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p-ADIC FAMILIES OF AUTOMORPHIC FORMS
IN THE ;-ORDINARY SETTING

By E. EISCHEN and E. MANTOVAN

Abstract. We develop a theory of p-adic automorphic forms on unitary groups that allows p-adic
interpolation in families and holds for all primes p that do not ramify in the reflex field £ of the
associated unitary Shimura variety. If the ordinary locus is nonempty (a condition only met if p splits
completely in E), we recover Hida’s theory of p-adic automorphic forms, which is defined over the
ordinary locus. More generally, we work over the p-ordinary locus, which is open and dense.

By eliminating the splitting condition on p, our framework should allow many results employing
Hida’s theory to extend to infinitely many more primes. We also provide a construction of p-adic
families of automorphic forms that uses differential operators constructed in the paper. Our approach
is to adapt the methods of Hida and Katz to the more general p-ordinary setting, while also building
on papers of each author. Along the way, we encounter some unexpected challenges and subtleties
that do not arise in the ordinary setting.

1. Introduction. The p-adic theory of modular forms plays a powerful role
in number theory. Its reach includes the proof of Fermat’s Last Theorem, proofs
of instances of the main conjecture of Iwasawa theory, a realization of the Wit-
ten genus in homotopy theory, and constructions of p-adic L-functions. Geometric
developments continue to expand the impact of the p-adic theory, for example in
settings employing automorphic forms on unitary groups.

Shortly after J.-P. Serre defined p-adic modular forms as p-adic limits of
Fourier expansions of classical modular forms, N. Katz gave a geometric refor-
mulation [Ser73, Kat73a]. H. Hida later extended Katz’s geometric framework
to p-adically interpolate automorphic forms on many reductive groups, including
unitary groups [Hid0O4, Hid0S5]. This geometric approach realizes p-adic automor-
phic forms inside a vector bundle over (a cover of) the ordinary locus of a Shimura
variety.

The present paper is the first in a projected multi-paper project to extend Hida’s
theory to the p-ordinary locus of each unitary Shimura variety S, for all rational
primes p that do not ramify in the reflex field £ of S. When p does not split com-
pletely in F, the ordinary locus is empty, in which case Hida’s theory concerns
functions on the empty set. On the other hand, for p that does not ramify in £, the
p-ordinary locus is an open, dense stratum, which is the same as the ordinary locus
when p splits completely, as shown by T. Wedhorn in [Wed99]. Our approach holds
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over the p-ordinary locus for p unramified and specializes to Hida’s theory when
the ordinary locus is nonempty.

As Hida’s theory has played a substantial role in various applications, it is
natural to try to extend its impact still further by using the p-ordinary locus to
remove the splitting condition on the prime p. In turn, this should facilitate a
link with Hida’s P-ordinary automorphic forms, with P a certain parabolic, in-
troduced in [Hid98]. It should also be possible to adapt existing constructions of
p-adic L-functions (e.g., [SU14, Hsill, EW16, EFMV18, Hsil4, EHLS19]) to the
p-ordinary setting.

Proofs employing p-adic automorphic forms typically require not only a defi-
nition facilitating interpolation in families but also connections with the theory of
C-valued automorphic forms. For example, most applications of Hida’s, Katz’s,
and Serre’s theories employ Hecke operators or p-adic analogues of the Maass-
Shimura differential operators. Thus, beyond defining p-adic automorphic forms
over (a cover of) the u-ordinary locus (an adaptation of [HidO4, Chapter 8] made
possible by geometric developments of Wedhorn, B. Moonen, W. Goldring, M.-H.
Nicole, and the second named author in [Wed99, Moo04, GN17, Man05]), impor-
tant goals include achieving p-ordinary analogues of the following results already
established for Hida’s setting:

(1) Realize classical automorphic forms in the space of p-adic automorphic
forms.

(2) Construct p-adic differential operators analogous to the C® Maass-
Shimura operators, and explicitly describe their action on local expansions of
p-adic automorphic forms at certain points (e.g., Serre-Tate expansions, analogues
of g-expansions).

(3) Study the action of Hecke operators on p-adic automorphic forms and
cut out a space of (u-)ordinary automorphic forms via (a p-ordinary analogue of)
Hida’s ordinary projector, in order to develop a theory of (u-)ordinary forms and
families; and relate these families to systems of Hecke eigenvalues, as well as to
certain holomorphic automorphic forms.

(4) Develop a notion of overconvergence in the p-ordinary setting, and con-
struct eigenvarieties parametrizing overconvergent families.

(5) Determine relationships between the classical forms in Item (1) and over-
convergence from Item (4), by studying the action of the Hecke operators from
Item (3) and the action of the differential operators from Item (2).

Some constructions turn out to be more delicate and involved than one might expect
from the ordinary case alone. Consequently, this has become an active research
area.

In the present paper, after defining p-adic automorphic forms over the pu-
ordinary locus (in analogue with Hida’s construction over the ordinary locus), we
accomplish Item (1) under certain conditions on the weights of the classical forms,
thus extending [Hid04, Chapter 8] from the ordinary setting. These conditions are
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forced by the underlying representation theory in the p-ordinary case, as seen in
Section 4.3. We can obtain stronger results about embeddings locally than globally,
which suffice for many applications.

The present paper also constructs the differential operators from Item (2), thus
extending the constructions from [Eis09, Eis12, Kat78, EFMV 18] to the p-ordinary
setting. We also describe the action of the differential operators on Serre-Tate ex-
pansions of p-adic automorphic forms, but only when the weights meet certain
conditions (a condition we suspect can be considerably lessened with additional
nontrivial, technical work concerning Lubin-Tate group laws). Our explicit de-
scription enables us to establish congruences between p-adic automorphic forms
over the p-ordinary locus and, as a consequence, construct p-adic families of au-
tomorphic forms (currently only under conditions on the weights), like in, e.g.,
[Kat78, Hid85, Pan05, CP04, Eis15, Eis14, Eis16, EFMV18]. E. de Shalit and E.
Goren have studied similar differential operators for unitary groups of signature
(2,1) for quadratic imaginary fields [dSG16].

In the sequel, we plan to build on the framework developed in the present
paper to study aspects of (3) and (5) in the case of families, including non-classical
weights and the relationship with systems of Hecke eigenvalues. One anticipated
application will be a construction of new p-adic L-functions for unitary Shimura
varieties with empty ordinary locus. This work will also build on Hida’s work on
P-ordinary automorphic forms [Hid98].

Some of (4) and (5) has been achieved by S. Bijakowski, V. Pilloni, and B.
Stroh in [BPS16, Bij16] for classical weights (and not for families), via a different
approach from the one in the present paper (and not involving Igusa towers, a
necessary ingredient for interpolation in families in our project). After proving the
existence of canonical subgroups on a neighborhood of the p-ordinary locus of the
associated Shimura variety and then adapting the analytic continuation methods
of K. Buzzard and P. Kassaei [Buz03, Kas06, Kas09], Bijakowski, Pilloni, and
Stroh develop a notion of overconvergence naturally extending the one from the
ordinary setting. Then they prove overconvergent forms of small slope are classical,
extending Coleman’s and Hida’s classicality results [Hid86, Col96, Col97] that
followed F. Gouvéa and B. Mazur’s conjectures [GM92].

In the few weeks after the first version of this paper appeared on the arXiv,
three additional papers addressing some of the above goals have been completed.
In [Her17], V. Hernandez constructs eigenvarieties when the signature is (2,1),
which he plans to extend to other signatures. In [BR19], R. Brasca and G. Rosso ex-
tend Hida theory to A-adic cuspidal p-ordinary forms (which appear to be closely
related to Hida’s P-ordinary forms), for A a twisted Iwasawa algebra. Extending
[dSG16], de Shalit and Goren recently completed a paper constructing differential
operators over a p-ordinary Igusa tower for unitary groups of arbitrary signature for
quadratic imaginary extensions of @Q [dSG19]. While their approach differs from
ours (and, unlike ours, does not employ a replacement for the unit root submodule
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that appears to play a key role in the constructions in [Kat78, EFMV18, Eis12]),
they expect their differential operators to coincide with ours (at least for quadratic
imaginary extension of QQ, the setting in which they work, whereas we also consider
arbitrary CM fields). They also discuss analytic continuation beyond the p-ordinary
strata, as well as the action on certain Fourier-Jacobi expansions.

1.1. Main results and organization of the paper. Section 2 summarizes
key information about unitary Shimura varieties, the p-ordinary locus, automorphic
forms, and representation theory. The seemingly bland observations in Section 2.4
about the possibility that representations occurring in the restrictions of irreducible
representations might have multiplicity greater than 1 play a major role in Section
4. The root of the issue is that the trivialization of the sheaf of differentials of each
ordinary abelian variety that plays a key role in the ordinary setting is replaced
in the p-ordinary setting by a trivialization of the associated graded module of the
sheaf of differentials of each p-ordinary abelian variety (with the associated graded
module coming from the slope filtration at each p-ordinary point), or equivalently,
the action of a general linear group on the ordinary Igusa tower gets replaced by
the action of its parabolic subgroup preserving the slope filtration. For notational
convenience, we exclude some instances of slope 1/2 in this paper. We expect no
mathematical problems handling that slope, but it would involve still more notation,
since it involves working with unitary groups that are not isomorphic to copies of
general linear groups.

In Section 3, we construct the u-ordinary Igusa tower as a profinite étale cover
of the formal p-ordinary locus. While Hida’s ordinary Igusa tower employs the
structure of the p-torsion of the universal abelian variety, our analogue in the -
ordinary case uses the structure of the associated graded module coming from the
slope filtration on the p-torsion. Section 3 concludes with a study of local expan-
sions at points of the p-ordinary Igusa tower, which is necessary for proving the
congruences in Proposition 1.1.1 below.

Section 4 introduces p-adic automorphic forms over the p-ordinary locus and
Igusa tower. When the ordinary locus is nonempty, Hida’s definitions and ours co-
incide. The introduction of filtrations in the p-ordinary case complicates some as-
pects of the theory. One of the key features of Hida’s theory, which makes many ap-
plications possible, is the embedding of the spaces of classical automorphic forms
into the line bundle of p-adic automorphic forms over the ordinary Igusa tower.
Instead, there is a realization of appropriate subspaces—but, if the ordinary locus
is empty, not the whole space—of automorphic forms over the p-ordinary locus
in the space V of p-adic automorphic forms over the Igusa tower, as explained in
Section 4.3. Section 4 concludes with results about congruences:

PROPOSITION 1.1.1. (Rough form of Proposition 4.4.3 and Corollary 4.4.5)
In analogue with the ordinary q-expansion principle, p-adic automorphic forms in
the p-ordinary setting are determined by their Serre-Tate expansions. For forms
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11, [ of weights meeting appropriate conditions, fi = f» mod p" if and only if
(sufficiently many of) the Serre-Tate expansions of their images in V' are congruent
mod p".

In Sections 5 and 6, we construct the aforementioned differential operators.
Our construction, which employs the Gauss-Manin connection, requires an appro-
priate replacement for the unit root splitting from [Kat73b] that Katz employs in
his construction of differential operators in [Kat78] (as the more general p-ordinary
setting forces us to work with a module that is larger than just the unit root piece).
In the ordinary setting (e.g., [Kat78, Pan05, Eis15, EFMV18]), explicit description
of the action of differential operators on g-expansions or Serre-Tate expansions
allows one to construct p-adic families of automorphic forms. In the p-ordinary
setting, we expect the same should be true for Serre-Tate expansions. We achieve
a partial description of the action, and consequently families in Section 7, under
certain conditions on the weights.

THEOREM 1.1.2. (Rough form of Theorem 6.3.10) For each positive dominant
weight \, there is a p-adic differential operator ©* on V. At least under certain
conditions on dominant weights \ and \' (see Definition 6.3.5), if f is an automor-
phic form, then O f) = 0 (f) mod p™ whenever A = X mod p™~!(p—1).

The computation of the action is substantially more challenging in the u-
ordinary (with empty ordinary locus) setting, due to challenges coming from
Lubin-Tate formal group laws, as seen in Section 5.4.1.

1.2. Challenges arising in the p-ordinary (but not ordinary) setting.
While some aspects of Hida’s theory carry over directly to the p-ordinary setting,
obstacles arise for other aspects. First, the replacement of the action of a general
linear group on the ordinary Igusa tower by the action of its parabolic subgroup
preserving the slope filtration leads to issues with multiplicities of representations,
in turn forcing conditions on the weights of the automorphic forms embedding
into V. As seen in Section 4.3, restricting to multiplicity-free weights does not
by itself yield an embedding. In fact, the sheaf of classical automorphic forms is
not in general necessarily canonically isomorphic to the associate graded sheaf
with which we must work over the p-ordinary Igusa tower. By working locally,
though, we are able to obtain results sufficiently strong for our applications.
Second, the construction of the differential operators in Sections 5 and 6 requires
intricate work (primarily by carefully extending [Kat79, Moo04]), especially for
the Kodaira-Spencer morphism and an appropriate replacement for the unit root
splitting, to accommodate the structure from the slope filtrations. Furthermore,
as noted above, the crucial description of the action of those operators requires
involved formal group computations. Finally, the argument used in [EFMV18,
Section 7] for constructing explicit families of automorphic forms on a product of
unitary groups G’ embedded in a larger unitary group whose associated Shimura
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variety has nonempty ordinary locus falls apart whenever the ordinary locus of the
Shimura variety associated to G’ is empty.
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2. Preliminaries and key background information.

2.1. Notation and conventions. Let p be an odd prime. Denote by K the
maximal unramified extension of ), in an algebraic closure @p of Qp, W the
completion of the ring of integers of K, F the residue field of W, and W (IF') the Witt
vectors of F. We identify W with W (). For any integer m > 1, we write W, =
W/p™W, and for S a W-scheme, we write S, for the W,,-scheme S Xgpecw
SpecW,,,.

Let F' be a quadratic imaginary extension of a totally real field £ of degree d
over Q. We write T for the set of complex embeddings of F'. We write 7 for the set
of real embeddings of Fp, as well as for a set containing a choice of an embedding
in 7 above 7 for each T € 7 (i.e., for the set denoted X in [EFMV18]). We fix an
isomorphism ¢ : C — Q,,. Via ¢, we view 2 :=QnN Og, C Q as a subring of C and
a subring of . Via ¢, we also define a bijection 7 — 1 o7 between the complex
embeddings 7 : ' — C and the p-adic embeddings of F into Q.

Assume p is unramified in F'. Then all p-adic embeddings of F' into @p have
image in K, and thus we can identify the set 7 with the set of embeddings of O
into W, i.e., with the set Hom(Op,F). Let o denote the Frobenius automorphism
on F. (Abusing notation, o will also denote Frobenius on W and K.) By compo-
sition, the identification 7 = Hom(Op,F) defines an action of o on 7. For each
T € T we write o, for the orbit of 7 under o. We write £ for the set of o-orbits o
in 7. Given a g-orbit o, we let e, denote the cardinality of o.

Note that there is a natural bijection between © and the set of primes of F
above p. For each prime u|p, we write o,, for the orbit associated with u, and w,
for the prime associated with an orbit 0 € . For any 0 € O, we write 0™ := 0, if
0 = 0,, Where * denotes the image under complex conjugation. Finally, we define
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9 to be the subset of O corresponding to a choice of a prime u|v for each v|p in
Fp. Thus, for Of := {0*|o € Oy}, we have O = Oy U O (possibly not disjoint).
Note that O := {o,|7 € To}.

2.2. Shimura varieties. Following [Kot92, Section 5], we introduce the
Shimura data and varieties with which we work. Let B be a simple Q-algebra with
center F'. Recall from Section 2.1 that p is unramified in F'. We furthermore require
that B splits at each prime of F' above p. Let r be the rank of B over F', and let Op
be a Z,)-order in B whose p-adic completion Op ;, is a maximal order in Bg, and
such that Op y, is identified with M,.(OF,),). Let * be a positive involution on 13 over
Q preserving Op. Let (V, (,)) consist of a finitely generated left B-module V" and a
Q-valued hermitian form (,) on V, and let G be the automorphism group of (V/ (,))
(i.e., a general unitary group). We also denote by * the involution on Endg (V)
coming from (,). Let h: C — Endg(V& ) be an R-algebra homomorphism such that
h(Z) = h(z)* for all z € C and such that (v, w) — (v, h(i)w) is positive definite on
Wr-

As in [Kot92], let Sh(G,X) denote the unitary Shimura variety associated
to the data D = (B,V,x,(,),h), and let E = E(G,X) denote the reflex field of
Sh(G, X). We also assume that p is a prime of good reduction for Sh(G, X), i.e.,
that the level K of Sh(G, X) is of the form K = KP)KC,, where K?) C G(A?) isa
neat, open compact subgroup, and K, is hyperspecial maximal compact. We write
Sh for the integral model of Sh(G, X ) over Z, @ OF.

Letig: E — @p denote the restriction of ¢ to £ C C. Our assumptions imply
that ¢ i factors through K, mapping Og to W. We write p for the associated prime
above p of E, O, for the localization of O at p, Op, for the completion of O
at p, and x(p) for its residue field. Via ¢, we regard O, C W and x(p) C IF, and
identify Op, = W (x(p)). Abusing notation, we still denote by Sh the base change
of Sh to W, and write sk for its special fiber.

2.3. Automorphic weights. Following [Kot92, Section 4], we write V¢ =
Vi@ Vi, where Vi = {v € V¢ | h(z)v = zvforall z € C} and Vo = {v € V¢ |
h(z)v = Zv for all z € C}. Note that for i = 1,2, V; decomposes as
() Vz = @TET‘/:L'7T7
and V¢ decomposes as
() Ve = @TGTVT7
with

(3) VT = ‘/1,7—@‘/2,7'-
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Let J be the Levi subgroup of G% that preserves this decomposition of V¢,
i.e., the Levi subgroup determined by the signature (a;,a;) of G at each 7|, for
each 7 € T. Let B be a Borel subgroup of .J, let 7" be a maximal torus contained
in B, and write N for the unipotent radical of B. (Since B is widely used in the
literature to denote a Borel subgroup, as well as to denote a division algebra in
the Shimura data, we will use B for both of these. Going forward, however, it
will be clear from context which of these B denotes, and indeed, it will soon be
the case that we will only need to refer to the Borel and not the division algebra.)
Denote by B the opposite Borel with respect to (B,7). We write T' = [[_.T7,
B =]l,c7 Br,and B® =[] .+ B. A choice of basis for V¢ that is compatible
with the decompositions (1)—(3) identifies .J with HreT GLai- Such a basis can be
chosen so that B is identified with the subgroup of upper triangular matrices in
GLai’ BY with the subgroup of lower triangular matrices in GLai’ and 7. with

T = GZ%, which is in turn identified with the subgroup of diagonal matrices in
ILer GL,+. Via ¢, we can define J p-adically over Op,. Note that all our groups
are split over O B,-

Let X*(T') denote the group of characters on 7'. For any module M on which
T acts, we denote by M [k] the k-eigenspace for the action of 7" on the module M.

For the remainder of this subsection, we briefly recall key facts about algebraic
representations of general linear groups and their relationships with certain charac-
ters on tori, following [EFMV 18, Section 2.4], [Hid04, Sections 5.1.3 and 8.1.2],
[Jan03, Part II, Chapter 2], and [FH91, Sections 4.1 and 15.3]. Let

X(T)y = {(ﬁlﬂ"”"ﬂaiﬂ')TeT € H 70T | Kir > Kiy1,7 forall z} .
TeT

We identify X (7") with the set of dominant weights in the group X*(T") of char-
acters of 7' C B, given by

Hdlag SRR o T »—>H H F””.

TeT TeT 1<i<at

(N.B. Such characters are also characters on B D T', via B/N = T.) We write
r both for an element of X (7). and for the associated character in X*(7"). For
each integer k, we write k for x such that x; = k for all 7 and all 7. We say

that « is positive if k; - > 0 for all <. For positive x, we define d,,  := Z;ﬁl Kir
and || :=d, = ZTern . (Note that in [EFMV 18], we denote d,; - by d;T or,
equlvalently, ) Similarly to [EFMV 18, Definitions 2.4.3 and 2.4.4], we call
a weight xk = (ﬁlﬂ"”"ﬂaiﬂ')TeT € X(T)+ sum-symmetric if k is positive and
dy.r = dy 7+ for all 7 € T. In this case, we call e,, := d,;/2 the depth of k (or of
the associated representation p, introduced below). If we furthermore have that
Kir = ki for all 1 <i < min(af,al.), then we call k symmetric. Note that this

is the same as the condition on the weights occurring in [Shi0O, Theorem 12.7].
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Following the conventions of [EFMV18, Section 2.4.2], let I? be a Z,-algebra
or a field of characteristic 0, and for any dominant weight x, let S denote the
k-Schur functor on the category of R-modules. (A helpful reference on Schur
functors is [FH9I1, Section 15.3].) We denote by p. = p, r the representation
Sk(®reT(R™)) of [I,c7 GL,:. If the ring R is, furthermore, a field of character-
istic O (or of sufficiently large characteristic p), the algebraic representations p,, =
pr,F of [ ot GL,+ are irreducible and in bijection with the dominant weights x
(see, e.g., [Jan03, Chapter I1.2]); and in the following, we refer to p,; as the irre-
ducible representation of highest weight x. When R is such a field, the module
pr,0 denotes our choice of an O-lattice inside the irreducible representation pj; g,
where O denotes the ring of integers in R.

Given a locally free sheaf of modules 7 and « a dominant weight, we define

Fi=Sk(F).

Following the conventions of [EFMV 18, Eis12, CEF*16], we also sometimes write
()= for Sk(-), and |F| for the highest exterior power of F.

Note that, more generally, we can replace 7' with any torus in a product of fi-
nite rank general linear groups and replace X (7). with ordered tuples on this torus
and use Schur functors to construct representations in this context. See [EFMV 18,
Section 2.4.2] for a summary of the construction. For example, we can consider
T+ (respectively, T -) in GL+ (respectively, GL,-). If s, is a positive domi-
nant weight (ordered tuple, in this case) and R is as above, of sufficiently large
characteristic or of characteristic 0, then the x.-Schur functor on the category of
R-modules is S;,_(V) := V@7 - Cx,7» Where ¢, ; is the Young symmetrizer as-
sociated to x,. Similarly to [EFMV18, Section 2.4.3], for each positive dominant
weight x in X (7)., by applying the generalized Young symmetrizer, we obtain
a projection 7, : V&% — p,. for V the standard representation @ c7(R%) of
IL, GL+. If &k is sum-symmetric of depth e, then the representation p; is a quo-
tient of (@,e7 R )¥ex.

Following [EFMV18, Definition 2.4.3], which is inspired by [Hid04,

Section 8.1.2], we write Uf{blvw'”’b;/i,r} for the dual basis to the stan-

dard basis UT{bLT,...,baiJ of the standard representation EBTGT(R@) of
HTeTGLai’ and define /" to be the basis of Hompe (py, ) such that £ o, =
Loy TI (ki)™ - @rer ©57, (B,)7 - e We define Iy, = €% 0 .
By [EFMV18, Lemma 2.4.6], if x is a positive dominant weight and x’ is
a sum-symmetric weight, then 7. factors through the map 7, ® 7, and

K o _ kK
gcan ® Ecan - Ecan .

2.4. Weights and representations. Let P denote a parabolic subgroup of
J containing B. We denote by U the unipotent radical of P, and we write J' = P/U
for the Levi subgroup of P.
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For any irreducible algebraic representation p of J over a field of characteristic
0 (or of sufficiently large characteristic), the restriction of p to P admits a U-stable
filtration with irreducible U-invariant subquotients. Furthermore, after choosing a
splitting J' C P, the associated graded representation gr(p|p) of J' and p|; are
canonically identified. We fix a splitting J' C P, and write B = BN.J', N' =
NNJ',and T"=TnNJ'. Then B’ is a Borel subgroup of J' with N its unipotent
radical and 7" = T' a maximal torus of .J'.

Definition 2.4.1. Given dominant weights x of J and «’ of J', we say that
' divides r (and write £'|r) if the irreducible representation g, of .J, of highest
weight /', arises as one of the irreducible constituents of py| ;.

For each dominant weight s of J, we define 9, := {x’ | ¥’ divides s}, re-
garded as a multi-set (so that we keep track of multiplicities). Then

) el = EP ow-

KeM,

Note that k7 | k, for any permutation o in the Weyl group of .J such that k7 is
dominant for J’. In particular, for any dominant weight  of J, « is also a dominant
weight of J’ and « | k. Note that if « is a scalar weight of .J, then the only dominant
weight of .J' dividing & is & itself, i.e., M, = {x} and p, |y = 0.

2.4.1. Littlewood-Richardson rule. In general, the multiplicity ¢ ./ of
the irreducible constituent g, in p,|; can be explicitly computed using the
Littlewood-Richardson rule ([Mac15, Rule (9.2) in Section 9] or [FH91, Equation
(A.8)D.

Definition 2.4.2. We say that a dominant weight x of J is multiplicity-free
(with respect to the Levi subgroup J') if ¢, ,» = 1 for all £’|x.

We observe that as x varies among the dominant weights of J, the sets 91, are
not necessarily disjoint.

If |k1| # | k2|, then by considering the central action of the scalars, we see that
1 and Ky are coprime, i.e., M., "M, = @. More generally, given any two dom-
inant weights 1,k of J, the Littlewood-Richardson rule allows one to compute
the intersection 91, NIMN,.,.

Remark 2.4.3. Assume J' C J is a split Levi subgroup, defined over O B,- Then
the Schur projectors and Young symmetrizers from Section 2.3 are compatible with
the decomposition in (4), in the sense that S, (V)| = ®wem,Sxw(V), for V the
standard representation, and R = Ej,.

Furthermore, our choices of Op, -lattices of the irreducible algebraic represen-
tations py, and o/, for x,x’ dominant weights of .J,.J/, are also compatible with
the decomposition in (4), in the sense that the Schur projectors induce a morphism
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PO, |y = @rem, 0n.0 By which is an isomorphism if p is sufficiently large (or
after inverting p).

2.5. Automorphic sheaves. Let A denote a D-enriched abelian scheme
(i.e., an abelian scheme with additional structures defined by the Shimura data D)
over a W-scheme S. (For example, the abelian scheme A/.S could be the universal
abelian scheme A over Sh.) Then the Dieudonné crystal of A decomposes accord-
ing to the embeddings 7 € 7 and Morita equivalence (via Op ®0,. » W =~ M, (W))
as

Hip(A) = Hyp(A/S) = @rer M.
Similarly, the Hodge filtration w(A) := Fil'(H}(A)) decomposes as
(.U(A) — @TGTW;@T.

Note that M and w, are locally free. Note also that, for each 7 € T, the rank of
M is independent of 7, while the rank of w; depends on 7. More precisely, if
(af,a;) denotes the signature of G' at 7/, then we have tk(M;) =n = af +a;
and tk(w;) = a}. Following the notation in [Moo04], we write f(7) = rk(w;).

Observe that f(7*) = al. = a;.

2.5.1. Classical automorphic forms. Similarly to [EFMV 18, Section 2.3]
and [CEF*16, Section 3.2], we now define classical automorphic forms. First, we
define a sheaf

Eajs = HIsom(wT,(’)g;)) =:Isomo,, 20, (w,0%),

where Op ;) is the localization of Op at (p) and g = rk(w). When it is clear from
context, we drop the subscript A/S and just write £. Note that there is a left action
of J on €45 coming from the action, for each 7 € T, of GL - on Isom(w-, Ofs(;)).
Following [EFMV 18, Section 2.3], for any representation (p, M, p) of J, we define

the sheaf
EPi=E,:=Ex" M,

so that for each open immersion SpecR — S, £°(R) = (£(R) x M, ®
R)/(€,m) ~ (g,p(*g~")m).

An automorphic form (defined over R) of weight p is then a global section of
&P on Shg. An automorphic form of weight p and level K is a global section of
EP on Shp with K the level of Shi. We exclude the case in which Fy = Q with
af =a; = 1. (As far as this paper’s goals are concerned, nothing is lost from
this exclusion. The interesting cases in this paper concern unitary groups of higher
rank.) Then by the Koecher principle (stated in great generality in [Lan16, Theorem
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2.5], with additional details of interest in our setting in [Lan16, Theorem 2.3 and
Section 10]), our space of automorphic forms is the same as the space we would
have obtained by instead working over a compactification of our moduli space.

It follows from the definitions that for x a dominant weight of J, and p = p,
our choice of W (k(p))-lattice of the irreducible algebraic representation of J of
highest weight «, the sheaves w” and £” are canonically identified. In the follow-
ing, we prefer the notation w"” to £”.

2.6. The p-ordinary locus. We maintain the notation of Section 2.5.

Let A denote a D-enriched abelian scheme (i.e., an abelian scheme with ad-
ditional structures defined by the data D, e.g., PEL structure) over a smooth F-
scheme S (e.g., the universal abelian scheme A over sh). We write ® for the Frobe-
nius map on the filtered Dieudonné crystal of A,

W(A) = @reTwl™ C HAp(A) = @rer M.

For each 7 € T, ® induces a map @, : M. — M .,. In particular, we deduce
that, for e, the cardinality of o, the pair (M, ®57) is a Dieudonné crystal, whose
isogeny class depends only on the orbit o of 7. In the following, we write v (or
v, for 0 = 0,) for the Newton polygon of (M., P¢).

Remark 2.6.1. The above description reduces the computation of the Newton
polygon of the Frobenius map ¢ on H Cll r(A) to that of the polygons v,, for o € O.
By abuse of notation, in the following, we refer to the slopes of v, as the slopes at
oof (H)n(A),®).

The notion of p-ordinariness is originally due to Wedhorn in [Wed99]. The
following definition is adapted to the above notation, and follows [Moo04, Section
1.2.5]. (In loc. cit. the p-ordinary Newton polygon v,(n, f) is denoted by Ord(d, f),
forn=d.)

Definition 2.6.2. For each o-orbit 0 in O, we define f =, : 0 — {1,...,n}
by f(7) := tk(w; ), for 7 € 0. (The function f is called the multiplicative type.) We
define the p-ordinary Newton polygon v,(n,f) associated with the triple (0,7, f) to
be the polygon with slopes

ag- ::#{7'60|f(7')>n—j},

forj=1,...,n.

Definition 2.6.3. A D-enriched abelian variety A over a field containing F is
called p-ordinary if for each 7 € 7 the associated Newton polygon v, agrees with
the p-ordinary polygon v,_(n,f).
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We say that a point = of sh is p-ordinary if the associated D-enriched
abelian scheme A, is p-ordinary. In the following, we denote by sh*° C sh the
p-ordinary locus of sh.

In [Wed99], Wedhorn proves that the p-ordinary locus is the largest nonempty
Newton stratum of sh.

THEOREM 2.6.4. [Wed99, (1.6.2) Density Theorem]| The Newton stratum
sh*°" is open and dense in sh. In particular, it is nonempty.

Subsequently, in [Moo04], Moonen gives an explicit construction of a
D-enriched Barsotti-Tate group X = X#°Y(D)/k(p) in terms of the triples
{(07,n,f)}reT, and he proves that the p-ordinary locus is also the largest Ekedahl-
Oort stratum of sh, and the central leaf associated with Xt°"(D)/F (recall
k(p) C IF). That is, he proves the following result.

THEOREM 2.6.5. [Moo04, Theorem 3.2.7] Let A be a D-enriched abelian
variety over an algebraically closed field containing F. Then the following are
equivalent:

e A is p-ordinary (equivalently, A[p™] is isogenous to X as D-enriched
Barsotti-Tate groups).

e Alp| is isomorphic to XF°Y(D)[p| as D-enriched truncated Barsotti-Tate
groups of level 1.

o A[p~] is isomorphic to XF°"(D) as D-enriched Barsotti-Tate groups.

2.7. The p-ordinary Hasse invariant. Building on Moonen’s work, in
[GN17] Goldring and Nicole construct a p-ordinary Hasse invariant.

Let 7 : A — Sh denote the universal abelian scheme over S, and let |w| denote
the Hodge line bundle over Sh, i.e., [w| = AP, QY /s> Where AP denotes the top
exterior power.

THEOREM 2.7.1. [GN17, Theorem 1.1] There exists an explicit positive inte-
ger mg > 1, and a section

E, € H%(sh,|w|™)

such that:
(1) The non-vanishing locus of E,, is the u-ordinary locus of sh.
(2) The construction of E,, is compatible with varying the level KW,
(3) The section L, extends to the minimal compactification of sh.
(4) A power of E,, lifts to characteristic zero.

By construction [GN17, Definition 3.5], mo = lem, <7 (p° — 1). In the follow-
ing, for convenience, we replace £, with one of its powers which lifts to charac-
teristic zero. We choose E,, € H(Sh™", |w|™), for some m > 1 a multiple of my,
where SA™" denotes the minimal compactification of Sh.
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Definition 2.7.2. We define the p-ordinary locus Sh%g,rd (respectively,
Shl/n&“ 'Ord) as the locus in Sh /W (respectively, S I/n&) where F, is invertible.

Similarly to the treatment of the ordinary case in [Hid04, Section 8.1], we
define the formal scheme Sh*-° over W as the injective limit of the schemes
Shi-od /Wy, Note that SA*° is the formal completion of SA* ™ along its spe-
cial fiber modulo p, Sh{ ord _ gpp-ord,

We observe that, by construction, the sheaf |w|™ is trivial on the [F-scheme
sh*°"We normalize E,, so that on shr-ord

E,=1 modp,

and we call E, the p-ordinary Hasse invariant. In the following, for simplicity, we
set S := Sh*°d and S := sh*-°d,

2.8. The p-ordinary Barsotti-Tate group. In this section, we briefly
recall the construction of the p-ordinary D-enriched Barsotti-Tate group
X = X+ord(D) /k(p) from Moonen [Moo04, Section 1.2.3]

Let N#°4(D) denote the Dieudonné crystal of X. The underlying W-module
N#od(D) decomposes according to the embeddings 7 € 7. Grouping together the
submodules corresponding to 7 € o, for each orbit o in O, we obtain a decomposi-
tion in subcrystals

NHOY(D) = @oeo N (0,0, )"
We write the associated decomposition of X*-°4(D) as
Xo(D) = BocoX(0,n, )"

Note that the D-enriched structure on N#-°"(D) (respectively, X*°4(D)) in-
duces a structure of Op,,,-crystals on N (o0,n,f) (respectively, of OF,,, -modules
on X(o0,n,f)).

Fix an orbit 0 € O. Following the conventions of Section 2.1, let ¢, denote the
cardinality of 0. Let 0 < af <--- < aj, < e = ¢, denote the slopes of the yi-ordinary
polygon v, (f,n) introduced in Definition 2.6.2. We write 0 < A\ < -+ < Ag, § = 5o,
for the (distinct) integers occurring as slopes a; for some j, 1 < j < n. For each
t=0,...,s, we denote by m; = m;]" the multiplicity of the slope ), i.e.,

my:=#{je{l,...,n}|a§=N\}.
Note that > 5m; = n.

Definition 2.8.1. The crystal N(o,n,f) is defined as

N(o,n,f):= N()\o)@mo@---@N(As)@ms,
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where for each ¢ =0,...,s, the crystal N ()\;) is the simple isoclinic O, -crystal
of slope \g, and height (i.e., rank) e. We write the associated decomposition of
X(0,n,f) into isoclinic components as

X(0,n.f) :=X(X) " P PX(As) ™.

We observe that, for o # 0%, the polarization of X induces an isomorphism of
OFu,-crystals between N (o,n,f) and the dual of N (0*,n,f). In particular, A is a
slope of N (o,n,f) with multiplicity m if and only if 1 — X is a slope of N (0*,n,f)
with the same multiplicity. For 0 = 0%, the polarization of X induces a polarization
on N(o,n,f),1.e., N(o,n,f) inherits the structure of a (O, , *)-crystal. In partic-
ular, \ is a slope of N (o0,n,f) with multiplicity m if and only if 1 — X is also a slope
with the same multiplicity.

In [Moo04, Definition 2.3.10], Moonen defines a canonical lifting X" =
X(D) of X over W (k(p)). Concretely, X" := @,X(0,n,f)**" where

X(0,m,f)"" := (Xm()\o)@m" @...@xm(@As)mS)

and, for each ¢t =0,...,s, X“"()\;) is the unique lifting of the O ,,-module X(\;)
[Moo04, Corollary 2.1.5]. The D-enriched Barsotti-Tate group X" is character-
ized by the following property.

or

PROPOSITION 2.8.2. [Mo004, Proposition 2.3.12] The canonical lifting X"
is the unique lifting of X with the property that (geometrically) all endomorphisms

lift.

2.9. The p-ordinary Levi subgroup. In this section, we introduce a Levi
subgroup .J,, of G°/Q,, associated with the y-ordinary polygon which plays a cru-
cial role in our results. As highlighted in Remark 2.9.3 below, the group J,, arises
as a subgroup of the Levi subgroup J introduced in Section 2.3.

Definition 2.9.1. We define J,, to be the algebraic group over QQ,, of automor-
phisms of the D-enriched isocrystal N “'Ord(D)[%].
In particular,

Tu(Qp) = Auty (X/F),

the group of non-zero quasi-self-isogenies of the D-enriched Barsotti-Tate group
X/F.

Remark 2.9.2. The algebraic group J,, arises as a Levi subgroup of G°/Q,.
More precisely, it is the Levi subgroup associated with the partitions of n defined by
the multiplicities {m7,...,m{}-e7 of the slopes of N#°"(D) (here, m] :=m;",
§:1=Sp,).
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More explicitly, the decomposition of N#°(D) as a sum of the subcrystals
N(o,n,f), 0 € O, induces the decomposition

J# = H JH(O)>

OGDO

where, for each o € Oy, J,,(0) is the algebraic group of automorphisms of the
OFy,-isocrystal N (o,n,f)[%], for 0 # 0*, and of the polarized O, -isocrystal
N(o,n,f)[%], for o = o*.

Following [Moo04, Lemma 1.3.11], if we write x(0) = x(u,) for the residue
field of F,,, then for o # 0", we have

J1(0)(Qp) = GLing (W (5(0))) X -+ X GLyg (W ((0))),

and for 0 = 0%, assuming e/2 is not a slope, we have that the number of slopes s+ 1
is even and

Ju(0)(Qp) = GLyg (W (5(0))) X --- X GLype | (W ((0))).

2

As alluded to in the first paragraph of Section 1.1, for notational convenience, we
exclude the slope e/2, but we expect no mathematical issues extending to this case.

Remark 2.9.3. Note that J,, is defined over Z,, while J is defined over O,
(as in Section 2.3). It follows from the definitions of these groups that after base
change, the group J, is contained in J, with equality exclusively when the -
ordinary polygon is ordinary (i.e., when O , = Z,).

More explicitly, let £} > --- > Fy denote the distinct values of f(7), for 7 € o,
in the interval [1,n — 1] (s = s, > 0). For convenience, we also write F :=n and
Fsi1:=0.Foreachi=0,...,s+ 1, we define

di={r€o|f(r)=F;}.

Note that d; >0 forallz=1,...,s, and dy,ds1 > 0. Note that e = ¢, = Zfi& d;.
With this notation, the distinct slopes of the p-ordinary polygon v, (n,f), asso-
ciated with the orbit o, are

where each \; occurs in v, with multiplicity m; = F; — F; 1,7 =0,...,s.
Note that, for each 7 € o, f(7) = Zi m;, where the integer i-, 0 <i, < s, is
defined by the condition f(7) = F;_.
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Definition 2.9.4. We define P, to be the parabolic subgroup of .J that contains
the chosen Borel subgroup B and has Levi subgroup .J,, associated with the or-
dering on the partitions of n defined by the decreasing ordering of the slopes of
N#-°1(D). We write U, for the unipotent radical of P,,.

Remark 2.9.5. One can choose a basis as in Section 2.3 that (in addition to the
identifications in Section 2.3) identifies P, with a subgroup of block upper trian-
gular matrices of [[,.+GL,+ and J,, with a subgroup of block-diagonal matrices.

We define B, := BN J, and N, := N NJ,. Under our assumptions, B, is a
Borel subgroup of .J,,, N, its unipotent radical, and the maximal torus 7}, of .J,, in
B, is also the maximal torus T’ of J contained in B.

Remark 2.9.6. If a weight x of T =T, is dominant in X*(7"), then it is also
dominant in X*(7},), but the converse does not hold in general.

3. The p-ordinary Igusa Tower. In this section, we introduce basic de-
tails of the p-ordinary Igusa tower over the p-ordinary locus, building on [Moo04,
Man05]. By [Wed99], assuming p is unramified in the reflex field F, the p-ordinary
locus is always nonempty. In the case where the ordinary locus is nonempty (i.e.,
when p splits completely in E), the p-ordinary Igusa tower coincides with Hida’s
ordinary Igusa tower.

3.1. The p-ordinary slope filtration. Let H be a D-enriched Barsotti-Tate
group over a smooth F-scheme S (e.g., H = A[p~]| for A the universal D-enriched
abelian scheme over sh). The D-structure on H induces a decomposition of H
according to the primes u of F' above p and Morita equivalence (via Op ®o,,
Opy >~ M, (OF,,)). That is, we have

H=H][u~],

ulp

and for each u|p, we have

where G(u) is a Barsotti-Tate O ,-module [Moo04, Sections 3.1.2 and 4.1.3].
More precisely, for each u|p, the D-structure of H induces a structure of Op -
modules on G(u), together with an isomorphism between G(u) and the Cartier
dual of G(u*), for u # u*, and a structure of Barsotti-Tate (OF,,,*)-modules on
G(u), for u = u*. If we write the Dieudonné crystal of H as D(H) = @, M7,
then for each prime u|p, the Dieudonné crystal of G(u) is the subcrystal M, =
PDreoM, of D(H), for 0 = 0,.

In [Zin01, Theorem 7], Zink proves that any Barsotti-Tate group over a regular
scheme with constant Newton polygon is isogenous to a completely slope divisible
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Barsotti-Tate group, i.e., to a Barsotti-Tate group that has a slope filtration with
slope divisible quotients (see [Zin01, Definition 10]). In the case of the universal
Barsotti-Tate group over central leaves C' in Oort’s foliation, Zink’s result can be
strengthened to prove that the restriction of the universal Barsotti-Tate group .A[p*]
to C'is completely slope divisible.

PROPOSITION 3.1.1. [Man05, Section 3] (see also [Man04, Section 3.2.3])
Let C C sh be a central Oort’s leaf, i.e., an QOort’s leaf associated with a com-
pletely slope divisible Barsotti-Tate group. Then the restriction to C' of the univer-
sal Barsotti-Tate group A[p™] is completely slope divisible.

Remark 3.1.2. Since the above decomposition of H is canonical, we deduce
that H is isomorphic to X*°"(D) as D-enriched Barsotti-Tate groups if and only
if for each prime u|p the Barsotti-Tate groups G/(u) and X(o0,,n,f) are isomorphic
as Op,-modules for u # v* and as (Of,,, *)-modules for u = u* [Man05, Proposi-
tion 2]. In particular, for H = A[p*], we deduce that for each u|p A[u”] = G(u)®"
where G(u) is an OF,,-module whose restriction to any central Oort’s leaf is com-
pletely slope divisible.

Let S := Sh*°" denote the formal p-ordinary locus over W, and S := sh#
the p-ordinary locus of sh over I (see section 2.7 for definitions). We apply the
above result to the case of C' = S. For each u|p, we write G(u), for the slope
filtration of G(u) over S, and gr(G(u)) for the Barsotti-Tate O, -module defined
as the direct sum of the associated subquotients. Similarly, we write A[p™], for
the slope filtration of A[p™] over S and gr(A[p™]) for the direct sum of its sub-
quotients. Thus, gr(A[p™]) = @y per(G(u))®". Note that if u # u*, then the polar-
ization induces an isomorphism of O, -modules between gr(G(u)) and gr(G(u*)).
For u = u*, the Barsotti-Tate group gr(G(u)) is a polarized (OF, , *)-module, which
arises as the direct sum of pairs of dual isoclinic O, -modules (namely, the two
subquotients of G(u) of slope A\,1 — A, for X\ # 1/2) and (possibly) of a polarized
isoclinic (OF, ,*)-module of slope 1/2. Then gr(A[p™]) is a naturally D-enriched
Barsotti-Tate group, and for each u|p gr(Au”]) = gr(G(u))®".

Remark 3.1.3. It follows from the fact that the slope filtration is canonically
split over perfect fields, that at all geometric points = of S, the D-enriched
Barsotti-Tate groups gr(A[p~]), and A[p~], are canonically isomorphic. In
particular, gr(A[p™]). is isomorphic to X*-°4(D) for all points x of S.

PROPOSITION 3.1.4. Maintain the above notation. The slope filtration of
A[p~] over S canonically lifts to S.

Proof. The lifting of the slope filtration to S is a consequence of [Moo04,
Proposition 2.1.9] given the existence of the filtration on S (Proposition 3.1.1). [
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Remark 3.1.5. It follows from the rigidity of isoclinic D-enriched Barsotti-Tate
groups [Moo04, Proposition 2.1.5] that gr(A[p™]) over S is naturally a D-enriched
Barsotti-Tate group. Furthermore, for all geometric points = € S, the D-enriched
Barsotti-Tate group gr(A[p~]) restricted to 87, the formal completion of S at x, is
isomorphic to X,

3.2. p-ordinary Igusa tower. Maintaining the above notation, we intro-
duce the formal yi-ordinary Igusa tower Ig, as a profinite étale cover of the formal
p-ordinary locus S. Let gr(A[p™])/S be the D-enriched Barsotti-Tate group intro-
duce above. In the following, we write gr(A[p"]) = gr(A[p~])[p"], for all n > 1.

PROPOSITION 3.2.1. For each m,n > 1, we define (Igu)n,m, the Igusa cover
of level n over Sy, to be the W.,,,-scheme

(Igﬂ) n,m = ISﬂD (Xcan(D) [pn] ,gr(.A [pn] /Sm) ) :
The space (1g,,)n,m is a finite étale cover of Sy, with Galois group J,,(Z/p"Z).

Proof. Form =1, n > 1 the statement is proved in [Man05, Proposition 4]. A
similar proof applies for all m,n > 1. Indeed, for each m > 1, the W,,,-scheme
(Ig,)n,m (respectively, the formal W-scheme (Ig,),) is the unique finite étale
cover of S, (respectively, of S) with reduced fiber (Ig u)”’l /S1=S. O

3.3. [Irreducibility of the Igusa tower. A key result in Hida’s theory is the
irreducibility of the Igusa tower. To be exact, the Igusa tower is not irreducible, but
rather, Hida’s result describes the (many) irreducible components of the pullback
of the Igusa tower over any connected component of the ordinary locus and can
be adapted to do the same for the p-ordinary locus. We follow [Hid11]. Fix a
connected component of the p-ordinary. By abuse of notation, we still denote it
by S, and the pullback of the Igusa tower by Ig "

For each n,m > 1, we define

det: (1), — Isomp (AP X ["], AP A[p"]/S,0) & (O /17O )"

n,

where the latter isomorphism follows from the fact that the sheaf A'P A[p"]/S,, is
constant (see [Hid11, Section 3.3], and also [Che13], which gives a notion of a top
exterior power for Barsotti-Tate groups corresponding to the top exterior power of
the associated modules). We define IgEU to be the pullback of 1 € Og’p.

Definition 3.3.1. [Zon08, Definition 1.1] A D-enriched abelian variety A over
an algebraically closed field [F of characteristic p is hypersymmetric if

End?(4) ©g Q, = Endp <H;R(A) B] > .

A point z of sh is called hypersymmetric if A, is hypersymmetric.
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PROPOSITION 3.3.2. Maintain the above notation. Assume there exists a hy-
persymmetric point which is p-ordinary.
Then IgiU — S is a geometrically irreducible component of 1g -

Proof. In [Hidl1, Definition 4.20, and Theorem 3.1], Hida proves the irre-
ducibility of the ordinary Igusa tower over unitary Shimura varieties. The argument
given in loc. cit. relies on the existence of ordinary hypersymmetric points [Hid11,
Section 3.5], and it applies as is to our setting, with the role of ordinary hypersym-
metric points replaced by hypersymmetric points on the p-ordinary locus. U

Remark 3.3.3. In [Zon08, Theorem 5.1], Zong gives necessary and sufficient
conditions for the existence of hypersymmetric points on (each connected compo-
nent of) Newton polygon strata of PEL-type Shimura varieties. In [Xia20], Xiao
checks that these conditions are satisfied by the p-ordinary stratum of unitary
Shimura varieties when the degree of the primes v above p in E is constant (e.g.,
for p inert in E). Note that [Moo04, Proposition 2.3.12] implies the existence of
hypersymmetric points when p is inert in F'.

Remark 3.3.4. Recall our assumption that the subgroup 7),(Z,,) C J,,(Z,) acts
transitively on the set of connected components of Ig, . It follows from Proposition
3.3.2 that the connected components of Ig , are precisely the fibers of the morphism
det:Ig, = Op .

In the following, for simplicity, we write Ig :=Ig,,.

4. p-adic Automorphic forms and Congruences in the p-ordinary setting.
The goal of this section is to explore to what extent we can realize classical and
p-adic automorphic forms as global functions over the p-ordinary Igusa tower.

4.1. p-adic automorphic forms over the y-ordinary Igusa tower. Simi-
larly to [Hid04, Section 8.1.1], which addresses the ordinary setting, we define the
space of p-adic global functions on the Igusa tower

V :=1limlimV;, .,
o
where for each n,m > 1, V, ,,, ;== H O(Igmm, Ot, ,,,)- The natural right action of
J,.(Z,) on the Igusa tower defines a left action on V.

Definition 4.1.1. We define the space of p-adic automorphic forms over the
w-ordinary Igusa tower (abbreviated to p-adic automorphic forms OMOIT) to be

VNH(ZP) cV.
(Recall N, is the unipotent radical of our choice of a Borel subgroup B,, of of .J,,.)

In the following, we simply write VN 1=V Nu(Zp),
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Remark 4.1.2. Note that when the ordinary locus is nonempty, Definition 4.1.1
agrees with Hida’s definition in [Hid04] of the space of p-adic automorphic forms.

4.2. p-adic forms over the ;-ordinary locus. We maintain the notation of
Section 2.5.

Over the formal p-ordinary locus & over W, we write w, for the sheaf w :=
w(A), for A the universal abelian scheme over S, endowed with the filtration in-
duced by the slope filtration of A[p>]. We define the locally free sheaf

w = gr(w,).

The D-structures on A induce a canonical decomposition w = ®,c7w?”, where
foreacht €T,

w, = Bogr (wr).

Remark 4.2.1. It follows from the explicit description of the Dieudonné crystal
of the universal deformation of a y-ordinary Barsotti-Tate module over [F [Moo04,
Section 2.1.7 and Proposition 2.1.9] that, for each 7 € 7 and t = 0,...,s,, the
sheaves gr!(w, ) are locally free of rank m] for ¢t > i, and vanish otherwise (nota-
tions as in Remark 2.9.3; see also the proof of Proposition 4.3.3).

In the following, we adapt the classical construction of automorphic sheaves
(as in Section 2.3) to our context, with w in place of w and .J,, in place of J.
For each dominant weight « of J,,, we construct the sheaves w"

w" =Sk (w)

over S. Alternatively, we define

Eui=Isomp oo, (w,0%) = 11 (@f;iTIsom <grt(wT),0gLfTT)) :
TeT

and for any algebraic representation (o, M,) of J,,, we construct the sheaves
E2:=E&, x7n M,
BT Cp 0

over S. As before, we note that for any dominant weight « of .J,, and ¢ = o, our
choice of Z,-lattice of the irreducible representation of .J,, of highest weight x, the
sheaves w" and &7 ,are canonically identified.

Definition 4.2.2. We call the sections of £ p-adic forms (of weight o) over the
p-ordinary locus, or p-adic forms (of weight o) OMOL. Going forward, when the
meaning is clear from context, we sometimes drop “OMOL” and just say “p-adic
automorphic form.”
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Remark 4.2.3. When the ordinary locus is nonempty, the p-adic forms defined
in Definition 4.2.2 are the same as the automorphic forms in the vector bundle over
the ordinary locus considered in [EFMV 18] and by Hida in [Hid04] (see [EFMV 18,
Remark 2.4.1]).

Remark 4.2.4. We now explain the names OMOL and OMOIT. While the naive
approach might be to call our forms p-ordinary p-adic automorphic forms, that
name seems to imply a strong connection with a projector analogous to Hida’s
ordinary project e formed from powers of the U,,-operator. While such operators
will play an important role in our subsequent work building on the present paper,
they are not part of this paper. Simply referring to the space V Vu(Zr) as the space
of p-adic automorphic forms is not precise enough. Indeed, it immediately leads to
the question of which space of p-adic forms we are considering (e.g., the approach
of Serre? Katz? Hida?). While our approach builds on Hida’s approach, calling
it Hida’s p-adic automorphic forms would imply we might consider an empty set
(the ordinary locus), whereas our space is always nonempty. Thus, we add the
abbreviation OMOIT to be clear about the new space we have constructed and note
that in the special case in which the ordinary locus is nonempty, we recover Hida’s
p-adic automorphic forms.

It follows from the construction of the Igusa tower that for any integers n,m >
1, with n > m, the universal Igusa level structure on Ig,, ., induces an Op,;,)-linear
isomorphism

Y
Wig, .. = O, ,,, Ow Wxean,

where Wi denotes the pullback of w to the Igusa tower, and wxen is the module of
invariant differential of the D enriched Barsotti-Tate group X" = X"(D) over
W. Given the canonical decomposition w = @7 (9,7 ,gr" (w;)), such an isomor-
phism is equivalent to the collection of trivializations over Ig,, ,,,
t ~ om{
ar (WT)Ignym = Olgnym Rwy wxcan()\t)ﬂ—?
forreT andt=1i,,...,5;.

Following Hida’s theory, starting from the above trivialization of w over the
Igusa tower, for all dominant weights « of J,, we construct by Schur functors
canonical trivializations of the pullbacks of w" over Ig,, ,,, for all m > 1. Such
trivializations, composed with the N,,-equivariant functional ¢~ : o, — W intro-
duced in Section 2.3, define a morphism on global sections

U, H(S,w") — VN k] c V.
We define ¥ := ¢, V,,, where x varies among all dominant weights of J,,,

U@ H(S,w") — V.
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PROPOSITION 4.2.5. Maintain the above notation.
(1) For each dominant weight r of J,,, the map U, is injective.
(2) The map 'V is injective and its image is p-adically dense in V'V

Proof. The proof is similar to [Hid04, Theorem 8.3]. U

4.3. Realizing p-adic automorphic forms as p-adic forms OMOIT. We
compare the p-adic automorphic forms OMOL we constructed above with (classi-
cal) p-adic automorphic forms.

PROPOSITION 4.3.1. The notation remains the same as directly above and the
same as in Section 2.4.1. Let k be a dominant weight of .J.

(1) Each U,-stable filtration of py| p, induces a filtration on w". The sheaf
gr((w")e) is independent of the choice of filtration on py|p,.

(2) There is a canonical morphism

gr((w),) — D o,

K'eEM,,

which is an isomorphism if p is sufficiently large, or after tensoring with Q,,.
(3) There is a canonical projection 7" : W — wW".

Proof. Let w, denote the slope filtration on S, and define over &

Py i=lsomp 0 (w., 0s) ) @Isom( Of';( ))_>,
TeT
where the filtration on C’)@fi ") is induced by the ordered partition {m7 _,. Smy
of f(7). Note that by definition P, C &5, and we have a canonical prOJectlon Py —

Eu-
The inclusion P, C &|s implies that, for all representations (p, M),) of J, we
have identifications of sheaves over S

Ehe=(Ex’ M,) s

_ P
s =P, x"+*M,.

IS
In particular, for all dominant weights » of J, each U),-stable filtration of p,|p,
induces a filtration on the pullback over S of the sheaf w”. In particular, the natural
projection p,|p, — 0, induces a map on sheaves w" — w".

The projection P,, — £, implies that, for all representations (p,M,) of J, we
have identifications of sheaves over S

gr(Py <P M,) = &, x 7 M,
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(recall gr(px|p,) = pxls,). In particular, for p = p,, the equality pg|;, =
@weom, 0w implies that there exists a canonical morphism

gr(w“) — @H'emﬁgﬁ/,

which is an isomorphism if p is sufficiently large, or after tensoring with Q, (see
Remark 2.4.3). U

For each weight » of .J, we define @, as the composition of H(S,7") with
v,

@RZHO(S,WH) —>H0(5,g”) — VIk|CV,

and write @ := &, D,. The map P realizes p-adic (and thus also classical) automor-
phic forms as p-adic forms OMOIT.

For scalar weights x, @, is injective. Unfortunately, for non-scalar weights k,
&, is not injective. Also, the image of @ is not p-adically dense in V' (because
dominant weights for .J,, need not be dominant for .J).

Remark 4.3.2. The p-ordinary Hasse invariant £, (as defined in Section 2.7)
satisfies

@(Eu) =1 modp.

Moreover, for each scalar weight « of J, the canonical trivialization over the Igusa
tower w" = w" = Oy, agrees modulo p with (the pullback of) the identification
|w|™ = Og over S.

4.3.1. Local realizations. The connection between p-adic automorphic
forms and p-adic forms OMOIT is stronger when working locally.

PROPOSITION 4.3.3. The notation remains the same as above. Let xo € S(IF),
and SQO denote the formal completion of S at xy.
(1) The filtration of w is canonically split over SQO. That is, we have a canoni-
. . /\
cal isomorphism over O3 .
Wgy S W

=x0"

(2) For each dominant weight k of J, there is a canonical morphism over
A
OS,zg

K K
Wao ? @R’Gmfngxw

which is an isomorphism if p is sufficiently large, or after tensoring with Q.
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Proof. We deduce the existence of the canonical splitting of the filtration on
Wy, from the description of the Dieudonné crystal of the universal deformaion of
a p-ordinary Barsotti-Tate group in [Moo04, Section 2.1.7]. In the following, all
sheaves are restricted to the formal neighborhood SQO, but for simplicity still de-
noted by the same notation.

Given the decomposition of the filtered Dieudonné crystal of A into subcrystals

w(A) =P (wo)™" C Hin(A) =P (M),

S S

where w, := @recow, and M, = B,c,M,, it is enough to prove that for each orbit
o the filtration of w, is canonically split.

Fix o0, and write M = M,, w = w,, w C M. With notation as in Remark 2.9.3,
let Iy > --- > Fy denote the distinct values of f(7) in the interval [I,n —1] (s =
So > 0), and write Fp :=n and Fs.; := 0. Then the crystal M has exactly s+ 1
distict slopes. Write M, for its slope filtration,

O0=MyC M, C---CM= Mg,

and M*:= M;/M;_y,i > 1. In [Moo04, Section 2.1.7, and Propositions 2.1.8 and

2.1.9], Moonen gives an explicit description of the pair (M,w) over SQO (in loc. cit.

M = M and w = Fil'(M)). In particular, M = &5 "' M?, and forall j = 1,...,s+
1, M; =& M".
Foreachi=0,...,s+ 1, define

0;:={re€ol|f(r)=F},

and 0 := U;<;0;. Also, for each 7 € 0, we write +(7) := i if 7 € 0;. Then it follows
from the definitions that, over Sy, , for all 7 such that +(7) < s+ 1

_ mstl 1
Wr = e91,(7')4»1‘]\47"

and O otherwise. Moreover, the ﬁltratjon we of w induced by the slope filtration of
M satisfies, for each 7 € 0, wj r = EBZ(T)HMi for j > ¢(7), and O otherwise.
In particular, foreach j =1,...,s+1,

wj=wj 1D (Dreo; M). 0

Fix z¢p € S(F), and let x be a dominant weight of .J. For each x € Ig(IF) above
Zo, and x’ € M,., we define

K, . 170 K K K K A
P HY(S,w") — wh — Bem, why — Wiy — Olg.o

as the composition of localization at z(, with the canonical morphism of part (2)
of Proposition 4.3.3, followed by ¥, ,, the localization of W, at .
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Note that for each g € J,,(Z;,), ¥,/ »9 = ¥, ;0 g. In particular, it follows from
Proposition 4.2.5 that the map

or =] o HO(S,w") — [10%.

K K

is injective if S is connected. In the following, we also write ®, = ®F =

> e, Oy HO(S,wr) — (9{;7”

Remark 4.3.4. For each pure weight « of .J, the morphism ®;" agrees with
the composition of @,; with the localization at z,

HO(S,w") — H*(S,w") — V — Ofy .

4.4. p-adic u-expansion principle and congruences. In this section, we
generalize the results of [CEF*16, Section 5] to the p-ordinary setting. We refer
to loc. cit. for more details. Here, we work under the assumption that 7),(Z,) acts
transitively on the connected components of Ig. As in Hida’s work, the restric-
tion of the Igusa tower over a connected component of the p-ordinary locus is not
irreducible. As stated, the p-adic u-expansion principle (like its analogue, the g-
expansion principle) relies on the transitivity of the action of 7),(Z,) on the set of
connected components of Ig.

We choose the notation u, instead of ¢ as in [CEF*16], for the coordinate in
local expansions at p-ordinary CM points, because it agrees with Moonen’s con-
ventions in [Moo04], which play an important role in some of the notationally
heavy portions of this paper.

Following Hida, to establish an analogue of the p-adic g-expansion principle,
we fix a connected component S of the p-ordinary locus S, together with a marked
point zy on Sy, and replace p-adic automorphic forms on S with their restriction
to Sp, and the Igusa tower by its pullback to Sp. Alternatively, one can work with
many marked points on § at once, one point on each connected component.

4.4.1. Canonical parameters at p-ordinary points. Fix a point x of
Ig(W), above a p-ordinary point zo. In [Moo04, Section 2.1.7], Moonen defines
a set of local parameters u of Sy at xg, associated with a trivialization of the fiber
at xo of the universal D-enriched Barsotti-Tate group. With our notation, this is
equivalent to the choice of a point x of the Igusa tower lying above x.

In the following, we denote the choice of parameters w at the point x( associ-
ated with the point z € Ig(W) as

By 1 O g = Ofy, = Wu] = W, | 7€ T, rys = L,...,n]

where by definition, for each 7 € T, uy ; := O if either r <n —§(7) or s > n—f(7)

(in loc. cit. © = 1, and d = n). We write loc, : V — (’)I/;, ., for the localization at x.
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Remark 4.4.1. The results in this section do not rely on the special properties of
the parameters u. In fact, they could as easily be stated in terms of the localization
at x. We choose to state them in terms of the associated power series in W(u] to
stress the analogue with the p-adic g-expansion principle, in the ordinary case.

Definition 4.4.2. For any global function f € V on the Igusa tower, we define
the u-expansion of f at x as

fw) = fo(w) := B; (locy(f)) € W[u].

For each p-adic form f € H°(S,w") of weight &, k a dominant weight of .J,,
we set

fw) :=V(f)(u) € W[u].

For each classical (respectively, p-adic) automorphic form f € HO(Sh,w") (re-
spectively, f € H(S,w"™)) of weight «, for x a dominant weight of .J, we set

f(w):==2(f)(uw) € W[ul.

PROPOSITION 4.4.3. Maintain the above notation.

(1) Forany f € VN, f=0ifand only if (g- f)(u) =0 for all g € T,,(Zy,).

(2) For any dominant weight . of J, and f € VN[k], f =0 if and only if
f(w) =0.

(3) For m > 1, k; dominant weights of J,, and f; € VN[k], i =12 fi=
f> mod p™ if and only if for all g € T,,(Zy)

k1(9) fi(w) = k2(g) f2(w) mod p™.

Proof. The statements follow immediately from the transitivity of the action of
T,,(Zy,) on the set of connected components of Ig (Remark 3.3.4) and the equalities,
for g € T),(Zy), loc,(g- f) =locgs (f) for f € VY, and loc,(g- f) = r(g)loc,(f)
for f € VN[k]. (The arguments of [CEF*16] still apply in our setting.) O

The next corollary is an immediate consequence of Proposition 4.4.3 combined
with Proposition 4.2.5.

COROLLARY 4.4.4. Maintain the above notation.

(1) For any dominant weight k of J,, and f € HY(S,w"), f =0 ifand only if
f(w)=0.

(2) For m > 1, k; dominant weights of J,, and f; € HO(S,w"), i =1,2,
fi = fo mod p™ if and only if for all g € T),(Zy)

k1(9) fi(w) = k2(g) f2(w) mod p™.
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COROLLARY 4.4.5. Let m > 1. Let f; be classical or p-adic automorphic
forms of scalar weight k;, i = 1,2. Then fi = f>» mod p™ if and only if

k1(g) = ka(g) modp™, forallgeT, (Zp)

and

fi(w) = f2(w) modp™.

Remark 4.4.6. For non-scalar weights, the above condition is necessary but not
sufficient.

Finally, to state a sufficient condition for general weights, for any p-adic (or
classical) automorphic form f of weight s, we consider the u-expansions

FE (w) == B (@5~ (f)) € W[u]

defined for all ¥ € 9, and all points = € Ig(W) lying above a fixed u-ordinary
point xg. (Note that f(u) = fé“) (w).)

COROLLARY 4.4.7. Maintain the above notation. Fix xo € So(W).

(1) For any dominant weight  of J, and f a classical or p-adic automorphic
form of weight k, f =0 on Sy if and only if for all x € Ig(W) above x,
F5) (W) =0 forall K € M,.

xT

(2) For m > 1, k; dominant weights of J, and f; classical or p-adic automor-
phic forms, respectively, of weight r;, i = 1,2, we have i = f>» mod p™ if

k1(9) = ka(g) modp™ forall g € T, (Z,y)

and for all pairs ki, € M,,,, i = 1,2, with K (g) = k5(g) mod p™, for all x € Ig(W)
above x

D) = 1 (w)  mod p™.

l,x

Remark 4.4.8. The congruence condition given in Part (2) is both necessary
and sufficient if, furthermore, we assume that, for each i = 1,2, the weights s’ €
M, are all distinct modulo p™.

5. Structure theorems in the p-ordinary case. This section develops
structural results concerning the Gauss-Manin connection, the Kodaira-Spencer
morphism, and a canonical complement to w in the p-ordinary setting, as needed
in Section 6 to construct differential operators, which we use in the subsequent
sections to construct new p-adic automorphic forms and families of p-adic
automorphic forms.
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For simplicity, we assume B = F'. By the assumption that the prime p is unram-
ified in B, the general case follows from this special case by Morita equivalence.

5.1. Standard constructions. This section recalls the definitions of the
Gauss-Manin connection and the Kodaira-Spencer morphism. Throughout this sec-
tion, we denote by S a smooth scheme over a scheme 7" and by 7 : X — S a proper
morphism of schemes. For any such schemes, we denote by Q5% /s the complex

A*Q & /g on X whose differentials are induced by the canonical Kahler differential
Ox/s — Q' X/S. The de Rham complex Q5% /50 d) admits a canonical filtration

) Fil' (% 7) = Image (7" Qg ®ox Q5 /p — Q)
For 7 smooth, the sequence
0— m*Qgp — Qg — Qg — 0
is exact, and the associated graded objects of the canonical filtration (5) are
Gr':=Gr' (Q%7) = 7 Vgp @0y Q;/ZS
5.1.1. Gauss-Manin connection. The Gauss-Manin connection
V: Hip (X/S) — Hix(X/S) ®os QE?/T
is the map
dP: B — B
where
EPY = RPHr, (Gr”) = Q‘g/T ®og H (X/S)

is the first page of the spectral sequence (EF?, which converges to R, (% /T))
obtained from the filtration (5). We are interested in the case ¢ = 1, i.e.,

V:Hip(X/S) — Hig(X/S) @05 Q}S‘/T

5.1.2. Kodaira-Spencer morphism. We briefly review the Kodaira-
Spencer morphism here. Details are available in [CF90, Lanl13, Eisl12, Eis09,
EFMV1S]. Let 7 : A — S be a smooth proper morphism of schemes (with .S still
as above), and suppose A is an abelian scheme with polarization A : A — A". For
any such A, we define

wAa/s = W*Qh/s.
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By taking the first hypercohomology of the exact sequence
o>1 °
0—>QA—/S—>QA/S—>OA—>O,
we obtain an exact sequence

0 — wass —L%s Hi(A/S) 255 WY g — 0,

with ¢, , /s denoting inclusion. The Kodaira-Spencer morphism K S is the compo-
sition of morphisms

. V&, s . ! (Pav/s®iBw v o !
HdR(A/S)®wAV/5 E— (HdR(A/S)®QS/T)®wAV/S _— MIVLW/S®QS/T®WAV/S

LWA/S&i(j\ l

wa/s®wavg — — — — — — — — — — — — — — — —— — — — — —— » Qg
with the vertical surjection denoting the canonical pairing
v
CUA\//S®CUA\//S — OS

tensored with the identity map on Qé /7 Identifying w4 /g with w4v /g via the po-
larization \ : A — AV, we also view K S as a morphism

KS:WA/S®OSWA/S — Q}S’/T

The action of O on A induces a decomposition

wass = Pways,r
TET

By [Lan13, Proposition 2.3.5.2], KS induces an isomorphism
ks : wi/s = le/T,

where

2 L A-sym
Wa/s = (wA/s QOr®0,0s WAV/S)

| My)@z—Az)®@y
= (UJA/S®OSWAV/S)/ bx®y—l’®bvy

TEWA/S
Y,z GCUA\//S>.

be Op
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In particular,

A-sym
2 _
Wa/s = <@ wa/sr @0 WAV/&T)

TET

= <@WA/S,T ®os wAV/&T) JMy)@2=A(2)®@y|y,2 €wavss)
TeT

=~ @ WA/S,r ®OgWAV/S 7
T7€To

5.2. A canonical complement to w over S. The constructions of p-adic
differential operators in, for example, [Kat78, Eis12, EFMV18] rely on the unit
root splitting discussed in [Kat73b]. In the more general p-ordinary case, we need
to work with a complement to w that is larger than just the unit root piece and
whose existence follows from work in [Moo04]. To emphasize the connection with
this earlier setting, we still use the notation U (even though U is precisely the unit
root when the ordinary locus is nonempty).

Let H jR. denote the Dieudonné crystal of A over S and we C H, jR. its Hodge
filtration, both equipped with the slope filtration. Following [Kat73b], we deduce
the existence over S of a canonical splitting of the sequence

0 — we C Hary — (Hgg/w), — 0.

PROPOSITION 5.2.1. There exists a unique submodule U of H (}R such that
(1) U is ®¢-stable, where € = lcmycpe,.
(2) U is V-horizontal, i.e., V(U) C U ® Qg .
(3) U is a complement to w, i.e., H&R =wdU.
Moreover, the filtration U, of U, induced by the slope filtration on H 5R, satisfies

(H(}R)j = Wy @Uja

for each slope j; and it is canonically split over S}, , for each point xo € S(F).

Proof. We use the notation introduced in the proof of Proposition 4.3.3. We
construct U = @,U,, with U, C M, a complement to w,. Its uniqueness follows
from the listed properties.

Fix 0, e = e,, and write M = M,, w = w, and construct U = U,. Let M, denote
the slope filtration of M, then we define

U:= EBTML(T),T'

The stated properties are an immediate consequence of the definition of U, and the
properties of the slope filtration (see Proposition 3.1.4, and [Moo04, Proposition
2.1.9)). (]
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In the following we write U to denote the graded sheaf associated with U, and
we canonically identify U, = Uy, over Oé,mo’ for each zp € S(F).

5.3. The Gauss-Manin connection. We extend Katz’s computation of the
Gauss-Manin connection over the ordinary locus to the p-ordinary case.
Consider the operator

V:wCHéR—>HéR®Q}g/W.

It preserves the slope filtration, in particular it induces an operator on the graded
sheaves V:w — gr(Hl) ® Q}S/W.

PROPOSITION 5.3.1. Maintain the above notation. We denote by « the isomor-
phism of sheaves over the Igusa tower,

a:wx Qw0 — w,

induced by the universal Igusa level structure.

Then for any n € wx: V(a(n)) e U® Q}S/W.

Furthermore, for each x € 1g(F) and each n € wx, via the canonical splitting
Wy Zw,, we have Vi, (a(n)) e U, ® Q}S/W’z.

Proof. As in the proofs of Propositions 4.3.3 and 5.2.1, consider the decom-
position into subcrystals H(}R = &, M,, fix 0, e = e,, and write M = M,, w = w,,
and U = U,.

Note that that the statement can be checked locally, over the complete local
ring R at a point zy of ;. That is, without loss of generality, we may assume we
are in the setting of [Moo04, Sections 2.1.7] (in loc. cit. R = W[u])). Furthermore,
since V is W-linear, it suffices to prove the statement for a choice of W-basis of
wx = wyx compatible with the slope decomposition.

In [Moo04, Proposition 2.1.9], Moonen computes the matrix of 1-forms of the
Gauss-Manin connection on M, with respect to an explicit choice of a basis of M.
We observe that the chosen basis contains the image under « of (an explicit choice
of) a W-basis of wx. We quickly recall Moonen’s notation and results.

Let B={a} [T €0, j=1,...,n} denote the basis of M, M = Mx @w R, as
defined in [Moo04, Section 1.2.3] (in loc. cit. the element oz;» are denoted by e; ;,
withi =7, =0, and d = n). By definition, for each 7 € 0, {a][j =1,...,n}isa
basis of Mx , over W, such that, for each j =1,...,n,

@7 (0f) =p"Vaj,
where a(j) = #{7[f(7) > n —j}. In particular, {a7 | j > n —f(7)} is a basis of
w; C M, which arises as the image under o of a W-basis of wx. Note that, for
each slope a = a;, we have a;» € M, if and only if j > n — F;, for all 7 € o, and
U?:=®;U? has basis {a] [ j <n—F;, 7 €0}
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As in [Moo04, Proposition 2.1.9], we denote by D™ = (D] ;) s=1,....n the ma-
trix of 1-forms of V with respect to the given basis {a]T- |j=1,...,n} of M,,
7 € 0. To prove our statement, it suffices to check that, for each 7 € 0, and for all

j>n—=f(7),
V(a;-) =0 modU®Q!,

or equivalently, D} ; = 0if j > n—f§(7) and v > n —f(7).

Following loc. cit. the inclusions V(U%) C U*®Q!, a=0,... e, imply Dy ;=
Oifv<n—F;and j >n—F;, forall T €0, and i =0,1,...,s. Also, from the
equality Vo F'= (f ®id) o F', we obtain, for all 7 € 0 and j,v € {1,...,n},

n - d =
D7+ 3 up, Dy, +dul; =ds(Dy; )+ updo(Df; ),
r=1 =1

where u; ¢ := 0 if either r <n —§(7) or s > n —§(7). (Recall that ¢ on R is defined
by ¢\W =0 and ¢(u:,s) = (u:,s)p-)

Fix 7 € o and assume j > n —f(7) and v > n — f(7). From j > n — (1), we
deduce u; ; =0 for all r, and also DZT; =0 for [ < n—{(r), for all 7. Thus, the
above equalities become

Dy, =do(Dy; )+ S ao (D7 ) =do (D7),

I>n—f(1)

which implies the equation Dy ; = d¢°(Dy, ;). We deduce that D7 ; = 0 mod p™,
forall m > 1, and conclude that D] ; =0, forall j >n —f(r) andv >n—f(r). O

5.4. The Kodaira-Spencer morphism. We study the Kodaira-Spencer
morphism over the p-ordinary Igusa tower. Let A denote the universal abelian
scheme over the Igusa tower Ig over W, and let w = w 4,1,. Recall the notations
from section 5.1.2. Write

A-sym ( A-sym

2. \
W= (W-A/Ig QOpawO;, W.AV/Ig) W R0 pawoy U )

A-sym
“(@ercarr)  =@usar

T€T T€T0

For each orbit 0 € O, write s = s, = s, for 7 € 0. For each i,j € {0,...,s}, and
T € 0 we define

g (waUY) = g'(w), ®o, & (U))
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and gry’ (W@ UY) =@, ., 2’ (w@ UY). We also set w? := gr(w?), i.e.,

A-sym
= W ® QﬂY = wr® Q;{’
(@) =@

TeT 7€To
where w, @ U, = @ jo,, &7 (WRUY).

Remark 5.4.1. By construction, for each 7 € T, the sheaf gri™*(w®@U") arises
as a quotient of w, @ U,.

PROPOSITION 5.4.2. For each orbit o, and integers i,j € {0,...,s,}, each
sheaf gry” (w?) vanishes for all i < j and is locally free of rank (F; — Fyi1)(Fj —
Fji1)(a; —ay) forall j <.

Proof. As the sheaves we consider are locally free, it suffices to prove the state-
ment locally at a point zg € S;. Fix o, write s = s,. It follows from the properties of
the slope filtration that for each 7 € 0 and i, =0, ..., s, the sheaf gr’(w), vanishes
for f(7) < Fj, and gr'(w), = gr'(M), otherwise. Similarly, gr/(U), vanishes for
f(r) > Fj, and g/ (U), = gr/ (M) otherwise. Thus, we deduce that grod (w?) ==
gr'(w)r ®o,, gt/ (U), vanishes unless F; > (1) > Fj, in which case it is locally free
of rank (F; — F;_1)(Fj — Fj41) = mym;. In particular, grid (w?) = D, gr? (w?)
vanishes unless j < 7, in which case it is locally free of rank (F; — Fii)(Fj —
Fi)(ai—aj),as a;—a; =#{T € o | F; <f(7) < Fj}. O

Remark 5.4.3. Let o € O¢. Assume o # 0. Then o C 7y, and the sheaf

gry(weUY): @w QUY = @ gl (weUY)

TEO 0<j<i<s,

is as a direct summand of w?, i.e.,

A-sym
g, (weUY) = (gr (waUY) @gro* w®UV)> C w?.
Assume 0 = 0*. Then o ¢ 7Ty, and the sheaf

LweU) ™" P w oU!

TeoN Ty

is as a direct summand of w?. In particular, the subsheaf of gr,(w® U")\*™,

grfs”/z( ®UV) = @ grf;’j(w@Uv),

0<j<i<so/2
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is also a direct summand of w?. Indeed, for any 4,7, 0 < j < i < s,/2, we have

. . . A-sym
gry? (weUY) = (grf;] (waUY) @gr‘gﬂ’s” (w®UV)) ’

> @ (2 (wot)Pet(war)).

TeoNTy

Similarly, the subsheaf of gr,(w® UV ) sym

et welY)i= @ e H(weu’)tm
0<j<s,/2

is a direct summand of w?. Indeed, for an 7, 0<7<8,/2,

grsI (weUY) Asym o @ gré (weUY).

TeoNTy

Remark 5.4.4. If all the primes of Fy above p split in F, then each orbit o
satisfies 0 # 0%, and

gz = @Oegogro (w ® U\/) .

Yet, in general,

w? 2 @ gry(weUY) e @ (grfs“/z(w®Uv)@grf(w@Uv)).

o€, 0#£0* o€, 0=0*

5.4.1. Serre-Tate theory in the p-ordinary case. In [Moo04, Sections 2.2
and 2.3], Moonen describes the pi-ordinary local EL moduli (i.e., the associated un-
polarized deformation problem) as a cascade of Barsotti-Tate groups over W. More
precisely, given an orbit o € 9, for each pair of distinct slopes a,b, a > b, of the
p-ordinary Newton polygon v,, together with their multiplicities, Moonen defines
a Barsotti-Tate group G, /W, and proves that the local EL moduli corresponding
to o has a natural structure of a cascade of biextensions of the groups G, /W, for
all a,b.

Definition 5.4.5. [Moo04, Section 2.3.2] For an orbit 0 € O, and two distinct
slopes a = a; > b=a; of v,,0 < j <1 < s,, the Barsotti-Tate group G, over W
is defined as

mi;my
Ga,b:Gai,a]‘ ::Xcan(0717f;7j) ' Ja

where X (0,1, ;]) is the canonical lifting (in the sense of Proposition 2.8.2)
of the p-ordinary Of,y,-module X(o,1,f; ;), and m;,m; denote respectively the
multiplicities of a;,a; (with the notation of the proof of Proposition 4.3.3, m; =
Fy—Fpq, foralll =0,...,s,).
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The Barsotti-Tate group X(o, 1, f; ;) is an isoclinic OF,,,-module of dimension
a; —a; and height e. (For the definition of the multiplicative type f; ; : 0 — {0,1}
see [Moo04, Section 2.3.2]. Also, in loc. cit. the group G, = Gai,aj is denoted by
G and the multiplicities m; by d‘.)

In the inert case for s, = 1, i.e., in the case of one orbit 0 and two distinct slopes
a,b, a > b, Moonen’s result [Moo04, Theorem 2.3.3] states the local EL moduli is
isomorphic (as a group) to the Barsotti-Tate Of,,, -module G, where the natural
group structure of the local EL moduli is defined by its identification with the
space of extensions of (X?)4 by (X!)¢" (the identity of the group corresponding
to the canonical split lifting X = (X!)ean ¢ (X2)<a)_ In the general case, the
existence of a cascade structure is defined by induction on the number of slopes,
and separately for each orbit. In particular, the cascade structure of the local EL
moduli implies that, for each orbit o and pair 7,5, 0 < j < i < s,, the subspace of
the local EL moduli, corresponding to partially split extensions of the type X (0) ®
(®12i,(X(0)")*™), where X (0) is an extension of the Op,,, -module (X(o)7)*"
by (X(0)")", is isomorphic to the Barsotti-Tate group G, q,, Where a;,a; denote
respectively the i-th and j-th slopes of v,.

In general, the local PEL moduli (which can be realized as a subspace of the
local EL moduli) does not inherit a cascade structure [Moo04, Section 3.3.2]. To
be more precise, let us distinguish the cases of 0 # 0* and 0 = 0*.

If 0 # 0*, then the local PEL moduli associated with the pair (0,0") is canon-
cally isomorphic to the local EL. moduli associated with o, and thus also has a
natural cascade structure.

If 0 = 0%, then the local PEL moduli does not have a cascade structure in gen-
eral, although the following weaker statements hold. For each pair 7,7, 0 < j <
i < $o/2, the subspace of the local PEL moduli corresponding to partially split
self-dual extensions of the type X (0) @ X (0)* @ (B4, j,s—i,s—;(X(0)")"), where
X (o) is an extension of the OF,,, -modules (X(0)7)®" by (X(0)")®", is isomorphic
to the Barsotti-Tate group Gy, q;, Where a;,a; denote respectively the i-th and j-th
slopes of v,.

More subtly, for each j, 0 < j < s,/2, the subspace corresponding to partially
split symmetric extensions of the type X (0) & (@©4;,s—;(X(0)")*"), where X (o)
is a self-dual extension of the Op,,, -modules (X(0)?)“" by (X(0)%~7)%", is iso-
morphic to a sub-OF, ,,,-module G;H,aj of the Op,-module G,_; o, where a;
denotes the j-th slope of v, [Moo04, Section 3.3.2].

Remark 5.4.6. As Ggsfj,aj is a Barsotti-Tate subgroup of G, _; 4, it is also
isoclinic of the same slope as Barsotti-Tate groups. (See Remark 2.6.1.) Thus, as an
OF,v,-module, it has slope a;—j —a;/2. (Recall a;_j = e—aj, thus as_j —a;/2 =
e/2—aj.)

Remark 5.4.7. In classical Serre-Tate theory, i.e., for X ordinary and g-
dimensional, the local EL moduli space parametrizes extensions of (Q,/Zj)?
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by ,ugw, and is isomorphic to @%, while the local PEL moduli space, which
corresponds to the subspace of self-dual extensions, is isomorphic to @%9 /2,

Abusing notation, in the following, we simply write G, /W in place of
Gy, ,/W when appropriate.

5.4.2. The Kodaira-Spencer isomorphism. Fix a point x € Ig(FF), we
write R = (9{;&. The canonical (Op ® R-linear) splittings w, Zw, and U, =U,
induce an isomorphism w2 =2 w2. We denote by ks, the composition with the

localization at - of (the pullback over Ig of) the Kodaira-Spencer isomomorphism

2

ks :w? — Qllg /W with the canonical splitting w2 = w2, i.e.,

ks; Wi 2wl — Q%Q/W,
and still refer to it as the (split) localization at x of the Kodaira-Spencer isomomor-
phism.
We deduce the following result from [Moo0O4, Theomre 2.3.3].

PROPOSITION 5.4.8. With the notations of remark 5.4.3. Let x be a point of
Ig, and o € 9.

(1) Assume o # o*. Then for each pair of integers 1,5, 0 < j < i < s,, the
Kodaira-Spencer isomorphism ks induces local isomorphisms

N v 1
kst s grg? (woUY)  — QGai,aj/W ® 04,0, Olg,z-

(2) Assume 0 = o*. Then for each pair of integers i,j, 0 < j < i < s,/2, the
Kodaira-Spencer isomorphism ks induces local isomorphisms

0] . yaely] V 1
I(Sx,]0 . gI‘OJ (w® U )x — QGai,aj /W ®0Gai»‘1j Olg,m.

(3) Assume 0 = o*. Then for each integer j, 0 < j < s,/2, the Kodaira-Spencer
isomorphism ks induces local isomorphisms

7.7. . 7.7. \/ A_sym 1
ksy 77 : grg 77 (w QU )x — Qg W ®(9®a87j’aj Olg,z-

5@y
As in [Kat81, Theorem 4.4.1], the compatibility between the Gauss-Manin
connection and the Frobenius map, i.e., the equality Vo F' = (f ®id) o F, im-
plies the result below. In the following, WGy, a0, /W denotes the space of invariant
differentials of G, ,/W.

PROPOSITION 5.4.9. Maintain the above notation. Fix x € 1g(IF). Let T € 7T,
and i,j € 7. Assume 0 < j < i < s; if o, # 0%, and assume either 0 < j <i<s./2
or0<j<s./2andi=s—jifo, =0k Foranyl € gr'(wx), @w g’ (wxv)r,

ks, (Ot & Oév(l)) S wGai,a]-/W'
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Proof. Note that the image under a ® " of the space gr' (wx ) r @w g’ (wyxv ) -
is a W-lattice in gry”’ (w?). That is,
29 (o) = (0 0) (g (wr), 0127 (), ) & Op.
Similarly, the space wg, , /w of invariant differentials of Gg /W is a W-
]
lattice in Qé}a,b/W ®(9®a’b O, That is,
Qéa}b/w ®0Ga,b O = WG, a0 /W ®w Org.

Both W-lattices are characterized by the property that they admit a ba-
sis over W on which the e-th iterate of Frobenius F'¢ acts as p®~%. (For
(a® a")er'(wx) @w gr/ (wy), this basis arises from the basis of wx defined in
[Moo04, Section 1.2.3] and introduced in the proof of Propostion 5.3.1.) Thus, the
statement follows from the equality Vo F'¢ = (f ®id) o F°. U

Remark 5.4.10. Fix an orbit o, let § be the associated multiplicative type. Note
that 0 is a slope of X(o0,n,f) if and only if f(7) # n for all T € 0. (e.g., X(0,n,§)
is étale if f(7) = 0, for all 7 € 0.) Similarly, e is a slope of X(o0,n,f) if and only if
f(1) # 0, for all 7 € 0. (e.g., X(0,n,f) is multiplicative if f(7) =n, for all 7 € 0.)

Assume both 0 and e are slopes of X(o,n,f) (i.e., for all 7 € o, f(7) # 0,n).
Then a; = 0 and a, = e, and the Barsotti-Tate group Gg . occurs in the cascade
of the local EL moduli, Gg . = X" (o, 1,fg)7€)d‘d“’. By definition, X** (0, 1,f; ) is
isomorphic to a sum of e-copies of the formal multiplicative group G- In fact,
the given condition is both sufficient and necessary for the formal multiplicative
groups to occur in the cascade.

For uy,...,ue a choice of parameters of X“*"(o, 1, ff),e)/W (.e., OXcan(ml’ﬁ) 9=
Wiui,...,uel]), the space of invariant differentials of X" (o, 1,fj ) is generated
by

1
i = dlog (¢:) = —dai € wxan(o,1;, ) Qxan(o,1 ;)
(A ? 3
= <du1,...,due>wﬂ

ul?"'vue]]’
forg;=1+wu;,i=1,...,e.

Remark 5.4.11. Fix an orbit o, let § be the associated multiplicative type. Note
that there exists an integer a € {0,...,e} such that both a,a+ 1 are slopes of
X(o0,n,f) if and only if there exists 79 € o such that §(7) # f(7) for all T # 7.

Assume both a and a+ 1 are slopes of X(o,n,§), for some integer a, 0 < a < e.
Them, the Barsotti-Tate group G, 41 occurs in the cascade of the local moduli. By
definition, X" (0, 1, , ) is a formal Lubin-Tate O ,,-modules of slope 1/e. In
fact, the given condition is both sufficient and necessary for a formal Lubin-Tate
OFu,-module to occur in the cascade.
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For u a choice of a parameter of X“"(o,1,f,, ,,;)/W (.e., Oxcan(ml,f/a’a“) =

Wiul), the space of invariant differentials of X“*(0,1,, ,, ) is generated by
0= dlogg(u) = Go(0,u) " du € Qgeno 1y 1w = (At wiu]

where G(z,y) denotes the formal group law of X“"(o,1,f, .. ) with respect to
the choosen parameter u, and GG, denotes the partial derivative of GG with respect
to the variable x [Weill, p. 4].

6. Differential operators in the p-ordinary setting. This section intro-
duces differential operators that enable construction of new p-adic automorphic
forms and families. Unlike in the ordinary setting in [Kat78, Eis12, EFMV1§],
we now need to keep track of slope filtrations and rely on new results about the
canonical complement to w introduced in Section 5.2.

6.1. Definition of p-adic differential operators. As our construction of p-
adic differential operators begins similarly in the ordinary setting [Kat78, Eis12,
Eis09, EFMV 18], we focus here primarily on the details unique to the p-ordinary
case, namely the roles of the filtration and semi-simplification, which pose addi-
tional challenges. This is one of the most challenging parts of this paper.

Following the conventions of [EFMV 18, Section 3.3], for all positive integers
d and e and any irreducible representation p := p, of highest weight «, we define
morphisms of sheaves

Gat Hig(A/5)7

— Hig(A/$)" @ | @ (Har(A/S)- ® Hir(A/S)+)

T7€T0
Ve =V S, (Hir(A/S))
®e

— Sp(Hir(A/9)) @ @ (Har(A/S)r @ Har(A/S)7+) ;

T7€To
where
(6) V&i = Vedaiae-1)°°Vad,

Va denotes the Gauss-Manin connection extended to H (A4/S)®? via the prod-
uct rule (Leibniz’s rule), and V¢, is the morphism induced by V% d.- We also define



40 E. EISCHEN AND E. MANTOVAN

Observe that V, = V,; decomposes as a direct sum of morphisms
V,(7): (H(}R(A/S))p — (H(}R(A/S))pé? (HdR(A/S)T®HdR(A/S)T*).

For each positive integer e, we define V() := V{(7) to be the composition
of V(1) :== V,(7) with itself e times (with the subscript increasing as in Equation

(6)).
We also denote by A, the pullback of the universal abelian scheme A, /S,
over Ig,,. For each irreducible representation p, the splitting

Hgg (A/1g,) = wa, g, ®U

induces a projection

w(Au/Igu) : (HéR(Au/Igu))p — (“’AH/IgH)p

(projection modulo U).
We define

D (Au/1g,) : (w (Au/lg,))"
— (w (Au/lgu))p ® (@7676 (WT (Au/lgu) & W (.AM/Ig“)))e

by

Dy (Au/1g,) == (Au/1g,) oV,

We define

D, (Au/lgu) = D; (Au/lgu) )

When it is clear from context that we are working with A4,/ Ig,,, we simply
write D;, D,, etc. For the other operators introduced below, we follow similar
conventions with regard to inclusion of A,,/Ig, in the notation. Since V(U) C
U®Qy, /g, » We have that

€ _
Dp =D e simsye © 0 Dps(siasy © Dp.
For any irreducible representation Z that is sum-symmetric of depth e, con-
sider the projection

e

izt | D (wr (Au/1g,) @wr (Auflg,)) | = (w (Au/12,)) "

T7€To
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Also, for x a positive dominant weight, p,, an irreducible representation of highest
weight k, k' sum-symmetric of depth e, and Z := p,, consider the projection

ﬂn,li/ : PRZ Spm,ﬂ/

induced by the canonical projection (described in more detail in [EFMV 18, Lemma
2.4.6])

Pr @ P! = Prer!-
We define

DZ (A, /1) = (i4mz) o D
DX (Au/lg,) == Tn on.

Remark 6.1.1. The p-adic operators Df are the p-adic incarnation of the
Maass-Shimura C* differential operators Df’cm that arise over C and are de-
scribed in detail in, for example, [Shi97, Section 23], [Shi84], and [Shi00, Section
12]. The construction of these C* differential operators is similar, except that the
complement to w is replaced by the Hodge de Rham splitting. The Hodge theoretic
construction was first completed by M. Harris for Siegel modular forms in [Har81]
(which we recommend to readers trying to get acquainted with the ideas of this
construction) and for more general Shimura varieties in [Har86]. We also define
analogous C* differential operators D::Cm similarly.

6.2. p-adic differential operators on p-adic forms in the y-ordinary set-
ting. We consider the sequence of sheaves over S

0—wCHR —w —0,

together with its canonical splitting HjR D U = w", constructed in Proposition
5.2.1. We denote by w : H 5R — w the projection modulo U, and write

D:=(w®id)oV:wC Hig — Hig © Qg g — w0 @ Q
and
D, =Sx(D):w" —>w”®Q}S/W,

for any dominant weight x of .J.

Abusing notation, we still denote by D, the composition of D, with ks™', the
inverse of the Kodaira-Spencer isomorphism.

Finally, for each sum-symmetric weight A of .J, of depth e, we write

. ®
D,i‘ = 7r,€7,\o(1d®7r>\) oDf W — W ® (wz) S @wt — Wit

for any dominant weight x of .J.
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PROPOSITION 6.2.1. The operator
D:wC Hjg — Hig @0y s — @@ Qg

preserves the canonical decomposition w = @,w,, and the filtration w, induced by
the slope filtration of H éR. That is, for each orbit o € O, and each slope a of the
subcrystal M,,

D((wa)a) C (Wo)a @k -

Proof. It follows from [Moo04, Proposition 2.1.9] that the Gauss-Manin con-
nection V of H}; preserves the subcrystals (M, ),, for each orbit 0 € O and each
slope a of M,. Thus, the statement follows from Part (3) of Proposition 5.2.1. [

Note that, by construction, the operator D is W-linear. Thus, for each 7 € T,
D(w;) Cw, ® Q}s W Proposition 6.2.1 implies the operator D induces a graded
operator D on w = gr(w). That is,

D =gr(D):w— w@ Qg .
Similarly to the construction in Section 6.1, starting from the differential oper-

ator D:w —w®Q }9 s We may construct new p-adic differential operators on the

! .
sheaves w" over the p-ordinary Igusa tower.

Definition 6.2.2. Let £’ be a dominant weight of .J,,. We define the differential
operator

D,y :=Su(D): w"” — w" @ Q.

Abusing notation, we also denote by D,, the composition of D,, with the
inverse ks~ of the Kodaira-Spencer isomorphism. That is,

D, : g"‘, — g“/ QRw?.
For each sum-symmetric weight \" of .J of depth e, we define

/ .
22/ I= T\ O (1d®7‘d’)\1) OQZ/ :

gli/ . gn’ ® (w2)®e N gn’ ®w)\/ N gn’ ®£X . gn’JrX'
6.2.1. Differential operators locally. Fix xy € S(F). Via the canonical

splitting wz, = w,,, constructed in Proposition 4.3.3, we obtain a decomposition

of Dy, into blocks. Proposition 6.2.1 implies that D, is block upper triangular,

with D, ~on the block diagonal. That is, we have a canonical factorization
D:co - Qmo OUzoa

where Uy, is unipotent block upper triangular.
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In the next section (Proposition 6.2.5), we establish the equality D,, = D,
which implies the following decompositions of differential operators.

PROPOSITION 6.2.3. Mantain the above notation.
(1) For any dominant weight x of J,

Diay= P Dy

K'eEM,

(2) For any dominant weight k and sum-symmetric weight X of J, the mor-
phism D,i‘m decomposes as a direct sum of morphisms

! /
D)\ UJ _> wfi [N

forall k&' € My, and N' € M), such that k' + N € M., .
Furthermore, for all k' € M.,

Dy =Dy,

In particular, if X is a positive scalar weight, we have

mco @ —H 0"

K'eEM,

Proof. The first equality follows from the compatibility among the projections
®d__, S, (w)and w®? — W — S, (w).

Note that for each ' € M., |r'| = d is a partition of d = |x|. Similarly, the second
equality follows from the compatibility among the projections

A A

(wz)®e —sw) — wand (gz)®e — W

Finally, to deduce the last equality if suffices to recall that 20ty = {\} when X is
scalar. (|

COROLLARY 6.2.4. Maintain the above notation and assumptions. Let k|, k)
be two dominant weights of J. Assume ky — k1 is sum-symmetric. Then for any
automorphic form f of weight k1, we have

7 DR (f) = D (5 ).
In particular, if k1 is a scalar weight, then

wDE(f) = D).
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6.2.2. The action of the differential operators on u-expansions. In this
section, we describe the action of the differential operators on u-expansions, in
certain cases. This description is crucial for our approach to constructing families
of p-adic automorphic forms.

We fix a point x € Ig(W), and write R for the complete local ring of Ig at x.
In the next section, we explicitly compute the action of the differential operators
on Serre-Tate expansions. By abuse of notation, we will still denote by D (respec-
tively, D, D,., DY) the localization at x of the differential operators D (respectively,
D, D,, DY), i.e., their base change to R.

For convenience, we write £ := wx, L% = ggg, and L% := S,(L), for all k
dominant weights of J, (all regarded as W-representations of .J,).

Abusing notation, we still denote by « the universal Igusa structure over R
composed with the canonical splitting of w, i.e., the R-linear isomorphism

a=0,;: LOIWR — w.
For each dominant weight « of .J,,, we define
" LPRWR — W”

to be the R-linear isomorphism induced by .
We denote by d : R — Q%z W the universal derivation on R.

PROPOSITION 6.2.5. Maintain the above notation.
(1) After identifying w == w via the canonical splitting, we have

(a®@o, idﬂllg/w)*1 oDoa = (idz @wd).

In particular, we deduce D = D.
(2) For any dominant weight k of J,,, we have

(" @0, idgy ) oD, 0a”® = (idpr @y d).
Proof. The statement follows immediately from Proposition 5.3.1. O
Definition 6.2.6. We define
Ei=ks ' od: R — Qp y = L2QwR.
For any integer e > 1, we write Z° := (id(2y0e 1 ®E) 0+ 0E: R — (L2 @y R.
We also write /¢ := o @5 (a?)%°: (LF @y (L2)P¢) @w R — w" @ (w?)®°.

With the new notation, Part (2) of Proposition 6.2.5 implies the following de-
scription of the operators DY..
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PROPOSITION 6.2.7. Maintain the above notation. For any dominant weight
k of J,, and any integer e > 1, we have

(" ®o,idg, ) oDfoa” = (idgs 0w ).

6.3. p-adic differential operators on p-adic forms OMOIT. In this sec-
tion, we introduce the p-adic operators that act on the space of p-adic automor-
phic forms OMOIT. When the ordinary locus is nonempty, this operator agrees
with the p-adic operator conventionally denoted O (see, e.g., [Kat78, Eis12, Eis09,
EFMV 18, dSG16]).

Adapting the conventions of [EFMV18, Section 5.1] (e.g., replacing .J with J,,
and the sheaves w” with w"), we deduce an analogue of [EFMV 18, Theorem 5.1.3]
in our context, stating the existence, for each sum-symmetric weight A of J, of a
(unique) operator ©* on V'~ which interpolates the operators Qé from Definition
6.2.2.

For simplicity, abusing notation in the following, we still write Qé for the map
on global sections

D(S): HO(S,w") — H°(S,w"™),

for any x dominant weight of .J,, and A sum-symmetric weight of .J.
Fix x € Ig(W). As in Section 6.2.2, we denote by R the complete local ring of
Ig at «, and by loc, : V' — R the localization map at x.

Definition 6.3.1. For each sum-symmetric weight A of .J,,, of depth e, we define
0> .= (ZA ®idR) 0Z 'R — (£2)®e RwR—R

with Z¢ as in Definition 6.2.6, and /* := * o7y : (£2)®¢ — £» — W defined
similarly to [EFMV 18, Definition 2.4.2], i.e., as the composition of 0> with the
projections 7y defined by the generalized Young symmetrizer cy. (Recall that the
condition \ sum-symmetric is to ensure that the map #* is non-zero.)

Remark 6.3.2. 1t follows from the definitions, together with Propositions 6.2.3
and 6.2.7, that for any sum-symmetric weight A of .J,,,

A A
0" o \IIH,:E = \IIH+)\7CC © D/-m

for all dominant weights x of J,.
In particular, if A is a sum-symmetric weight of .J, then

A A
0" olocy oW, =loc, oWy 0D,

for all dominant weights x of J,.
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THEOREM 6.3.3. For each sum-symmetric weight \ of J, there exists a unique
operator

or: VN — VN

such that ©* o U, = ¥ Atk © Qé, for all dominant weights k.
The p-adic differential operator O satisfies the properties
(1) OMNVN[R]) C VN[ + ]
(2) loc, o 0* = 6*oloc,.

Proof. The argument of [EFMV 18, Theorem 5.1.3] still applies here. Indeed,
the injectivity of ¥ = ¢, ¥, allows us to define
@|)\Im(\11) =Uo (@522) oyl
AsIm(¥) is dense in VVu(Zr) in order to extend ©* to V V(%) it suffices to check
that the image under ©* of a converging sequence in Im(¥) is still convergent. This

can be checked locally, by passing to u-expansions, in which case the statement
follows from Remark 6.3.2. U

COROLLARY 6.3.4. For each sum-symmetric weight \ of J, the operator ©* :
VN — VN satisfies the equality

O o d, = <I>>\+,.€0D,i‘
for each dominant weight r of J.

Proof. For each dominant weight « of .J, the statement follows from Corollary
6.2.4 and the equalities ©* o ¥,; = W, v 0 D7, for all ' € M,,. O

6.3.1. Congruences among p-adic differential operators on p-adic au-
tomorphic forms OMOIT, via u-expansions. By similarity with the theory
in [EFMV18], one may expect congruences among operators ©* of congruent
weights, at least under some mild/harmless assumption on the weights. In this sec-
tion, we prove that this is indeed the case under some strong restrictions on the
weights (see Definition 6.3.5). Yet, we have no reason to believe them necessary,
and we have hope to improve on them in the future.

In a few cases (see Remark 6.3.8), e.g., when p splits completely in the reflex
field E, our assumptions reduce to the milder ones introduced in [EFMV18]. Note
that in [EFMV 18] p splits completely in the field /', which implies, but is not
equivalent to, p splits completely in E.

Definition 6.3.5. Let X be a dominant weight of J,,, and write A = (A(0))oco,
with A(0) = (A(0)s,,...,A(0)1).

We call A\ simple if it is symmetric and if, for each orbit o, it satisfies the
following conditions:
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(1) If there exists 7 € o satisfying f,(7) € {0,n}, then A(0) = (0,...,0).
(2) If fo(7) #0,n forall 7 € o, then A(0); = (0,...,0), foralli=1,...,s, — 1.

Remark 6.3.6. There exist (infinitely many) non-zero simple weights if and
only if there exists an orbit 0 € O such that f(7) # 0,n for all 7 € o.

Remark 6.3.7. If X is simple, of depth e, then it is a sum-symmetric (dominant)
weight of J. Moreover, the irreducible W-representation g, arises as a quotient of
the direct summand gri®(£2)®¢ of (£2)%¢.

Remark 6.3.8. If p splits completely in the reflex field £, then the p-ordinary
polygon is ordinary and all symmetric weights are simple.

More generally, all symmetric weights are simple if, for each orbit 7 € T, the
p-ordinary Newton polygon v,_(n,f) is either ordinary (i.e., its only slopes are 0
and e) or isoclinic (i.e., it has only one slope).

It follows from the definitions, together with Remark 5.4.10, that for A sim-
ple, the operator #* : R — R can be computed as in [EFMV18, Lemma 5.2.2],
in terms of operators of (1+u)d, : W[u] — W/[u], where u ranges among the
Serre-Tate coordinates corresponding to the Barsotti-Tate groups X" (o, 1, f()’e) in
the cascades, for o as in Part (2) of Definition 6.3.5.

We deduce the following analogue of [EFMV 18, Proposition 5.2.4]. The argu-
ment in [EFMV 18] applies immediately to our setting, under the further assump-
tions that the two symmetric weights A\, \" are simple. (In loc. cit. the weights are
denoted by x,x’.)

PROPOSITION 6.3.9. Let \,\ be two simple weights, and let m > 1 be an
integer. Assume
A=) modp™(p—1)
in 79. If, additionally,
e min(A(7); — A(7)is1, N (7)i = N(7)i—1) >mforall T € T and 1 <i<af
Sor which X(1); = X(7)i41 # N(7); = N (7)i-1, and
o min(\(7),+,N (7),:) >m forall T €T for which \(7),+ # N (T) 4,

then 0> = 60X mod p™+!.

Finally, from the above proposition and Theorem 6.3.3 combined, we deduce
the following analogue of [EFMV 18, Theorem 5.2.6].

THEOREM 6.3.10. Let A\, \' be two simple weights, and let m > 1 be an integer.
Assume
A=)N modp™(p—1)
in 79. If, additionally, both
(1) min(A(7); = A(7)ip1, N (7)i =N (7)iz1) >mforall T €T and 1 <i<af
Jor which X(1); — N(7)ix1 # N (7)i = N (7)i-1, and
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(2) min(A\(7),+,N (7)) >m forall T €T for which \(7) .+ # N (7).,
then ©* = ©* mod p™ ',

Definition 6.3.11. A character T'(Zy,) — Z,, is called a (simple) p-adic charac-
ter if it can be expressed as the p-adic limit of a sequence of characters correspond-
ing to (simple) classical weights.

Proposition 6.3.9 implies the existence of differential operators 6X on R for all
simple p-adic characters , arising by interpolation of the operators #*, for simple
weights A of J,. (Take a sequence of p-adically converging simple weights A; with
|Ai|e — o0 so that (1) and (2) from Theorem 6.3.10 are satisfied.)

Similarly, Theorem 6.3.10 implies the following result.

COROLLARY 6.3.12. For each simple p-adic character X, there exists a p-adic
differential operator

ox: VN — vy~

interpolating the p-adic differential operators ©™. That is, if \; — x p-adically and
|Aifoo — o0 a@s i — oo, then ©X(f) = lim; ©*i(f). The p-adic differential operator
OX satisfies the following properties:

(1) For all p-adic characters x': ©X(VN[X']) C VN[x-x'].

(2) Forall x € Ig(W): loc, 0 ©X = §X oloc,.

7. p-adic families of automorphic forms. In this section, we build on the
material from the previous sections to construct p-adic families of automorphic
forms. As an application of the differential operators from the prior sections, we
obtain the following result:

THEOREM 7.0.1. Suppose there exists an orbit o € O such that f(7) # 0,n for
all T € o (see Remark 6.3.6). Let f be a p-adic automorphic form of weight k, and
let {\, }nen a sequence of simple weights that converges p-adically, and satisfies
the conditions of Theorem 6.3.10. Then the automorphic forms ©*(f) converge
to a p-adic form in VN[ - x|, for x := lim, \,.

Proof. Together, Theorem 6.3.10 and Corollary 6.2.4 imply the automorphic
forms ©(f) converge to a p-adic form in VN[k - x], for x := lim,, \,,. O

For applications to p-adic L-functions and Iwasawa theory, it is often conve-
nient to construct p-adic measures. Recall (e.g., from [Kat78, Section 4.0]) that for
R a p-adic ring, an R-valued p-adic measure on a compact, totally disconnected
topological space Y is a Z,-linear map p from the Z,-algebra C(Y,Z,) of Z,-
valued continuous functions on Y to R. It is equivalent to give an R-linear map
from the R-algebra C(Y,R) of R-valued continuous functions on Y to R, since
C(Y,Zy)®z,R=C(Y,R). Given x € C(Y,R), we write [, xdpu := ju(x).
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Let
W= I z.
{olfo (7)#0,nV 70}
So the rank of W is the number of components at which a simple weight (in the
sense of Definition 6.3.5) can be non-zero.

THEOREM 7.0.2. Let f be a p-adic automorphic form OMOIT. Then there is
a VN «valued p-adic measure [ ¢ on W such that

| Adup =)
w

for all simple positive integer weights .

In particular;, if f is of weight k and {\,}nen is a sequence of positive
weights that converges p-adically and satisfies the conditions of Theorem 6.3.10,
then the automorphic forms ©*(f) converge to a p-adic form in VN|x - k], for
X = lim, \,,.

Proof. Theorem 6.3.10 and Corollary 6.3.4 combined imply that the automor-
phic forms ©*7(f) converge to a p-adic form in V¥ [y], for x := lim,, \,,. The rest
of the statement follows from the definition of a p-adic measure. O

For applications to p-adic L-functions, one often needs to relate certain p-adic
and C-valued automorphic forms. For example, Katz’s construction of p-adic L-
functions for CM fields in [Kat78] includes a comparison of values of p-adic and
C-valued Hilbert modular forms at certain ordinary Hilbert-Blumenthal abelian
varieties, in two distinct ways:

(1) Equate (modulo periods) the values (at ordinary CM Hilbert-Blumenthal
abelian varieties defined over %) of a p-adic and a C** Hilbert modular form ob-
tained by applying a p-adic differential operator (related to the ones in this paper)
and the analogous C'*° Maass-Shimura operator to a holomorphic Hilbert modular
form defined over .

(2) Express a p-adic automorphic form obtained by applying a p-adic differ-
ential operator (analogous to the ones in this paper) to an Eisenstein series defined
over ¥ as a p-adic limit of finite sums of holomorphic (algebraic) Eisenstein series
over 7.

Item (1), in particular, plays a key role in Katz’s construction of p-adic L-functions
for CM fields [Kat78].

Remark 7.0.3. Let f be an algebraic automorphic form arising over &. Then
by extension of scalars, we may view f as an automorphic form over C or as an
automorphic form over OQp‘ Let A be a p-ordinary CM point over Z, together with
a choice of differentials w over &, and let ¢ be such that cw is the canonical basis
over the p-ordinary Igusa tower. So if f is of weight k, f(A,cw) = Q. f(A,w),
for some €2 ,, dependent on c and .
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We expect that a similar argument to the one in [Kat78, Section 5] yields an
analogous comparison to (1) at p-ordinary CM points over & (together with a
basis of differentials) of 7***D(f) and w“*AD27CM( f). As an illustration of a
consequence of this comparison, we provide Corollary 7.0.4, which interpolates
values (modulo periods) at CM points of C'** automorphic forms.

COROLLARY 7.0.4. (Corollary to Theorem 7.0.2) Let f be a weight k alge-

braic automorphic form arising over 9, and let (A,w), ¢, and Q. .. be as in Remark

7.0.3. Then |

QC,H+)\

/W Mg = (w““Dch(f )) (4,0)

Proof. This is a consequence of Theorem 7.0.2, combined with Remark 7.0.3.
O

Remark 7.0.5. As noted in Remark 6.3.8, when p splits completely in F, the
ordinary locus is always nonempty. Thus, [EFMV 18, Theorem 7.2.3], which ob-
tains an explicit family of automorphic forms by applying differential operators to
a family of Eisenstein series on a unitary group G of signature (n,n) and then re-
stricting to a subgroup G’ of G, can be extended to the case where p need not split
completely in F' but merely splits completely in E (replacing the stronger condition
that p splits completely in F'). The approach in the proof of [EFMV 18, Theorem
7.2.3] uses the existence of an ordinary cusp for GG together with the inclusion
of the p-ordinary locus for G’ inside the ordinary locus for G, which only exists
when the ordinary locus for G’ is nonempty. Ideally, we would also like to handle
the case where the ordinary locus for G’ is empty. We expect that the analogue in
our setting of Hida’s ordinary projection (u-ordinary or P-ordinary projection, in
our case) will help enable such as an extension.
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