follows. First, we seek to char-
acterize medical and consumer applications of neurotechnology.
Second, we identify concerns that can arise when the boundaries
between medical and consumer applications are crossed. Finally,
we comment on how regulation can be used to address these
concerns.

II. MEDICAL USES

Neurotechnology has traditionally been limited to hospitals
and laboratories due to the size and costs of the systems. The
complexity of these systems often requires a high degree of
training to safely operate them and to accurately interpret their
results. While neurotechnologies have mostly been used for
diagnostics, they have recently entered the healthcare market
with a strong focus on rehabilitation.

A. Detection

Neuroimaging methods provide clinicians and researchers the
ability to image the structure and function of the brain. Detection,
in the clinical sense, allows for the observation and diagnosis of
disease or injury based on the brain images.

Structural imaging techniques are used to observe the struc-
ture of the brain and surrounding tissues (e.g., contrasting be-
tween white matter, gray matter, cerebrospinal fluid, etc.) and
assist in the diagnosis of gross structural disease and injury. For
example, magnetic resonance imaging (MRI) and computed to-
mography (CT)—an advanced X-ray technique—provide direct
images of the brain and can be used to identify conditions asso-
ciated with structural abnormalities such as swelling [8], tumors
[9], or stroke [10]. However, the operating precautions (e.g.,
MRI magnet safety, CT radiation exposure), cost, and size make

their purchase by the average consumer nearly unattainable,
thus making them unlikely to enter the market as “wearable”
technology.

Functional neuroimaging techniques are used to assess
normal and pathological brain activity related to cognitive
and motor function. Commonly used techniques include
functional MRI (fMRI), positron emission tomography (PET),
electroencephalography (EEG), and magnetoencephalography
[11]. As it relates to the wearable market, a large number of these
functional imaging techniques are unlikely to extend beyond
medical applications (e.g., PET, fMRI) due to their cost, size, and
risk factors—similar to challenges facing structural scanning
methods. An additional consideration for the applicability of
neuroimaging techniques as a deployable technology is the
level of invasiveness of the recording modality. Noninvasive ap-
proaches include functional near-infrared spectroscopy (fNIRS)
and EEG, which measure changes in brain activity through
recording sensors affixed to the scalp [12]. Conversely, invasive
sensors, such as electrocorticography (ECoG), stereotactic
EEG (sEEG), and microelectrode arrays (e.g., Utah array), are
surgically implanted on the surface of the brain (cortex) or
within the brain volume [12], [13]. Techniques such as EEG,
fNIRS, and ECoG measure the behavior of large populations
of neurons, whereas implanted electrode arrays measure small
populations or individual neurons in a particular region of the
brain [12], [13].

To provide context for the application of these varying neu-
roimaging techniques as diagnostic tools in the clinic, we pro-
vide an example to illustrate their use. Epilepsy is a chronic
disorder characterized by recurring, unprovoked seizures [14].
Approximately 30% of individuals with epilepsy are unable
to control their seizures through medication and thus require
advanced intervention, such as surgical removal of epileptic
brain regions [14]. In this severe case, it is of utmost importance
that the clinicians treating the patient are able to identify the
source of epilepsy in the brain with high precision. Generally,
noninvasive methods, such as EEG, fMRI, and PET are used to
identify epileptic regions in the brain, while structural MRIs
provide high resolution models of the individual’s anatomy
[15]–[17]. During a seizure, the responsible area of the brain can
be characterized, for example, by increases in electrical activity
(EEG) or blood flow (fMRI). Following initial localization of the
epileptic source, clinicians can advance to surgically invasive ap-
proaches, such as ECoG or sEEG, to further identify the epileptic
source. Finally, a surgical resection (removal of abnormal tissue)
or other surgical interventions can be implemented to alleviate
the epileptic symptoms.

Currently there is also research in utilizing neuroimaging de-
vices to diagnose neurological disorders including Alzheimer’s
disease, attention deficit disorders, autism spectrum disorders,
and depression [18]–[22]. A large focus is the identification of
biomarkers, which are biological indicators for disease. They
can potentially be used to diagnose diseases early, to identify
optimal treatment routes for particular patients, and to predict
the prognosis of the diseases. Recently, machine learning has
been used with biomarkers to enhance diagnostic accuracy.
These algorithms are likely to fit within the U.S. Food and Drug
Administration’s (FDA) definition of “Software as a Medical
Device” (SaMD), which is subject to FDA regulation [23]. In
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a recent draft guidance, the FDA discussed Clinical Decision
Support (CDS) software, which incorporates an individual’s
medical information to provide patient-specific diagnostic or
treatment recommendations in clinical settings [23]. Some (but
not all) CDS software constitutes SaMD that the FDA would
regulate as “Device CDS” software [23]. Based on the guidance,
the FDA only intends to regulate CDS software as a device
when the user (such as a healthcare provider) would be unable
to independently review the basis of the software’s diagnostic or
treatment recommendations and if the software is intended for
use in contexts where errors could carry serious risk to patients
[23]. Thus, FDA regulation is likely to apply to diagnostic
software in neural devices that use complicated machine learning
algorithms. These algorithms can be so complex that the basis
of their decisions would not be transparent even to medical
professionals. However, there has been significant effort made
in the field of explainable artificial intelligence (XAI), which
can identify which features were critical in a predictive algo-
rithm’s decision [24], [25]. XAI may help improve algorithmic
transparency and regulatory science.

B. Training

Clinicians and research scientists have begun to realize the
brain’s regenerative potential, resulting in a paradigm shift in
the clinical treatment of neurological disorders and injuries
[26], [27]. A neurorehabilitation approach for the treatment
of cognitive and motor disorders includes any form of therapy
or training that yields clinical benefits through the plasticity of
neural networks in the human body. This term can be quite broad
in that it includes therapies ranging from split-belt treadmill
training [28] to the use of prisms for individuals with deficiencies
in visual perception [26].

In the context of restoring motor function for stroke survivors,
traditional rehabilitation therapies involve having the patient
perform exercises with the impaired limb with the assistance
of a therapist. For example, to treat upper limb impairment, a
therapist may manually assist the individual during task-oriented
training, such as picking up a small block and moving it to
a container [29]. Similarly, motor training and motor adapta-
tion, such as walking on a split-belt treadmill, can result in
improvements in lower limb function [28]. However, in some
cases, the individual may lack the required strength to perform
the desired functional task such as moving the arm through a
sufficient range of motion or walking on a treadmill. Robot-
assisted therapy has become a popular approach for assisting
the patient through the range of motion required to perform the
prescribed functional task, and to alleviate the physical burden
placed upon the therapist while assisting the patient through the
task [30]. While robot-assisted devices may help facilitate neu-
rorehabilitation, a contention about them is that they may only
engage the limb without necessarily engaging the brain areas
associated with movement. It is argued that Hebbian plasticity,
or reinforcement of neural connections, only occurs when both
the brain and limb are engaged simultaneously [31], thus raising
the question of how to engage the brain. Recent efforts have
explored activating assistive robots with motor commands de-
tected from the patient’s brain through neuroimaging modalities.

Such systems are known as brain–machine interfaces (BMIs)
[also known as brain–computer interfaces (BCIs)], which es-
sentially allow users to control devices through their thoughts.
The general notion driving BMI-based rehabilitation is the belief
that direct engagement by the user will lead to better func-
tional outcomes than traditional rehabilitation approaches [27],
[32]–[38].

While stroke rehabilitation aims to restore neural connec-
tions between the brain and the limb, we note other training
systems that aim to change a patient’s inherent neural mod-
ulations. These neurofeedback (or biofeedback for biological
signals in general) systems monitor neural modulations and
display them back to the patient through visual or auditory cues.
The patient is tasked to perform exercises which can reduce
neural patterns associated with neurological disorders such as
attention-deficit/hyperactivity disorder (ADHD) [39], [40]. The
neurophysiological mechanisms and clinical efficacy of these
interventions are still being studied.

C. Augmentation

BMIs can be used as a medical technology to augment in-
dividuals with severe impairment, paralysis, or limb loss as a
means to restore lost motor function. For example, individuals
with severe paralysis, such as high spinal cord injuries (SCI—
tetra/quadriplegia) or advanced amyotrophic lateral sclerosis
(ALS), may have limited or complete deficits in motor function
and speech that can be partially restored with a BMI. BMIs
have been used to control a computer cursor on a screen [41];
to achieve highly dexterous control of high degree-of-freedom
anthropomorphic arms (e.g., Deka Arm System) [42]–[45]; for
spelling words [46], [47]; and for decoding speech [48]–[50]—
all capabilities that could significantly improve the lives of
individuals with severe impairments. BMIs can also be helpful
for amputees as a means of controlling their prosthesis [51]. The
most advanced motorized prosthetic devices are controlled with
peripheral sensors that monitor residual muscle activity or limb
movements. While they help restore some motor function, they
still do not match the dexterity that exists in an intact limb. BMIs
can potentially enhance control by contributing complimentary
neural signals with the peripheral sensor data.

We note that some studies in this field often involve partic-
ipants who opt to be surgically implanted with electrodes that
directly monitor the brain. The performance of these modalities
is certainly greater than that of noninvasive alternatives, but there
are risks associated with surgical complications, biocompatibil-
ity, infection, or signal degradation. To the participants with
severe impairments, however, these risks are outweighed by the
enhancement in the quality of life offered by these BMIs. We
refer the reader to the following reviews, which compares var-
ious neural interfaces and comments on the risks with invasive
neurotechnologies [12], [13].

D. From “Bench-to-Bedside”

The phrase “bench-to-bedside” is frequently used to describe
the process of translating basic research into realizable clinical
treatments. While the expression is often used within the context
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of translating drugs into patient care, the same notion can be
applied to neurotechnologies.

How do we get neurotechnology A [e.g., a BMI for control of a
hand prosthesis, a BMI-based speech prosthesis, a thought-controlled
exoskeleton for stroke rehabilitation, etc.] into the care of end user,
or patient, B [e.g., individual with SCI, ALS, stroke, limb loss, etc.]?

There is no doubt that all the previously described neurotech-
nologies will receive some form of regulatory oversight as
medical devices. Indeed, the FDA is aware of the need to make
these technologies available to clinicians and patients [52]. A
draft guidance, entitled “Implanted BCI devices for patients
with paralysis or amputation–nonclinical testing and clinical
considerations” [53], is currently under revision after recently
closing for comment before a final guidance is released. This
guidance provides significant effort in outlining the FDA’s view
on BCIs. However, the guidance lacked some key points which
were highlighted by some of the public comments [54]. The
guidance lacks commentary on noninvasive systems, sequential
use of BCIs in various phases of treatment (e.g., acute ver-
sus chronic phase of stroke), and neurotechnologies for neural
recording or stimulation that are currently marketed as consumer
devices. These concerns are valid for in-hospital care as well as
for at-home rehabilitation or augmentation devices.

E. Who Is Going to Pay for It?

A significant concern for the translation of medical
neurotechnology into the clinic, and ultimately for the care of the
end user, is that of payment. For most BMI studies, the estimated
cost to the end user is not reported, and, if so, it is usually
based solely on the cost of the system (e.g., low-cost portable
EEG systems, which provide the benefit of being low-cost at
the potential sacrifice of data quality). These reported values
neglect the overhead associated with BMIs as medical devices.
A recent clinical study investigating an EEG-based speller for
individuals with ALS estimated a total cost of $5000.00 for an
at-home system [46], [55]. However, this system is designed to
be low-cost, leading to the plausible subsequent conclusion that
devices with more advanced neural recording methods, or those
requiring surgical implantation, will come with a much higher
price tag. It is important to note that neural recordings alone
cannot be used as a BMI; software that utilize predictive machine
learning algorithms are required to translate the brain signals
for the desired functional task. Furthermore, when BMIs are
coupled with external devices, the price of the end effector must
be factored into the total cost to the user. While a tablet coupled
with a BCI for cursor control may run in the hundreds of dollars,
a take-home system that interfaces with high degree-of-freedom
anthropomorphic arms (such as advanced prosthetic devices)
may result in substantial costs for a complete system [56].

Because this article surveys a wide range of different neu-
rotechnology devices, a detailed discussion of reimbursement
issues is not possible. The demographics of the target patient
population for a particular device influences which and how
many payers are involved in making decisions on whether to
cover the device, at what level of payment, and how the payments
will be structured. For example, Medicare crucially affects the
commercial fate of devices serving persons over 65; military

payers are important for devices addressing veterans’ health
needs; and a multitude of private insurers and state Medicaid
programs come into play for devices that serve patients of
diverse ages and economic conditions. While different payers
implement different policies, many are influenced by Medicare’s
coverage decisions [57].

By statute, Medicare covers technologies that are “reasonable
and necessary” for diagnosis or treatment of illness or injury
or to improve the functioning of a malformed body member
[58]. This rules out preventive technologies unless Congress has
specifically authorized coverage, but diagnostic neuroimaging
technologies generally qualify for coverage. Medicare does not
set separate reimbursement rates for most devices used or in-
stalled at hospitals and clinics, because payments for the devices
are bundled into the fees for the healthcare services that utilize
the devices [57]. Thus, healthcare providers receive a bundled
fee for treating each patient, and providers recoup the costs of
neuroimaging equipment they use and any neural devices they
surgically implant via that bundled fee [57]. This incentivizes
providers to choose low-cost devices that consume less of the
bundled fee. However, it has the advantage that if a device
manufacturer can persuade providers that its device is superior
to alternatives and merits a higher price, the provider can agree
to pay that price without seeking Medicare approval.

In contrast to the bundled fees Medicare uses for devices
operated at healthcare facilities, Medicare separately reimburses
durable medical equipment (DME) that patients use at home,
which includes prostheses and other related equipment. In the
past, these devices were reimbursed according to a fee sched-
ule, but in 2009 Congress introduced competitive bidding to
establish payment rates for many such devices [57]. This has
reduced Medicare’s costs, but some amputee advocacy groups
urge policymakers to stop treating advanced prostheses as DME
because this policy limits the choice and quality of devices
available [59].

Still, governmental programs such as Medicare, Medicaid,
and veterans’ programs are considered more generous than many
private insurers. Medicare covers prosthetics, subject to its usual
20% copay, and the Veteran’s Affairs Department “provides the
latest in technology without limits on cost” [60] and without a co-
pay. In contrast, private insurers often set coverage limits or deem
the latest technology to be “experimental” and thus ineligible for
coverage [59], [60]. Private insurance plans generally commit to
cover care that is “medically necessary,” but there is no federal
definition of this term and fewer than one third of the states have
a regulatory definition. Whether a given type of device is covered
depends on the terms of the particular insurance contract which
the insurers define. This has the potential advantage of allowing
device manufacturers to work out stand-alone fees that might
reward superior devices with superior reimbursement levels.
However, many private insurers set caps on reimbursement for
prosthetic technology, thus severely limiting patients’ access to
advanced prostheses and neurotechnology devices [59], [60].
Since 2001, around 20 states have passed insurance fairness
statutes to enhance amputees’ access to modern prosthetic de-
vices [59]. Advocates continue to press for reforms in other
states, but a clear pathway for private insurance reimbursement
for the most advanced BMI devices remains challenging [59].
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III. CONSUMER USES

Recently, a number of consumer-grade neural devices have
entered the market that are targeted towards general wellness, en-
tertainment, and educational uses. Most of these are comprised
of noninvasive EEG headsets that are usually priced below $1000
[3]. These devices tend to employ an ergonomic design that
facilitates the packaging of all the hardware (recording sensors,
signal amplification, data storage, and wireless streaming) into
a streamlined and wearable form factor. In general, the number
of sensors on a consumer-grade system (1–16) tends to be lower
than that of a research-grade system (32–128). Furthermore,
consumer-grade EEG systems often employ dry electrodes—
electrodes that do not rely on electrically conductive gel between
the scalp and electrode tip—to facilitate faster and easier setup
by the user. Finally, due to the more consumer-friendly form
factor, the amplification hardware may limit the resolution of
the data and the sampling rate at which the data can be recorded.
Such limitations have garnered doubt on the capabilities of these
devices in the neurotechnology space [61], [62]. Nonetheless,
the portability and accessibility of these consumer-grade neu-
roimaging devices allow broad application beyond the clinic or
laboratory.

A. Detection

1) Market Research: Market research involves gathering in-
formation related to how potential customers are attracted to
products or advertising. While most market research is typically
studied with interviews, self-reports, or focus groups, these
methods are susceptible to subjective biases. This has garnered
interest in using neuroimaging headsets for neuromarketing,
which uses recorded brain activity to predict an individual’s
preferences. The rationale is that recorded brain rhythms could
represent more objective and truthful measures about a cus-
tomer’s preferences [63], [64].

2) User Authentication: A major challenge in the security
sector is the authentication of an individual’s identity. Recent
solutions utilize biometrics to identify individuals based on bi-
ological qualities such as their fingerprint, face, voice, etc. Neu-
roimaging headsets allow brain waves to be used as a biometric
[65]. Users can respond to security queries through a personal
mental task that would be monitored through a headset. This type
of response offers advantages over other biometric methods: 1)
it is confidential since the response is inherently covert; 2) it
is difficult to mimic since it is expressed through brain waves
unique to the individual; and 3) it is difficult to coerce from the
individual since brain waves are sensitive to stress. [66].

3) Identifying Personality: There is also ongoing research in
using brain activity to predict aspects of an individual’s person-
ality through EEG signals [67], some of which includes callous-
ness [68], psychological resilience [69], and leadership qualities
[70]. This is potentially attractive for the employment sector,
where recruiters may seek individuals with particular personality
traits for job positions. Given that candidates have incentives to
present themselves in ways that are attractive to recruiters (such
as acting confident or engaged), brain scans can allow recruiters
to get a “true” reading of the candidate’s personality.

4) Driver Drowsiness: Fatigue and drowsiness are signifi-
cant factors that are responsible for vehicle crashes [71]. There is

ongoing research in developing systems that can detect if a driver
is drowsy, which could then prevent an accident either by alerting
the driver or safely stopping the vehicle. Some conventional
strategies include monitoring the driver’s face orientation, eye
gaze, or driving performance [72]. Since fatigue and drowsiness
reflect a driver’s state of mind, wearable brain scanning devices
are proposed as a tool to detect these states. Ongoing research
involves using machine learning algorithms to detect drowsiness
from brain waves [73]–[76]. While this application does not have
any clinical relevance, these devices are aimed at reducing risk
of fatality or injury from vehicle crashes. How the failure of such
devices should be handled in terms of liability concerns remains
uncertain.

B. Training

1) Meditation: Meditation, being a skill that involves invok-
ing a particular state of mind, can be difficult to learn due to its
internal nature. Wearable neurotechnology can be particularly
helpful in this area, as modulations in brain activity related to
a proper meditative state can be displayed back to the user in
real time as they practice the exercise. From such cues, the user
can use this as feedback and augment their strategies to perform
meditation more effectively [77]. Few studies have demonstrated
that the use of such headsets with meditation exercises can
yield changes in neural features related to attention during rest
[78]. A note worth considering is that beyond helping users
train for meditation, wearable neurotechnology can also validate
if particular mental exercises cause lasting changes in neural
activity. Such findings can help trainers augment their programs
to help maximize benefits associated with meditation.

2) Focus and Attention: Consumer EEG headsets are also
being marketed as a means to improve focus and attention.
These devices are often coupled with mental exercises that are
performed while the user wears the headset. While these are mar-
keted as self-help tools for individuals to enhance their mental
acuity, this type of technology has garnered interest by educators
and parents to monitor how attentive children are during school
classes [79]. The idea is that by monitoring the children’s brain
scans during a class lesson, parents and teachers can monitor
when the students are focused or distracted [79]. With the
feedback, coaching strategies can be adopted to help children
focus, or teachers can augment their lessons to make them more
engaging [79]. While many neuroimaging headsets are marketed
as a means of improving one’s own focus or attention, there is
ongoing research in using such technology to detect and manage
attention-related disorders such as ADHD [80], [81].

3) Sleep Aid: Sleep is crucial for an individual’s mental and
physical health. There are many ways for individuals to monitor
their sleep habits at home, such as using smart watches that
monitor motion, sounds, and heart rate. Neuroimaging headsets
are also being sold as a means to monitor and improve the
user’s quality of sleep. Some products generate binaural beats
in response to brain activity, which some studies claim can
reduce stress and anxiety [82], [83]. While these claims of
improved sleep may allow the technology to be classified as
a general wellness device, manufacturers should be careful to
omit mention of sleep-related disorders, such as insomnia or
sleep apnea, if they wish to avoid oversight from the FDA as
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a medical device. Few companies have directly marketed their
wearable headsets as a medical device, making claims that they
can detect sleep apnea and validating those claims via clinical
trials [84], [85].

4) Working Memory: While the previous examples have dis-
cussed applications with headsets that monitor EEG, few com-
panies are also marketing headsets that provide improvements
in working memory through electrical or magnetic stimulation
to the brain [86], [87]. While this can be marketed for healthy
individuals, there is ongoing research on applying brain stimula-
tion techniques to treat memory-related disorders such as disease
Alzheimer’s disease [88], [89].

C. Augmentation

1) Alternative Controller for Entertainment: The ability to
control devices through the power of thought has its own in-
triguing novelty. EEG headsets are also offered as an alternate
joystick controller for video games, or to control toys such as an
air drone. Some headsets also allow users to control cosmetic
wearables, such as cat ears on a headband or a tail that is worn at
the waist. Based on how these products are marketed, it is clear
they are targeted solely for entertainment.

While such products are meant for entertainment, there is
ongoing research to add gaming elements to rehabilitation pro-
grams [79], [87], [90]. As mentioned previously, there are neural
training programs that involve clinical patients using BMIs to
engage cortical areas for rehabilitation. Implementing gaming
elements can help increase the patient’s motivation and com-
pliance with the rehabilitation program [79], [87], [90]. As the
products above are available for consumers, clinical populations
seeking rehabilitation through neural training could seek out
these products to augment their recovery.

2) Artistic Expression: Artists are actively exploring the use
of EEG headsets as a component of artistic installations. The use
of neural data can range from simply showing the brain waves
directly or by transforming the signals into another form, such
as visual effects or sounds [91]. For example, neural signals
can modulate precomposed musical fragments or change the
color and shape of a visually displayed flower-like pattern [91].
Furthermore, some artists have used the processed neural signals
to control dynamic dresses [92] or motorized environmental
installations [93]. Many artists are attracted to displaying brain
waves in their raw form as it accentuates a very personal and
unique aspect of the individual. This has led to research in
using EEG signals as an alternate form of emotional and artistic
expression [94].

D. Educational Do-It-Yourself Kits

Consumer-grade neurotechnologies can also provide oppor-
tunities for hobbyists and educators who wish to learn and
teach bioinstrumentation technology. The construction of such
neurotechnology often involves working with sensors that inter-
act with the human body, designing and fabricating the hardware
to make them wearable, and programming algorithms to detect
different mental states. These concepts can be explored through
accessible consumer neurotechnology.

To meet such a demand, there are a few neurotechnology
companies that have adopted an open-source model to their

products, where they provide schematics and a framework for
developing a neuroimaging headset at home. For example, these
companies may offer a storefront where users can buy electrodes
for a customized headset, downloadable designs that allow users
to create the physical hardware using three-dimensional print-
ing (3D printing), and programming code that allows users to
access the data recorded on the headsets—usually a software
development kit, or SDK. A user is free to customize the hard-
ware configuration, such as the number of electrodes and their
locations on the scalp. A user can also choose how the raw neural
data are processed and analyzed for their specific application. In
general, these companies do not readily market their products
for specific applications, but instead, simply offer the technical
specifications of the hardware and general uses of the device.

While a few companies offer a very accessible environment
for developers to modify neural imaging headsets, some com-
panies have developed a unique strategy for layering access
to various aspects of the systems. For example, to access raw
data (which would allow greater flexibility for developers to
add their own functionality), a developer would need to pay a
monthly subscription fee. However, an important note is that
there are fully open-source third-party software applications
specifically designed to stream data from a large number of
commercially available headsets, including research-grade and
consumer-grade devices. These software packages allow for
the streaming of data from devices that normally do not have
publicly disclosed programming code or designs. This broadly
expands a developer’s ability to select a device among a large
assortment of consumer systems, giving them more access to
powerful devices for demanding projects. Such projects could
involve clinical benefits, which present the potential for indi-
viduals to develop devices at home that might otherwise be
considered medical devices by the FDA.

IV. CONCERNS WHEN CONSUMER DEVICES MAY BE

REPURPOSED FOR MEDICAL USES

We discuss how device manufacturers, software program-
mers, and consumers can play a role in repurposing consumer
neurotechnology for medical purposes. A summary of the con-
cerns can be found in Table I.

A. Careful Wording on Intended Use for General Wellness

Developers that market a neural device directly to consumers
may feel incentivized to tout the device’s health benefits to
increase sales. This strategy must be approached with caution,
however, because a developer’s claims can affect whether the
FDA will regulate the device and if so, which, if any, of the FDA’s
various premarket review pathways could apply. Devices—
including components or accessories of devices—are subject to
FDA regulation if they are “[i]ntended for use in the diagnosis of
disease or other conditions, or in the cure, mitigation, treatment,
or prevention of disease …” [95]. In 2016, the 21st Century
Cures Act [96] clarified how the FDA’s device regulations apply
to medical software [97]. Software that encourages wellness or
a healthy lifestyle is not FDA-regulated, unless it crosses the
line into “diagnosis, cure, mitigation, prevention, or treatment
of a disease or condition” [100]. Unregulated general wellness
software includes products such as step counters and nutrition
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calculators. Many consumer-facing neural devices may be able
to fit within this category if developers word their product
labeling and marketing materials carefully.

Late in 2019, the FDA issued a final guidance that clarifies
the line between regulated and unregulated wellness devices
[98]. Claiming that a device offers medical benefits or that
it can diagnose or treat specific health conditions can cause
the device to require FDA clearance or approval as a medical
device. This might involve submitting a premarket notification,
or 510(k), which typically involves submitting bench data to
prove that the device is substantially equivalent to a predicate
device already on the market with the same intended use. Devices
that are novel or pose higher risk might be required to go
through the premarket approval (PMA) pathway, which typically
requires clinical trial data [99] and thus entails higher costs
and a slower path to market. Another alternative is to seek a
de novo classification, in which the developer asks the FDA to
classify a novel device (which normally requires a PMA due
to its novelty) as a lower-risk device by demonstrating that it
is not very high risk, making the device eligible for 510(k)
clearance [99].

Many of the consumer devices mentioned previously escape
FDA regulation despite claims of reducing stress or improving
focus or aiding sleep. While these may sound like clinical
benefits, such products can qualify as “general wellness” devices
provided they are of low risk and avoid claims about diagnosing
or treating specific diseases or health conditions [98]. Devices
may be found to be low risk if they are not implantable or invasive
and would not pose serious risks if they malfunctioned [98].
Developers need to describe potential benefits very carefully
to stay within the boundaries set in the FDA’s recent guidance
[98]. The FDA does permit references to specific diseases as
long as the device merely promotes a “healthy lifestyle” to help
mitigate the effects of having the disease. An example of a
general wellness claim would be a device that “coaches breath-
ing and relaxation skills, which, as part of a healthy lifestyle,
may help in living well with migraine headaches,” [98]. Such
claims are permissible in a non-FDA-regulated consumer de-
vice. Even so, many consumer device manufacturers appear to
avoid advertising in this way, perhaps to dispel any suggestion
that they are marketing a medical device [98].

B. Managing Software That Can Add Medical Capabilities to
Consumer Neurotechnology

Even when a device developer positions its device as a con-
sumer product and scrupulously follows the FDA’s guidance by
avoiding any diagnostic or therapeutic claims, there is always
a possibility that other parties might repurpose the device for
inappropriate medical uses. This potential for repurposing and
misuse arises because consumer-grade devices often produce
data which resemble that of FDA-regulated medical-grade de-
vices. Such data can be used with customized software that can
be designed to draw clinical inferences. A related case has been
reported, where it was found that machine learning algorithms
can be used with fitness trackers to detect atrial fibrillation with
an accuracy of 90% [100]. This raises the possibility that neu-
rotechnology devices marketed by a manufacturer for general
wellness, like fitness trackers, could be repurposed for medical
uses by a third-party software developer.

When a software application (app) company writes code
that encourages consumers to use a consumer-grade device for
medical purposes, the legal analysis is a bit more complicated. In
this case, the party who would be answerable to the FDA is the
software app developer, rather than the consumer device devel-
oper. There are two ways to view the app developer’s activities.
The first is that the app developer is repurposing the consumer
device by altering its intended use and thereby transforming it
into a new medical device intended for diagnostic or therapeutic
uses. According to the FDA’s regulation, a party who alters the
intended use of an existing device is responsible for demonstrat-
ing that the device is safe and effective in the new intended use
[101]. The FDA could require the app developer to show that its
algorithm draws clinically valid inferences and, moreover, could
require it to show that its inputs—the data from consumers’
devices—are sufficiently reliable to be repurposed for a medical
use. The second view is that the software app is a “software as a
medical device”: in other words, the software is a medical device
in its own right that is being sold as a separate accessory to the
consumer-grade devices that consumers already own. The app
itself is a medical device that the FDA can regulate [95].

While the hardware is central to any neural recording device,
it is the software accompanying a neural recording device (and
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the claims made about that software) that largely distinguish
whether it is a consumer product or a medical device. Thus,
regulators are developing strategies for overseeing the software
itself as a medical device, alone or in combination with specific
hardware. As of this writing, the FDA is currently working on
the Digital Health Innovation Action Plan, which recognizes
that such software has potential clinical benefits [102]. The
agency is currently developing the “Pre-Cert“ program which
aims to regulate apps by evaluating the software developer with
the app and by monitoring the app’s performance while it is in
the market [103].

C. Unintended Medical Uses of Consumer Devices
by Consumers

While there are ongoing developments in place to regulate
software companies, we also note that consumer hobbyists and
“do-it-yourself biotech” enthusiasts who are not affiliated with
companies can publish software in this space. This is possible if
such participants have access to the following:

1) software packages that allow a consumer to access data
from a consumer headset;

2) machine learning algorithms that have powerful potential
to make medical inferences;

3) research or other data relating neural signals to clinical
conditions.

While clinical expertise was traditionally needed to draw med-
ical inferences from neural data, machine learning algorithms
can empower laypeople to draw clinically relevant information
from available data. The necessary inputs are increasingly avail-
able through open-source platforms to create a headset with med-
ical applications. For example, to develop a BMI that helps with
hand impairment, a hobbyist can download a machine learning
algorithm, access public neural data related to hand movements,
and build a smartphone app that interfaces a consumer headset
with a 3D-printed orthosis. A hobbyist can then share the app
with other clinical patients for free. This environment of shared
knowledge and distribution of medical devices has been seen
with 3D-printed prostheses, which have allowed amputees to ob-
tain low-cost devices from hobbyist communities and nonprofit
organizations [104]. Although these devices bypass purchase
from a commercial manufacturer, they still fall under FDA
regulation as a Class I exempt medical device.

When reimbursement issues constrain patients’ access to
FDA-regulated medical devices, as is the case in the United
States, consumers can grow desperate and take matters into
their own hands by repurposing consumer-grade devices to meet
their unmet medical needs. The Institute of Medicine observed
this pattern in a 2016 report that found widespread reliance
on consumer-grade personal sound amplification products by
patients who were unable to afford needed hearing aids [105].
As neurotechnology is enhanced through research and develop-
ment, the public becomes increasingly aware of the potential to
use these devices to detect and manage a wide variety of mental
disorders and to restore motor capabilities in individuals with
disabilities. It seems likely that consumers might seek consumer-
grade neurotechnology for do-it-yourself medical applications,
even if technology manufacturers make no medical claims. The
FDA regulates manufacturers and suppliers of products, not

consumers. The agency can stop developers from marketing
a device for inappropriate medical uses and from supplying
“how-to” instructions that promote misuse, but the FDA cannot
impose sanctions on consumers who nevertheless figure out
ways to repurpose a product for their own use.

Finally, consumers may wrongly extrapolate medical con-
cerns from consumer devices. This might occur when a con-
sumer headset does not work for the end user, or if the detected
patterns are biased. For example, a user failing to yield im-
provements in exercises related to enhancing focus or working
memory might draw inappropriate conclusions that they have an
attention or memory-related disorder. This is especially pertinent
for headsets used to monitor students’ engagement in class-
rooms, where a child displaying repeatedly low focus measures
might cause parents and teachers to wrongly assume the child has
an ADHD-related disorder. Consumers can be overly trusting
of these consumer devices due to the manufacturer’s optimistic
advertising and news media that regularly report enticing neuro-
science findings [4], [5]. Laypeople may be unaware of factors
that would make these headsets unreliable. First, even with
state-of-the-art hardware and knowledge, applications can still
vary in performance across individuals. For example, BMIs have
been found to not function in many healthy individuals due to
their idiosyncratic brain patterns [106]. Second, consumer-grade
headsets are likely to perform worse than medical devices due
to the tradeoff in hardware performance for lower costs [61].

D. Legal Liability of a Consumer Neurotechnology Device
Manufacturer When Misuse Occurs

If a developer of a consumer device becomes aware that other
parties are misusing its product, will this fact cause its product to
fall under FDA regulation? The short answer is that this potential
exists in theory, but is rather unlikely in practice, and there are
steps developers can take to lessen the legal risks they might
face because of other people’s misuse of a device.

Device developers and manufacturers naturally will be con-
cerned about the impact of such misuses. Legally speaking, the
distinction between a consumer device and a medical device
depends on the device’s intended use [95]. Generally, a device’s
intended use refers to the objective intent of “the persons legally
responsible for the labeling” [101] of the device, which usually
means the device developer/manufacturer. The FDA can con-
sider direct and/or circumstantial evidence of the developer’s
intent [101]. Direct evidence would include claims the developer
or its representatives—such as its sales force—made about the
device, whether in labeling, advertising, or oral and written
statements [101]. Permissible circumstantial evidence includes
facts showing that the developer knew that the device was being
misused for purposes other than those for which the developer
labeled and advertised [101].

This last point creates a theoretical risk that a developer could
be held responsible if it knew others were misusing its device
for unintended purposes. In reality, this risk is small. A leading
treatise on FDA law notes that the “FDA has rarely attempted to
classify a product as a drug or device in the absence of relevant
representations by the manufacturer or distributor” [107]. In
other words, the agency generally bases its decisions on the
direct evidence: what the developer/manufacturer said about the
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device’s intended use. It is rare for the FDA to assert the authority
to base decisions on known misuses, and even rarer for the FDA
to prevail in court when it tries to do so (but see [108]). The recent
FDA guidance on general wellness devices treats claims by
the developer/manufacturer as the main source of evidence the
agency will rely on when deciding whether a device is a general
wellness device or an FDA-regulated medical device [98].

Even if a manufacturer knows consumers are misusing its
consumer device, it is unlikely that the FDA will deem it to
be a medical device and force the device’s developer to seek a
510(k) clearance or PMA to establish that the device is safe and
effective in the unintended new use. The agency might, however,
press the developer to add a warning in the product labeling to
clarify that the device has not been proved safe and effective in
the new use. Besides FDA regulatory matters, device developers
also may face liability from state tort lawsuits. Here again, it is
prudent for a device developer who learns of an inappropriate
medical use of its device to warn against this use and to take
steps, including enlisting help from the FDA, to discourage it.

V. MEDICAL INFLUENCES ON NONMEDICAL

NEUROTECHNOLOGY

We discuss how previous medical studies with neurotechnolo-
gies can promote the widespread collection of neural data and
use of neural training systems. The concerns surrounding these
issues are summarized in Table II.

A. Collection and Broad Use of Neural Data

As described previously, neuroimaging devices have great
potential for detecting neurological diseases. Early detection can
help lead to early interventions, which can mitigate the disease’s
impact. However, this potential is limited if individuals only
have access to neurotechnologies in a clinic. This can be over-
come with widespread and consistent use of consumer-operated
headsets, which can be used in an everyday setting and can be
accessible to individuals at a low-cost. These headsets can be
used like at-home kits that allow consumers to send blood or
DNA samples to the lab, which serve as a means for alerting
early signs of a serious disorder. These headsets are becoming
more available as manufacturers develop diagnostic capabilities
(with proper FDA compliance), enhance ergonomics, and reduce
costs in current neurotechnology.

Identifying biomarkers for neurological diseases has been dif-
ficult due to confounds associated with concurrent drug effects,
comorbidities with other disorders, and a poor understanding of

typical neurological development [80]. These issues are exacer-
bated by the limited sample sizes and short-term studies done in
a research setting. This shortcoming can also be addressed with
broader collection of neural data through consumer-operated
neuroimaging headsets. A wide-scale database of the broad
population’s neural data could yield powerful findings related to
neurological diseases. There is already a strong push within the
scientific community for sharing data recorded in research set-
tings. The public sharing of data opens the door for researchers to
probe previously uninvestigated scientific questions and attempt
to reinforce the findings of existing studies. These endeavors can
lead to advancements in diagnostic technologies and a greater
scientific understanding. The FDA has taken similar approaches
in the past with the Sentinel system, through the 2007 Food and
Drug Administration Amendments Act, which characterized the
efficacy and risks of FDA-approved drugs [109]. The FDA also
proposed in their upcoming “Pre-Cert” program, that certified
software companies would be encouraged to collect “real-world
data” throughout a software’s life cycle, which could potentially
include raw neural data and medical information [102].

While shared neural data can yield benefits in managing
diseases, there are concerns that they could also be used to
draw unintended inferences about individuals. This concern
exists with corporate actors in the employment sector. Recruiters
might try to use a candidate’s raw neural data to draw infer-
ences about their personality or cognitive aptitudes, based on
poorly validated hypotheses that such data offer a more authentic
reading of the candidates’ true qualities that can be hidden or
difficult to assess in interviews. Employers might then select
for sought-after personality qualities, or worse, select against
hidden qualities such as the presumed presence of a neurological
disorder. Similar issues could occur in other areas that evaluate
individuals including health insurance, housing, and monetary
loans. The potential for neural data to be used against individuals
has been raised before, spurring calls for stronger data protec-
tions [3]. These could include obtaining informed consent from
individuals to use or share their data, anonymizing datasets,
and having companies disclose how neural data are managed
[3]. These concerns mirror those raised by genetic data, where
legislation such as the Genetic Information Nondiscrimination
Act (GINA) has been enacted to limit discrimination based on
genetic data [110].

B. Unresolved Risks and Self-Enhancement

Finally, we comment on potential risks associated with con-
sumer devices that are related to neural training applications.
It is thought that these devices are generally harmless, with
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most studies reporting mild side effects: stimulation devices are
usually associated with minor skin burns [111] while neurofeed-
back techniques at worst have been reported to induce headache
or fatigue [112]. While these side effects are reported on a short
time scale, their intended mechanism of action through neural
plasticity is generally understood to work on a much longer time
scale. Plasticity is often thought to work to the user’s benefit
(usually in the context of stroke rehabilitation), but it might
also induce neurological diseases as well. Conditions related
to chronic pain [113] or depression [114] have been linked
with what is known as maladaptive plasticity [115]. The risk
of inducing maladaptive plasticity with neurotechnologies is
small in clinical scenarios where a medical professional is likely
to monitor the patient’s progress and change the intervention
at the first signs of any side effects. For consumer devices,
however, end users might not be aware of this potential risk and
unknowingly cause harm to themselves. While this risk is likely
to be small for well-defined applications (such as improving
meditation), this risk could be exacerbated with open-ended
do-it-yourself kits. Consumers can freely change the parameters
of a device (such as stimulation strength) or use the device well
beyond what was intended or studied. For these reasons, some
researchers have proposed that consumer-grade neural training
devices should be regulated like medical devices [116].

Even if the risk of maladaptive plasticity with these consumer
devices is confirmed, many consumers may feel strongly about
keeping unrestricted access to them as they provide a means of
self-enhancement. These concerns are similar to those related to
at-home gene editing kits, which potentially allow individuals
to enhance themselves genetically but carry unquantified risks
of genetic damage [117]. Specific regulatory details may be
different—for example, gene editing kits are likely to fall under
biologics and drug regulations while neural devices fall under
device regulations. However, the pros and cons of imposing
paternalistic restrictions for the consumer’s safety are similar, as
are questions about whether existing regulators have adequate
legal authority to effectively regulate all forms of consumer-
driven self-experimentation and the repurposing of products by
consumers for use on themselves [118].

VI. CONCLUSION

The blurred boundary between medical and consumer neu-
rotechnology can lead to potential uses outside of the original
intended use of the technology. Furthermore, advances in con-
sumer devices may lead to widespread adoption of neurotech-
nologies in medical, consumer, and commercial spaces. While
the scope of ethical, legal, and regulatory issues cannot be fully
foreseen at this time, this article provides a starting point to help
developers and regulators frame further discussion around these
emerging technologies.
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