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Abstract

Ocean boundary current systems are key components of the climate system, are home to highly
productive ecosystems, and have numerous societal impacts. Establishment of a global network of
boundary current observing systems is a critical part of ongoing development of the Global Ocean
Observing System. The characteristics of boundary current systems are reviewed, focusing on
scientific and societal motivations for sustained observing. Techniques currently used to observe
boundary current systems are reviewed, followed by a census of the current state of boundary current
observing systems globally. Next steps in the development of boundary current observing systems
are considered, leading to several specific recommendations.

1. Introduction

Ocean boundary current systems are where society most frequently interacts with the ocean through
fisheries, maritime transportation, oil and gas extraction, and recreation. These systems are home to
intense and highly variable oceanic currents that redistribute mass, heat, salt, biogeochemical
constituents, plankton, and pollution. Circulation patterns also influence the life history, foraging
behavior, and abundance of many marine species (e.g., Mansfield et al., 2017). The coastal and open
ocean are linked through boundary current systems where events such as coastal upwelling, sea level
anomalies, primary productivity, fisheries, and weather are propagated between domains via various
processes (e.g., eddies, Rossby waves, advection). Boundary currents may be broadly categorized as
either western boundary currents (WBCs; Imawaki et al., 2013) or eastern boundary currents (EBCs)
based on their governing dynamics. In each ocean basin, WBCs play a prominent role in the climate
system by redistributing heat from the equator towards the poles, while EBCs are some of the most
biologically productive regions in the world and respond dramatically to climate variability (Chavez
et al., 2008; Chavez and Messié, 2009).

In our changing climate, shifting hydrological cycles and weather patterns are expected to strongly
impact oceanic boundary current processes. Observational evidence for such shifts is beginning to
appear. Wu et al. (2012) noted enhanced warming of subtropical WBCs and their extensions during
the twentieth century, possibly linked to their poleward shift or intensification. Changes in the
stability of WBCs have also been noted, with instabilities in the Gulf Stream shifting westward
(Andres, 2016), increasing influence of warm core rings on shelf circulation (Gawarkiewicz et al.,
2018), and a trend towards greater instability in the East Australian and Agulhas Currents (Sloyan
and O’Kane, 2015; Beal and Elipot, 2016).
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Oceanic ecosystems are being exposed to increasing pressure from major stressors including
warming, deoxygenation, fishing, and acidification. EBCs in particular are projected to be strongly
impacted by these stressors (Bakun et al., 2015). For instance, the Peru-Chile (Humboldt) Current
system (Section 4.1.2), a highly productive EBC and a regional source of greenhouse gases, is
naturally affected by upwelling of offshore waters with low oxygen and pH onto the continental shelf
(Helly and Levin, 2004) and by periodic El Nifio Southern Oscillation (ENSO) events that change the
water masses distributions, oxygenation, and productivity (Chavez et al., 2008; Gutiérrez, 2016;
Graco et al., 2017); further stress could have significant consequences for the regional ecosystem.
Similarly, changes in the Gulf Stream under global warming are predicted to negatively impact
fisheries in the Gulf of Maine and on the New England Shelf (Saba et al., 2016; Claret et al., 2018).

Sustained, interdisciplinary observations in boundary current regions are required for a global ocean
observing system. For OceanObs’09, Send et al. (2010) proposed a global network of sustained
monitoring arrays as part of the Global Ocean Observing System (GOOS). Send et al. (2010) broadly
defined the properties to be observed as 1) the transports of mass, heat, and freshwater needed for
monitoring the global climate in conjunction with basin-scale measurements and 2) local boundary-
specific properties including eddy activity, changes in potential vorticity, air-sea interactions (Cronin
et al., 2019), ecosystem dynamics, and biogeochemistry. More recently, the 2017 GOOS workshop
on ‘Implementation of Multi-Disciplinary Sustained Ocean Observations’ (IMSOO; Palacz et al.,
2017) focused, in part, on how to proceed with the development of a truly multidisciplinary boundary
current observing system, building upon the more physical and climate-focused plans of Send et al.
(2010). In particular, it was noted that observations that resolve along-boundary variability are
needed in order to understand climate impacts on various societally relevant uses of boundary current
systems (e.g., fisheries). The need to maintain a global perspective that targets all boundary current
systems has been repeatedly recognized (Send et al., 2010; Palacz et al., 2017), particularly in
developing nations where fisheries can be centrally important (Palacz et al., 2017). To that end,
IMSOO planned to review established observing systems in the California Current System and East
Australian Current in order to develop a blueprint for an adaptive, multidisciplinary observing system
with relocatable subsystems to capture finer scales (Palacz et al., 2017).

Oceanic boundaries present a variety of challenges for sustained observing systems (Send et al.,
2010). With strong flows in relatively shallow areas, spatial scales of O(1)-O(10) km, and temporal
scales often shorter than a few days (e.g., He et al., 2010; Todd et al., 2013; Rudnick et al, 2017), the
broad-scale (i.e., Argo and gridded satellite altimetry), long-duration (e.g., HOTS, BATS, Station P,
CARIACO) measurements that constitute the observing system for the ocean interior are insufficient
for boundary current systems. Multiple observing strategies are needed to measure the Essential
Ocean Variables (EOVs) that can be used to understand and track the physical and biogeochemical
processes of interest within boundary currents (Lindstrom et al., 2012). The optimal combination of
observing methods will depend upon characteristics unique to each region. Send et al. (2010) noted
that an additional challenge in observing boundary current systems is that there is no well-defined
offshore ‘end’ of a boundary current, but rather a temporally and spatially variable transition to the
interior. At the same time, oceanic boundaries generally lie within exclusive economic zones (EEZs),
so the implementation of observing platforms requires significant international cooperation.

The overarching purpose of this review is to examine the current state of the boundary current system
component of GOOS, updating and building upon the OceanObs’09 review of Send et al. (2010).
Section 2 considers the scientific and societal needs that comprehensive boundary current observing
systems must fulfill. Section 3 reviews how various observing techniques are employed in boundary
currents, highlighting key scientific advances from each platform. Section 4 surveys the current state
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of boundary current observing systems globally. Table 2 provides a comprehensive collection of
publications and datasets from the past decade, organized by region and platform. Section 5 then
considers the future development of boundary current observing systems. Section 6 concludes with
specific recommendations to promote development of a comprehensive global network of boundary
current observing systems.

2. Scientific and Societal Needs

The Framework for Ocean Observing (Lindstrom et al., 2012), developed after OceanObs’09,
recommended that ocean observing systems be 1) ‘fit for purpose’ and driven by ‘scientific inquiry
and societal needs’; 2) include physical, biogeochemical, and biological observations; 3) operate
collaboratively based on established best practices; 4) balance innovation with stability; 5) promote
alignment of independent user groups; 6) build on existing infrastructure as much as possible; and 7)
provide maximum benefit to all users from each observation. Here we present the scientific and
societal needs that that should be met by comprehensive observing of oceanic boundary current
systems, focusing on three broad categories: ecosystems and biogeochemistry (Section 2.1), weather
and climate (Section 2.2), and connections between the shelves and deep ocean (Section 2.3).

2.1 Ecosystems and Biogeochemistry

Boundary current systems play an important role in carbon cycling through the physical and
biological carbon pumps. WBCs are major sites of air-sea CO, exchange (e.g., Rodgers et al., 2008;
Gorgues et al., 2010; Nakano et al., 2011) and have been shown to exhibit enhanced contemporary
carbon uptake from the atmosphere (Takahashi et al., 2009; Landschiitzer et al., 2014). WBC CO;,
uptake is driven by a large pCO, disequilibrium with the overlying mid-latitude atmosphere, which is
due to the rapid cooling of low Revelle factor waters advected from the tropics to midlatitudes. Since
thick subtropical mode waters form during wintertime convection on the equatorward edges of the
WBC extensions, the mode waters are key carbon sinks (e.g., Bates et al., 2002; Gruber et al., 2002;
Ito and Follows, 2003; Levine et al., 2011; DeVries, 2014; Iudicone et al., 2016) and have been the
target of detailed observational carbon studies (Andersson et al., 2013; Palevsky and Quay, 2017).
However, it is still unclear how variability in the rate of mode water formation might impact ocean
carbon uptake in these regions and what impacts these changes might have on the biological pump
and higher trophic levels (e.g., fisheries). In the Kuroshio Extension region, there is evidence that the
majority of carbon exported from the surface ocean during the spring and summer productive season
is subsequently respired in the seasonal thermocline and ventilated back to the atmosphere during
wintertime mode water formation (Palevsky et al., 2016; Fassbender et al., 2017a; Palevsky and
Quay, 2017; Bushinsky and Emerson, 2018). The Southern Hemisphere WBCs are chronically
undersampled, particularly during winter, leading to significant uncertainty in their contribution to
the global ocean carbon sink.

Boundary current systems are highly productive regions (Chavez et al., 2008). The mechanisms of
nutrient supply to surface waters that drive increased primary productivity differ among EBC and
WBC systems, but their global contributions are similar (Chavez and Toggweiller, 1995). In EBC
systems, the dominant source of nutrients is coastal upwelling (Chavez and Messie, 2009), while in
WBC systems, geostrophic and eddy driven upwelling predominate (Pelegri and Csanady, 1991).
Nutrient streams are important in the Gulf Stream (Pelegri and Csanady, 1991; Pelegri et al., 1996;
Palter and Lozier, 2008; Williams et al., 2006, 2011) and the Kuroshio (Guo et al., 2012, 2013),
transporting subsurface positive nitrate anomalies which are delivered to the photic zone primarily by
mesoscale and submesoscale processes (Nagai and Clayton, 2017; Zhang et al., 2018; Yamamoto et
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al., 2018; Honda et al., 2018). Nutrient cycles and drivers have not yet been studied in WBC systems
of the Southern Hemisphere.

WBCs are also enriched in micro-nutrients (e.g., Fe, Zn, Cd, Co, and Ni) from land-sea exchanges.
They ultimately feed open ocean surface waters and, at lower latitudes, the equatorial undercurrent,
where these micro-nutrients are critical in maintaining high levels of productivity. For instance, iron
transported by boundary currents in the western Pacific feeds into the Pacific Equatorial
Undercurrent, which then supplies iron to the Equatorial East Pacific (e.g., Mackey et al., 2002; Ryan
et al., 2006). In the North Atlantic, Gulf Stream rings supply iron to the subtropical gyre (e.g.,
Conway et al., 2018). Subpolar WBCs such as the Oyashio and Malvinas Current are also likely to
transport waters enriched in nutrients; wind-driven and shelfbreak upwelling then supply nutrients to
the euphotic layers, enhancing biological productivity (Matano and Palma, 2008; Ito et al., 2010;
Valla and Piola, 2015). Locations at which subtropical and subpolar WBCs meet provide ideal
environments for biological production as warm subtropical waters converge with nutrient-rich
subpolar waters (Brandini et al., 2000).

The upwelling of deep, poorly ventilated water masses rich in inorganic nutrients and CO, and low in
0O, make EBCs areas of high air-sea fluxes, and the sensitivity of the upwelling process to climate
variability contributes to large interannual and decadal scale changes in the magnitude of these fluxes
(Friederich et al., 2002; Brady et al., 2018). EBCs also exhibit strong cross-shore gradients in fluxes;
narrow strips of the nearshore ocean act as intense sources of CO; to the atmosphere, while the
abundance of nutrients in these upwelled waters facilitates primary production that results in net
uptake of CO, (Hales et al., 2005). The supply of poorly ventilated waters combined with high levels
of organic-matter remineralization resulting from intense primary production in surface waters can
trigger periods of anoxia and low pH in shelf waters (Feely et al., 2008; Zhang et al., 2010) with
severe consequences for demersal and pelagic ecosystems (Chan et al., 2008; Monteiro et al., 2008;
Bertrand at al., 2011).

Boundary currents play an important role in ocean ecosystems across all trophic levels. The intense
levels of primary production associated with EBCs support rich ecosystems with relatively short food
chains, and these systems provide at least 20% of the world’s wild-caught fish despite covering less
than 1% of the global ocean (Chavez and Messié, 2009). WBCs and EBCs are also oceanic regions
where coastal and open ocean ecosystems are brought together and interact. Modeling studies have
suggested that boundary currents are hotspots of microbial biodiversity (Barton et al., 2010; Clayton
et al., 2013). This has been supported in the Kuroshio Extension by some in situ surveys (Clayton et
al., 2014, 2017). At the other end of the trophic spectrum, recent work combining tag data and
satellite altimetry data has shown that white sharks (Carcharodon carcharias) actively occupy warm-
core anticyclonic eddies in the Gulf Stream (Gaube et al., 2018). The warmer waters in these
mesoscale features allow the sharks to reduce the physiological costs of thermoregulation in cold
water, thereby making prey more accessible and energetically more profitable. Similarly, the location
of the Kuroshio axis and associated changes in water temperature have been shown to influence the
behavior of juvenile Pacific bluefin tuna (Thunnus orientalis; Fujioka et al., 2018). In the Southern
Benguela EBC upwelling system, the coastal, wind-driven upwelling along the southwest African
coast supports planktonic food supplies for young pelagic fish, while the temperate Agulhas Bank
shelf region provides suitable spawning habitat for large communities of fish including in particular
anchovy and sardine (Hutchings et al., 2009c¢). Likewise, southern elephant seals feed along the
intense fronts and eddies in the Brazil/Malvinas Confluence (Campagna et al., 2006). WBCs are also
known to play an important role in the migration of other coastal and pelagic organisms, such as eels
(Shinoda et al., 2011; Rypina et al., 2014) and salmon (Wagawa et al., 2016).
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Marine heat waves (MHWs) are strongly linked with boundary current systems. For instance, the
exceptional and devastating MHW event off Western Australia during summer of 2010/2011 was
caused by a strengthening of the Leeuwin Current associated with La Nifa conditions (Pearce and
Feng, 2013; Feng et al., 2015), a 2014-2015 MHW had unprecedented impacts on the California
Current System (Di Lorenzo and Mantua 2016; Zaba and Rudnick 2016), and a MHW in 2015-2016
impacted the Tasman Sea (Oliver et al., 2017). These discrete, prolonged periods of anomalously
warm waters at particular locations (Hobday et al., 2016) can stress ecosystems, leading to increased
mortality of marine species, closing of commercial and recreational fisheries, and coral bleaching
(Cavole et al., 2016; Stuart-Smith et al., 2018). The addition of other stressors such as ocean
acidification and deoxygenation, which are projected to increase in future warming scenarios, could
amplify the ecosystem impacts of MHWs. Sustained physical and biogeochemical observations are
necessary to improve forecasts of the frequency and magnitude of MHWs, as well as to assess the
risk and vulnerability of marine ecosystems to extreme climate events (Frolicher and Laufkétter,
2018).

2.2 Climate and Weather

Boundary currents are an integral part of the global climate system as they redistribute heat and
facilitate carbon uptake from the atmosphere (Section 2.1). In the Atlantic, boundary currents are key
components of the Atlantic Meridional Overturning Circulation (AMOC; Frajka-Williams et al.,
2019). Low-latitude WBCs that connect the subtropics to the equator at thermocline and intermediate
levels are important contributors to the mass and heat budgets of the equatorial oceans, which
influence climate modes such as ENSO (Lengaigne et al., 2012). Low-latitude WBCs are also
suspected to contribute to the decadal modulation of the equatorial thermocline background state
(e.g., Lee and Fukumori, 2003). Sustained monitoring of WBC transports would be particularly
useful for climate and seasonal-to-decadal forecast centers (see Smith et al., 2019).

As climate change progresses, boundary current systems are likely to undergo further significant
changes. Subtropical WBCs and their extensions are the fastest warming regions of the world ocean
(Wuetal., 2012; Yang et al., 2016). Climate model simulations have suggested that western
boundary current extensions may move poleward under climate change (Saba et al., 2016). This
poleward expansion of energetic WBCs may impact extreme temperatures and marine species
migration (Johnson et al., 2011), as well as enhance eddy activity regionally (e.g., Oliver et al.,
2015). While low-resolution climate models suggest strengthening and poleward migration of several
of these currents under climate change, particularly in the Southern Hemisphere (Sen Gupta et al.,
2012; Hu et al., 2015; Pontes et al., 2016), studies leveraging in situ velocity and satellite data
suggest no significant increase in their transports since the early 1990s (Rossby et al., 2014; Beal and
Elipot, 2016). This discrepancy motivates the collection of long-term measurements of baroclinic
changes in boundary currents (i.e., subsurface temperature and salinity properties), as well as the
vertical structure of the velocity, in order to understand and predict future changes.

In addition, ocean warming and a magnified hydrological cycle could drive significant changes in
shelf ocean stratification, while changes to wind forcing will directly alter rates of upwelling. These
ocean circulation processes, and meteorological forcing at the scales that impact upwelling, are
poorly represented in climate models (Richter, 2015; Zuidema et al., 2016). Thus, we have little
capability to predict how upwelling, winds and other physical drivers of ocean property exchanges at
the coastal/open ocean boundary will change in the future. The impact these changes will have on
coastal ecosystems is simply unknown.
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Detection and attribution of global sea level variability has improved considerably in the last decade
(Cazenave et al., 2014; Marzeion et al., 2014). The location and strength of WBCs considerably
influence the mean local sea level (Domingues et al., 2016; Archer et al., 2017a) possibly accounting
for part of the mismatch between forecasts and observations of sea level at the coast (Ezer, 2015).
Relationships between large scale wind anomalies, basin-wide sea surface height (SSH), and WBCs
(e.g., Boening et al., 2012; Volkov et al., 2019) suggest that observations of current strength and
oceanic teleconnections can be used to improve seasonal to decadal coastal sea level forecasts,
leading to improved assessments of impacts on infrastructure and groundwater quality (Slangen et
al., 2014; Park and Sweet, 2015).

Boundary current systems influence synoptic and longer scale weather patterns. Large upper ocean
heat content within WBCs can fuel development and intensification of tropical cyclones (Bright et
al., 2002; Wu et al., 2008; Nguyen and Molinari, 2012; Galarneau et al., 2013). Strong sea surface
temperature (SST) gradients across WBCs, particularly during winter months, destabilize the
atmospheric boundary layer, fueling the mid-latitude storm tracks and atmospheric blocking
frequency, which in turn impact regional climate (Kelly et al., 2010; Nakamura, 2012; O’Reilly and
Czaja, 2015; O’Reilly et al., 2016; Révelard et al., 2016; Ma et al., 2017). For instance, a weaker Gulf
Stream SST front leads to a decrease in cold and dry spells over Europe (O’Reilly et al., 2016), while
a sharper SST front in the Kuroshio Extension increases cyclogenesis and shifts the storm track
northward, causing warming over eastern Asia and the western United States that can reduce snow
cover by 4-6% (O’Reilly and Czaja, 2015; Révelard et al., 2016). Variability in the warm waters of
the Agulhas influences summer rainfall over parts of South Africa (Jury et al., 1993; Nkwinkwa
Njouodo et al., 2018). In EBC systems, SST minima are collocated with maxima in sea level pressure
that are in turn associated with alongshore wind stress, wind stress curl, and cloud cover along the
boundary (Sun et al., 2018), suggesting coupling with the full Hadley-Walker tropical atmospheric
circulation, though the details of such coupling remain an open question.

Accurate weather and climate forecasting thus requires accurate representation of boundary current
systems. However, most of the current ocean reanalyses used to initialize the monthly, seasonal, and
decadal forecasts exhibit large errors in the boundary currents (Rouault et al., 2003; Valdivieso et al.,
2017), hampering forecast performance. Coupled climate models, such as those used in the
Intergovernmental Panel on Climate Change reports, also exhibit large deficiencies in boundary
current regions (e.g., Zuidema et al., 2016; Siqueira and Kirtman, 2016), including warm SST biases
in EBCs (e.g., Large and Danabasoglu, 2006). Current modelling and data assimilation capabilities
are insufficient to fully represent boundary currents at the small spatial scales needed for forecasting.
Subramanian et al. (2019) further consider how observing efforts, including within boundary
currents, can contribute to improved subseasonal-to-seasonal forecasting.

2.3 Shelf-Deep Ocean Connections

The coastal ocean and nearshore zones support a broad range of human activities in maritime
industries and resource extraction, and the environmental health and productivity of these regions
deliver important ecosystem services. As already noted, the proximity of energetic boundary currents
in deep water adjacent to continental shelves mediates shelf-sea/deep-ocean exchange of properties.
Along many coasts, this forcing can match or exceed local drivers of circulation such as tides, wind,
and river inflows. Coastal ocean and shelf edge dynamics have immediate impacts on ecosystem
function and productivity on weekly to seasonal time scales, but can also drive multi-decadal changes
in ecosystem structure through effects on habitat ranges and biodiversity, not only in coastal zones
but also at basin scales.
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While we have a broad understanding of the dynamics of upwelling in both WBC and EBC regimes,
quantitative estimates of net shelf-sea/deep-ocean exchanges of freshwater and tracers integrated over
extended along-shelf distances are few. Quantifying these exchanges is challenging where shelf-edge
flow-bathymetry interactions foster variability at short length and time scales. Similarly, exchange
flows are not always readily observable at the sea surface from satellite or shore-based remote
sensing technologies (Section 3.6) because they are associated with bottom boundary layer flow
driven by the boundary current encountering the sea-floor or subduction at the sea surface due to
boundary current detachment and mixing. Two efforts along the U.S. East Coast are striving to make
such measurements using multi-platform observing arrays: the Processes driving Exchange At Cape
Hatteras (PEACH) program and the Ocean Observatories Initiative (OOI; Smith et al., 2018;
Trowbridge et al., 2019) Pioneer Array (see Section 4.2.1). Similarly, in situ and satellite remote
sensing observations combined with high-resolution numerical simulations have provided insights
into the shelf-sea/deep-ocean exchanges near the confluence of the Brazil and Malvinas Currents
(Guerrero et al., 2014; Matano et al., 2014; Strub et al., 2015).

On narrow continental shelves adjacent to intense boundary currents, the impact of deep-ocean
circulation on the shelf system is immediate, driving significant fluxes across the continental shelf
edge through mesoscale and boundary layer dynamics. For example, mesoscale and submesoscale
meandering of the Agulhas jet leads to strong episodic exchanges with shelf waters (Leber et al.,
2017; Krug et al., 2017) that support high productivity over the eastern Agulhas Bank (Probyn et al.,
1994) and may influence the well-known sardine run (Fréon et al., 2010). On broad continental
shelves, bathymetric constraints on cross-isobath flow can hamper exchange at the shelf edge,
trapping terrestrial inflows and establishing appreciable cross-shelf buoyancy gradients that in turn
sustain shelf-edge fronts (Fratantoni and Pickart 2007; Howatt et al., 2018).

With changing climate, ocean warming and changes to the hydrological cycle could drive changes in
vertical thermal stratification and across-shelf salinity stratification, altering ocean conditions at the
inshore edge of boundary current systems (e.g., Gawarkiewicz et al., 2018) and potentially impacting
across-shelf fluxes of nutrients and micro-nutrients that are important to sustaining coastal
productivity (Fennel et al., 2006). Changes in watershed land use and global weather will alter the
volume and characteristics of river flows discharged into the coastal zone. At continental shelf scales,
key areas of uncertainty in the oceanographic response to climate variability and change include sub-
mesoscale processes and open ocean-shelf exchange. Sustained observing efforts are needed that
more fully capture the influence of boundary currents on exchanges with the coastal zone. Designing
and deploying boundary current observing systems capable of operating across shelf and deep ocean
regimes to deliver coherent views of the shelf-edge exchange is challenging.

3.  Observing Techniques

The highly variable and multi-scale characteristics of boundary currents necessitate an integrated
observing system approach, in which high-resolution observations are nested within a backbone of
observations over a broad area. Under the Framework for Ocean Observing (Lindstrom et al., 2012),
design and implementation of ocean observing systems is focused around a set of EOVs that include
physical, biogeochemical, and ecosystem parameters (Table 1 and http://www.goosocean.org/eov).
Design of an observing system for a particular region (e.g., a specific boundary current system)
should proceed through a series of ‘readiness levels’. In the concept phase, initial feasibility studies
and peer review of proposed plans take place. Then, in the pilot phase, small-scale deployments are
used to test and validate the proposed approach. Once the observing system reaches the mature phase,
it is part of the sustained global ocean observing system. No single observing platform can provide
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all of the necessary measurements (Table 1), so an optimal mix of observing platforms is needed.
Determination of this mix of platforms will be specific to a particular boundary current system,
taking into consideration the unique processes and scales at play in that system. Here we briefly
review how various observing platforms are currently being used in boundary current systems; Table
2 refers to many other examples of these observing techniques being applied to boundary current
systems.

3.1 Time Series

Time series measured from platforms fixed to the seafloor have long been and continue to be central
to observing system design and implementation since they uniquely enable collection of long-term
measurements at high temporal resolution (minutes to hours) at key locations. Traditional tall
moorings (e.g., Johns et al., 2005) typically carry instruments on the mooring wire, within subsurface
floats, and on surface buoys, if present; instruments are available to measure most physical EOVs
and a growing number of biogeochemical and ecosystem EOVs (Table 1). Moored surface buoys
additionally carry suites of meteorological sensors on the buoy tower and sensors for biogeochemical
and physical EOVs on the buoy bridle and mooring line just below the sea surface; these air- and sea-
surface measurements can be combined to estimate the air-sea exchanges of heat, moisture, CO,, and
momentum (Cronin et al., 2019). Inverted echo sounders (IESs) measure the time for sound pulses to
travel from the bottom-mounted IES to the surface and back, which, in regions with good databases
of hydrographic measurements, can provide full water column estimates of temperature, salinity, and
density using the gravest empirical mode technique (Meinen and Watts, 2000). In the Florida Strait, a
unique time series of volume transport has resulted from measuring the voltage induced in a
submarine cable by seawater moving through the Earth’s magnetic field (Larsen and Stanford, 1985;
Baringer and Larsen, 2001; Meinen et al., 2010).

Dense, moored arrays of instruments remain the most effective way to return volume and property
transport measurements with high temporal resolution. Subsurface moorings are more typical in
WBCs due to the strong surface currents, although surface moorings have also been successfully
deployed in the Gulf Stream (Weller et al., 2012) and Kuroshio Extension (Cronin et al., 2013).
Arrays of IESs can be used to infer geostrophic shear profiles, and, with the addition of bottom
pressure sensors (PIES) and near-bottom current measurements (CPIES), can provide estimates of
the absolute geostrophic current (Donohue et al., 2010; Meinen et al., 2018). However, the high costs
of building, deploying, and turning around such arrays makes them feasible only at a few key
locations. Other observing assets are needed to provide spatially broad measurements.

3.2 Ship-Based Measurements

Measurements from both dedicated research vessels and ships of opportunity have been central to
observing boundary current systems for decades. Research vessels can measure nearly every EOV
(Table 1) through the full depth of the water column and are uniquely capable of collecting many
types of samples (e.g., net tows, large-volume water samples). Ongoing sustained research vessel
surveys of ocean boundary currents include the global GO-SHIP transects at 25-50 km resolution
(Talley et al., 2016) and the California Cooperative Oceanic Fisheries Investigations (CalCOFT)
surveys (McClatchie, 2014) in the California Current System (see Section 4.1.1). The servicing of
boundary current mooring arrays, generally undertaken from research vessels, provides unique
opportunities to undertake intensive process studies targeting key scientific questions. The primary
limitations on research vessels’ contribution to sustained boundary current observing are their high
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costs of operation (typically tens of thousands of dollars per day, excluding science personnel) and
the infrequency of cruises.

The World Meteorological Organization (WMO) Voluntary Observing Ship (VOS) Program and
Ship Of Opportunity Program (SOOP) both make use of non-research vessels to collect observations
globally, substantially augmenting the amount of ship-based observing. Both programs collect
meteorological measurements with real-time observations benefiting weather forecasting, while
SOOQOP additionally uses commercial ships to collect oceanographic measurements along frequently
occupied trade routes in the global ocean. Oceanic measurements from SOOP include temperature
profiles from expendable bathythermographs (XBTs) at 10-25 km resolution in boundary currents
(Goni et al., 2019), surface temperature, salinity, plankton, and pCO; from flow-through systems,
and, on specially-equipped vessels, velocity profiles from hull-mounted ADCPs (e.g., M/V Oleander;
Rossby et al., 2010). Several repeat transects across boundary currents have been maintained for
multiple decades and so represent some of the longer data sets available (see Section 4). Fast-moving
ships are often able to occupy transects directly across strong boundary currents in short periods of
time, a feat not yet possible with other sampling platforms. However, subsurface measurements of
variables other than temperature and velocity have remained elusive from ships of opportunity, and
recovery of instruments deployed over the side is not practical on cargo vessels.

3.3 Autonomous Underwater Gliders

Autonomous underwater gliders (Rudnick, 2016b; Testor et al., 2019) routinely collect long-duration,
high-resolution observations in a variety of boundary current systems globally (Todd et al., 2018a;
Table 2). Gliders typically profile from the surface to 500-1000 m, taking 3-6 h to complete a cycle
from the surface to depth and back while covering 3-6 km horizontally through the water at a speed
of about 0.25 m s™'. During a mission lasting 3-6 months, a glider’s survey track extends well over
2000 km. Owing to the relatively slow speed of gliders, care must be taken when interpreting the
observations, which contain both spatial and temporal variability (Rudnick and Cole, 2011).
Sustained deployment of networks of gliders can provide observations with both high spatial
resolution and year-round coverage (e.g., Fig. 1a,b).

Realizable glider-based sampling plans in boundary currents vary primarily due to the strength of
currents relative to a glider’s speed. In EBCs and other boundary currents with relatively weak depth-
average currents, gliders can occupy repeat survey lines. The California Underwater Glider Network
(CUGN; Fig. 1, left), which consists of three cross-shore transects off southern and central California
that have been continuously occupied for more than a decade (Rudnick et al., 2017), exemplifies
sustained glider observations in an EBC. In WBCs and other boundary currents where depth-average
currents are significantly faster than a glider’s speed through the water, gliders can be navigated so as
to cross the observed flow as they are advected downstream, returning oblique transects. For
example, multi-year surveys of the Gulf Stream (Fig. 1, right; Todd et al., 2016, 2018b; Todd 2017;
Todd and Locke-Wynn 2017) have now returned over 150 high-resolution transects across the WBC
of the North Atlantic. Testor et al. (2019) further discuss efforts associated with the OceanGliders
Boundary Ocean Observing Network (BOON).

Gliders can carry a variety of sensors (e.g., Fig. 1c-f). Measurements of pressure, temperature (Fig.
1d), conductivity, and depth-average currents are standard, enabling estimates of absolute
geostrophic transport and other physical parameters at relevant scales in boundary currents.
Measurements of bio-optical (e.g., Niewiadomska et al., 2008; Henderikx Freitas et al., 2016) and
bio-acoustic properties (e.g., Baumgartner and Fratantoni, 2008; Van Uffelen et al., 2017), dissolved
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oxygen (e.g., Fig. le; Perry et al., 2008), nitrate, turbulent microstructure (St. Laurent and Merrifield,
2017), and velocity profiles (Fig. 1f; Todd et al., 2017) are becoming increasingly common. The
main constraints on sensors for gliders are the requirements for small size, low power consumption,
and multi-month stability. As sensor technology continues to mature, gliders will be well suited to
carry sensors for additional EOVs, such as pH, in boundary currents.

3.4 Drifters

Surface Velocity Program (SVP) drifters drogued at 15 m depth (Niiler et. al. 1995; Niiler, 2001;
Centurioni, 2018) deployed as part of the Global Drifter Program (GDP) and of the Global Surface
Drifter Array (GSDA) are also important for understanding the structure and variability of boundary
current systems. The GSDA archive dates back to February 1979 and includes over 32 million
records of geographical location, 15-m depth velocity, and SST at 6-hour resolution (e.g., Hansen
and Poulain, 1996; Lumpkin and Pazos, 2007).

Drifter observations have been widely used in both EBCs and WBCs (see Table 2). Recently
improved analysis techniques (e.g., Lumpkin, 2003; LaCasce, 2008; Koszalka and LaCasce, 2010;
Laurindo et al., 2017) and expansion of the Lagrangian drifter array have allowed gridded, Eulerian
statistics of near-surface velocity to be produced at higher resolution, resulting in improved estimates
of near-surface flow in boundary currents (e.g., Fig. 2) at seasonal to interannual time scales (e.g.,
Niiler et. al, 2003; Lumpkin and Johnson, 2013). Drifter observations in boundary currents offer
opportunities for new analyses of long-term variability and trends (e.g., Johnson, 2001; Lumpkin and
Johnson, 2013) and the dispersion of tracers and marine debris in the upper ocean (Lumpkin et al.,
2012; Van Sebille et al., 2015), which is driven by turbulence at scales from surface waves through
the submesoscale to large-scale geostrophic eddies (Lumpkin et al., 2017; Lund et al., 2018).

3.5 Argo Floats

Over the past two decades, autonomous profiling Argo floats have become cost-effective and robust
platforms. Over 3700 active Argo floats provide global measurements of temperature, salinity, and
pressure in the upper 2000 m of the ocean, and some are also equipped with sensors measuring
biogeochemical properties (Riser et al., 2016; Jayne et al., 2017; Roemmich et al., 2019). Though the
Argo network was not designed to capture the details of boundary currents and lacks the resolution
necessary to resolve narrow boundary currents, Argo data have nevertheless been used extensively in
both WBCs and EBCs (see Table 2). Argo complements other boundary current observing efforts by:
providing collocated temperature and salinity measurements that are used to infer geostrophic shear
from XBT temperature profiles, extending geostrophic shear from XBT and ocean glider data to 2000
m, measuring reference velocities at parking depth (typically 1000 m), and linking transport
measurements of boundary currents to the ocean interior through basin-wide integration (e.g.,
Zilberman et al., 2018). Following recommendations at OceanObs’09 (Roemmich et al., 2010), the
Argo program is currently moving to double float density in WBC regions (Jayne et al., 2017). The
Kuroshio (Fig. 3a) and Gulf Stream have historically been among the more densely-populated sectors
in the Argo array, while other boundary current regions (e.g., the Peru-Chile system, Fig. 3b) lack the
desired coverage.

3.6 Remote Sensing

Among the many oceanic variables that are routinely measured from satellites (Table 1), SSH, SST,
and ocean color have been most used to study boundary current systems. Satellite measurements
typically have resolutions of O(1)-O(10) km along the satellite track, with repeated measurements on
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daily to ten-day time scales at a given location. Boundary currents often have strong signatures in
both SSH and SST, so satellite-derived gradients in these properties can approximate the strength
and/or position of these currents (e.g., Imawaki, 2001), including variability on longer time scales
(e.g., Qiu and Chen, 2005; Qiu et al., 2014; Andres 2016). Synergy between dynamic height derived
from temperature and salinity profiles and SSH can be exploited to produce synthetic reconstructions
of boundary currents (van Sebille et al., 2010; Beal and Elipot, 2016; Majumder and Schmid, 2018;
Zilberman et al., 2018), although these reconstructions crucially depend on assumptions about the
non-steric (barotropic and mass) variability. Weaknesses of SSH for observing boundary currents
include reduced measurement quality within 40 km of the coast due to large uncertainties in the wet-
tropospheric correction, unfiltered tides, and a lack of sufficient temporal and spatial resolution to
capture the full spectrum of near-surface current variability observed by drifters (Poulain and Niiler,
1989; Centurioni and Niiler, 2003; Fratantoni and Richardson, 2006; Centurioni et al., 2008, 2009;
Maximenko et al., 2009). Products that combine SSH and drifter measurements have improved eddy
kinetic energy and dynamic topography estimates (Maximenko et al., 2009; Lumpkin and Garzoli,
2011; Rio et al., 2014, 2018). Estimates of chlorophyll derived from satellite ocean color
measurements provide information on biological productivity in boundary current systems worldwide
(e.g., Messié and Chavez, 2015; Gomez-Letona et al., 2017). Because ocean color observations have
higher resolution (O(1) km) than satellite altimetry, they potentially provide insight into the rich
fields of submesoscale instabilities that exist within boundary current systems (Fig. 4; Everett et al.,
2014; Lee and Kim, 2018).

High-frequency (HF) radars (Paduan and Washburn, 2013) have been used effectively to monitor
surface current variability of boundary currents (e.g., Kim et al., 2011; Archer et al., 2018). They
directly map the total surface current within O(100) km of the coast at high resolution in time (~1
hour) and space (~1 km) during long-term deployments (~10 years). HF radar observations have
proven useful for investigating both the mean surface velocity structure of boundary currents and
associated submesoscale features that develop as boundary currents meander and shed eddies (Soh
and Kim, 2018; Archer et al., 2018). Combining HF radar velocity estimates with satellite-based
measurements of SST and ocean color (e.g., Fig. 4) can provide a multidisciplinary view of surface
circulation features at O(1)-km scales (e.g., Schaeffer et al., 2017). Some radar sites have been in
continuous operation for more than a decade, offering opportunities to examine interannual to
decadal variability of surface circulation. New radar sites can be installed and daisy-chained with
existing sites, providing measurements of the alongshore evolution of boundary currents, as has been
achieved along the west coast of the U.S. (Kim et al., 2011).

4  Current Status of Regional Boundary Current Observing Systems

Existing observing systems for particular boundary currents are in various stages of development.
Here we review the current status of the observing systems currently operating in several EBCs and
WBCs globally. The California Current System (Section 4.1.1) is arguably the most well sampled
boundary current in the world, offering hope that a fully integrated physical and biogeochemical
system is achievable. Other boundary current systems, particularly in the southern hemisphere, are
much less sampled. As was the case a decade ago (Send et al., 2010) biogeochemical and ecosystem
EOVs (Table 1) remain much less well sampled than physical EOVs. Table 2 provides a more
comprehensive collection of recent scientific results for each boundary current system as well as
sources of publicly available observations.

4.1 Eastern Boundary Current Systems

13



555

556
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

589

590
591
592
593
594
595
596
597
598
599

Observing Boundary Current Systems

4.1.1 California Current System

The California Current System is the EBC system of the subtropical North Pacific (Checkley and
Barth, 2009). The equatorward flowing California Current carries relatively cool and fresh waters of
subpolar origin, while the poleward California Undercurrent (Gay and Chereskin, 2009; Todd et al.,
2011b) transports warmer saltier waters from the tropics along the continental margin. The California
Current System is strongly influenced by the predominantly upwelling-favorable winds along the
west coast of North America.

Owing to the need to understand the collapse of the regional sardine fishery in the 1940s, there is a
well-developed multidisciplinary observing system in the California Current System with a decades-
long history of routine observations by the CalCOFI program (McClatchie, 2014, and references
therein). Since 1949, CalCOFI has made regular (currently quarterly) measurements of physical,
biological, and chemical properties at fixed stations along survey lines oriented perpendicular to the
coast from research vessels (Fig. 5). The establishment of the California Current Ecosystem Long
Term Ecological Research program in 2004 brought further ship-based surveys and long-term
moorings (Fig. 5) focused on nonlinear transitions in the pelagic ecosystem in response to ENSO, the
Pacific Decadal Oscillation, and secular trends. In the Northern California Current, the Newport
Hydrographic Line (44° 39.1’ N) has been continuously occupied since 1961 (Huyer et al., 2007).
Since 2005, autonomous underwater gliders have continuously surveyed along three of the CalCOFI
lines as part of the CUGN (Section 3.3; Figs. 1 and 5) as well as along cross-shore transects as far
north as the Washington coast (Fig. 5), returning measurements of physical properties and some
biological proxies; the gliders complement the ship-based surveys by providing observations at
higher spatial and temporal resolution (e.g., Rudnick et al., 2017), albeit of a more limited set of
properties. An array of PIES with end-point moorings off of southern California monitors full-depth
geostrophic transport; gliders routinely retrieve data from the PIES and transmit them to shore (Send
et al., 2013). Since 2007, NOAA has led large-scale coastal surveys along the U.S. West Coast every
2-4 years to determine the spatial distributions of carbon, oxygen, nutrient, biological, and
hydrographic parameters (Feely et al., 2008, 2018). Starting in 2010, moored platforms throughout
the California Current System established high-frequency time series of physical and biogeochemical
parameters (Nam et al., 2011; Harris et al., 2013; Sutton et al., 2016). More recently, the OOI
Endurance Array (Smith et al., 2018; Trowbridge et al., 2019) has been deployed in the northern
California Current System (Fig. 5); moorings on the shelf and continental slope provide high-
resolution time series while gliders provide high-spatial-resolution observations between the mooring
sites. A network of shore-based HF-radars provides real-time surface currents within about 150 km
of the coast along nearly the entire U.S. West Coast (Kim et al., 2011).

4.1.2 Peru-Chile Current System

The Peru-Chile Current System (or Humboldt Current System) is the EBC system of the subtropical
south Pacific, extending from the equator to southern Chile (~45°S). It is characterized by a persistent
stratus cloud deck, equatorward surface currents, strong wind-driven coastal upwelling, poleward
undercurrents, and filaments and eddies that develop along the coasts of Peru and Chile (see Colas et
al., 2012 and references therein). A subsurface oxygen minimum zone (e.g., Paulmier and Ruiz-Pino,
2009) results in upwelled waters being nutrient rich but low in oxygen (e.g., Silva et al., 2009;
Pizarro et al., 2016). Due to its proximity to the equator, the Peru-Chile Current System is strongly
influenced by equatorial variability through propagation of Kelvin and coastal trapped waves
(Dewitte et al., 2012; Mosquera-Vasquez et al., 2013) and anomalous advection during strong El
Nifios (e.g., Colas et al., 2008).
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The dramatic impacts of El Nifo events on both weather and fisheries have driven monitoring of
oceanographic properties and fish stock assessments along the Peruvian coast since the 1960s (Fig. 6;
Grados et al., 2018). Over the past decade, these surveys have taken place monthly along the northern
Peruvian coast and at least twice per year along the entire Peruvian coast; shipboard ADCP surveys
are conducted at least seasonally. Biweekly time series along the 100-m isobath between Paita (5°S)
and Ilo (17°S), coastal tide-gauge stations, daily SST measurements at coastal laboratories, and a
nearshore thermistor chain and bottom-mounted ADCP at 4°30’ S (Fig. 6) allow monitoring of
temperature and sea level anomalies and associated fluctuations in thermocline, oxycline, and
nutricline depths. Measurements from the TAO/TRITON moored array and the Argo program (Fig.
3b) provide key broad-scale context to these coastal observations. Efforts are underway to improve
monitoring of the Peru-Chile Current System. For instance, sustained glider surveys across the
frontal region off northern Peru, where El Niflo impacts are large, are planned to begin by 2020.

4.1.3 Leeuwin Current System and South Australian Current System

The boundary currents along the western and southern coasts of Australia have some unique features.
The Leeuwin Current, which is the subtropical EBC of the southeastern Indian Ocean, is unusual in
that it flows poleward along an eastern boundary, transporting warm, fresh tropical waters southward
due to forcing by the Indonesian Throughflow and ocean atmosphere interactions in the Indian Ocean
(Godfrey and Weaver, 1991); it is important for the upper ocean heat balance in the southeast Indian
Ocean (Domingues et al., 2006). The Leeuwin Current hosts broad-scale downwelling (Furue et al.,
2017; Liang et al., 2017) where eastward surface currents merge with the Leeuwin Current and then
downwell into the Leeuwin Undercurrent at depths of 200-1000 m. The equatorward Leeuwin
Undercurrent carries waters of subantarctic origin along the western Australian coast (Woo and
Pattiaratchi 2008), leaving the coast near 22°S to contribute to the lower limb of a zonal overturning
(Furue et al., 2017) and the subtropical gyre (Schott et al., 2009). In winter, the Leeuwin Current
merges with the southwestward-flowing Holloway Current off the northwest coast of Australia, the
eastward-flowing South Australian Current off the south coast and the southward-flowing Zeehan
Current off the west coast of Tasmania to form the longest shelf-break boundary current system in
the world (Ridgway and Condie, 2004; D'Adamo et al., 2009; Ridgway and Godfrey, 2015). Along
the continental slope south of Australia, the westward flowing Flinders Current results from the
collision of the equatorward deep ocean Sverdrup transport with the deep shelf slope of the Great
Australian Bight (Middleton and Cirano, 2002; Middleton and Bye, 2007) and is a unique northern
boundary current.

Coastal sea level observations at Fremantle have long been used as a proxy for the strength of the
Leeuwin Current (Feng et al., 2003). Since 2008, the Australian Integrated Marine Observing System
(IMOS; Hill et al., 2010) has been monitoring the shelf component of the Leeuwin Current near 32°S
using shelf moorings (Feng et al., 2013), gliders, and HF radars (Fig. 7). Short-term deployments
(2012-2014) have also been carried out off the northwest coast of Australia (Ridgway and Godfrey,
2015). XBT surveys from Ships of Opportunity in and out of Fremantle, though not targeted for the
Leeuwin Current, have taken place since the mid-1980s (Wijffels et al., 2008). IMOS makes ongoing
observations of the South Australian Current system with dedicated moorings and glider missions
monitoring the Flinders Current (Fig. 7).

4.1.4 Benguela Current System

The Benguela Current Large Marine Ecosystem is the eastern boundary upwelling system of the
South Atlantic. The equatorward Benguela Current is unique in that it is bounded by warm currents
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at its northern and southern edges, the Angola Current to the north and the Agulhas Current (Section
4.2.4) to the south. Coastal upwelling is linked to the seasonal position of the South Atlantic high
pressure system, resulting in a number of upwelling cells along the southern African coast with
divergent seasonality; the strongest year-round upwelling occurs off Liideritz (~26°S), effectively
dividing the Benguela Current System into northern and southern sub-systems. The northern
Benguela upwelling system is highly productive (e.g., Louw et al, 2016), but also prone to hypoxia
over the continental shelf that is modulated by a seasonal poleward undercurrent bringing low-
oxygen waters to the shelf in summer and fall and an equatorward undercurrent that brings
oxygenated water in winter and spring (Duncombe Rae, 2005; Mohrholz et al., 2008; Monteiro et al.,
2008). The southern Benguela upwelling system experiences intense, pulsed upwelling in summer
and quiescence in winter (Shannon and Nelson, 1996; Weeks et al., 2006; Hutchings et al., 2009a),
although the direction of net Ekman transport appears to be offshore year-round (Carr and Kearns
2003). This region also experiences hypoxia (and occasionally, anoxia) in inshore waters, particularly
in the region of St. Helena Bay (Pitcher and Probyn, 2011; Pitcher et al., 2014), but low-oxygen
events are driven solely by bacterial respiration of organic matter from surface waters (Monteiro and
van der Plas, 2006) and can result in mass mortalities of commercial fish stocks and rock lobster
(e.g., Van der Lingen et al., 2006; Cockcroft et al., 2000, 2008).

In the southern Benguela current system, monthly ship-based sampling of fisheries-relevant
parameters took place through the 1950s and 1960s, then intermittently until 1988, after which
surveys of fisheries, hydrographic, and chemical properties have been conducted 2-3 times per year
(Fig. 8; Moloney et al., 2004). Since 2012, quarterly surveys as part of the Integrated Ecosystem
Programme have additionally monitored the carbonate system. Various multifunctional moorings
have been deployed over the years, including a buoy for oxygen and temperature and a harmful algal
bloom detection system in the vicinity of St. Helena Bay (see Hutchings et al., 2009b).The Namibian
Ministry of Fisheries and Marine Resources conducts regular monitoring of hydrographic conditions
and commercial fish resources in Namibian waters of the northern Benguela (Fig. 8); regular
shipboard oceanographic monitoring began in 1999 with sampling frequency varying from two to
eight occupations annually along most lines and up to twice per month off Liideritz during the lobster
fishing season. Long-term, though intermittent, moored observations have been collected at 23°S,
14°03°E, and coastal stations are maintained along the Namibian coast (Fig. 8).

4.1.5 Canary Current System

The Canary Current large marine ecosystem extends from the northern tip of the Iberian Peninsula
(43°N) to south of Senegal (12°N), corresponding to the extent of the northeasterly trade winds in the
northeastern Atlantic. Upwelling occurs year-round with meridional shifts in the trade winds leading
to seasonality in the latitudinal range of upwelling, particularly in the south (Benazzouz et al. 2014;
Faye et al., 2015), where strong intraseasonal to longer time-scale variability is driven by internal or
remotely forced pulsations of the trade winds, passages of African easterly waves, and oceanic
coastally trapped waves (Polo et al. 2008; Diakhaté et al. 2016; Oettli et al. 2016). The ecosystem is
broadly divided by the Strait of Gibraltar into the Iberian and the Northwest African areas, though
strong subregional differences are observed due to variability in factors including coastal
configuration, oxygen concentration, nutrient fertilization, and productivity (Aristegui et al., 2009).
The continental shelf in the Canary Current System is the most extensive of any EBC, and persistent
circulation features are associated with the topography of the shelf. Large filaments of coastal
upwelled water stretch offshore from the numerous capes and promontories (e.g., Cape Guir and
Cape Blanc), transporting waters rich in organic matter into the oligotrophic subtropical gyre
(Alvarez-Salgado et al. 2007; Lovechio et al., 2018). The Canary Archipelago interrupts the
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equatorward flow of the Canary Current, leading to strong mesoscale variability downstream of the
islands (Aristegui et al., 1994). Island eddies and upwelling filaments interact to exchange water
properties, resulting in an efficient route for transporting organic matter to the open ocean (Aristegui
et al., 1997; Barton et al., 1998). As a major upwelling area, the Canary Current System is a highly
productive and the focus of intensive fisheries. Interannual and decadal variability in fisheries
landings and distributions of small pelagic fishes has been related to environmental changes
associated with the North Atlantic Oscillation and, to a lesser extent, ENSO in the southern part of
the region (see reviews in Aristegui et al., 2006, 2009).

There have been numerous process-oriented field programs in Canary Current System in the past 20
years, including the Coastal Transition Zone (CTZ; Barton and Aristegui, 2004) and Canary Islands
Azores Gibraltar Observations (CANIGO; Parrilla et al., 2002) programs. However, physical,
biogeochemical, and ecosystem monitoring efforts have been less routine compared to other EBCs
(Fig. 9). The European Station for Time series in the Ocean Canary Islands (ESTOC) has completed
over 20 years of continuous meteorological and surface and mid-water physical and biogeochemical
monitoring. The Cape Verde Ocean and Atmospheric Observatories (CVOO/CVAO) are a deep
water mooring and an atmospheric station that have been deployed since 2006 in a region critical for
climate and greenhouse gas studies and for investigating dust impacts on marine ecosystems. Both
ESTOC and CVOO/CVADO are part of the European open ocean fixed point observatories (FixO3).
An additional mooring has been recording oceanographic properties and particle fluxes with
sediment traps off Cape Blanc continuously since 2003 (Nowald et al., 2015). Long-term
measurements of coastal oceanic and atmospheric properties from buoys off Morocco and Senegal
have begun during the last four years. Ship-based hydrographic and biogeochemical sampling has
taken place twice per year since 2006 at the latitude of the Canary Archipelago as part of the
RAPROCAN program (Fig. 9), which aims to monitor the Canary Current and maintain the ESTOC
mooring. Gliders have periodically surveyed between the African coast and the Cape Verde Islands
(Fig. 9; Karstensen et al., 2017; Kolodziejczyk et al., 2018).

4.2 Western Boundary Current Systems
4.2.1 Northwestern Atlantic

The Gulf Stream comprises the upper limb of the AMOC in the North Atlantic subtropical gyre,
carrying warm, saline waters from the tropics to higher latitudes. It flows along the eastern seaboard
of the U.S. before separating from the continental margin near Cape Hatteras. The Labrador Current
is the WBC of the subpolar gyre. The North Atlantic Deep Western Boundary Current is a deep limb
of the AMOC that carries cold water masses from the tail of the Grand Banks of Newfoundland
equatorward (Pickart and Watts, 1990). It encounters the Gulf Stream at the tail of the Grand Banks
and again at Cape Hatteras, where a portion is entrained into the abyssal interior (Bower and Hunt,
2000a,b; Pickart and Smethie, 1993) while the rest continues to flow equatorward along the western
boundary and into the southern hemisphere (Section 4.2.6). The strength of the Deep Western
Boundary Current may influence the latitude at which the Gulf Stream detaches from the continental
margin (Thompson and Schmitz, 1989). Along the edge of the adjacent Middle Atlantic Bight shelf, a
persistent sheltbreak front and associated shelfbreak jet (Linder and Gawarkiewicz, 1998) transport
waters equatorward with secondary frontal circulation leading to upwelling and elevated primary
productivity (Marra et al., 1990). The sheltbreak jet continues southward until just north of Cape
Hatteras, where it turns offshore as it encounters the much stronger Gulf Stream (Gawarkiewicz and
Linder, 2006).
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The boundary current observing system for the subtropical northwest Atlantic (Fig. 10) is anchored
by decades-long measurements at several fixed locations along the boundary. In the Florida Strait
near 27°N, cable-based measurements of Gulf Stream transport and quarterly to bi-monthly ship-
based sampling have been ongoing since 1982 as part of the Western Boundary Time Series (WBTS;
Baringer and Larsen, 2001; Meinen et al., 2010). Far to the northeast, where the Gulf Stream has
separated from the continental margin, XBT, shipboard ADCP, and surface temperature and salinity
measurements are obtained twice weekly from M/V Oleander, a cargo ship running between New
Jersey and Bermuda (Rossby et al., 2010, 2014; Wang et al., 2010). The AX10 XBT line between
New York and Puerto Rico crosses the Gulf Stream just upstream of the Oleander line and conducts
high-resolution sampling within the boundary current (e.g., Domingues et al., 2018). Since 2015,
gliders have been used to routinely survey across the Gulf Stream between Florida and Massachusetts
(Todd 2017; Todd and Locke-Wynn, 2017; Todd et al., 2018b), providing subsurface observations
that fill the gap between the WBTS and Oleander and AX10 lines. Two moored arrays with
complementary repeat hydrographic sampling have focused on the Deep Western Boundary Current
for a decade or more. The RAPID-MOCHA array of subsurface moorings and PIES near 26.5°N has
been in place since 2004 with hydrographic stations reoccupied about every nine months (Meinen et
al., 2013). Farther north, the Line W array of subsurface moorings was in place from 2004-2014 with
repeat ship-based sampling every 6-12 months (Toole et al., 2017). The OOI Pioneer Array south of
New England (Smith et al., 2018; Trowbridge et al., 2019) and the PEACH array near Cape Hatteras
use a mixture of moorings, gliders (e.g., Gawarkiewicz et al., 2018), and land-based remote sensing
(e.g., Haines et al., 2017) to characterize the dynamics of the shelfbreak jet and exchange between the
shelf and deep ocean in the vicinity of the Gulf Stream and its eddies. In the subpolar northwestern
Atlantic at 53°N, transport of the Labrador Current has been monitored since 1997 using a
combination of moored and shipboard observations (Zantopp et al., 2017).

4.2.2 Northwestern Pacific

In the northwest Pacific, bifurcation of the westward North Equatorial current between 11° and 13°N
along the Philippine coast (Qiu and Chen, 2010; Rudnick et al., 2015a) forms the poleward Kuroshio
and the equatorward Mindanao Current. The Kuroshio becomes a more coherent jet as it flows along
the Taiwanese coast (e.g., Centurioni et al., 2004), into the East China Sea, and along the southern
Japanese coast before separating from the continental margin near 35°N to form the Kuroshio
Extension, an eastward, meandering jet in the open North Pacific. The Mindanao carries waters from
the North Pacific southward to feed tropical circulation in both the Pacific and the Indian Oceans
(Schonau et al., 2015). The Oyashio is the western boundary current of the North Pacific subpolar
gyre and converges with the Kuroshio to the east of Japan. This convergence region has rich frontal
structure as various water masses meet and are modified and is a key area for fisheries (Yasuda,
2003).

The Japan Meteorological Agency (JMA) has carried out repeat hydrographic survey 2-5 times
annually at the PN line in the East China Sea since 1971 (Aoyama et al., 2008; Fig. 11) and at the TK
line south of Kyushu since 1987 (Oka and Kawabe, 2003) to monitor physical and biogeochemical
EOVs in the Kuroshio. JMA has also monitored the Ryukyu Current system (Ichikawa et al., 2004)
flowing south of the Ryukyu Islands at the OK line southeast of Okinawa, which is connected to a
zonal section along 24°N. Furthermore, the JMA has maintained physical and biogeochemical
surveys along 137°E across the western North Pacific to monitor major currents of the subtropical
and tropical gyres including the Kuroshio (Nakano et al. 2015; Oka et al., 2018). Monthly fisheries
surveys and hydrographic stations along the A-line off Hokkaido have been occupied since 1987
(Kuroda et al., 2015) with collocated long-term moorings (Kono and Kawasaki, 1997). JAMSTEC
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has sampled hydrographic stations K2 (47°N, 160°E) and KNOT (44°N, 155°E) in the subpolar north
Pacific at least annually since 1997 (Wakita et al., 2010). The Kuroshio Extension Observatory
(KEO; Cronin et al., 2015) is a surface mooring that has been located in the subtropical recirculation
gyre south of the Kuroshio Extension at 32.3°N, 144.6°E (Fig. 11) since 2004. KEO monitors air-sea
exchanges of heat, moisture, momentum, and CO,; sea surface temperature, salinity, and ocean
acidification; and upper ocean temperature, salinity, and currents below the surface buoy. Since 2014
a sediment trap mooring has been located at KEO (Honda et al., 2018). More recently, the CLIVAR
Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) has deployed an array of
subsurface moorings, some with real time data transmission, across the western Pacific, South China
Sea and Indonesian seas (Fig. 11) that cover the major currents in these regions (e.g., Hu et al., 2013,
2015; Zhang et al., 2014; Chen et al., 2015; Hu et al., 2016; Wang et al., 2017). Multiple XBT
transects cross boundary currents within the region (see Goni et al., 2019). Gliders have been
deployed for extended periods in the Kuroshio and Mindanao (Fig. 11), generally sampling obliquely
across the boundary currents as they were advected downstream (e.g., Rainville et al., 2013; Schénau
and Rudnick, 2017).

4.2.3 Southwestern Pacific

The East Australian Current is the subtropical western boundary of the South Pacific; it is a strong,
meandering current with large poleward heat transport (Sloyan et al., 2016) that separates from the
continental margin between 30°S and 32°S to join a dynamic eddy field (Cetina Heredia et al., 2014)
in the Tasman Sea. The low-latitude WBC system of the South Pacific originates as the equatorward
Gulf of Papua Current along the northeast coast of Australia, which then flows through the Solomon
Sea as the New Guinea Coastal Undercurrent before feeding into the equatorial current system. This
is a major contributor to the mass and heat budget of the tropical Pacific, acting as a conveyor belt for
micro-nutrients from the western continental margins to the eastern Equatorial Pacific upwelling
region. These low-latitude WBC:s split into numerous branches around topographic obstacles and
flow through narrow passages, presenting challenges for sustained observing.

The sustained observing system for the East Australian Current and its extension (Fig. 7) currently
consists of high-density XBT transects (PX05, PX06, PX30, PX34; Goni et al., 2019); Argo floats; a
deep moored array at approximately 27°S; HF radar sites near 32°S and 30°S; a regional array of
shelf moorings (including biogeochemical and biological sensors) at 30°S, 34°S, and 36°S; and
numerous glider deployments from northern Australia (11°S) to the Tasman Sea (42°S) (Roughan
and Morris, 2011; Roughan et al., 2013, 2015). These observational platforms complement each
other well, providing a distributed boundary current observational system for the East Australian
Current that has been shown to constrain ocean models well (Kerry et al., 2018). Additional sustained
measurements are needed to characterize the seasonal changes in the transports of mass, heat, and
freshwater in the East Australian Current and its eddy field. Effective monitoring strategies would be
to deploy moored arrays in key regions; to increase Argo float and drifter density in the WBC region;
and to implement glider sampling along existing high-density XBT lines within the East Australian
Current, its eddy field, and recirculation.

In the low-latitude WBC system, long-term, sustained observations of the heat and mass transport
through the southern entrance of the Solomon Sea have been provided by gliders since 2007 (Davis
et al., 2012) and an array of PIES since 2012 (Fig. 7). Concurrent, short-term process studies
including mooring deployments have been conducted as part of the CLIVAR-SPICE program
(Ganachaud et al., 2014). Future monitoring efforts should integrate measurements across platforms,
with the existing measurements in the southern entrance complemented by observations at the
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northern exits of the Solomon Sea (e.g., moorings, HF radars, and glider transects) to resolve the
partitioning of the flow joining the equator (see Smith et al., 2019).

4.2.4 Agulhas Current

The Agulhas Current is the poleward WBC of the subtropical South Indian Ocean (Lutjeharms,
2006). It flows as a fast (>1.5 m s™), deep-reaching (>3000 m) jet along continental slope of
southeast Africa (Beal and Bryden, 1999; Beal et al., 2015). Near 40°S, the Agulhas flows into the
open ocean, where it retroflects under the influence of the large-scale wind stress curl to flow
eastward into the Indian Ocean as the Agulhas Return Current (de Ruijter et al., 1999). Leakage of
warm, salty Agulhas waters into the South Atlantic by rings, eddies and filaments (Boebel et al.,
2003; Richardson, 2007) is thought to influence the AMOC on time scales from decades to millennia
(Beal et al., 2011).

In 2010, the Agulhas Current Time-series experiment (ACT) established a moored array to measure
the volume transport of the Agulhas Current along a satellite altimeter ground-track (#96) near 34°S
(Fig. 8) for a period of three years. The array consisted of seven full-depth current meter moorings
and four CPIES that captured the breadth and depth of the Agulhas jet, including during offshore
meander events (Beal et al., 2015). Following ACT, a consortium of South African, U.S., and Dutch
scientists deployed the Agulhas System Climate Array (ASCA) in 2016 for long-term monitoring of
the Agulhas Current as part of GOOS. ASCA augmented the original ACT array design with
conductivity-temperature recorders to measure the heat and freshwater fluxes. The long-term success
of ASCA was dependent on an ambitious plan of capacity building and resource sharing among
nations and, owing to a number of challenges, this plan was not fulfilled and the array was pulled out
of the water in 2018, following a two-year deployment. In 2015, the Shelf Agulhas Glider
Experiment (SAGE) demonstrated the feasibility of operating autonomous robotic platforms to
sample the shelf regions of the Agulhas Current (Krug et al., 2017). Since SAGE, growing regional
interest in monitoring with autonomous platforms led to formation of a South African multi-
institutional scientific consortium named Gliders in the Agulhas (GINA). GINA conducted two
additional glider missions in 2017 and 2018 and is working towards the development of a sustained
glider observing system for the Agulhas Current coastal and shelf regions. The influence of the
Agulhas leakage on the AMOC has been monitored since 2013 by an array of CPIES and tall
moorings as part of the SAMBA line at 34.5°S (Fig. 8; Ansorge et al., 2014). Thus far, no sustained
ecological or biogeochemical measurements have been made in the Agulhas, though the addition of
oxygen sensors to SAMBA moorings is planned.

4.2.5 Southwestern Atlantic

In the South Atlantic, the WBC system consists of the poleward Brazil current and the equatorward
North Brazil Undercurrent, both of which originate from the bifurcation of the South Equatorial
Current between 10°S and 20°S (e.g., da Silveira et al., 1994; Rodrigues et al., 2007), and the
equatorward Malvinas current in the subpolar gyre. The Brazil Current and Malvinas Current both
separate from the South American continental margin between 35°S and 40°S to flow eastward at the
Brazil-Malvinas confluence (Olson et al., 1988). The North Brazil Undercurrent constitutes a
bottleneck for the interhemispheric mean flow of the upper limb of the AMOC as it transports warm
waters of South Atlantic origin across the equator (e.g., Schott et al., 1998; Zhang et al., 2011; Riihs
et al., 2015). The Deep Western Boundary Current carries much of the lower limb of the AMOC off
the coast of South America (Schott et al., 2005; Meinen et al., 2013).

.. .. . 20
This is a provisional file, not the final typeset article



868
869
870
871
872
873
874
875
876
877

878

879
880
881
882
883
884
885
886
887
888
889
890

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

908
909
910
911
912

Observing Boundary Current Systems

For more than a decade, high density XBT transects (Goni et al., 2019) have been occupied near 22°S
and 34°S (AX97 and AX18) across South Atlantic WBCs (Fig. 12; Dong et al., 2015; Lima et al.,
2016). Near 11°S, an array of four tall moorings and two PIES has measured transport of the North
Brazil Current since 2013 (Fig. 12; Hummels et al., 2015). At 34.5°S (Fig. 12) an array of PIES,
CPIES, and a bottom-mounted ADCP has monitored the Brazil Current and Deep Western Boundary
Current (Meinen et al., 2013, 2017, 2018) in conjunction with periodic hydrographic surveys (Valla
et al., 2018). A series of yearlong deployments of current meter arrays along 41°S since 1993 (Fig.
12; Vivier and Provost, 1999; Spadone and Provost, 2009; Paniagua et al., 2018), in conjunction with
satellite altimetry, has allowed for production of a 24-year transport time series for the Malvinas
Current (Artana et al., 2018a).

5 Future Outlook

We recommend establishing and maintaining a global network of boundary current observing
systems. Each distinct observing system will need to be tailored to the unique aspects of that
particular boundary current system, but also follow best-practices established by the international
community. Such a network of regional boundary current observing systems is a crucial element of
GOOS. To date, boundary current observing systems in different regions and countries have
developed largely independently. Development and maintenance of a global network of boundary
current observing systems that is fit for purpose would benefit from the standards outlined in the
Framework for Ocean Observing (Lindstrom et al., 2012). In particular, application of the
Framework across boundary current observing systems should foster communication and data
sharing; contribute to capacity building, particularly in developing countries; encourage confidence
and support from funding agencies; and promote international collaboration and scientific and
technological innovation.

Boundary currents typically lie within the EEZs of coastal states, so development and maintenance of
boundary current observing systems will require the cooperation and support of appropriate
governing authorities. Considering the difficulty of obtaining international funding for observations
in national waters, there is a need for a community of regional boundary observers. Moreover, many
boundary currents span multiple countries, so that the observing system for a single boundary current
system is likely to require collaboration and coordination between several countries. The advective
nature of boundary currents may even require that mobile or drifting assets deployed within one
country’s EEZ be recovered within another EEZ. Sharing of measurements taken within EEZs,
particularly those that have economic impacts such as some biogeochemical measurements, remains
a challenge. By moving toward international collaboration in the design and implementation of
boundary current systems as suggested by the Framework for Ocean Observing, there is hope for
building the high-level governance structure needed to surmount the challenges posed by boundary
currents falling within EEZs. The Large Marine Ecosystems effort has identified distinct boundary
regions that cross international borders and has gained international traction through the Global
Environment Facility and the International Union for Conservation of Nature; leveraging this effort
to facilitate international cooperation and governance for sustained boundary current observations
may be fruitful.

For any particular boundary current system, a complete observing system will require a combination
of currently available observing platforms (Section 3), as well as future platforms, to optimally
measure EOVs at necessary spatial and temporal resolutions to address relevant scientific and
societal needs. Through the Framework process, specific observing platforms, sampling choices, and
instruments would be matched to the relevant questions. Drifting and mobile assets that provide
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spatially-resolved measurements at the expense of temporal resolution will need to be combined with
moored assets that provide high-frequency measurements at key locations and land- or satellite-based
remote sensing that provides spatially broad measurements of sea surface properties. Such integrated
arrays, as are already in place in the California Current System, at the Ocean Observatories Initiative
(OOI; Smith et al., 2018; Trowbridge et al., 2019) Endurance and Pioneer Arrays, and along the
Australian coasts as part of the Integrated Marine Observing System, offer critical opportunities for
intercalibration between instruments on fixed and mobile assets; such intercalibration is particularly
important for biogeochemical sensors (e.g., Palevsky and Nicholson, 2018). Since similar needs arise
in most boundary current systems, the Framework process should provide a means for determining
the extent to which the same observing strategies should be applied to address similar needs in
different systems. Additional studies that compare different sampling techniques in a given boundary
current system could provide guidance on the strengths and limitations of each technique and how to
better exploit their complementarity.

While the discussion of observing platforms in Section 3 focused on mature observing platforms with
proven records of sustained operation in boundary currents, there is no doubt that recently developed
observing platforms and sensing technology will become integral parts of future boundary current
observing systems. For instance, more fast-moving autonomous underwater vehicles (AUVs) and
autonomous surface vehicles (ASVs) will be deployed to conduct adaptive and targeted sampling in
response to real time needs. Propeller-driven AUVs have thus far seen limited use in boundary
currents. Though able to carry large instrument payloads and move much faster (1-2 m s™') than
gliders, propeller-driven AUVs have been limited by battery endurance to missions typically lasting
hours to days; improvements in battery technology and autonomous charging are expected to make
propeller-driven vehicles capable of long-duration sampling in the near future. Fast-moving, long-
endurance ASVs (e.g., Saildrones, Wavegliders) are poised to become key platforms for making
measurements near the air-sea interface, including meteorological measurements, pCO,, subsurface
currents, and plankton biomass. Due to the use of renewable energy, these ASVs generally carry a
larger number of sensors and have longer duration than other autonomous platforms (e.g., Zhang et
al., 2017). Planned high-resolution, satellite-based altimetry measurements (e.g., SWOT), smaller
and dramatically cheaper satellites (e.g., Cubesats), and, potentially, geostationary satellites
positioned over boundary regions offer the prospect of dramatically increased spatial and temporal
resolution of surface properties.

At some locations, boundary currents have been continuously observed for many years using various
techniques. For instance, the CalCOFI program has maintained quarterly ship-based stations for more
than 65 years (McClatchie, 2014), the WBTS has made cable- and ship-based measurements in the
Florida Strait for more than 35 years (Section 4.2.1), and hydrographic sampling has occurred
monthly along the inside edge of the East Australian Current since the 1940s (Lynch et al., 2014) and
is now an integral part of the East Australian Current observing system (Roughan and Morris, 2011).
Long-term measurements like these are invaluable for capturing decadal variability and secular
trends. Sites at which decades-long measurements exist should be maintained and serve as anchors
for comprehensive boundary current observing systems. These long-term measurement sites at the
boundaries also serve as points at which the boundary current observing systems are linked to the
basin-scale ocean observing system. Since 2004, the WBTS has been integrated with the UK-US
RAPID-MOCHA program that measures meridional transport at 26.5°N in the North Atlantic, while
several long-standing, cross-Pacific XBT transects intersect the U.S. West coast within the CalCOFI
domain (Goni et al., 2019).
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Existing boundary current observing systems are largely focused on measuring physical processes,
with biogeochemical and ecosystem processes only beginning to gain traction, largely due to the
advent of new sensors. The California Current System (Section 4.1.1) and Benguela (Section 4.1.4)
are exceptions, having had sustained observations of EOVs relevant to physics, biogeochemistry, and
biology and ecosystems for over 65 years and 30 years, respectively. However, these ship-intensive
models are unlikely to be suited to all boundary current systems due to a wide range of factors (e.g.,
cost, proximity to the coast, existing infrastructure, available man-power). Although the methods for
measuring many of the EOVs needed to monitor biogeochemical and, to a greater extent, ecosystem
processes are time-intensive and require a platform for collecting water, new sensors are being
developed to reliably measure a range of biogeochemical and biological EOVs. Many of these
sensors have been successfully deployed on BGC-Argo floats as part of the SOCCOM project
(Johnson et al., 2017). Increasing the measurements of biological and ecological EOVs should be
prioritized if we are to understand, monitor, and predict the physical-biological connections and
processes that support marine-based industries and activities and, importantly, seafood security.

Providing publicly available data in a timely manner is a key attribute of any ocean observing
system. These observations should be provided in formats that are discoverable, accessible, and
readily subset, following conventions agreed upon by the community (see Wilkinson et al. (2016) for
a set of general principles for management of scientific data). Many platforms already provide
observations in near real-time through a variety of services. Transmission of data through the Global
Telecommunications System is particularly important if those observations are to be used in
operational numerical modeling. Advances in real-time data collection from sub-surface moorings
(e.g., Send et al., 2013) will be critical to providing boundary current observations in a timely manner
for forecasting and prediction. Widespread dissemination of comprehensive boundary current
observations can foster synergies with other disciplines, including the geophysics (tsunamis and
earthquakes), physics, meteorological (e.g., tropical and extratropical cyclone forecasting;
Domingues et al., 2019), and fisheries communities.

In addition to providing raw observations, there is a need for providing synthesized data products that
are tailored to user needs. Integration of complementary data types can yield useful metrics. Further
advances in data analysis techniques and statistical methods should aid in using multi-platform data
to increase temporal and/or spatial resolution of metrics. The Southern California Temperature Index
(Rudnick et al., 2017) is an example of such a data product.

Boundary current observations play a key role in constraining ocean models (e.g., Todd and Locke-
Wynn, 2017), while models play a complementary role by filling gaps between sparse observations
in a dynamically consistent manner (e.g., Todd et al., 2011b, 2012; Gopalakrishnan et al., 2013).
Increased availability of boundary current observations, particularly in regions that are currently
poorly sampled, should lead to continued improvements in regional models and predictive tools. At
the same time, higher resolution climate models that can resolve boundary currents are becoming
more plentiful and should begin to rely on high-resolution boundary current observations as
constraints. One specific goal would be to reduce climate models’ warm SST biases within EBCs;
continuation and expansion of long-term measurements in EBCs as well as focused process studies to
study upper ocean and atmospheric dynamics in EBCs would contribute to this goal. Observation
impact studies derived from data assimilating models provide guidance on the value of a range of
observation types in resolving boundary current transport, as well as for constraining the eddy field in
ocean reanalyses (e.g., Kerry et al., 2016, 2018). It remains an open question how best to integrate
models with interdisciplinary (e.g., biogeochemical) observations to study ecosystem dynamics,
though advances are being made in the assimilation of biological parameters (e.g., Song et al., 2012).
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Observing System Simulation Experiments tailored for boundary current systems can also provide
insight to the type, spatial distribution, and frequency of observations required to improve numerical
simulations of boundary current dynamics (Hoffman and Atlas, 2016). Targeted observations can
reduce biases in the initialization of models used to forecast extreme weather events and support local
decision making (Halliwell et al., 2017).

Downscaling coarse resolution climate model predictions through the application of higher resolution
regional and coastal models is now common and has shown promise, but still faces research
challenges. Furthermore, a significant amount of physical, biogeochemical and biological response
on the continental shelf is due to episodic oceanic and atmospheric events at timescales of variability
that are absent from coarse models and cannot be recovered locally. To be valid globally, the veracity
of downscaled models needs to be appraised by supporting observations of shelf edge fluxes in a
diversity of circulation regimes.

Funding sustained observing efforts is a significant challenge. Portions of the observing system that
have proven their readiness for long-term deployment have been discontinued after one or more
short-term funding cycles. For instance, it is currently not clear how ship-time and funding
challenges will be met for a re-establishment of ASCA (Section 4.2.4) in the future. In the typical
three-to-four-year cycles of scientific funding, early years (e.g., pilot phases) of observing efforts are
readily fundable based on the promise of quick scientific results. Observing efforts that have endured
for a decade or longer can leverage their long histories and clear relevance to decadal variability or
secular trends to secure continued funding. The middle years, roughly years 4 through 10 as
programs transition from pilot to mature components of the GOOS, are particularly difficult to fund.

The provision of robust three-dimensional and time-varying ocean circulation estimates in boundary
current systems, resolving scales of a few kilometers, is seemingly within reach through advances in
data-assimilative ocean models and rapid developments in observations platforms and sensors.
However, the development of integrated observing systems that deliver the scope of observations
required and the models capable of fully utilizing those observations is challenging. Success will
require coordinated international collaborations, bringing together the expertise of the ocean
modelling and observational communities. Establishment of an Ocean Boundary Task Team would
provide a mechanism for the exchange of information regarding observing and model strategies,
sensor developments, analysis techniques to combine data from the various observing platforms, and
model development and application. The Task Team would also enable capacity building, encourage
timely and appropriate transfer of knowledge, and provide a mechanism to instigate multinational
observing systems with shared goals amongst participating nations. Endorsement of the Task Team
by IOC/WMO or similar international organization is critical due to interests of multiple coastal state
EEZs and the resulting complex governance needs.

6  Summary Recommendations

The following actions are recommended to promote development of a comprehensive global network
of boundary current observing systems in the next decade:

1. Maintain existing long-term (i.e., multi-year) observational records;
Expand the use of mobile, autonomous platforms (e.g., gliders, AUVs, ASVs) to provide
continuous, high-resolution, broad-scale monitoring of EOVs;

3. Deploy moored platforms at key locations to measure high-frequency variability;
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4. Continue and expand the provisioning of real-time observations and encourage post-
processed data to be made publicly available as quickly as possible; data should be
provided in readily discoverable formats that can easily be subset;

5. Continue development and expand deployment of sensors for ecological and
biogeochemical EOVs;
6. Establish an Ocean Boundary Task Team to foster international community development

and end-user engagement and to guide evolution of observing systems as user
requirements change;

7. Expand collaborations between observational efforts, modeling efforts, and societal users
to meet stakeholder and end-user needs;

8. Increase focus on exchange between continental shelves and the deep ocean boundary
currents to develop observing systems that span the continuum from the land to the deep
ocean.
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Many of the observations reviewed here can be obtained from the sources listed in Table 2.
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Table 1: List of Essential Ocean Variables from www.goosocean.org/eov with indications of which
observing platforms are able to sample each variable.

Physics

Biogeochemistry

Biology and
Ecosystems

Sea state

Ocean surface stress

Sea ice

Sea surface height

Sea surface temperature
Subsurface temperature
Surface currents
Subsurface currents

Sea surface salinity
Subsurface salinity
Ocean surface heat flux
Oxygen

Nutrients

Inorganic Carbon
Transient tracers
Particulate matter
Nitrous oxide

Stable carbon isotopes
Dissolved organic carbon

Ocean color

Phytoplankton biomass and diversity
Zooplankton biomass and diversity
Fish abundance and distribution

Marine turtles, birds, mammals abundance and
distribution

Hard coral cover and composition

Seagrass cover

Macroalgal canopy cover

Mangrove cover

Ocean sound

Microbe biomass and diversity (*emerging)

Benthic invertebrate abundance and distribution
(*emerging)
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Table 2: Examples of sustained boundary current observing efforts since 2009. Included are in situ
and land-based observing efforts extending longer than one year in the period 2009-2018. Key
references since 2009 and sources for publicly available data are included.

Region Platform References Data Source
Agulhas Gliders Krug et al., 2017
Beal et al., 2015; Elipot and Beal,
2015, 2018; Beal and Elipot, 2016; | http://www.aoml.noaa.gov/phod/research/moc/sam
Agulhas Moorings Kersalé et al. 2018 oc/sam/;
http://www.aoml.noaa.gov/phod/hdenxbt/index.ph
Agulhas XBT p; http://www-hrx.ucsd.edu
Kopte et al., 2017; 2018; https://doi.org/10.1594/PANGAEA.868684;
Angola Current Moorings Tchipalanga et al., 2018 https://doi.org/10.1594/PANGAEA.886492
Pegliasco et al., 2015; Majumder
Benguela Current | Argo and Schmid, 2018 http://www.argodatamgt.org

Benguela Current

Research Vessels

http://www.mfmr.gov.na/;
http://data.ocean.gov.za/pub/DATA/,

https://doi.org/10.1594/PANGAEA.871251
(Junker et al., 2017b);
https://doi.org/10.1594/PANGAEA.871253
(Junker et al., 2017c¢);
https://doi.org/10.1594/PANGAEA.872098
(Junker et al., 2017d);
https://doi.org/10.1594/PANGAEA.872099

Benguela Current | Moorings Junker et al., 2017a, 2019 (Junker et al., 2017¢); https://www.ocims.gov.za
Brazil Current Drifters Oliveira et al., 2009 http://www.aoml.noaa.gov/phod/gdp/index.php

http://www.aoml.noaa.gov/phod/SAMOC _internat
Brazil Current Moorings Meinen et al., 2017, 2018 ional/samoc_data.php

Brazil Current

Research Vessels

Valla et al., 2018

Brazil Current

XBT

Garzoli et al., 2012; Mata et al.,
2012; Lima et al., 2016; Majumder
etal., 2019

http://www.aoml.noaa.gov/phod/hdenxbt/index.ph
p

Brazil Current

Argo
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2449  Figure 1: Examples of multi-year, glider-based sampling in (left) an eastern boundary current

2450  system and (right) a western boundary current. Trajectories of all Spray gliders surveying the

2451  California Current System along CalCOFI lines 66.7, 80.0, and 90.0 (Rudnick et al., 2017 and

2452  references therein) and the Gulf Stream along the US East Coast (Todd 2017; Todd and Locke-Wynn
2453 2017; Todd et al., 2018) are shown on the background map. (a,b) Glider sampling as a function of
2454  month and cross-shore or cross-stream distance with sampling in all years in grey and calendar year
2455 2017 in color; Gulf Stream sampling in 2017 is colored by along-stream distance from 25°N

2456  following the mean 40-cm SSH contour (black trajectory on map with dots every 250 km). (c-f)

2457  Example transects of salinity and dissolved oxygen along CalCOFI line 90.0 off Southern California
2458  in May 2017 and of potential temperature and velocity toward 50° across the Gulf Stream near Cape
2459  Hatteras in August 2017 (red transects on map).
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Figure 2: Trajectories and near-surface velocity estimates from Global Drifter Program drifters in
the western Pacific and marginal seas. Over 1.2 million discrete measurements from 1982 to 2014
are included. Paths of various boundary currents are clearly visible, as is the rich eddy field in the
region of the Subtropical Countercurrent around 18-24°N. NEC = North Equatorial Current, NECC
= North Equatorial Counter Current, SEC = South Equatorial Current, SCS = South China Sea.
(Figure from Todd et al., 2018a.)

.. .. . 72
This is a provisional file, not the final typeset article



Observing Boundary Current Systems

2469

2470  Figure 3: Sampling density of Argo float (including Core Argo and BGC Argo) profiles per 1°
2471  latitude x 1° longitude bin, collected between January 2009 and September 2018, in the Kuroshio
2472 region (left panel), and the Peru-Chile Current region (right panel).
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2475  Figure 4: Example of combined satellite- and land-based remote sensing of the Florida Current. (a)
2476  SST from GHRSST and surface geostrophic currents from AVISO. (b) Chlorophyll from MODIS
2477  AQUA and surface currents from HF radars (HF radar data from Archer et al., 2017a).
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Figure 5: Map of observing efforts extending more than one year during the past decade for the
California Current System (Section 4.1.1). Glider trajectories are shown in orange, SOOP/XBT lines
are red, moorings are red dots, and stations routinely occupied by research vessels are green.
Contours are mean sea surface height over the period 2009-2017 from AVISO.
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2485  Figure 6: Map of the boundary current observing effort for the Peru-Chile Current System (Section
2486  4.1.2) with details as in Fig. 5.
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JEHH

Figure 7: Map of the boundary current observing efforts for the Leeuwin and South Australian
Current Systems (Section 4.1.3) and the Southwestern Pacific (Section 4.2.3) with details as in Fig. 5.
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2493 Figure 8: Map of the boundary current observing effort for the Bengula Current System (Section
2494  4.1.4) and the Agulhas Current (Section 4.2.4) with details as in Fig. 5.
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2496  Figure 9: Map of the boundary current observing effort for the Canary Curret System (Section 4.1.5)
2497  with details as in Fig. 5.
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2499  Figure 10: Map of the boundary current observing efforts for the Northwestern Atlantic (Section
2500  4.2.1) with details as in Fig. 5 and the addition of the submarine cable location in the Florida Strait.
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2503  Figure 11: Map of the boundary current observing effort for the Northwestern Pacific (Section 4.2.2)
2504  with details as in Fig. 5.
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2507  Figure 12: Map of the boundary current observing system for the Southwestern Atlantic (Section
2508  4.2.5) with details as in Fig. 5.
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