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p-ADIC FAMILIES OF AUTOMORPHIC FORMS
IN THE μ-ORDINARY SETTING

By E. EISCHEN and E. MANTOVAN

Abstract. We develop a theory of p-adic automorphic forms on unitary groups that allows p-adic 
interpolation in families and holds for all primes p that do not ramify in the reflex field E of the 
associated unitary Shimura variety. If the ordinary locus is nonempty (a condition only met if p splits 
completely in E), we recover Hida’s theory of p-adic automorphic forms, which is defined over the 
ordinary locus. More generally, we work over the μ-ordinary locus, which is open and dense.

By eliminating the splitting condition on p, our framework should allow many results employing 
Hida’s theory to extend to infinitely many more primes. We also provide a construction of p-adic 
families of automorphic forms that uses differential operators constructed in the paper. Our approach
is to adapt the methods of Hida and Katz to the more general μ-ordinary setting, while also building
on papers of each author. Along the way, we encounter some unexpected challenges and subtleties 
that do not arise in the ordinary setting.

1. Introduction. The p-adic theory of modular forms plays a powerful role
in number theory. Its reach includes the proof of Fermat’s Last Theorem, proofs
of instances of the main conjecture of Iwasawa theory, a realization of the Wit-
ten genus in homotopy theory, and constructions of p-adic L-functions. Geometric
developments continue to expand the impact of the p-adic theory, for example in
settings employing automorphic forms on unitary groups.

Shortly after J.-P. Serre defined p-adic modular forms as p-adic limits of
Fourier expansions of classical modular forms, N. Katz gave a geometric refor-
mulation [Ser73, Kat73a]. H. Hida later extended Katz’s geometric framework
to p-adically interpolate automorphic forms on many reductive groups, including
unitary groups [Hid04, Hid05]. This geometric approach realizes p-adic automor-
phic forms inside a vector bundle over (a cover of) the ordinary locus of a Shimura
variety.

The present paper is the first in a projected multi-paper project to extend Hida’s
theory to the μ-ordinary locus of each unitary Shimura variety S , for all rational
primes p that do not ramify in the reflex field E of S . When p does not split com-
pletely in E, the ordinary locus is empty, in which case Hida’s theory concerns
functions on the empty set. On the other hand, for p that does not ramify in E, the
μ-ordinary locus is an open, dense stratum, which is the same as the ordinary locus
when p splits completely, as shown by T.Wedhorn in [Wed99]. Our approach holds
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over the μ-ordinary locus for p unramified and specializes to Hida’s theory when
the ordinary locus is nonempty.

As Hida’s theory has played a substantial role in various applications, it is
natural to try to extend its impact still further by using the μ-ordinary locus to
remove the splitting condition on the prime p. In turn, this should facilitate a
link with Hida’s P -ordinary automorphic forms, with P a certain parabolic, in-
troduced in [Hid98]. It should also be possible to adapt existing constructions of
p-adic L-functions (e.g., [SU14, Hsi11, EW16, EFMV18, Hsi14, EHLS19]) to the
μ-ordinary setting.

Proofs employing p-adic automorphic forms typically require not only a defi-
nition facilitating interpolation in families but also connections with the theory of
C-valued automorphic forms. For example, most applications of Hida’s, Katz’s,
and Serre’s theories employ Hecke operators or p-adic analogues of the Maass-
Shimura differential operators. Thus, beyond defining p-adic automorphic forms
over (a cover of) the μ-ordinary locus (an adaptation of [Hid04, Chapter 8] made
possible by geometric developments of Wedhorn, B. Moonen, W. Goldring, M.-H.
Nicole, and the second named author in [Wed99, Moo04, GN17, Man05]), impor-
tant goals include achieving μ-ordinary analogues of the following results already
established for Hida’s setting:

(1) Realize classical automorphic forms in the space of p-adic automorphic
forms.

(2) Construct p-adic differential operators analogous to the C∞ Maass-
Shimura operators, and explicitly describe their action on local expansions of
p-adic automorphic forms at certain points (e.g., Serre-Tate expansions, analogues
of q-expansions).

(3) Study the action of Hecke operators on p-adic automorphic forms and
cut out a space of (μ-)ordinary automorphic forms via (a μ-ordinary analogue of)
Hida’s ordinary projector, in order to develop a theory of (μ-)ordinary forms and
families; and relate these families to systems of Hecke eigenvalues, as well as to
certain holomorphic automorphic forms.

(4) Develop a notion of overconvergence in the μ-ordinary setting, and con-
struct eigenvarieties parametrizing overconvergent families.

(5) Determine relationships between the classical forms in Item (1) and over-
convergence from Item (4), by studying the action of the Hecke operators from
Item (3) and the action of the differential operators from Item (2).
Some constructions turn out to be more delicate and involved than one might expect
from the ordinary case alone. Consequently, this has become an active research
area.

In the present paper, after defining p-adic automorphic forms over the μ-
ordinary locus (in analogue with Hida’s construction over the ordinary locus), we
accomplish Item (1) under certain conditions on the weights of the classical forms,
thus extending [Hid04, Chapter 8] from the ordinary setting. These conditions are
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forced by the underlying representation theory in the μ-ordinary case, as seen in
Section 4.3. We can obtain stronger results about embeddings locally than globally,
which suffice for many applications.

The present paper also constructs the differential operators from Item (2), thus
extending the constructions from [Eis09, Eis12, Kat78, EFMV18] to the μ-ordinary
setting. We also describe the action of the differential operators on Serre-Tate ex-
pansions of p-adic automorphic forms, but only when the weights meet certain
conditions (a condition we suspect can be considerably lessened with additional
nontrivial, technical work concerning Lubin-Tate group laws). Our explicit de-
scription enables us to establish congruences between p-adic automorphic forms
over the μ-ordinary locus and, as a consequence, construct p-adic families of au-
tomorphic forms (currently only under conditions on the weights), like in, e.g.,
[Kat78, Hid85, Pan05, CP04, Eis15, Eis14, Eis16, EFMV18]. E. de Shalit and E.
Goren have studied similar differential operators for unitary groups of signature
(2,1) for quadratic imaginary fields [dSG16].

In the sequel, we plan to build on the framework developed in the present
paper to study aspects of (3) and (5) in the case of families, including non-classical
weights and the relationship with systems of Hecke eigenvalues. One anticipated
application will be a construction of new p-adic L-functions for unitary Shimura
varieties with empty ordinary locus. This work will also build on Hida’s work on
P -ordinary automorphic forms [Hid98].

Some of (4) and (5) has been achieved by S. Bijakowski, V. Pilloni, and B.
Stroh in [BPS16, Bij16] for classical weights (and not for families), via a different
approach from the one in the present paper (and not involving Igusa towers, a
necessary ingredient for interpolation in families in our project). After proving the
existence of canonical subgroups on a neighborhood of the μ-ordinary locus of the
associated Shimura variety and then adapting the analytic continuation methods
of K. Buzzard and P. Kassaei [Buz03, Kas06, Kas09], Bijakowski, Pilloni, and
Stroh develop a notion of overconvergence naturally extending the one from the
ordinary setting. Then they prove overconvergent forms of small slope are classical,
extending Coleman’s and Hida’s classicality results [Hid86, Col96, Col97] that
followed F. Gouvêa and B. Mazur’s conjectures [GM92].

In the few weeks after the first version of this paper appeared on the arXiv,
three additional papers addressing some of the above goals have been completed.
In [Her17], V. Hernandez constructs eigenvarieties when the signature is (2,1),
which he plans to extend to other signatures. In [BR19], R. Brasca and G. Rosso ex-
tend Hida theory to Λ-adic cuspidal μ-ordinary forms (which appear to be closely
related to Hida’s P -ordinary forms), for Λ a twisted Iwasawa algebra. Extending
[dSG16], de Shalit and Goren recently completed a paper constructing differential
operators over a μ-ordinary Igusa tower for unitary groups of arbitrary signature for
quadratic imaginary extensions of Q [dSG19]. While their approach differs from
ours (and, unlike ours, does not employ a replacement for the unit root submodule
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that appears to play a key role in the constructions in [Kat78, EFMV18, Eis12]),
they expect their differential operators to coincide with ours (at least for quadratic
imaginary extension of Q, the setting in which they work, whereas we also consider
arbitrary CM fields). They also discuss analytic continuation beyond the μ-ordinary
strata, as well as the action on certain Fourier-Jacobi expansions.

1.1. Main results and organization of the paper. Section 2 summarizes
key information about unitary Shimura varieties, the μ-ordinary locus, automorphic
forms, and representation theory. The seemingly bland observations in Section 2.4
about the possibility that representations occurring in the restrictions of irreducible
representations might have multiplicity greater than 1 play a major role in Section
4. The root of the issue is that the trivialization of the sheaf of differentials of each
ordinary abelian variety that plays a key role in the ordinary setting is replaced
in the μ-ordinary setting by a trivialization of the associated graded module of the
sheaf of differentials of each μ-ordinary abelian variety (with the associated graded
module coming from the slope filtration at each μ-ordinary point), or equivalently,
the action of a general linear group on the ordinary Igusa tower gets replaced by
the action of its parabolic subgroup preserving the slope filtration. For notational
convenience, we exclude some instances of slope 1/2 in this paper. We expect no
mathematical problems handling that slope, but it would involve still more notation,
since it involves working with unitary groups that are not isomorphic to copies of
general linear groups.

In Section 3, we construct the μ-ordinary Igusa tower as a profinite étale cover
of the formal μ-ordinary locus. While Hida’s ordinary Igusa tower employs the
structure of the p-torsion of the universal abelian variety, our analogue in the μ-
ordinary case uses the structure of the associated graded module coming from the
slope filtration on the p-torsion. Section 3 concludes with a study of local expan-
sions at points of the μ-ordinary Igusa tower, which is necessary for proving the
congruences in Proposition 1.1.1 below.

Section 4 introduces p-adic automorphic forms over the μ-ordinary locus and
Igusa tower. When the ordinary locus is nonempty, Hida’s definitions and ours co-
incide. The introduction of filtrations in the μ-ordinary case complicates some as-
pects of the theory. One of the key features of Hida’s theory, which makes many ap-
plications possible, is the embedding of the spaces of classical automorphic forms
into the line bundle of p-adic automorphic forms over the ordinary Igusa tower.
Instead, there is a realization of appropriate subspaces—but, if the ordinary locus
is empty, not the whole space—of automorphic forms over the μ-ordinary locus
in the space V of p-adic automorphic forms over the Igusa tower, as explained in
Section 4.3. Section 4 concludes with results about congruences:

PROPOSITION 1.1.1. (Rough form of Proposition 4.4.3 and Corollary 4.4.5)
In analogue with the ordinary q-expansion principle, p-adic automorphic forms in
the μ-ordinary setting are determined by their Serre-Tate expansions. For forms
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f1,f2 of weights meeting appropriate conditions, f1 ≡ f2 mod pn if and only if
(sufficiently many of) the Serre-Tate expansions of their images in V are congruent
modpn.

In Sections 5 and 6, we construct the aforementioned differential operators.
Our construction, which employs the Gauss-Manin connection, requires an appro-
priate replacement for the unit root splitting from [Kat73b] that Katz employs in
his construction of differential operators in [Kat78] (as the more general μ-ordinary
setting forces us to work with a module that is larger than just the unit root piece).
In the ordinary setting (e.g., [Kat78, Pan05, Eis15, EFMV18]), explicit description
of the action of differential operators on q-expansions or Serre-Tate expansions
allows one to construct p-adic families of automorphic forms. In the μ-ordinary
setting, we expect the same should be true for Serre-Tate expansions. We achieve
a partial description of the action, and consequently families in Section 7, under
certain conditions on the weights.

THEOREM 1.1.2. (Rough form of Theorem 6.3.10) For each positive dominant
weight λ, there is a p-adic differential operator Θλ on V . At least under certain
conditions on dominant weights λ and λ′ (see Definition 6.3.5), if f is an automor-
phic form, then Θλ(f)≡Θλ′

(f) mod pn whenever λ≡ λ′ mod pn−1(p−1).

The computation of the action is substantially more challenging in the μ-
ordinary (with empty ordinary locus) setting, due to challenges coming from
Lubin-Tate formal group laws, as seen in Section 5.4.1.

1.2. Challenges arising in the μ-ordinary (but not ordinary) setting.
While some aspects of Hida’s theory carry over directly to the μ-ordinary setting,
obstacles arise for other aspects. First, the replacement of the action of a general
linear group on the ordinary Igusa tower by the action of its parabolic subgroup
preserving the slope filtration leads to issues with multiplicities of representations,
in turn forcing conditions on the weights of the automorphic forms embedding
into V . As seen in Section 4.3, restricting to multiplicity-free weights does not
by itself yield an embedding. In fact, the sheaf of classical automorphic forms is
not in general necessarily canonically isomorphic to the associate graded sheaf
with which we must work over the μ-ordinary Igusa tower. By working locally,
though, we are able to obtain results sufficiently strong for our applications.
Second, the construction of the differential operators in Sections 5 and 6 requires
intricate work (primarily by carefully extending [Kat79, Moo04]), especially for
the Kodaira-Spencer morphism and an appropriate replacement for the unit root
splitting, to accommodate the structure from the slope filtrations. Furthermore,
as noted above, the crucial description of the action of those operators requires
involved formal group computations. Finally, the argument used in [EFMV18,
Section 7] for constructing explicit families of automorphic forms on a product of
unitary groups G′ embedded in a larger unitary group whose associated Shimura
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variety has nonempty ordinary locus falls apart whenever the ordinary locus of the
Shimura variety associated to G′ is empty.
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2. Preliminaries and key background information.

2.1. Notation and conventions. Let p be an odd prime. Denote by K the
maximal unramified extension of Qp in an algebraic closure Q̄p of Qp, W the
completion of the ring of integers of K, F the residue field of W, and W (F) the Witt
vectors of F. We identify W with W (F). For any integer m≥ 1, we write Wm =

W/pmW, and for S a W-scheme, we write Sm for the Wm-scheme S ×SpecW

SpecWm.
Let F be a quadratic imaginary extension of a totally real field F0 of degree d

over Q. We write T for the set of complex embeddings of F . We write T0 for the set
of real embeddings of F0, as well as for a set containing a choice of an embedding
in T above τ for each τ ∈ T0 (i.e., for the set denoted Σ in [EFMV18]). We fix an
isomorphism ι : C→ Q̄p. Via ι, we view D := Q̄∩O

Q̄p
⊂ Q̄ as a subring of C and

a subring of Q̄p. Via ι, we also define a bijection τ 	→ ι ◦ τ between the complex
embeddings τ : F → C and the p-adic embeddings of F into Q̄p.

Assume p is unramified in F . Then all p-adic embeddings of F into Q̄p have
image in K, and thus we can identify the set T with the set of embeddings of OF

into W, i.e., with the set Hom(OF ,F). Let σ denote the Frobenius automorphism
on F. (Abusing notation, σ will also denote Frobenius on W and K.) By compo-
sition, the identification T = Hom(OF ,F) defines an action of σ on T . For each
τ ∈ T we write oτ for the orbit of τ under σ. We write O for the set of σ-orbits o
in T . Given a σ-orbit o, we let eo denote the cardinality of o.

Note that there is a natural bijection between O and the set of primes of F

above p. For each prime u|p, we write ou for the orbit associated with u, and uo
for the prime associated with an orbit o ∈O. For any o ∈O, we write o∗ := ou∗ if
o= ou, where ∗ denotes the image under complex conjugation. Finally, we define
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O0 to be the subset of O corresponding to a choice of a prime u|v for each v|p in
F0. Thus, for O∗

0 := {o∗|o ∈ O0}, we have O = O0 ∪O∗
0 (possibly not disjoint).

Note that O0 := {στ |τ ∈ T0}.

2.2. Shimura varieties. Following [Kot92, Section 5], we introduce the
Shimura data and varieties with which we work. Let B be a simple Q-algebra with
center F . Recall from Section 2.1 that p is unramified in F . We furthermore require
that B splits at each prime of F above p. Let r be the rank of B over F , and let OB

be a Z(p)-order in B whose p-adic completion OB,p is a maximal order in BQp and
such that OB,p is identified with Mr(OF,p). Let ∗ be a positive involution on B over
Q preserving OB . Let (V,〈,〉) consist of a finitely generated left B-module V and a
Q-valued hermitian form 〈,〉 on V , and let G be the automorphism group of (V,〈,〉)
(i.e., a general unitary group). We also denote by ∗ the involution on EndB(V )

coming from 〈,〉. Let h :C→EndB(VR) be an R-algebra homomorphism such that
h(z̄) = h(z)∗ for all z ∈C and such that (v,w)→ 〈v,h(i)w〉 is positive definite on
VR.

As in [Kot92], let Sh(G,X) denote the unitary Shimura variety associated
to the data D = (B,V,∗,〈,〉,h), and let E = E(G,X) denote the reflex field of
Sh(G,X). We also assume that p is a prime of good reduction for Sh(G,X), i.e.,
that the level K of Sh(G,X) is of the form K = K(p)Kp where K(p) ⊂G(Ap

f ) is a
neat, open compact subgroup, and Kp is hyperspecial maximal compact. We write
Sh for the integral model of Sh(G,X) over Zp⊗OE .

Let ιE : E → Q̄p denote the restriction of ι to E ⊂ C. Our assumptions imply
that ιE factors through K, mapping OE to W. We write p for the associated prime
above p of E, OE,p for the localization of OE at p, OEp for the completion of OE

at p, and κ(p) for its residue field. Via ιE , we regard OE,p ⊂W and κ(p) ⊂ F, and
identify OEp =W (κ(p)). Abusing notation, we still denote by Sh the base change
of Sh to W, and write sh for its special fiber.

2.3. Automorphic weights. Following [Kot92, Section 4], we write VC =

V1 ⊕ V2, where V1 = {v ∈ VC | h(z)v = zv for all z ∈ C} and V2 = {v ∈ VC |
h(z)v = z̄v for all z ∈C}. Note that for i= 1,2, Vi decomposes as

Vi =⊕τ∈T Vi,τ ,(1)

and VC decomposes as

VC =⊕τ∈T Vτ ,(2)

with

Vτ := V1,τ ⊕V2,τ .(3)
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Let J be the Levi subgroup of G0
C

that preserves this decomposition of VC,
i.e., the Levi subgroup determined by the signature (a+τ ,a

−
τ ) of G0

C
at each τ |F0 for

each τ ∈ T . Let B be a Borel subgroup of J , let T be a maximal torus contained
in B, and write N for the unipotent radical of B. (Since B is widely used in the
literature to denote a Borel subgroup, as well as to denote a division algebra in
the Shimura data, we will use B for both of these. Going forward, however, it
will be clear from context which of these B denotes, and indeed, it will soon be
the case that we will only need to refer to the Borel and not the division algebra.)
Denote by Bop the opposite Borel with respect to (B,T ). We write T =

∏
τ∈T Tτ ,

B =
∏

τ∈T Bτ , and Bop =
∏

τ∈T B
op
τ . A choice of basis for VC that is compatible

with the decompositions (1)–(3) identifies J with
∏

τ∈T GLa+τ
. Such a basis can be

chosen so that Bτ is identified with the subgroup of upper triangular matrices in
GLa+τ

, Bop
τ with the subgroup of lower triangular matrices in GLa+τ

, and Tτ with

Ta+τ
:= G

a+τ
m , which is in turn identified with the subgroup of diagonal matrices in

∏
τ∈T GLa+τ

. Via ι, we can define J p-adically over OEp . Note that all our groups
are split over OEp .

Let X∗(T ) denote the group of characters on T . For any module M on which
T acts, we denote by M [κ] the κ-eigenspace for the action of T on the module M .

For the remainder of this subsection, we briefly recall key facts about algebraic
representations of general linear groups and their relationships with certain charac-
ters on tori, following [EFMV18, Section 2.4], [Hid04, Sections 5.1.3 and 8.1.2],
[Jan03, Part II, Chapter 2], and [FH91, Sections 4.1 and 15.3]. Let

X(T )+ =

{
(
κ1,τ , . . . ,κa+τ ,τ

)

τ∈T ∈
∏

τ∈T
Z
a+τ ,τ | κi,τ ≥ κi+1,τ for all i

}

.

We identify X(T )+ with the set of dominant weights in the group X∗(T ) of char-
acters of T ⊂B, given by

∏

τ∈T
diag

(
t1,τ , . . . , ta+τ ,τ

)
	−→

∏

τ∈T

∏

1≤i≤a+τ

t
κi,τ

i,τ .

(N.B. Such characters are also characters on B ⊃ T , via B/N ∼= T .) We write
κ both for an element of X(T )+ and for the associated character in X∗(T ). For
each integer k, we write k for κ such that κi,τ = k for all i and all τ . We say

that κ is positive if κi,τ ≥ 0 for all i. For positive κ, we define dκ,τ :=
∑a+τ

i=1κi,τ
and |κ| := dκ :=

∑
τ∈T dκ,τ . (Note that in [EFMV18], we denote dκ,τ by d+κ,τ or,

equivalently, d−κ,τ ∗ .) Similarly to [EFMV18, Definitions 2.4.3 and 2.4.4], we call
a weight κ =

(
κ1,τ , . . . ,κa+τ ,τ

)

τ∈T ∈ X(T )+ sum-symmetric if κ is positive and
dκ,τ = dκ,τ∗ for all τ ∈ T . In this case, we call eκ := dκ/2 the depth of κ (or of
the associated representation ρκ introduced below). If we furthermore have that
κi,τ = κi,τ ∗ for all 1 ≤ i ≤ min(a+τ ,a

+
τ ∗), then we call κ symmetric. Note that this

is the same as the condition on the weights occurring in [Shi00, Theorem 12.7].



p-ADIC FAMILIES IN THE μ-ORDINARY SETTING 9

Following the conventions of [EFMV18, Section 2.4.2], let R be a Zp-algebra
or a field of characteristic 0, and for any dominant weight κ, let Sκ denote the
κ-Schur functor on the category of R-modules. (A helpful reference on Schur
functors is [FH91, Section 15.3].) We denote by ρκ = ρκ,R the representation
Sκ(⊕τ∈T (Ra+τ )) of

∏
τ∈T GLa+τ

. If the ring R is, furthermore, a field of character-
istic 0 (or of sufficiently large characteristic p), the algebraic representations ρκ =

ρκ,F of
∏

τ∈T GLa+τ
are irreducible and in bijection with the dominant weights κ

(see, e.g., [Jan03, Chapter II.2]); and in the following, we refer to ρκ as the irre-
ducible representation of highest weight κ. When R is such a field, the module
ρκ,O denotes our choice of an O-lattice inside the irreducible representation ρκ,R,
where O denotes the ring of integers in R.

Given a locally free sheaf of modules F and κ a dominant weight, we define

Fκ := Sκ(F).

Following the conventions of [EFMV18, Eis12, CEF+16], we also sometimes write
(·)ρκ for Sκ(·), and |F| for the highest exterior power of F .

Note that, more generally, we can replace T with any torus in a product of fi-
nite rank general linear groups and replace X(T )+ with ordered tuples on this torus
and use Schur functors to construct representations in this context. See [EFMV18,
Section 2.4.2] for a summary of the construction. For example, we can consider
Ta+τ

(respectively, Ta−τ
) in GLa+τ

(respectively, GLa−τ
). If κτ is a positive domi-

nant weight (ordered tuple, in this case) and R is as above, of sufficiently large
characteristic or of characteristic 0, then the κτ -Schur functor on the category of
R-modules is Sκτ (V ) := V ⊗dκ,τ · cκ,τ , where cκ,τ is the Young symmetrizer as-
sociated to κτ . Similarly to [EFMV18, Section 2.4.3], for each positive dominant
weight κ in X(T )+, by applying the generalized Young symmetrizer, we obtain
a projection πκ : V ⊗dκ → ρκ, for V the standard representation ⊕τ∈T (Ra+τ ) of
∏

τ GLa+τ
. If κ is sum-symmetric of depth eκ, then the representation ρκ is a quo-

tient of (⊗τ∈T Ra+τ )⊗eκ .
Following [EFMV18, Definition 2.4.3], which is inspired by [Hid04,

Section 8.1.2], we write ∪τ{b∨1,τ , . . . , b∨a+τ ,τ} for the dual basis to the stan-

dard basis ∪τ{b1,τ , . . . , ba+τ ,τ} of the standard representation ⊕τ∈T (Ra+τ ) of
∏

τ∈T GLa+τ
, and define 	κ to be the basis of HomBop(ρκ,κ) such that 	κ ◦πκ =

∏
τ∈T
∏a+τ

i=1(κi,τ !)−1 · ⊗τ∈T ⊗a+τ
i=1 (b∨τ,i)

⊗κi,τ · cκ. We define 	̃κcan := 	κ ◦ πκ.
By [EFMV18, Lemma 2.4.6], if κ is a positive dominant weight and κ′ is
a sum-symmetric weight, then πκκ′ factors through the map πκ ⊗ πκ′ , and
	̃κcan ⊗ 	̃κ

′
can = 	̃κκ

′
can .

2.4. Weights and representations. Let P denote a parabolic subgroup of
J containing B. We denote by U the unipotent radical of P , and we write J ′ =P/U

for the Levi subgroup of P .
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For any irreducible algebraic representation ρ of J over a field of characteristic
0 (or of sufficiently large characteristic), the restriction of ρ to P admits a U -stable
filtration with irreducible U -invariant subquotients. Furthermore, after choosing a
splitting J ′ ⊂ P , the associated graded representation gr(ρ|P ) of J ′ and ρ|J ′ are
canonically identified. We fix a splitting J ′ ⊂ P , and write B′ = B ∩ J ′, N ′ =
N ∩J ′, and T ′ = T ∩J ′. Then B′ is a Borel subgroup of J ′ with N ′ its unipotent
radical and T ′ = T a maximal torus of J ′.

Definition 2.4.1. Given dominant weights κ of J and κ′ of J ′, we say that
κ′ divides κ (and write κ′|κ) if the irreducible representation 
κ′ of J ′, of highest
weight κ′, arises as one of the irreducible constituents of ρκ|J ′ .

For each dominant weight κ of J , we define Mκ := {κ′ | κ′ divides κ}, re-
garded as a multi-set (so that we keep track of multiplicities). Then

ρκ|J ′ =
⊕

κ′∈Mκ


κ′ .(4)

Note that κσ | κ, for any permutation σ in the Weyl group of J such that κσ is
dominant for J ′. In particular, for any dominant weight κ of J , κ is also a dominant
weight of J ′ and κ | κ. Note that if κ is a scalar weight of J , then the only dominant
weight of J ′ dividing κ is κ itself, i.e., Mκ = {κ} and ρκ|J ′ = 
κ.

2.4.1. Littlewood-Richardson rule. In general, the multiplicity cκ,κ′ of
the irreducible constituent 
κ′ in ρκ|J ′ can be explicitly computed using the
Littlewood-Richardson rule ([Mac15, Rule (9.2) in Section 9] or [FH91, Equation
(A.8)]).

Definition 2.4.2. We say that a dominant weight κ of J is multiplicity-free
(with respect to the Levi subgroup J ′) if cκ,κ′ = 1 for all κ′|κ.

We observe that as κ varies among the dominant weights of J , the sets Mκ are
not necessarily disjoint.

If |κ1| �= |κ2|, then by considering the central action of the scalars, we see that
κ1 and κ2 are coprime, i.e., Mκ1 ∩Mκ2 = Ø. More generally, given any two dom-
inant weights κ1,κ2 of J , the Littlewood-Richardson rule allows one to compute
the intersection Mκ1 ∩Mκ2 .

Remark 2.4.3. Assume J ′ ⊂ J is a split Levi subgroup, defined over OEp . Then
the Schur projectors and Young symmetrizers from Section 2.3 are compatible with
the decomposition in (4), in the sense that Sκ(V )|J ′ = ⊕κ′∈Mκ

Sκ′(V ), for V the
standard representation, and R=Ep.

Furthermore, our choices of OEp-lattices of the irreducible algebraic represen-
tations ρκ, and 
κ′ , for κ,κ′ dominant weights of J,J ′, are also compatible with
the decomposition in (4), in the sense that the Schur projectors induce a morphism
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ρκ,OEp
|J ′ ↪→⊕κ′∈Mκ


κ′,OEp
, which is an isomorphism if p is sufficiently large (or

after inverting p).

2.5. Automorphic sheaves. Let A denote a D-enriched abelian scheme
(i.e., an abelian scheme with additional structures defined by the Shimura data D)
over a W-scheme S. (For example, the abelian scheme A/S could be the universal
abelian scheme A over Sh.) Then the Dieudonné crystal of A decomposes accord-
ing to the embeddings τ ∈ T and Morita equivalence (via OB⊗OF ,τ W�Mr(W))
as

H1
dR(A) :=H1

dR(A/S) =⊕τ∈T M
⊕r
τ .

Similarly, the Hodge filtration ω(A) := Fil1(H1
dR(A)) decomposes as

ω(A) =⊕τ∈T ω
⊕r
τ .

Note that Mτ and ωτ are locally free. Note also that, for each τ ∈ T , the rank of
Mτ is independent of τ , while the rank of ωτ depends on τ . More precisely, if
(a+τ ,a

−
τ ) denotes the signature of G at τ|F0

, then we have rk(Mτ ) = n = a+τ +a−τ
and rk(ωτ ) = a+τ . Following the notation in [Moo04], we write f(τ) = rk(ωτ ).
Observe that f(τ ∗) = a+τ ∗ = a−τ .

2.5.1. Classical automorphic forms. Similarly to [EFMV18, Section 2.3]
and [CEF+16, Section 3.2], we now define classical automorphic forms. First, we
define a sheaf

EA/S :=
∏

τ

Isom
(
ωτ ,Of(τ)

S,τ

)
=: IsomOB,(p)⊗OS

(
ω,Og

S

)
,

where OB,(p) is the localization of OB at (p) and g = rk(ω). When it is clear from
context, we drop the subscript A/S and just write E . Note that there is a left action

of J on EA/S coming from the action, for each τ ∈ T , of GLa+τ
on Isom(ωτ ,Of(τ)

S,τ ).
Following [EFMV18, Section 2.3], for any representation (ρ,Mρ) of J , we define
the sheaf

Eρ := Eρ := E ×J Mρ

so that for each open immersion SpecR ↪→ S, Eρ(R) := (E(R) × Mρ ⊗
R)/(	,m)∼ (g	,ρ(tg−1)m).

An automorphic form (defined over R) of weight ρ is then a global section of
Eρ on ShR. An automorphic form of weight ρ and level K is a global section of
Eρ on ShR with K the level of ShR. We exclude the case in which F0 = Q with
a+τ = a−τ = 1. (As far as this paper’s goals are concerned, nothing is lost from
this exclusion. The interesting cases in this paper concern unitary groups of higher
rank.) Then by the Koecher principle (stated in great generality in [Lan16, Theorem
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2.5], with additional details of interest in our setting in [Lan16, Theorem 2.3 and
Section 10]), our space of automorphic forms is the same as the space we would
have obtained by instead working over a compactification of our moduli space.

It follows from the definitions that for κ a dominant weight of J , and ρ = ρκ
our choice of W (κ(p))-lattice of the irreducible algebraic representation of J of
highest weight κ, the sheaves ωκ and Eρ are canonically identified. In the follow-
ing, we prefer the notation ωκ to Eρ.

2.6. The μ-ordinary locus. We maintain the notation of Section 2.5.
Let A denote a D-enriched abelian scheme (i.e., an abelian scheme with ad-

ditional structures defined by the data D, e.g., PEL structure) over a smooth F-
scheme S (e.g., the universal abelian scheme A over sh). We write Φ for the Frobe-
nius map on the filtered Dieudonné crystal of A,

ω(A) =⊕τ∈T ω
⊕r
τ ⊂H1

dR(A) =⊕τ∈T M
⊕r
τ .

For each τ ∈ T , Φ induces a map Φτ : Mτ →Mτ◦σ . In particular, we deduce
that, for eτ the cardinality of oτ , the pair (Mτ ,Φ

eτ
τ ) is a Dieudonné crystal, whose

isogeny class depends only on the orbit oτ of τ . In the following, we write ντ (or
νo for o= oτ ) for the Newton polygon of (Mτ ,Φ

eτ
τ ).

Remark 2.6.1. The above description reduces the computation of the Newton
polygon of the Frobenius map Φ on H1

dR(A) to that of the polygons νo, for o ∈O.
By abuse of notation, in the following, we refer to the slopes of νo as the slopes at
o of (H1

dR(A),Φ).

The notion of μ-ordinariness is originally due to Wedhorn in [Wed99]. The
following definition is adapted to the above notation, and follows [Moo04, Section
1.2.5]. (In loc. cit. the μ-ordinary Newton polygon νo(n, f) is denoted by Ord(d, f),
for n= d.)

Definition 2.6.2. For each σ-orbit o in O, we define f = fo : o → {1, . . . ,n}
by f(τ) := rk(ωτ ), for τ ∈ o. (The function f is called the multiplicative type.) We
define the μ-ordinary Newton polygon νo(n, f) associated with the triple (o,n, f) to
be the polygon with slopes

aoj := #
{
τ ∈ o | f(τ)> n− j

}
,

for j = 1, . . . ,n.

Definition 2.6.3. A D-enriched abelian variety A over a field containing F is
called μ-ordinary if for each τ ∈ T the associated Newton polygon ντ agrees with
the μ-ordinary polygon νoτ (n, f).
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We say that a point x of sh is μ-ordinary if the associated D-enriched
abelian scheme Ax is μ-ordinary. In the following, we denote by shμ-ord ⊆ sh the
μ-ordinary locus of sh.

In [Wed99], Wedhorn proves that the μ-ordinary locus is the largest nonempty
Newton stratum of sh.

THEOREM 2.6.4. [Wed99, (1.6.2) Density Theorem] The Newton stratum
shμ-ord is open and dense in sh. In particular, it is nonempty.

Subsequently, in [Moo04], Moonen gives an explicit construction of a
D-enriched Barsotti-Tate group X = X

μ-ord(D)/κ(p) in terms of the triples
{(oτ ,n, f)}τ∈T , and he proves that the μ-ordinary locus is also the largest Ekedahl-
Oort stratum of sh, and the central leaf associated with X

μ-ord(D)/F (recall
κ(p) ⊂ F). That is, he proves the following result.

THEOREM 2.6.5. [Moo04, Theorem 3.2.7] Let A be a D-enriched abelian
variety over an algebraically closed field containing F. Then the following are
equivalent:

• A is μ-ordinary (equivalently, A[p∞] is isogenous to X as D-enriched
Barsotti-Tate groups).

• A[p] is isomorphic to X
μ-ord(D)[p] as D-enriched truncated Barsotti-Tate

groups of level 1.
• A[p∞] is isomorphic to X

μ-ord(D) as D-enriched Barsotti-Tate groups.

2.7. The μ-ordinary Hasse invariant. Building on Moonen’s work, in
[GN17] Goldring and Nicole construct a μ-ordinary Hasse invariant.

Let π : A→ Sh denote the universal abelian scheme over Sh, and let |ω| denote
the Hodge line bundle over Sh, i.e., |ω|= ∧topπ∗Ω1

A/Sh, where ∧top denotes the top
exterior power.

THEOREM 2.7.1. [GN17, Theorem 1.1] There exists an explicit positive inte-
ger m0 ≥ 1, and a section

Eμ ∈H0(sh, |ω|m0
)

such that:
(1) The non-vanishing locus of Eμ is the μ-ordinary locus of sh.
(2) The construction of Eμ is compatible with varying the level K(p).
(3) The section Eμ extends to the minimal compactification of sh.
(4) A power of Eμ lifts to characteristic zero.

By construction [GN17, Definition 3.5], m0 = lcmτ∈T (peτ −1). In the follow-
ing, for convenience, we replace Eμ with one of its powers which lifts to charac-
teristic zero. We choose Eμ ∈H0(Shmin, |ω|m), for some m≥ 1 a multiple of m0,
where Shmin denotes the minimal compactification of Sh.
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Definition 2.7.2. We define the μ-ordinary locus Shμ-ord
/W (respectively,

Shmin,μ-ord
/W ) as the locus in Sh/W (respectively, Shmin

/W) where Eμ is invertible.

Similarly to the treatment of the ordinary case in [Hid04, Section 8.1], we
define the formal scheme Shμ-ord

∞ over W as the injective limit of the schemes
Shμ-ord

m /Wm. Note that Shμ-ord
∞ is the formal completion of Shμ-ord along its spe-

cial fiber modulo p, Shμ-ord
1 = shμ-ord.

We observe that, by construction, the sheaf |ω|m0 is trivial on the F-scheme
shμ-ord. We normalize Eμ so that on shμ-ord

Eμ ≡ 1 mod p,

and we call Eμ the μ-ordinary Hasse invariant. In the following, for simplicity, we
set S := Shμ-ord

∞ and S := shμ-ord.

2.8. The μ-ordinary Barsotti-Tate group. In this section, we briefly
recall the construction of the μ-ordinary D-enriched Barsotti-Tate group
X= X

μ-ord(D)/κ(p) from Moonen [Moo04, Section 1.2.3]
Let Nμ-ord(D) denote the Dieudonné crystal of X. The underlying W-module

Nμ-ord(D) decomposes according to the embeddings τ ∈ T . Grouping together the
submodules corresponding to τ ∈ o, for each orbit o in O, we obtain a decomposi-
tion in subcrystals

Nμ-ord(D) =⊕o∈ON(o,n, f)⊕r.

We write the associated decomposition of Xμ-ord(D) as

X
μ-ord(D) =⊕o∈OX(o,n, f)

⊕r.

Note that the D-enriched structure on Nμ-ord(D) (respectively, Xμ-ord(D)) in-
duces a structure of OF,uo-crystals on N(o,n, f) (respectively, of OF,uo-modules
on X(o,n, f)).

Fix an orbit o ∈O. Following the conventions of Section 2.1, let eo denote the
cardinality of o. Let 0 ≤ ao1 ≤ ·· · ≤ aon ≤ e= eo denote the slopes of the μ-ordinary
polygon νo(f,n) introduced in Definition 2.6.2. We write 0≤ λ0 < · · ·<λs, s= so,
for the (distinct) integers occurring as slopes aoj for some j, 1 ≤ j ≤ n. For each
t= 0, . . . ,s, we denote by mt =moτ

t the multiplicity of the slope λt, i.e.,

mt := #
{
j ∈ {1, . . . ,n} | aoj = λt

}
.

Note that
∑s

0mt = n.

Definition 2.8.1. The crystal N(o,n, f) is defined as

N(o,n, f) :=N
(
λ0
)⊕m0

⊕
· · ·
⊕

N
(
λs

)⊕ms ,
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where for each t= 0, . . . ,s, the crystal N(λt) is the simple isoclinic OF,uo-crystal
of slope λs, and height (i.e., rank) e. We write the associated decomposition of
X(o,n, f) into isoclinic components as

X(o,n, f) := X
(
λ0
)⊕m0

⊕
· · ·
⊕

X
(
λs

)⊕ms .

We observe that, for o �= o∗, the polarization of X induces an isomorphism of
OF,uo-crystals between N(o,n, f) and the dual of N(o∗,n, f). In particular, λ is a
slope of N(o,n, f) with multiplicity m if and only if 1−λ is a slope of N(o∗,n, f)
with the same multiplicity. For o= o∗, the polarization of X induces a polarization
on N(o,n, f), i.e., N(o,n, f) inherits the structure of a (OF,uo ,∗)-crystal. In partic-
ular, λ is a slope of N(o,n, f) with multiplicity m if and only if 1−λ is also a slope
with the same multiplicity.

In [Moo04, Definition 2.3.10], Moonen defines a canonical lifting X
can =

X
can(D) of X over W (κ(p)). Concretely, Xcan :=⊕oX(o,n, f)

can where

X(o,n, f)can :=
(
X

can(λ0
)⊕m0

⊕
· · ·
⊕

X
can(⊕λs

)ms
)⊕r

and, for each t= 0, . . . ,s, Xcan(λt) is the unique lifting of the OF,u-module X(λt)

[Moo04, Corollary 2.1.5]. The D-enriched Barsotti-Tate group X
can is character-

ized by the following property.

PROPOSITION 2.8.2. [Moo04, Proposition 2.3.12] The canonical lifting X
can

is the unique lifting of X with the property that (geometrically) all endomorphisms
lift.

2.9. The μ-ordinary Levi subgroup. In this section, we introduce a Levi
subgroup Jμ of G0/Qp associated with the μ-ordinary polygon which plays a cru-
cial role in our results. As highlighted in Remark 2.9.3 below, the group Jμ arises
as a subgroup of the Levi subgroup J introduced in Section 2.3.

Definition 2.9.1. We define Jμ to be the algebraic group over Qp of automor-
phisms of the D-enriched isocrystal Nμ-ord(D)[ 1

p ].
In particular,

Jμ(Qp) = Aut0D(X/F),

the group of non-zero quasi-self-isogenies of the D-enriched Barsotti-Tate group
X/F.

Remark 2.9.2. The algebraic group Jμ arises as a Levi subgroup of G0/Qp.
More precisely, it is the Levi subgroup associated with the partitions of n defined by
the multiplicities {mτ

s , . . . ,m
τ
0}τ∈T of the slopes of Nμ-ord(D) (here, mτ

t :=moτ
t ,

s := soτ ).
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More explicitly, the decomposition of Nμ-ord(D) as a sum of the subcrystals
N(o,n, f), o ∈O, induces the decomposition

Jμ =
∏

o∈O0

Jμ(o),

where, for each o ∈ O0, Jμ(o) is the algebraic group of automorphisms of the
OF,uo-isocrystal N(o,n, f)[ 1

p ], for o �= o∗, and of the polarized OF,uo-isocrystal

N(o,n, f)[ 1
p ], for o= o∗.

Following [Moo04, Lemma 1.3.11], if we write κ(o) = κ(uo) for the residue
field of Fuo , then for o �= o∗, we have

Jμ(o)
(
Qp

)
= GLmo

s

(
W
(
κ(o)

))
×·· ·×GLmo

0

(
W
(
κ(o)

))
,

and for o= o∗, assuming e/2 is not a slope, we have that the number of slopes s+1
is even and

Jμ(o)
(
Qp

)
= GLmo

s

(
W
(
κ(o)

))
×·· ·×GLmo

s+1
2

(
W
(
κ(o)

))
.

As alluded to in the first paragraph of Section 1.1, for notational convenience, we
exclude the slope e/2, but we expect no mathematical issues extending to this case.

Remark 2.9.3. Note that Jμ is defined over Zp, while J is defined over OE,p

(as in Section 2.3). It follows from the definitions of these groups that after base
change, the group Jμ is contained in J , with equality exclusively when the μ-
ordinary polygon is ordinary (i.e., when OE,p = Zp).

More explicitly, let F1 > · · ·> Fs denote the distinct values of f(τ), for τ ∈ o,
in the interval [1,n−1] (s = so ≥ 0). For convenience, we also write F0 := n and
Fs+1 := 0. For each i= 0, . . . ,s+1, we define

di :=
{
τ ∈ o | f(τ) = Fi

}
.

Note that di > 0 for all i= 1, . . . ,s, and d0,ds+1 ≥ 0. Note that e= eo =
∑s+1

i=0 di.
With this notation, the distinct slopes of the μ-ordinary polygon νo(n, f), asso-

ciated with the orbit o, are

λi =

i∑

j=0

dj ,

where each λi occurs in νo with multiplicity mi = Fi−Fi+1, i= 0, . . . ,s.
Note that, for each τ ∈ o, f(τ) =

∑s
iτ
mj , where the integer iτ , 0 ≤ iτ ≤ sτ , is

defined by the condition f(τ) = Fiτ .
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Definition 2.9.4. We define Pμ to be the parabolic subgroup of J that contains
the chosen Borel subgroup B and has Levi subgroup Jμ associated with the or-
dering on the partitions of n defined by the decreasing ordering of the slopes of
Nμ-ord(D). We write Uμ for the unipotent radical of Pμ.

Remark 2.9.5. One can choose a basis as in Section 2.3 that (in addition to the
identifications in Section 2.3) identifies Pμ with a subgroup of block upper trian-
gular matrices of

∏
τ∈T GLa+τ

and Jμ with a subgroup of block-diagonal matrices.

We define Bμ := B∩Jμ and Nμ := N ∩Jμ. Under our assumptions, Bμ is a
Borel subgroup of Jμ, Nμ its unipotent radical, and the maximal torus Tμ of Jμ in
Bμ is also the maximal torus T of J contained in B.

Remark 2.9.6. If a weight κ of T = Tμ is dominant in X∗(T ), then it is also
dominant in X∗(Tμ), but the converse does not hold in general.

3. The μ-ordinary Igusa Tower. In this section, we introduce basic de-
tails of the μ-ordinary Igusa tower over the μ-ordinary locus, building on [Moo04,
Man05]. By [Wed99], assuming p is unramified in the reflex field E, the μ-ordinary
locus is always nonempty. In the case where the ordinary locus is nonempty (i.e.,
when p splits completely in E), the μ-ordinary Igusa tower coincides with Hida’s
ordinary Igusa tower.

3.1. The μ-ordinary slope filtration. Let H be a D-enriched Barsotti-Tate
group over a smooth F-scheme S (e.g., H =A[p∞] for A the universal D-enriched
abelian scheme over sh). The D-structure on H induces a decomposition of H

according to the primes u of F above p and Morita equivalence (via OB ⊗OF

OF,u �Mr(OF,u)). That is, we have

H =
⊕

u|p
H
[
u∞],

and for each u|p, we have

H
[
u∞]=G(u)⊕r,

where G(u) is a Barsotti-Tate OF,u-module [Moo04, Sections 3.1.2 and 4.1.3].
More precisely, for each u|p, the D-structure of H induces a structure of OF,u-
modules on G(u), together with an isomorphism between G(u) and the Cartier
dual of G(u∗), for u �= u∗, and a structure of Barsotti-Tate (OF,u,∗)-modules on
G(u), for u= u∗. If we write the Dieudonné crystal of H as D(H) = ⊕τ∈T M⊕r

τ ,
then for each prime u|p, the Dieudonné crystal of G(u) is the subcrystal Mo =

⊕τ∈oMτ of D(H), for o= ou.
In [Zin01, Theorem 7], Zink proves that any Barsotti-Tate group over a regular

scheme with constant Newton polygon is isogenous to a completely slope divisible
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Barsotti-Tate group, i.e., to a Barsotti-Tate group that has a slope filtration with
slope divisible quotients (see [Zin01, Definition 10]). In the case of the universal
Barsotti-Tate group over central leaves C in Oort’s foliation, Zink’s result can be
strengthened to prove that the restriction of the universal Barsotti-Tate group A[p∞]

to C is completely slope divisible.

PROPOSITION 3.1.1. [Man05, Section 3] (see also [Man04, Section 3.2.3])
Let C ⊂ sh be a central Oort’s leaf, i.e., an Oort’s leaf associated with a com-
pletely slope divisible Barsotti-Tate group. Then the restriction to C of the univer-
sal Barsotti-Tate group A[p∞] is completely slope divisible.

Remark 3.1.2. Since the above decomposition of H is canonical, we deduce
that H is isomorphic to X

μ-ord(D) as D-enriched Barsotti-Tate groups if and only
if for each prime u|p the Barsotti-Tate groups G(u) and X(ou,n, f) are isomorphic
as OF,u-modules for u �= u∗ and as (OF,u,∗)-modules for u= u∗ [Man05, Proposi-
tion 2]. In particular, for H =A[p∞], we deduce that for each u|p A[u∞] = G(u)⊕r

where G(u) is an OF,u-module whose restriction to any central Oort’s leaf is com-
pletely slope divisible.

Let S := Shμ-ord
∞ denote the formal μ-ordinary locus over W, and S := shμ-ord

the μ-ordinary locus of sh over F (see section 2.7 for definitions). We apply the
above result to the case of C = S. For each u|p, we write G(u)• for the slope
filtration of G(u) over S , and gr(G(u)) for the Barsotti-Tate OFu-module defined
as the direct sum of the associated subquotients. Similarly, we write A[p∞]• for
the slope filtration of A[p∞] over S and gr(A[p∞]) for the direct sum of its sub-
quotients. Thus, gr(A[p∞]) = ⊕u|pgr(G(u))⊕r . Note that if u �= u∗, then the polar-
ization induces an isomorphism of OFu-modules between gr(G(u)) and gr(G(u∗)).
For u=u∗, the Barsotti-Tate group gr(G(u)) is a polarized (OFu ,∗)-module, which
arises as the direct sum of pairs of dual isoclinic OFu-modules (namely, the two
subquotients of G(u) of slope λ,1−λ, for λ �= 1/2) and (possibly) of a polarized
isoclinic (OFu ,∗)-module of slope 1/2. Then gr(A[p∞]) is a naturally D-enriched
Barsotti-Tate group, and for each u|p gr(A[u∞]) = gr(G(u))⊕r .

Remark 3.1.3. It follows from the fact that the slope filtration is canonically
split over perfect fields, that at all geometric points x of S , the D-enriched
Barsotti-Tate groups gr(A[p∞])x and A[p∞]x are canonically isomorphic. In
particular, gr(A[p∞])x is isomorphic to X

μ-ord(D) for all points x of S .

PROPOSITION 3.1.4. Maintain the above notation. The slope filtration of
A[p∞] over S canonically lifts to S .

Proof. The lifting of the slope filtration to S is a consequence of [Moo04,
Proposition 2.1.9] given the existence of the filtration on S (Proposition 3.1.1). �
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Remark 3.1.5. It follows from the rigidity of isoclinic D-enriched Barsotti-Tate
groups [Moo04, Proposition 2.1.5] that gr(A[p∞]) over S is naturally a D-enriched
Barsotti-Tate group. Furthermore, for all geometric points x ∈ S , the D-enriched
Barsotti-Tate group gr(A[p∞]) restricted to S∧

x , the formal completion of S at x, is
isomorphic to X

can.

3.2. μ-ordinary Igusa tower. Maintaining the above notation, we intro-
duce the formal μ-ordinary Igusa tower Igμ as a profinite étale cover of the formal
μ-ordinary locus S . Let gr(A[p∞])/S be the D-enriched Barsotti-Tate group intro-
duce above. In the following, we write gr(A[pn]) = gr(A[p∞])[pn], for all n≥ 1.

PROPOSITION 3.2.1. For each m,n ≥ 1, we define (Igμ)n,m, the Igusa cover
of level n over Sm, to be the Wm-scheme

(
Igμ
)
n,m

:= IsomD
(
X

can(D)
[
pn
]
,gr
(
A
[
pn
]
/Sm

))
.

The space (Igμ)n,m is a finite étale cover of Sm with Galois group Jμ(Z/p
n
Z).

Proof. For m= 1, n≥ 1 the statement is proved in [Man05, Proposition 4]. A
similar proof applies for all m,n ≥ 1. Indeed, for each m ≥ 1, the Wm-scheme
(Igμ)n,m (respectively, the formal W-scheme (Igμ)n) is the unique finite étale
cover of Sm (respectively, of S) with reduced fiber (Igμ)n,1/S1 = S . �

3.3. Irreducibility of the Igusa tower. A key result in Hida’s theory is the
irreducibility of the Igusa tower. To be exact, the Igusa tower is not irreducible, but
rather, Hida’s result describes the (many) irreducible components of the pullback
of the Igusa tower over any connected component of the ordinary locus and can
be adapted to do the same for the μ-ordinary locus. We follow [Hid11]. Fix a
connected component of the μ-ordinary. By abuse of notation, we still denote it
by S , and the pullback of the Igusa tower by Igμ.

For each n,m≥ 1, we define

det :
(
Igμ
)
n,m

−→ IsomD
(
∧top

X
[
pn
]
,∧topA

[
pn
]
/Sm

)∼=
(
OB,p/p

nOB,p

)×
,

where the latter isomorphism follows from the fact that the sheaf ∧topA[pn]/Sm is
constant (see [Hid11, Section 3.3], and also [Che13], which gives a notion of a top
exterior power for Barsotti-Tate groups corresponding to the top exterior power of
the associated modules). We define IgSUμ to be the pullback of 1 ∈ O×

B,p.

Definition 3.3.1. [Zon08, Definition 1.1] A D-enriched abelian variety A over
an algebraically closed field F of characteristic p is hypersymmetric if

End0
D(A)⊗QQp = EndD

(

H1
dR(A)

[
1
p

])

.

A point x of sh is called hypersymmetric if Ax is hypersymmetric.
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PROPOSITION 3.3.2. Maintain the above notation. Assume there exists a hy-
persymmetric point which is μ-ordinary.

Then IgSUμ →S is a geometrically irreducible component of Igμ.

Proof. In [Hid11, Definition 4.20, and Theorem 3.1], Hida proves the irre-
ducibility of the ordinary Igusa tower over unitary Shimura varieties. The argument
given in loc. cit. relies on the existence of ordinary hypersymmetric points [Hid11,
Section 3.5], and it applies as is to our setting, with the role of ordinary hypersym-
metric points replaced by hypersymmetric points on the μ-ordinary locus. �

Remark 3.3.3. In [Zon08, Theorem 5.1], Zong gives necessary and sufficient
conditions for the existence of hypersymmetric points on (each connected compo-
nent of) Newton polygon strata of PEL-type Shimura varieties. In [Xia20], Xiao
checks that these conditions are satisfied by the μ-ordinary stratum of unitary
Shimura varieties when the degree of the primes v above p in E is constant (e.g.,
for p inert in E). Note that [Moo04, Proposition 2.3.12] implies the existence of
hypersymmetric points when p is inert in F .

Remark 3.3.4. Recall our assumption that the subgroup Tμ(Zp)⊆ Jμ(Zp) acts
transitively on the set of connected components of Igμ. It follows from Proposition
3.3.2 that the connected components of Igμ are precisely the fibers of the morphism
det : Igμ →O×

B,p.

In the following, for simplicity, we write Ig := Igμ.

4. p-adic Automorphic forms and Congruences in the μ-ordinary setting.
The goal of this section is to explore to what extent we can realize classical and
p-adic automorphic forms as global functions over the μ-ordinary Igusa tower.

4.1. p-adic automorphic forms over the μ-ordinary Igusa tower. Simi-
larly to [Hid04, Section 8.1.1], which addresses the ordinary setting, we define the
space of p-adic global functions on the Igusa tower

V := lim←−
m

lim−→
n

Vn,m

where for each n,m ≥ 1, Vn,m := H0(Ign,m,OIgn,m
). The natural right action of

Jμ(Zp) on the Igusa tower defines a left action on V N .

Definition 4.1.1. We define the space of p-adic automorphic forms over the
μ-ordinary Igusa tower (abbreviated to p-adic automorphic forms OMOIT) to be

V Nμ(Zp) ⊂ V.

(Recall Nμ is the unipotent radical of our choice of a Borel subgroup Bμ of of Jμ.)

In the following, we simply write V N := V Nμ(Zp).
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Remark 4.1.2. Note that when the ordinary locus is nonempty, Definition 4.1.1
agrees with Hida’s definition in [Hid04] of the space of p-adic automorphic forms.

4.2. p-adic forms over the μ-ordinary locus. We maintain the notation of
Section 2.5.

Over the formal μ-ordinary locus S over W, we write ω• for the sheaf ω :=
ω(A), for A the universal abelian scheme over S , endowed with the filtration in-
duced by the slope filtration of A[p∞]. We define the locally free sheaf

ω := gr(ω•).

The D-structures on A induce a canonical decomposition ω = ⊕τ∈T ω⊕r
τ , where

for each τ ∈ T ,

ωτ =⊕sτ
t=0grt(ωτ ).

Remark 4.2.1. It follows from the explicit description of the Dieudonné crystal
of the universal deformation of a μ-ordinary Barsotti-Tate module over F [Moo04,
Section 2.1.7 and Proposition 2.1.9] that, for each τ ∈ T and t = 0, . . . ,sτ , the
sheaves grt(ωτ ) are locally free of rank mτ

t for t≥ iτ and vanish otherwise (nota-
tions as in Remark 2.9.3; see also the proof of Proposition 4.3.3).

In the following, we adapt the classical construction of automorphic sheaves
(as in Section 2.3) to our context, with ω in place of ω and Jμ in place of J .

For each dominant weight κ of Jμ, we construct the sheaves ωκ

ωκ := Sκ(ω)

over S . Alternatively, we define

Eμ := IsomOB,(p)⊗OS
(
ω,Og

S
)

:=
∏

τ∈T

(
⊕sτ

t=iτ
Isom

(
grt(ωτ ),Omτ

t
S,τ

))
,

and for any algebraic representation (
,M�) of Jμ, we construct the sheaves

E�
μ := Eμ×Jμ M�

over S . As before, we note that for any dominant weight κ of Jμ and 
 = 
κ our
choice of Zp-lattice of the irreducible representation of Jμ of highest weight κ, the
sheaves ωκ and E�

μ,are canonically identified.

Definition 4.2.2. We call the sections of E�
μ p-adic forms (of weight 
) over the

μ-ordinary locus, or p-adic forms (of weight 
) OMOL. Going forward, when the
meaning is clear from context, we sometimes drop “OMOL” and just say “p-adic
automorphic form.”
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Remark 4.2.3. When the ordinary locus is nonempty, the p-adic forms defined
in Definition 4.2.2 are the same as the automorphic forms in the vector bundle over
the ordinary locus considered in [EFMV18] and by Hida in [Hid04] (see [EFMV18,
Remark 2.4.1]).

Remark 4.2.4. We now explain the names OMOL and OMOIT. While the naive
approach might be to call our forms μ-ordinary p-adic automorphic forms, that
name seems to imply a strong connection with a projector analogous to Hida’s
ordinary project e formed from powers of the Up-operator. While such operators
will play an important role in our subsequent work building on the present paper,
they are not part of this paper. Simply referring to the space V Nμ(Zp) as the space
of p-adic automorphic forms is not precise enough. Indeed, it immediately leads to
the question of which space of p-adic forms we are considering (e.g., the approach
of Serre? Katz? Hida?). While our approach builds on Hida’s approach, calling
it Hida’s p-adic automorphic forms would imply we might consider an empty set
(the ordinary locus), whereas our space is always nonempty. Thus, we add the
abbreviation OMOIT to be clear about the new space we have constructed and note
that in the special case in which the ordinary locus is nonempty, we recover Hida’s
p-adic automorphic forms.

It follows from the construction of the Igusa tower that for any integers n,m≥
1, with n≥m, the universal Igusa level structure on Ign,m induces an OB,(p)-linear
isomorphism

ωIgn,m

∼=OIgn,m
⊗WωXcan ,

where ωIg denotes the pullback of ω to the Igusa tower, and ωXcan is the module of
invariant differential of the D enriched Barsotti-Tate group X

can = X
can(D) over

W. Given the canonical decomposition ω =⊕τ∈T (⊕sτ
t=0grt(ωτ )), such an isomor-

phism is equivalent to the collection of trivializations over Ign,m

grt(ωτ )Ign,m
∼=OIgn,m

⊗Wω
⊕mτ

t

Xcan(λt),τ
,

for τ ∈ T and t= iτ , . . . ,sτ .
Following Hida’s theory, starting from the above trivialization of ω over the

Igusa tower, for all dominant weights κ of Jμ, we construct by Schur functors
canonical trivializations of the pullbacks of ωκ over Igm,m, for all m ≥ 1. Such
trivializations, composed with the Nμ-equivariant functional 	κ : 
κ → W intro-
duced in Section 2.3, define a morphism on global sections

Ψκ : H0(S,ωκ
)
−→ V N [κ]⊂ V N .

We define Ψ :=⊕κΨκ, where κ varies among all dominant weights of Jμ,

Ψ : ⊕κH
0(S,ωκ

)
−→ V N .
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PROPOSITION 4.2.5. Maintain the above notation.
(1) For each dominant weight κ of Jμ, the map Ψκ is injective.
(2) The map Ψ is injective and its image is p-adically dense in V N .

Proof. The proof is similar to [Hid04, Theorem 8.3]. �

4.3. Realizing p-adic automorphic forms as p-adic forms OMOIT. We
compare the p-adic automorphic forms OMOL we constructed above with (classi-
cal) p-adic automorphic forms.

PROPOSITION 4.3.1. The notation remains the same as directly above and the
same as in Section 2.4.1. Let κ be a dominant weight of J .

(1) Each Uμ-stable filtration of ρκ|Pμ induces a filtration on ωκ. The sheaf
gr((ωκ)•) is independent of the choice of filtration on ρκ|Pμ .

(2) There is a canonical morphism

gr
((
ωκ
)
•
)
−→

⊕

κ′∈Mκ

ωκ′
,

which is an isomorphism if p is sufficiently large, or after tensoring with Qp.
(3) There is a canonical projection πκ : ωκ � ωκ.

Proof. Let ω• denote the slope filtration on S , and define over S

Pμ := IsomOB,(p)⊗OS

(
ω•,
(
OS
)g
•

)
:=
⊕

τ∈T
Isom

((
ωτ

)
•,
(
O⊕f(τ)

S,τ
)
•

)
,

where the filtration on O⊕f(τ)
S,τ is induced by the ordered partition {mτ

sτ , . . . ,m
τ
iτ
}

of f(τ). Note that by definition Pμ ⊆E|S , and we have a canonical projection Pμ �
Eμ.

The inclusion Pμ ⊆ E|S implies that, for all representations (ρ,Mρ) of J , we
have identifications of sheaves over S

Eρ
|S =

(
E ×J Mρ

)
|S = Pμ×Pμ Mρ.

In particular, for all dominant weights κ of J , each Uμ-stable filtration of ρκ|Pμ

induces a filtration on the pullback over S of the sheaf ωκ. In particular, the natural
projection ρκ|Pμ � 
κ induces a map on sheaves ωκ → ωκ.

The projection Pμ � Eμ implies that, for all representations (ρ,Mρ) of J , we
have identifications of sheaves over S

gr
(
Pμ×Pμ Mρ

)
= Eμ×Jμ Mρ
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(recall gr(ρκ|Pμ) = ρκ|Jμ). In particular, for ρ = ρκ, the equality ρκ|Jμ =

⊕κ′∈Mκ

κ′ implies that there exists a canonical morphism

gr
(
ωκ
)
−→⊕κ′∈Mκ

ωκ′
,

which is an isomorphism if p is sufficiently large, or after tensoring with Qp (see
Remark 2.4.3). �

For each weight κ of J , we define Φκ as the composition of H0(S,πκ) with
Ψ,

Φκ : H0(S,ωκ
)
−→H0(S,ωκ

)
−→ V [κ]⊂ V,

and write Φ :=⊕κΦκ. The map Φ realizes p-adic (and thus also classical) automor-
phic forms as p-adic forms OMOIT.

For scalar weights κ, Φκ is injective. Unfortunately, for non-scalar weights κ,
Φκ is not injective. Also, the image of Φ is not p-adically dense in V (because
dominant weights for Jμ need not be dominant for J).

Remark 4.3.2. The μ-ordinary Hasse invariant Eμ (as defined in Section 2.7)
satisfies

Φ
(
Eμ

)
≡ 1 mod p.

Moreover, for each scalar weight κ of J , the canonical trivialization over the Igusa
tower ωκ ∼= ωκ ∼= OIg agrees modulo p with (the pullback of) the identification
|ω|m0 =OS over S .

4.3.1. Local realizations. The connection between p-adic automorphic
forms and p-adic forms OMOIT is stronger when working locally.

PROPOSITION 4.3.3. The notation remains the same as above. Let x0 ∈ S(F),
and S∧

x0
denote the formal completion of S at x0.

(1) The filtration of ω is canonically split over S∧
x0

. That is, we have a canoni-
cal isomorphism over O∧

S,x0

ωx0
∼= ωx0

.

(2) For each dominant weight κ of J , there is a canonical morphism over
O∧

S,x0

ωκ
x0

−→⊕κ′∈Mκ
ωκ′
x0
,

which is an isomorphism if p is sufficiently large, or after tensoring with Qp.
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Proof. We deduce the existence of the canonical splitting of the filtration on
ωx0 from the description of the Dieudonné crystal of the universal deformaion of
a μ-ordinary Barsotti-Tate group in [Moo04, Section 2.1.7]. In the following, all
sheaves are restricted to the formal neighborhood S∧

x0
, but for simplicity still de-

noted by the same notation.
Given the decomposition of the filtered Dieudonné crystal of A into subcrystals

ω(A) =
⊕

o∈O

(
ωo

)⊕r ⊂H1
dR(A) =

⊕

o∈O

(
Mo

)⊕r
,

where ωo := ⊕τ∈oωτ and Mo =⊕τ∈oMτ , it is enough to prove that for each orbit
o the filtration of ωo is canonically split.

Fix o, and write M =Mo, ω = ωo, ω ⊂M . With notation as in Remark 2.9.3,
let F1 > · · · > Fs denote the distinct values of f(τ) in the interval [1,n− 1] (s =
so ≥ 0), and write F0 := n and Fs+1 := 0. Then the crystal M has exactly s+ 1
distict slopes. Write M• for its slope filtration,

0 =M0 ⊂M1 ⊂ ·· · ⊂M =Ms+1,

and M i :=Mi/Mi−1, i≥ 1. In [Moo04, Section 2.1.7, and Propositions 2.1.8 and
2.1.9], Moonen gives an explicit description of the pair (M,ω) over S∧

x0
(in loc. cit.

M =M and ω = Fil1(M)). In particular, M =⊕s+1
1 M i, and for all j = 1, . . . ,s+

1, Mj =⊕j
1M

i.
For each i= 0, . . . ,s+1, define

oi :=
{
τ ∈ o | f(τ) = Fi

}
,

and o<j :=∪i<joi. Also, for each τ ∈ o, we write ι(τ) := i if τ ∈ oi. Then it follows
from the definitions that, over S∧

x0
, for all τ such that ι(τ)< s+1

ωτ =⊕s+1
ι(τ)+1M

i
τ ,

and 0 otherwise. Moreover, the filtration ω• of ω induced by the slope filtration of
M satisfies, for each τ ∈ o, ωj,τ =⊕j

ι(τ)+1M
i
τ for j > ι(τ), and 0 otherwise.

In particular, for each j = 1, . . . ,s+1,

ωj = ωj−1⊕
(
⊕τ∈o<j M

j
τ

)
. �

Fix x0 ∈ S(F), and let κ be a dominant weight of J . For each x ∈ Ig(F) above
x0, and κ′ ∈Mκ, we define

Φκ,κ′
x : H0(S,ωκ

)
−→ ωκ

x0
−→⊕κ′∈Mκ

ωκ′
x0

−→ ωκ′
x0

−→O∧
Ig,x,

as the composition of localization at x0, with the canonical morphism of part (2)
of Proposition 4.3.3, followed by Ψκ′,x, the localization of Ψκ′ at x.



26 E. EISCHEN AND E. MANTOVAN

Note that for each g ∈ Jμ(Zp), Ψκ′,xg =Ψκ′,x ◦g. In particular, it follows from
Proposition 4.2.5 that the map

Φκ
x0

:=
∏

x,κ′

Φκ,κ′
x : H0(S,ωκ

)
−→

∏

x,κ′

O∧
Ig,x

is injective if S is connected. In the following, we also write Φx := Φκ
x :=

∑
κ′∈Mκ

Φκ,κ′
x : H0(S,ωκ)→O∧

Ig,x.

Remark 4.3.4. For each pure weight κ of J , the morphism Φκ,κ
x agrees with

the composition of Φκ with the localization at x,

H0(S,ωκ
)
−→H0(S,ωκ

)
−→ V −→O∧

Ig,x.

4.4. p-adic u-expansion principle and congruences. In this section, we
generalize the results of [CEF+16, Section 5] to the μ-ordinary setting. We refer
to loc. cit. for more details. Here, we work under the assumption that Tμ(Zp) acts
transitively on the connected components of Ig. As in Hida’s work, the restric-
tion of the Igusa tower over a connected component of the μ-ordinary locus is not
irreducible. As stated, the p-adic u-expansion principle (like its analogue, the q-
expansion principle) relies on the transitivity of the action of Tμ(Zp) on the set of
connected components of Ig.

We choose the notation u, instead of t as in [CEF+16], for the coordinate in
local expansions at μ-ordinary CM points, because it agrees with Moonen’s con-
ventions in [Moo04], which play an important role in some of the notationally
heavy portions of this paper.

Following Hida, to establish an analogue of the p-adic q-expansion principle,
we fix a connected component S0 of the μ-ordinary locus S , together with a marked
point x0 on S0, and replace p-adic automorphic forms on S with their restriction
to S0, and the Igusa tower by its pullback to S0. Alternatively, one can work with
many marked points on S at once, one point on each connected component.

4.4.1. Canonical parameters at μ-ordinary points. Fix a point x of
Ig(W), above a μ-ordinary point x0. In [Moo04, Section 2.1.7], Moonen defines
a set of local parameters u of S0 at x0, associated with a trivialization of the fiber
at x0 of the universal D-enriched Barsotti-Tate group. With our notation, this is
equivalent to the choice of a point x of the Igusa tower lying above x0.

In the following, we denote the choice of parameters u at the point x0 associ-
ated with the point x ∈ Ig(W) as

β∗
x : O∧

S,x0
∼=O∧

Ig,x
∼=W[[u]] :=W[[uτr,s | τ ∈ T , r,s = 1, . . . ,n]]

where by definition, for each τ ∈ T , uτr,s := 0 if either r ≤ n− f(τ) or s > n− f(τ)

(in loc. cit. i= τ , and d= n). We write locx : V →O∧
Ig,x for the localization at x.
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Remark 4.4.1. The results in this section do not rely on the special properties of
the parameters u. In fact, they could as easily be stated in terms of the localization
at x. We choose to state them in terms of the associated power series in W[[u]] to
stress the analogue with the p-adic q-expansion principle, in the ordinary case.

Definition 4.4.2. For any global function f ∈ V on the Igusa tower, we define
the u-expansion of f at x as

f(u) = fx(u) := β∗
x

(
locx(f)

)
∈W[[u]].

For each p-adic form f ∈H0(S,ωκ) of weight κ, κ a dominant weight of Jμ,
we set

f(u) :=Ψ(f)(u) ∈W[[u]].

For each classical (respectively, p-adic) automorphic form f ∈H0(Sh,ωκ) (re-
spectively, f ∈H0(S,ωκ)) of weight κ, for κ a dominant weight of J , we set

f(u) := Φ(f)(u) ∈W[[u]].

PROPOSITION 4.4.3. Maintain the above notation.
(1) For any f ∈ V N , f = 0 if and only if (g ·f)(u) = 0 for all g ∈ Tμ(Zp).
(2) For any dominant weight κ of Jμ and f ∈ V N [κ], f = 0 if and only if

f(u) = 0.
(3) For m ≥ 1, κi dominant weights of Jμ, and fi ∈ V N [κi], i = 1,2, f1 ≡

f2 mod pm if and only if for all g ∈ Tμ(Zp)

κ1(g)f1(u)≡ κ2(g)f2(u) mod pm.

Proof. The statements follow immediately from the transitivity of the action of
Tμ(Zp) on the set of connected components of Ig (Remark 3.3.4) and the equalities,
for g ∈ Tμ(Zp), locx(g ·f) = locxg(f) for f ∈ V N , and locx(g ·f) = κ(g)locx(f)
for f ∈ V N [κ]. (The arguments of [CEF+16] still apply in our setting.) �

The next corollary is an immediate consequence of Proposition 4.4.3 combined
with Proposition 4.2.5.

COROLLARY 4.4.4. Maintain the above notation.
(1) For any dominant weight κ of Jμ and f ∈H0(S,ωκ′

), f = 0 if and only if
f(u) = 0.

(2) For m ≥ 1, κi dominant weights of Jμ, and fi ∈ H0(S,ωκi), i = 1,2,
f1 ≡ f2 mod pm if and only if for all g ∈ Tμ(Zp)

κ1(g)f1(u)≡ κ2(g)f2(u) mod pm.
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COROLLARY 4.4.5. Let m ≥ 1. Let fi be classical or p-adic automorphic
forms of scalar weight κi, i= 1,2. Then f1 ≡ f2 mod pm if and only if

κ1(g) ≡ κ2(g) mod pm, for all g ∈ Tμ

(
Zp

)

and

f1(u)≡ f2(u) mod pm.

Remark 4.4.6. For non-scalar weights, the above condition is necessary but not
sufficient.

Finally, to state a sufficient condition for general weights, for any p-adic (or
classical) automorphic form f of weight κ, we consider the u-expansions

f (κ′)
x (u) := β∗

x

(
Φκ,κ′
x (f)

)
∈W[[u]]

defined for all κ′ ∈ Mκ and all points x ∈ Ig(W) lying above a fixed μ-ordinary

point x0. (Note that f(u) = f
(κ)
x (u).)

COROLLARY 4.4.7. Maintain the above notation. Fix x0 ∈ S0(W).
(1) For any dominant weight κ of J , and f a classical or p-adic automorphic

form of weight κ, f = 0 on S0 if and only if for all x ∈ Ig(W) above x0,

f (κ′)
x (u) = 0 for all κ′ ∈Mκ.

(2) For m≥ 1, κi dominant weights of J , and fi classical or p-adic automor-
phic forms, respectively, of weight κi, i= 1,2, we have f1 ≡ f2 mod pm if

κ1(g)≡ κ2(g) mod pm for all g ∈ Tμ

(
Zp

)

and for all pairs κ′i ∈Mκi , i= 1,2, with κ′1(g)≡ κ′2(g) mod pm, for all x∈ Ig(W)

above x0

f
(κ′

1)
1,x (u)≡ f

(κ′
2)

2,x (u) mod pm.

Remark 4.4.8. The congruence condition given in Part (2) is both necessary
and sufficient if, furthermore, we assume that, for each i = 1,2, the weights κ′ ∈
Mκi are all distinct modulo pm.

5. Structure theorems in the μ-ordinary case. This section develops
structural results concerning the Gauss-Manin connection, the Kodaira-Spencer
morphism, and a canonical complement to ω in the μ-ordinary setting, as needed
in Section 6 to construct differential operators, which we use in the subsequent
sections to construct new p-adic automorphic forms and families of p-adic
automorphic forms.
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For simplicity, we assume B=F . By the assumption that the prime p is unram-
ified in B, the general case follows from this special case by Morita equivalence.

5.1. Standard constructions. This section recalls the definitions of the
Gauss-Manin connection and the Kodaira-Spencer morphism. Throughout this sec-
tion, we denote by S a smooth scheme over a scheme T and by π : X → S a proper
morphism of schemes. For any such schemes, we denote by Ω•

X/S the complex

∧•Ω1
X/S on X whose differentials are induced by the canonical Kähler differential

OX/S → Ω1X/S. The de Rham complex (Ω•
X/S ,d) admits a canonical filtration

Fili
(
Ω•
X/T

)
:= Image

(
π∗Ωi

S/T ⊗OX
Ω•−i
X/T −→ Ω•

X/T

)
.(5)

For π smooth, the sequence

0 −→ π∗Ω1
S/T −→ Ω1

S/T −→ Ω1
X/S −→ 0

is exact, and the associated graded objects of the canonical filtration (5) are

Gri := Gri
(
Ω•
X/T

)∼= π∗Ωi
S/T ⊗OX

Ω•−i
X/S .

5.1.1. Gauss-Manin connection. The Gauss-Manin connection

∇ : Hq
dR(X/S)−→Hq

dR(X/S)⊗OS
Ω1
S/T

is the map

d0,q
1 : E0,q

1 −→E1,q
1 ,

where

Ep,q
1 = R

p+qπ∗
(
Grp
)∼=Ωp

S/T ⊗OS
Hq

dR(X/S)

is the first page of the spectral sequence (Ep,q
r , which converges to R

qπ∗(Ω•
X/T ))

obtained from the filtration (5). We are interested in the case q = 1, i.e.,

∇ : H1
dR(X/S)−→H1

dR(X/S)⊗OS
Ω1
S/T

5.1.2. Kodaira-Spencer morphism. We briefly review the Kodaira-
Spencer morphism here. Details are available in [CF90, Lan13, Eis12, Eis09,
EFMV18]. Let π : A→ S be a smooth proper morphism of schemes (with S still
as above), and suppose A is an abelian scheme with polarization λ : A→ A∨. For
any such A, we define

ωA/S := π∗Ω
1
A/S .
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By taking the first hypercohomology of the exact sequence

0 −→ Ω•≥1
A/S −→ Ω•

A/S −→OA −→ 0,

we obtain an exact sequence

0 −→ ωA/S

ιωA/S−−−−→H1
dR(A/S)

pA∨/S−−−−→ ω∨
A∨/S −→ 0,

with ιωA/S
denoting inclusion. The Kodaira-Spencer morphism KS is the compo-

sition of morphisms

H1
dR(A/S)⊗ωA∨/S

∇⊗ιA∨/S
��
(
H1

dR(A/S)⊗Ω1
S/T

)
⊗ωA∨/S

(pA∨/S⊗id)⊗ω
A∨/S

�� �� ω∨
A∨/S ⊗Ω1

S/T
⊗ωA∨/S

����

ωA/S ⊗ωA∨/S
��

ιωA/S
⊗id

��

KS �� �������������������������� Ω1
S/T

with the vertical surjection denoting the canonical pairing

ω∨
A∨/S ⊗ωA∨/S −→OS

tensored with the identity map on Ω1
S/T . Identifying ωA/S with ωA∨/S via the po-

larization λ : A→A∨, we also view KS as a morphism

KS : ωA/S ⊗OS
ωA/S � Ω1

S/T .

The action of OF on A induces a decomposition

ωA/S =
⊕

τ∈T
ωA/S,τ .

By [Lan13, Proposition 2.3.5.2], KS induces an isomorphism

ks : ω2
A/S

∼−−→ Ω1
S/T ,

where

ω2
A/S :=

(
ωA/S ⊗OF⊗OT

OS
ωA∨/S

)λ-sym

:=
(
ωA/S ⊗OS

ωA∨/S

)/
〈
λ(y)⊗ z−λ(z)⊗y

bx⊗y−x⊗ b∨y

∣
∣
∣
∣

x ∈ ωA/S

y,z ∈ ωA∨/S

b ∈OF

〉

.



p-ADIC FAMILIES IN THE μ-ORDINARY SETTING 31

In particular,

ω2
A/S =

(
⊕

τ∈T
ωA/S,τ ⊗OS

ωA∨/S,τ

)λ-sym

:=

(
⊕

τ∈T
ωA/S,τ ⊗OS

ωA∨/S,τ

)

/
〈
λ(y)⊗ z−λ(z)⊗y | y,z ∈ ωA∨/S

〉

�
⊕

τ∈T0

ωA/S,τ ⊗OS
ωA∨/S,τ .

5.2. A canonical complement to ω over S . The constructions of p-adic
differential operators in, for example, [Kat78, Eis12, EFMV18] rely on the unit
root splitting discussed in [Kat73b]. In the more general μ-ordinary case, we need
to work with a complement to ω that is larger than just the unit root piece and
whose existence follows from work in [Moo04]. To emphasize the connection with
this earlier setting, we still use the notation U (even though U is precisely the unit
root when the ordinary locus is nonempty).

Let H1
dR• denote the Dieudonné crystal of A over S and ω• ⊂H1

dR• its Hodge
filtration, both equipped with the slope filtration. Following [Kat73b], we deduce
the existence over S of a canonical splitting of the sequence

0 −→ ω• ⊆HdR
1
• −→

(
H1

dR/ω
)
• −→ 0.

PROPOSITION 5.2.1. There exists a unique submodule U of H1
dR such that

(1) U is Φe-stable, where e = lcmo∈Oeo.
(2) U is ∇-horizontal, i.e., ∇(U)⊂ U ⊗Ω1

S/W.

(3) U is a complement to ω, i.e., H1
dR = ω⊕U .

Moreover, the filtration U• of U , induced by the slope filtration on H1
dR, satisfies

(
H1

dR

)
j
= ωj ⊕Uj,

for each slope j; and it is canonically split over S∧
x0

, for each point x0 ∈ S(F).

Proof. We use the notation introduced in the proof of Proposition 4.3.3. We
construct U = ⊕oUo, with Uo ⊂ Mo a complement to ωo. Its uniqueness follows
from the listed properties.

Fix o, e= eo, and write M =Mo, ω=ωo and construct U =Uo. Let M• denote
the slope filtration of M , then we define

U :=⊕τMι(τ),τ .

The stated properties are an immediate consequence of the definition of U , and the
properties of the slope filtration (see Proposition 3.1.4, and [Moo04, Proposition
2.1.9]). �
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In the following we write U to denote the graded sheaf associated with U , and
we canonically identify Ux0

∼= Ux0 over O∧
S,x0

, for each x0 ∈ S(F).

5.3. The Gauss-Manin connection. We extend Katz’s computation of the
Gauss-Manin connection over the ordinary locus to the μ-ordinary case.

Consider the operator

∇ : ω ⊂H1
dR −→H1

dR ⊗Ω1
S/W.

It preserves the slope filtration, in particular it induces an operator on the graded
sheaves ∇ : ω → gr(H1

dR)⊗Ω1
S/W.

PROPOSITION 5.3.1. Maintain the above notation. We denote by α the isomor-
phism of sheaves over the Igusa tower,

α : ωX⊗WOIg −→ ω,

induced by the universal Igusa level structure.
Then for any η ∈ ωX: ∇(α(η)) ∈ U ⊗Ω1

S/W.
Furthermore, for each x ∈ Ig(F) and each η ∈ ωX, via the canonical splitting

ωx
∼= ωx, we have ∇x(α(η)) ∈ Ux⊗Ω1

S/W,x.

Proof. As in the proofs of Propositions 4.3.3 and 5.2.1, consider the decom-
position into subcrystals H1

dR =⊕oMo, fix o, e= eo, and write M =Mo, ω = ωo,
and U = Uo.

Note that that the statement can be checked locally, over the complete local
ring R at a point x0 of S1. That is, without loss of generality, we may assume we
are in the setting of [Moo04, Sections 2.1.7] (in loc. cit. R=W[[u]]). Furthermore,
since ∇ is W-linear, it suffices to prove the statement for a choice of W-basis of
ωX = ωX compatible with the slope decomposition.

In [Moo04, Proposition 2.1.9], Moonen computes the matrix of 1-forms of the
Gauss-Manin connection on M , with respect to an explicit choice of a basis of M .
We observe that the chosen basis contains the image under α of (an explicit choice
of) a W-basis of ωX. We quickly recall Moonen’s notation and results.

Let B = {ατ
j | τ ∈ o, j = 1, . . . ,n} denote the basis of M , M =MX⊗WR, as

defined in [Moo04, Section 1.2.3] (in loc. cit. the element ατ
j are denoted by ei,j ,

with i= τ , I= o, and d= n). By definition, for each τ ∈ o, {ατ
j |j = 1, . . . ,n} is a

basis of MX,τ over W, such that, for each j = 1, . . . ,n,

Φe
τ

(
ατ
j

)
= pa(j)ατ

j ,

where a(j) = #{τ |f(τ) > n− j}. In particular, {ατ
j | j > n− f(τ)} is a basis of

ωτ ⊂ Mτ , which arises as the image under α of a W-basis of ωX. Note that, for
each slope a = ai, we have ατ

j ∈Ma if and only if j > n−Fi, for all τ ∈ o, and
Ua :=⊕τU

a
τ has basis {ατ

j | j ≤ n−Fi, τ ∈ o}.
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As in [Moo04, Proposition 2.1.9], we denote by Dτ = (Dτ
r,s)r,s=1,...,n the ma-

trix of 1-forms of ∇ with respect to the given basis {ατ
j | j = 1, . . . ,n} of Mτ ,

τ ∈ o. To prove our statement, it suffices to check that, for each τ ∈ o, and for all
j > n− f(τ),

∇
(
ατ
j

)
≡ 0 mod U ⊗Ω1,

or equivalently, Dτ
v,j = 0 if j > n− f(τ) and v > n− f(τ).

Following loc. cit. the inclusions ∇(Ua)⊂Ua⊗Ω1, a= 0, . . . ,e, imply Dτ
v,j =

0 if v ≤ n−Fi and j > n−Fi, for all τ ∈ o, and i = 0,1, . . . ,s. Also, from the
equality ∇◦F = (f ⊗ id)◦F , we obtain, for all τ ∈ o and j,v ∈ {1, . . . ,n},

Dτ
v,j +

n∑

r=1

uτr,jD
τ
v,r+duτv,j = dφ

(
Dτσ

−1

v,j

)
+

d∑

l=1

uτv,l ·dφ
(
Dτσ

−1

l,j

)
,

where uτr,s := 0 if either r≤ n− f(τ) or s > n− f(τ). (Recall that φ on R is defined
by φ|W = σ and φ(uτr,s) = (uτr,s)

p.)
Fix τ ∈ o and assume j > n− f(τ) and v > n− f(τ). From j > n− f(τ), we

deduce uτr,j = 0 for all r, and also Dτ ′
l,j = 0 for l ≤ n− f(τ), for all τ ′. Thus, the

above equalities become

Dτ
v,j = dφ

(
Dτσ

−1

v,j

)
+

d∑

l>n−f(τ)

uτv,l ·dφ
(
Dτσ

−1

l,j

)
= dφ

(
Dτσ

−1

v,j

)
,

which implies the equation Dτ
v,j = dφe(Dτ

v,j). We deduce that Dτ
v,j ≡ 0 mod pm,

for all m≥ 1, and conclude that Dτ
v,j = 0, for all j > n− f(τ) and v >n− f(τ). �

5.4. The Kodaira-Spencer morphism. We study the Kodaira-Spencer
morphism over the μ-ordinary Igusa tower. Let A denote the universal abelian
scheme over the Igusa tower Ig over W, and let ω = ωA/Ig. Recall the notations
from section 5.1.2. Write

ω2 :=
(
ωA/Ig ⊗OF⊗WOIg ωA∨/Ig

)λ-sym ∼=
(
ω⊗OF⊗WOIg U

∨)λ-sym

∼=
(
⊕

τ∈T
ωτ ⊗OIg U

∨
τ

)λ-sym

∼=
⊕

τ∈T0

ωτ ⊗OIg U
∨
τ .

For each orbit o ∈O, write s = so = sτ , for τ ∈ o. For each i,j ∈ {0, . . . ,s}, and
τ ∈ o we define

gri,jτ
(
ω⊗U∨) := gri(ω)τ ⊗OIg grj(U)∨τ
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and gri,jo (ω⊗U∨) :=
⊕

τ∈o gri,jτ (ω⊗U∨). We also set ω2 := gr(ω2), i.e.,

ω2 =

(
⊕

τ∈T
ωτ ⊗U∨

τ

)λ-sym

∼=
⊕

τ∈T0

ωτ ⊗U∨
τ ,

where ωτ ⊗U∨
τ =

⊕
0≤i,j≤sτ

gri,jτ (ω⊗U∨).

Remark 5.4.1. By construction, for each τ ∈T , the sheaf grsτ ,0τ (ω⊗U∨) arises
as a quotient of ωτ ⊗U∨

τ .

PROPOSITION 5.4.2. For each orbit o, and integers i,j ∈ {0, . . . ,so}, each
sheaf gri,jo (ω2) vanishes for all i ≤ j and is locally free of rank (Fi−Fi+1)(Fj −
Fj+1)(ai−aj) for all j < i.

Proof. As the sheaves we consider are locally free, it suffices to prove the state-
ment locally at a point x0 ∈S1. Fix o, write s= so. It follows from the properties of
the slope filtration that for each τ ∈ o and i,j = 0, . . . ,s, the sheaf gri(ω)τ vanishes
for f(τ) < Fi, and gri(ω)τ = gri(M)τ otherwise. Similarly, grj(U)τ vanishes for
f(τ) ≥ Fj , and grj(U)τ = grj(M)τ otherwise. Thus, we deduce that gri,jτ (ω2) :=
gri(ω)τ ⊗OIg grj(U)τ vanishes unless Fj > f(τ)≥Fi, in which case it is locally free

of rank (Fi−Fi−1)(Fj −Fj+1) =mimj . In particular, gri,jo (ω2) =
⊕

τ∈o gri,jτ (ω2)

vanishes unless j < i, in which case it is locally free of rank (Fi −Fi+1)(Fj −
Fj+1)(ai−aj), as ai−aj = #{τ ∈ o | Fi ≤ f(τ)<Fj}. �

Remark 5.4.3. Let o ∈O0. Assume o �= o∗. Then o⊂ T0, and the sheaf

gro
(
ω⊗U∨) :=

⊕

τ∈o
ωτ ⊗U∨

τ =
⊕

0≤j<i≤so

gri,jo
(
ω⊗U∨)

is as a direct summand of ω2, i.e.,

gro
(
ω⊗U∨)∼=

(
gro
(
ω⊗U∨)

⊕
gro∗
(
ω⊗U∨)

)λ-sym
⊂ ω2.

Assume o= o∗. Then o �⊂ T0, and the sheaf

gro
(
ω⊗U∨)λ-sym ∼=

⊕

τ∈o∩T0

ωτ ⊗U∨
τ

is as a direct summand of ω2. In particular, the subsheaf of gro(ω⊗U∨)λ-sym,

gr≤so/2
o

(
ω⊗U∨) :=

⊕

0≤j<i≤so/2

gri,jo
(
ω⊗U∨),
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is also a direct summand of ω2. Indeed, for any i,j, 0 ≤ j < i≤ so/2, we have

gri,jo
(
ω⊗U∨)∼=

(
gri,jo
(
ω⊗U∨)

⊕
grs−j,s−i

o

(
ω⊗U∨)

)λ-sym

∼=
⊕

τ∈o∩T0

(
gri,jτ
(
ω⊗U∨)

⊕
grs−j,s−i

τ

(
ω⊗U∨)

)
.

Similarly, the subsheaf of gro(ω⊗U∨)λ-sym

grΔo
(
ω⊗U∨) :=

⊕

0<j<so/2

grs−j,j
o

(
ω⊗U∨)λ-sym

is a direct summand of ω2. Indeed, for an j, 0 ≤ j < so/2,

grs−j,j
o

(
ω⊗U∨)λ-sym ∼=

⊕

τ∈o∩T0

grs−j,j
τ

(
ω⊗U∨).

Remark 5.4.4. If all the primes of F0 above p split in F , then each orbit o
satisfies o �= o∗, and

ω2 =⊕o∈O0 gro
(
ω⊗U∨).

Yet, in general,

ω2
�

⊕

o∈O0, o�=o∗

gro
(
ω⊗U∨)⊕

⊕

o∈O0, o=o∗

(
gr≤so/2

o

(
ω⊗U∨)⊕grΔo

(
ω⊗U∨)

)
.

5.4.1. Serre-Tate theory in the μ-ordinary case. In [Moo04, Sections 2.2
and 2.3], Moonen describes the μ-ordinary local EL moduli (i.e., the associated un-
polarized deformation problem) as a cascade of Barsotti-Tate groups over W. More
precisely, given an orbit o ∈ O, for each pair of distinct slopes a,b, a > b, of the
μ-ordinary Newton polygon νo, together with their multiplicities, Moonen defines
a Barsotti-Tate group Ga,b/W, and proves that the local EL moduli corresponding
to o has a natural structure of a cascade of biextensions of the groups Ga,b/W, for
all a,b.

Definition 5.4.5. [Moo04, Section 2.3.2] For an orbit o ∈O, and two distinct
slopes a= ai > b= aj of νo, 0 ≤ j < i≤ so, the Barsotti-Tate group Ga,b over W
is defined as

Ga,b =Gai,aj := X
can(o,1, f′i,j

)mimj ,

where X
can(o,1, f′i,j) is the canonical lifting (in the sense of Proposition 2.8.2)

of the μ-ordinary OF,uo-module X(o,1, f′i,j), and mi,mj denote respectively the
multiplicities of ai,aj (with the notation of the proof of Proposition 4.3.3, ml =

Fl−Fl+1, for all l = 0, . . . ,so).
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The Barsotti-Tate group X(o,1, f′i,j) is an isoclinic OF,uo-module of dimension
ai−aj and height e. (For the definition of the multiplicative type f′i,j : o→ {0,1}
see [Moo04, Section 2.3.2]. Also, in loc. cit. the group Ga,b =Gai,aj is denoted by
G(j,i) and the multiplicities mi by di.)

In the inert case for so = 1, i.e., in the case of one orbit o and two distinct slopes
a,b, a > b, Moonen’s result [Moo04, Theorem 2.3.3] states the local EL moduli is
isomorphic (as a group) to the Barsotti-Tate OF,uo-module Ga,b, where the natural
group structure of the local EL moduli is defined by its identification with the
space of extensions of (X2)can by (X1)can (the identity of the group corresponding
to the canonical split lifting X

can = (X1)can ⊕ (X2)can). In the general case, the
existence of a cascade structure is defined by induction on the number of slopes,
and separately for each orbit. In particular, the cascade structure of the local EL
moduli implies that, for each orbit o and pair i,j, 0 ≤ j < i ≤ so, the subspace of
the local EL moduli, corresponding to partially split extensions of the type X(o)⊕(
⊕l �=i,j(X(o)

l)can
)
, where X(o) is an extension of the OF,uo-module (X(o)j)can

by (X(o)i)can, is isomorphic to the Barsotti-Tate group Gai,aj , where ai,aj denote
respectively the i-th and j-th slopes of νo.

In general, the local PEL moduli (which can be realized as a subspace of the
local EL moduli) does not inherit a cascade structure [Moo04, Section 3.3.2]. To
be more precise, let us distinguish the cases of o �= o∗ and o= o∗.

If o �= o∗, then the local PEL moduli associated with the pair (o,o∗) is canon-
cally isomorphic to the local EL moduli associated with o, and thus also has a
natural cascade structure.

If o= o∗, then the local PEL moduli does not have a cascade structure in gen-
eral, although the following weaker statements hold. For each pair i,j, 0 ≤ j <

i ≤ so/2, the subspace of the local PEL moduli corresponding to partially split
self-dual extensions of the type X(o)⊕X(o)∗ ⊕

(
⊕l �=i,j,s−i,s−j(X(o)

l)can
)
, where

X(o) is an extension of the OF,uo-modules (X(o)j)can by (X(o)i)can, is isomorphic
to the Barsotti-Tate group Gai,aj , where ai,aj denote respectively the i-th and j-th
slopes of νo.

More subtly, for each j, 0 ≤ j < so/2, the subspace corresponding to partially
split symmetric extensions of the type X(o)⊕

(
⊕l �=j,s−j(X(o)

l)can
)
, where X(o)

is a self-dual extension of the OF,uo-modules (X(o)j)can by (X(o)s−j)can, is iso-
morphic to a sub-OF0,vo-module G

′
as−j ,aj of the OF,uo-module Gas−j ,aj , where aj

denotes the j-th slope of νo [Moo04, Section 3.3.2].

Remark 5.4.6. As G
′
as−j ,aj is a Barsotti-Tate subgroup of Gas−j ,aj , it is also

isoclinic of the same slope as Barsotti-Tate groups. (See Remark 2.6.1.) Thus, as an
OF0,vo-module, it has slope as−j−aj/2. (Recall as−j = e−aj , thus as−j−aj/2 =

e/2−aj .)

Remark 5.4.7. In classical Serre-Tate theory, i.e., for X ordinary and g-
dimensional, the local EL moduli space parametrizes extensions of (Qp/Zp)

g
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by μg
p∞ , and is isomorphic to Ĝ

g2

m, while the local PEL moduli space, which

corresponds to the subspace of self-dual extensions, is isomorphic to Ĝ
g(g+1)/2
m .

Abusing notation, in the following, we simply write Ga,b/W in place of
G

′
a,b/W when appropriate.

5.4.2. The Kodaira-Spencer isomorphism. Fix a point x ∈ Ig(F), we
write R=O∧

Ig,x. The canonical (OF ⊗R-linear) splittings ωx
∼= ωx and Ux = Ux

induce an isomorphism ω2
x
∼= ω2

x. We denote by ksx the composition with the
localization at x of (the pullback over Ig of) the Kodaira-Spencer isomomorphism
ks : ω2 → Ω1

Ig/W with the canonical splitting ω2
x
∼= ω2

x, i.e.,

ksx : ω2
x
∼= ω2

x −→ Ω1
R/W,

and still refer to it as the (split) localization at x of the Kodaira-Spencer isomomor-
phism.

We deduce the following result from [Moo04, Theomre 2.3.3].

PROPOSITION 5.4.8. With the notations of remark 5.4.3. Let x be a point of
Ig, and o ∈O0.

(1) Assume o �= o∗. Then for each pair of integers i,j, 0 ≤ j < i ≤ so, the
Kodaira-Spencer isomorphism ks induces local isomorphisms

ksi,jx,o : gri,jo
(
ω⊗U∨)

x
−→ Ω1

Gai,aj
/W⊗OGai,aj

OIg,x.

(2) Assume o = o∗. Then for each pair of integers i,j, 0 ≤ j < i ≤ so/2, the
Kodaira-Spencer isomorphism ks induces local isomorphisms

ksi,jx,o : gri,jo
(
ω⊗U∨)

x
−→ Ω1

Gai,aj
/W⊗OGai,aj

OIg,x.

(3) Assume o= o∗. Then for each integer j, 0≤ j < so/2, the Kodaira-Spencer
isomorphism ks induces local isomorphisms

kss−j,j
x,o : grs−j,j

o

(
ω⊗U∨)λ-sym

x
−→ Ω1

Gas−j,aj
/W⊗OGas−j,aj

OIg,x.

As in [Kat81, Theorem 4.4.1], the compatibility between the Gauss-Manin
connection and the Frobenius map, i.e., the equality ∇ ◦ F = (f ⊗ id) ◦ F , im-
plies the result below. In the following, ωGai,aj

/W denotes the space of invariant

differentials of Ga,b/W.

PROPOSITION 5.4.9. Maintain the above notation. Fix x ∈ Ig(F). Let τ ∈ T0,
and i,j ∈Z. Assume 0 ≤ j < i≤ sτ if oτ �= o∗τ , and assume either 0 ≤ j < i≤ sτ/2
or 0 ≤ j ≤ sτ/2 and i= s− j if oτ = o∗τ . For any l ∈ gri(ωX)τ ⊗W grj(ωX∨)τ ,

ksx
(
α⊗α∨(l)

)
∈ ωGai,aj

/W.
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Proof. Note that the image under α⊗α∨ of the space gri(ωX)τ ⊗W grj(ωX∨)τ
is a W-lattice in gri,jτ (ω2). That is,

gri,jτ
(
ω2)=

(
α⊗α∨)(gri

(
ωX

)
τ
⊗grj

(
ωX∨
)
τ

)
⊗WOIg.

Similarly, the space ωGai,aj
/W of invariant differentials of Ga,b/W is a W-

lattice in Ω1
Ga,b/W

⊗OGa,b
OIg. That is,

Ω1
Ga,b/W

⊗OGa,b
OIg = ωGai,aj

/W⊗WOIg.

Both W-lattices are characterized by the property that they admit a ba-
sis over W on which the e-th iterate of Frobenius F e acts as pai−aj . (For
(α⊗α∨)gri(ωX)⊗W grj(ω∨

X
), this basis arises from the basis of ωX defined in

[Moo04, Section 1.2.3] and introduced in the proof of Propostion 5.3.1.) Thus, the
statement follows from the equality ∇◦F e = (f ⊗ id)◦F e. �

Remark 5.4.10. Fix an orbit o, let f be the associated multiplicative type. Note
that 0 is a slope of X(o,n, f) if and only if f(τ) �= n for all τ ∈ o. (e.g., X(o,n, f)
is étale if f(τ) = 0, for all τ ∈ o.) Similarly, e is a slope of X(o,n, f) if and only if
f(τ) �= 0, for all τ ∈ o. (e.g., X(o,n, f) is multiplicative if f(τ) = n, for all τ ∈ o.)

Assume both 0 and e are slopes of X(o,n, f) (i.e., for all τ ∈ o, f(τ) �= 0,n).
Then a1 = 0 and as = e, and the Barsotti-Tate group G0,e occurs in the cascade
of the local EL moduli, G0,e = X

can(o,1, f′0,e)
d1ds . By definition, Xcan(o,1, f′0,e) is

isomorphic to a sum of e-copies of the formal multiplicative group Ĝm. In fact,
the given condition is both sufficient and necessary for the formal multiplicative
groups to occur in the cascade.

For u1, . . . ,ue a choice of parameters of Xcan(o,1, f′0,e)/W (i.e., OXcan(o,1,f′0,e)
=

W[[u1, . . . ,ue]]), the space of invariant differentials of Xcan(o,1, f′0,e) is generated
by

ηi := d log
(
qi
)
=

1
qi
dqi ∈ ωXcan(o,1,f′0,e)/W

⊂ Ω1
Xcan(o,1,f′0,e)

=
〈
du1, . . . ,due

〉
W[[u1,...,ue]]

,

for qi = 1+ui, i= 1, . . . ,e.

Remark 5.4.11. Fix an orbit o, let f be the associated multiplicative type. Note
that there exists an integer a ∈ {0, . . . ,e} such that both a,a+ 1 are slopes of
X(o,n, f) if and only if there exists τ0 ∈ o such that f(τ0) �= f(τ) for all τ �= τ0.

Assume both a and a+1 are slopes of X(o,n, f), for some integer a, 0 ≤ a≤ e.
Them, the Barsotti-Tate group Ga,a+1 occurs in the cascade of the local moduli. By
definition, Xcan(o,1, f′a,a+1) is a formal Lubin-Tate OF,uo-modules of slope 1/e. In
fact, the given condition is both sufficient and necessary for a formal Lubin-Tate
OF,uo-module to occur in the cascade.
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For u a choice of a parameter of Xcan(o,1, f′a,a+1)/W (i.e., OXcan(o,1,f′a,a+1)
=

W[[u]]), the space of invariant differentials of Xcan(o,1, f′a,a+1) is generated by

η := d logG(u) :=Gx(0,u)
−1du ∈ Ω1

Xcan(o,1,f′a,a+1)/W
= 〈du〉W[[u]]

where G(x,y) denotes the formal group law of Xcan(o,1, f′a,a+1) with respect to
the choosen parameter u, and Gx denotes the partial derivative of G with respect
to the variable x [Wei11, p. 4].

6. Differential operators in the μ-ordinary setting. This section intro-
duces differential operators that enable construction of new p-adic automorphic
forms and families. Unlike in the ordinary setting in [Kat78, Eis12, EFMV18],
we now need to keep track of slope filtrations and rely on new results about the
canonical complement to ω introduced in Section 5.2.

6.1. Definition of p-adic differential operators. As our construction of p-
adic differential operators begins similarly in the ordinary setting [Kat78, Eis12,
Eis09, EFMV18], we focus here primarily on the details unique to the μ-ordinary
case, namely the roles of the filtration and semi-simplification, which pose addi-
tional challenges. This is one of the most challenging parts of this paper.

Following the conventions of [EFMV18, Section 3.3], for all positive integers
d and e and any irreducible representation ρ := ρκ of highest weight κ, we define
morphisms of sheaves

∇e
⊗d : H1

dR(A/S)
⊗d

−→H1
dR(A/S)

⊗d⊗

⎛

⎝
⊕

τ∈T0

(
HdR(A/S)τ ⊗HdR(A/S)τ ∗

)
⎞

⎠

⊗e

∇e
ρ := ∇e

κ : Sκ
(
H1

dR(A/S)
)

−→ Sκ

(
H1

dR(A/S)
)
⊗

⎛

⎝
⊕

τ∈T0

(
HdR(A/S)τ ⊗HdR(A/S)τ ∗

)
⎞

⎠

⊗e

,

where

∇e
⊗d := ∇⊗d+2(e−1) ◦ · · · ◦∇⊗d,(6)

∇⊗d denotes the Gauss-Manin connection extended to H1
dR(A/S)

⊗d via the prod-
uct rule (Leibniz’s rule), and ∇e

κ is the morphism induced by ∇e
⊗dκ

. We also define

∇κ := ∇ρ := ∇1
ρ.
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Observe that ∇ρ = ∇κ decomposes as a direct sum of morphisms

∇ρ(τ) :
(
H1

dR(A/S)
)ρ −→

(
H1

dR(A/S)
)ρ⊗

(
HdR(A/S)τ ⊗HdR(A/S)τ ∗

)
.

For each positive integer e, we define ∇e
κ(τ) := ∇e

ρ(τ) to be the composition
of ∇κ(τ) := ∇ρ(τ) with itself e times (with the subscript increasing as in Equation
(6)).

We also denote by Aμ the pullback of the universal abelian scheme Aμ/Sμ

over Igμ. For each irreducible representation ρ, the splitting

H1
dR

(
Aμ/Igμ

)
= ωAμ/Igμ ⊕U

induces a projection

�
(
Aμ/Igμ

)
:
(
H1

dR

(
Aμ/Igμ

))ρ �
(
ωAμ/Igμ

)ρ

(projection modulo U ).
We define

De
ρ

(
Aμ/Igμ

)
:
(
ω
(
Aμ/Igμ

))ρ

−→
(
ω
(
Aμ/Igμ

))ρ⊗
(
⊕τ∈T0

(
ωτ

(
Aμ/Igμ

)
⊗ωτ ∗

(
Aμ/Igμ

)))e

by

Dρ

(
Aμ/Igμ

)
=�

(
Aμ/Igμ

)
◦∇e

ρ.

We define

Dρ

(
Aμ/Igμ

)
:=D1

ρ

(
Aμ/Igμ

)
.

When it is clear from context that we are working with Aμ/Igμ, we simply
write De

ρ, Dρ, etc. For the other operators introduced below, we follow similar
conventions with regard to inclusion of Aμ/Igμ in the notation. Since ∇(U) ⊆
U ⊗ΩAμ/Igμ , we have that

De
ρ =Dρ⊗(St⊗St)e−1 ◦ · · · ◦Dρ⊗(St⊗St) ◦Dρ.

For any irreducible representation Z that is sum-symmetric of depth e, con-
sider the projection

πZ :

⎛

⎝
⊕

τ∈T0

(
ωτ

(
Aμ/Igμ

)
⊗ωτ ∗

(
Aμ/Igμ

))
⎞

⎠

e

�
(
ω
(
Aμ/Igμ

))Z
.
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Also, for κ a positive dominant weight, ρκ an irreducible representation of highest
weight κ, κ′ sum-symmetric of depth e, and Z := ρκ′ , consider the projection

πκ,κ′ : Eρ⊗Z −→ Eρκ·κ′

induced by the canonical projection (described in more detail in [EFMV18, Lemma
2.4.6])

ρκ⊗ρκ′ � ρκ·κ′.

We define

DZ
ρ

(
Aμ/Igμ

)
:=
(
id⊗πZ

)
◦De

ρ

Dκ′
κ

(
Aμ/Igμ

)
:= πκ,κ′ ◦DZ

ρ .

Remark 6.1.1. The p-adic operators DZ
ρ are the p-adic incarnation of the

Maass-Shimura C∞ differential operators DZ
ρ,C∞ that arise over C and are de-

scribed in detail in, for example, [Shi97, Section 23], [Shi84], and [Shi00, Section
12]. The construction of these C∞ differential operators is similar, except that the
complement to ω is replaced by the Hodge de Rham splitting. The Hodge theoretic
construction was first completed by M. Harris for Siegel modular forms in [Har81]
(which we recommend to readers trying to get acquainted with the ideas of this
construction) and for more general Shimura varieties in [Har86]. We also define
analogous C∞ differential operators Dκ′

κ,C∞ similarly.

6.2. p-adic differential operators on p-adic forms in the μ-ordinary set-
ting. We consider the sequence of sheaves over S

0 −→ ω ⊆H1
dR −→ ω∨ −→ 0,

together with its canonical splitting H1
dR ⊇ U ∼= ω∨, constructed in Proposition

5.2.1. We denote by � : H1
dR → ω the projection modulo U , and write

D := (�⊗ id)◦∇ : ω ⊆H1
dR −→H1

dR ⊗Ω1
S/W −→ ω⊗Ω1

S/W,

and

Dκ = Sκ(D) : ωκ −→ ωκ⊗Ω1
S/W,

for any dominant weight κ of J .
Abusing notation, we still denote by Dκ the composition of Dκ with ks−1, the

inverse of the Kodaira-Spencer isomorphism.
Finally, for each sum-symmetric weight λ of J , of depth e, we write

Dλ
κ := πκ,λ ◦

(
id⊗πλ

)
◦De

κ : ωκ −→ ωκ⊗
(
ω2)⊗e −→ ωκ⊗ωλ −→ ωκ+λ

for any dominant weight κ of J .
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PROPOSITION 6.2.1. The operator

D : ω ⊆H1
dR −→H1

dR ⊗Ω1
A/S −→ ω⊗Ω1

S/W

preserves the canonical decomposition ω =⊕oωo, and the filtration ω• induced by
the slope filtration of H1

dR. That is, for each orbit o ∈ O, and each slope a of the
subcrystal Mo,

D
(
(ωo)a

)
⊂ (ωo)a⊗Ω1

S/W.

Proof. It follows from [Moo04, Proposition 2.1.9] that the Gauss-Manin con-
nection ∇ of H1

dR preserves the subcrystals (Mo)a, for each orbit o ∈O and each
slope a of Mo. Thus, the statement follows from Part (3) of Proposition 5.2.1. �

Note that, by construction, the operator D is W-linear. Thus, for each τ ∈ T ,
D(ωτ ) ⊂ ωτ ⊗Ω1

S/W. Proposition 6.2.1 implies the operator D induces a graded
operator D on ω = gr(ω). That is,

D = gr(D) : ω −→ ω⊗Ω1
S/W.

Similarly to the construction in Section 6.1, starting from the differential oper-
ator D : ω→ ω⊗Ω1

S/W, we may construct new p-adic differential operators on the

sheaves ωκ′
over the μ-ordinary Igusa tower.

Definition 6.2.2. Let κ′ be a dominant weight of Jμ. We define the differential
operator

Dκ′ := Sκ′(D) : ωκ′ −→ ωκ′ ⊗Ω1
S/W.

Abusing notation, we also denote by Dκ′ the composition of Dκ′ with the
inverse ks−1 of the Kodaira-Spencer isomorphism. That is,

Dκ′ : ωκ′ −→ ωκ′ ⊗ω2.

For each sum-symmetric weight λ′ of J of depth e, we define

Dλ′
κ′ := πκ′,λ′ ◦ (id⊗πλ′)◦De

κ′ :

ωκ′ −→ ωκ′ ⊗ (ω2)⊗e −→ ωκ′ ⊗ωλ′ −→ ωκ′ ⊗ωλ′ −→ ωκ′+λ′
.

6.2.1. Differential operators locally. Fix x0 ∈ S(F). Via the canonical
splitting ωx0

∼= ωx0
constructed in Proposition 4.3.3, we obtain a decomposition

of Dx0 into blocks. Proposition 6.2.1 implies that Dx0 is block upper triangular,
with Dx0

on the block diagonal. That is, we have a canonical factorization

Dx0 =Dx0
◦Ux0 ,

where Ux0 is unipotent block upper triangular.
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In the next section (Proposition 6.2.5), we establish the equality Dx0 = Dx0
,

which implies the following decompositions of differential operators.

PROPOSITION 6.2.3. Mantain the above notation.
(1) For any dominant weight κ of J ,

Dκ,x0 =
⊕

κ′∈Mκ

Dκ′,x0
.

(2) For any dominant weight κ and sum-symmetric weight λ of J , the mor-
phism Dλ

κ,x0
decomposes as a direct sum of morphisms

Dλ′
κ′ : ωκ′

x0
−→ ωκ′+λ′

x0

for all κ′ ∈Mκ, and λ′ ∈Mλ such that κ′+λ′ ∈Mκ+λ.
Furthermore, for all κ′ ∈Mκ,

Dλ
κ′ =Dλ

κ′,x0
.

In particular, if λ is a positive scalar weight, we have

Dλ
κ,x0

=
⊕

κ′∈Mκ

Dλ
κ′,x0

.

Proof. The first equality follows from the compatibility among the projections

ω⊗d −→ Sκ(ω) and ω⊗d −→ ω⊗d −→ Sκ′(ω).

Note that for each κ′ ∈Mκ, |κ′|= d is a partition of d= |κ|. Similarly, the second
equality follows from the compatibility among the projections

(
ω2)⊗e −→ ωλ −→ ωλ and

(
ω2)⊗e −→ ωλ.

Finally, to deduce the last equality if suffices to recall that Mλ = {λ} when λ is
scalar. �

COROLLARY 6.2.4. Maintain the above notation and assumptions. Let κ1,κ2

be two dominant weights of J . Assume κ2 − κ1 is sum-symmetric. Then for any
automorphic form f of weight κ1, we have

πκ2Dκ2−κ1
κ1

(f) =Dκ2−κ1
κ1

(
πκ1f

)
.

In particular, if κ1 is a scalar weight, then

πκ2Dκ2−κ1
κ1

(f) =Dκ2−κ1
κ1

(f).
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6.2.2. The action of the differential operators on u-expansions. In this
section, we describe the action of the differential operators on u-expansions, in
certain cases. This description is crucial for our approach to constructing families
of p-adic automorphic forms.

We fix a point x ∈ Ig(W), and write R for the complete local ring of Ig at x.
In the next section, we explicitly compute the action of the differential operators
on Serre-Tate expansions. By abuse of notation, we will still denote by D (respec-
tively, D, Dκ, De

κ) the localization at x of the differential operators D (respectively,
D, Dκ, De

κ), i.e., their base change to R.
For convenience, we write L := ωX, L2 := ω2

X
, and Lκ := Sκ(L), for all κ

dominant weights of Jμ (all regarded as W-representations of Jμ).
Abusing notation, we still denote by α the universal Igusa structure over R

composed with the canonical splitting of ω, i.e., the R-linear isomorphism

α= αx : L⊗WR−→ ω.

For each dominant weight κ of Jμ, we define

ακ : Lκ⊗WR−→ ωκ

to be the R-linear isomorphism induced by α.
We denote by d : R→ Ω1

R/W the universal derivation on R.

PROPOSITION 6.2.5. Maintain the above notation.
(1) After identifying ω ∼= ω via the canonical splitting, we have

(
α⊗OIg idΩ1

Ig/W

)−1 ◦D ◦α=
(
idL⊗W d

)
.

In particular, we deduce D =D.
(2) For any dominant weight κ of Jμ, we have

(
ακ⊗OIg idΩ1

Ig/W

)−1 ◦Dκ ◦ακ =
(
idLκ ⊗W d

)
.

Proof. The statement follows immediately from Proposition 5.3.1. �

Definition 6.2.6. We define

Ξ := ks−1 ◦d : R−→ Ω1
R/W

∼= L2 ⊗WR.

For any integer e≥ 1, we write Ξe := (id(L2)⊗e−1 ⊗Ξ)◦· · ·◦Ξ :R→ (L2)⊗e⊗WR.

We also write ακ,e :=ακ⊗R (α2)⊗e : (Lκ⊗W (L2)⊗e)⊗WR→ωκ⊗R (ω2)⊗e.
With the new notation, Part (2) of Proposition 6.2.5 implies the following de-

scription of the operators De
κ.
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PROPOSITION 6.2.7. Maintain the above notation. For any dominant weight
κ of Jμ and any integer e≥ 1, we have

(
ακ,e⊗OIg idΩ1

Ig/W

)−1 ◦De
κ ◦ακ =

(
idLκ ⊗WΞe

)
.

6.3. p-adic differential operators on p-adic forms OMOIT. In this sec-
tion, we introduce the p-adic operators that act on the space of p-adic automor-
phic forms OMOIT. When the ordinary locus is nonempty, this operator agrees
with the p-adic operator conventionally denoted Θ (see, e.g., [Kat78, Eis12, Eis09,
EFMV18, dSG16]).

Adapting the conventions of [EFMV18, Section 5.1] (e.g., replacing J with Jμ
and the sheaves ωκ with ωκ), we deduce an analogue of [EFMV18, Theorem 5.1.3]
in our context, stating the existence, for each sum-symmetric weight λ of J , of a
(unique) operator Θλ on V N which interpolates the operators Dλ

κ from Definition
6.2.2.

For simplicity, abusing notation in the following, we still write Dλ
κ for the map

on global sections

Dλ
κ(S) : H0(S,ωκ

)
−→H0(S,ωκ+λ

)
,

for any κ dominant weight of Jμ and λ sum-symmetric weight of J .
Fix x∈ Ig(W). As in Section 6.2.2, we denote by R the complete local ring of

Ig at x, and by locx : V →R the localization map at x.

Definition 6.3.1. For each sum-symmetric weight λ of Jμ, of depth e, we define

θλ :=
(
	̃λ⊗ idR

)
◦Ξe : R−→

(
L2)⊗e⊗WR−→R

with Ξe as in Definition 6.2.6, and 	̃λ := 	λ ◦ πλ : (L2)⊗e → Lλ → W defined
similarly to [EFMV18, Definition 2.4.2], i.e., as the composition of 	λ with the
projections πλ defined by the generalized Young symmetrizer cλ. (Recall that the
condition λ sum-symmetric is to ensure that the map 	̃λ is non-zero.)

Remark 6.3.2. It follows from the definitions, together with Propositions 6.2.3
and 6.2.7, that for any sum-symmetric weight λ of Jμ,

θλ ◦Ψκ,x =Ψκ+λ,x ◦Dλ
κ,

for all dominant weights κ of Jμ.
In particular, if λ is a sum-symmetric weight of J , then

θλ ◦ locx ◦Ψκ = locx ◦Ψλ+κ ◦Dλ
κ,

for all dominant weights κ of Jμ.
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THEOREM 6.3.3. For each sum-symmetric weight λ of J , there exists a unique
operator

Θλ : V N −→ V N

such that Θλ ◦Ψκ =Ψλ+κ ◦Dλ
κ, for all dominant weights κ.

The p-adic differential operator Θλ satisfies the properties
(1) Θλ(V N [κ])⊆ V N [λ+κ].
(2) locx ◦Θλ = θλ ◦ locx.

Proof. The argument of [EFMV18, Theorem 5.1.3] still applies here. Indeed,
the injectivity of Ψ=⊕κΨκ allows us to define

Θλ
|Im(Ψ) :=Ψ◦

(
⊕κD

λ
κ

)
◦Ψ−1.

As Im(Ψ) is dense in V Nμ(Zp), in order to extend Θλ to V Nμ(Zp) it suffices to check
that the image under Θλ of a converging sequence in Im(Ψ) is still convergent. This
can be checked locally, by passing to u-expansions, in which case the statement
follows from Remark 6.3.2. �

COROLLARY 6.3.4. For each sum-symmetric weight λ of J , the operator Θλ :
V N → V N satisfies the equality

Θλ ◦Φκ =Φλ+κ ◦Dλ
κ

for each dominant weight κ of J .

Proof. For each dominant weight κ of J , the statement follows from Corollary
6.2.4 and the equalities Θλ ◦Ψκ′ =Ψλ+κ′ ◦Dλ

κ′ for all κ′ ∈Mκ. �

6.3.1. Congruences among p-adic differential operators on p-adic au-
tomorphic forms OMOIT, via u-expansions. By similarity with the theory
in [EFMV18], one may expect congruences among operators Θλ of congruent
weights, at least under some mild/harmless assumption on the weights. In this sec-
tion, we prove that this is indeed the case under some strong restrictions on the
weights (see Definition 6.3.5). Yet, we have no reason to believe them necessary,
and we have hope to improve on them in the future.

In a few cases (see Remark 6.3.8), e.g., when p splits completely in the reflex
field E, our assumptions reduce to the milder ones introduced in [EFMV18]. Note
that in [EFMV18] p splits completely in the field F , which implies, but is not
equivalent to, p splits completely in E.

Definition 6.3.5. Let λ be a dominant weight of Jμ, and write λ= (λ(o))o∈O ,
with λ(o) = (λ(o)so , . . . ,λ(o)1).

We call λ simple if it is symmetric and if, for each orbit o, it satisfies the
following conditions:
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(1) If there exists τ ∈ o satisfying fo(τ) ∈ {0,n}, then λ(o) = (0, . . . ,0).
(2) If fo(τ) �= 0,n for all τ ∈ o, then λ(o)i = (0, . . . ,0), for all i= 1, . . . ,so−1.

Remark 6.3.6. There exist (infinitely many) non-zero simple weights if and
only if there exists an orbit o ∈O such that f(τ) �= 0,n for all τ ∈ o.

Remark 6.3.7. If λ is simple, of depth e, then it is a sum-symmetric (dominant)
weight of J . Moreover, the irreducible W-representation 
λ arises as a quotient of
the direct summand grs,0o (L2)⊗e of (L2)⊗e.

Remark 6.3.8. If p splits completely in the reflex field E, then the μ-ordinary
polygon is ordinary and all symmetric weights are simple.

More generally, all symmetric weights are simple if, for each orbit τ ∈ T , the
μ-ordinary Newton polygon νoτ (n, f) is either ordinary (i.e., its only slopes are 0
and e) or isoclinic (i.e., it has only one slope).

It follows from the definitions, together with Remark 5.4.10, that for λ sim-
ple, the operator θλ : R → R can be computed as in [EFMV18, Lemma 5.2.2],
in terms of operators of (1+u)∂u : W[[u]] → W[[u]], where u ranges among the
Serre-Tate coordinates corresponding to the Barsotti-Tate groups Xcan(o,1, f′0,e) in
the cascades, for o as in Part (2) of Definition 6.3.5.

We deduce the following analogue of [EFMV18, Proposition 5.2.4]. The argu-
ment in [EFMV18] applies immediately to our setting, under the further assump-
tions that the two symmetric weights λ,λ′ are simple. (In loc. cit. the weights are
denoted by κ,κ′.)

PROPOSITION 6.3.9. Let λ,λ′ be two simple weights, and let m ≥ 1 be an
integer. Assume

λ≡ λ′ mod pm(p−1)

in Z
g. If, additionally,
• min(λ(τ)i−λ(τ)i+1,λ

′(τ)i−λ′(τ)i−1)>m for all τ ∈ T and 1 ≤ i < a+τ
for which λ(τ)i−λ(τ)i+1 �= λ′(τ)i−λ′(τ)i−1, and

• min(λ(τ)a+τ ,λ
′(τ)a+τ )>m for all τ ∈ T for which λ(τ)a+τ �= λ′(τ)a+τ ,

then θλ ≡ θλ
′

mod pm+1.

Finally, from the above proposition and Theorem 6.3.3 combined, we deduce
the following analogue of [EFMV18, Theorem 5.2.6].

THEOREM 6.3.10. Let λ,λ′ be two simple weights, and let m≥ 1 be an integer.
Assume

λ≡ λ′ mod pm(p−1)

in Z
g. If, additionally, both
(1) min(λ(τ)i−λ(τ)i+1,λ

′(τ)i−λ′(τ)i−1)>m for all τ ∈ T and 1 ≤ i < a+τ
for which λ(τ)i−λ(τ)i+1 �= λ′(τ)i−λ′(τ)i−1, and
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(2) min(λ(τ)a+τ ,λ
′(τ)a+τ )>m for all τ ∈ T for which λ(τ)a+τ �= λ′(τ)a+τ ,

then Θλ ≡Θλ′
mod pm+1.

Definition 6.3.11. A character T (Zp)→ Z
∗
p is called a (simple) p-adic charac-

ter if it can be expressed as the p-adic limit of a sequence of characters correspond-
ing to (simple) classical weights.

Proposition 6.3.9 implies the existence of differential operators θχ on R for all
simple p-adic characters χ, arising by interpolation of the operators θλ, for simple
weights λ of Jμ. (Take a sequence of p-adically converging simple weights λi with
|λi|∞ → ∞ so that (1) and (2) from Theorem 6.3.10 are satisfied.)

Similarly, Theorem 6.3.10 implies the following result.

COROLLARY 6.3.12. For each simple p-adic character χ, there exists a p-adic
differential operator

Θχ : V N −→ V N

interpolating the p-adic differential operators Θλ. That is, if λi → χ p-adically and
|λi|∞ → ∞ as i→ ∞, then Θχ(f) = limiΘ

λi(f). The p-adic differential operator
Θχ satisfies the following properties:

(1) For all p-adic characters χ′: Θχ(V N [χ′])⊆ V N [χ ·χ′].
(2) For all x ∈ Ig(W): locx ◦Θχ = θχ ◦ locx.

7. p-adic families of automorphic forms. In this section, we build on the
material from the previous sections to construct p-adic families of automorphic
forms. As an application of the differential operators from the prior sections, we
obtain the following result:

THEOREM 7.0.1. Suppose there exists an orbit o ∈O such that f(τ) �= 0,n for
all τ ∈ o (see Remark 6.3.6). Let f be a p-adic automorphic form of weight κ, and
let {λn}n∈N a sequence of simple weights that converges p-adically, and satisfies
the conditions of Theorem 6.3.10. Then the automorphic forms Θλn(f) converge
to a p-adic form in V N [κ ·χ], for χ := limnλn.

Proof. Together, Theorem 6.3.10 and Corollary 6.2.4 imply the automorphic
forms Θλn(f) converge to a p-adic form in V N [κ ·χ], for χ := limnλn. �

For applications to p-adic L-functions and Iwasawa theory, it is often conve-
nient to construct p-adic measures. Recall (e.g., from [Kat78, Section 4.0]) that for
R a p-adic ring, an R-valued p-adic measure on a compact, totally disconnected
topological space Y is a Zp-linear map μ from the Zp-algebra C(Y,Zp) of Zp-
valued continuous functions on Y to R. It is equivalent to give an R-linear map
from the R-algebra C(Y,R) of R-valued continuous functions on Y to R, since
C (Y,Zp)⊗̂ZpR

∼= C (Y,R). Given χ ∈ C(Y,R), we write
∫
Y χdμ := μ(χ).
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Let
W =

∏

{o|fo(τ) �=0,n∀τ∈o}
Z
×
p .

So the rank of W is the number of components at which a simple weight (in the
sense of Definition 6.3.5) can be non-zero.

THEOREM 7.0.2. Let f be a p-adic automorphic form OMOIT. Then there is
a V N -valued p-adic measure μf on W such that

∫

W
λdμf =Θλ(f)

for all simple positive integer weights λ.
In particular, if f is of weight κ and {λn}n∈N is a sequence of positive

weights that converges p-adically and satisfies the conditions of Theorem 6.3.10,
then the automorphic forms Θλn(f) converge to a p-adic form in V N [χ · κ], for
χ := limnλn.

Proof. Theorem 6.3.10 and Corollary 6.3.4 combined imply that the automor-
phic forms Θλn(f) converge to a p-adic form in V N [χ], for χ := limnλn. The rest
of the statement follows from the definition of a p-adic measure. �

For applications to p-adic L-functions, one often needs to relate certain p-adic
and C-valued automorphic forms. For example, Katz’s construction of p-adic L-
functions for CM fields in [Kat78] includes a comparison of values of p-adic and
C-valued Hilbert modular forms at certain ordinary Hilbert-Blumenthal abelian
varieties, in two distinct ways:

(1) Equate (modulo periods) the values (at ordinary CM Hilbert-Blumenthal
abelian varieties defined over D) of a p-adic and a C∞ Hilbert modular form ob-
tained by applying a p-adic differential operator (related to the ones in this paper)
and the analogous C∞ Maass-Shimura operator to a holomorphic Hilbert modular
form defined over D .

(2) Express a p-adic automorphic form obtained by applying a p-adic differ-
ential operator (analogous to the ones in this paper) to an Eisenstein series defined
over D as a p-adic limit of finite sums of holomorphic (algebraic) Eisenstein series
over D .
Item (1), in particular, plays a key role in Katz’s construction of p-adic L-functions
for CM fields [Kat78].

Remark 7.0.3. Let f be an algebraic automorphic form arising over D . Then
by extension of scalars, we may view f as an automorphic form over C or as an
automorphic form over O

Q̄p
. Let A be a μ-ordinary CM point over D , together with

a choice of differentials ω over D , and let c be such that cω is the canonical basis
over the μ-ordinary Igusa tower. So if f is of weight κ, f(A,cω) = Ωc,κf(A,ω),
for some Ωc,κ dependent on c and κ.
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We expect that a similar argument to the one in [Kat78, Section 5] yields an
analogous comparison to (1) at μ-ordinary CM points over D (together with a
basis of differentials) of πκ+λDλ

κ(f) and πκ+λDλ
κ,C∞(f). As an illustration of a

consequence of this comparison, we provide Corollary 7.0.4, which interpolates
values (modulo periods) at CM points of C∞ automorphic forms.

COROLLARY 7.0.4. (Corollary to Theorem 7.0.2) Let f be a weight κ alge-
braic automorphic form arising over D , and let (A,ω), c, and Ωc,κ be as in Remark
7.0.3. Then

1
Ωc,κ+λ

∫

W
λdμf =

(
πκ+λDλ

κ,C∞(f)
)
(A,ω)

Proof. This is a consequence of Theorem 7.0.2, combined with Remark 7.0.3.
�

Remark 7.0.5. As noted in Remark 6.3.8, when p splits completely in E, the
ordinary locus is always nonempty. Thus, [EFMV18, Theorem 7.2.3], which ob-
tains an explicit family of automorphic forms by applying differential operators to
a family of Eisenstein series on a unitary group G of signature (n,n) and then re-
stricting to a subgroup G′ of G, can be extended to the case where p need not split
completely in F but merely splits completely in E (replacing the stronger condition
that p splits completely in F ). The approach in the proof of [EFMV18, Theorem
7.2.3] uses the existence of an ordinary cusp for G together with the inclusion
of the μ-ordinary locus for G′ inside the ordinary locus for G, which only exists
when the ordinary locus for G′ is nonempty. Ideally, we would also like to handle
the case where the ordinary locus for G′ is empty. We expect that the analogue in
our setting of Hida’s ordinary projection (μ-ordinary or P -ordinary projection, in
our case) will help enable such as an extension.
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