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Abstract 80 

Ocean boundary current systems are key components of the climate system, are home to highly 81 
productive ecosystems, and have numerous societal impacts. Establishment of a global network of 82 
boundary current observing systems is a critical part of ongoing development of the Global Ocean 83 
Observing System. The characteristics of boundary current systems are reviewed, focusing on 84 
scientific and societal motivations for sustained observing. Techniques currently used to observe 85 
boundary current systems are reviewed, followed by a census of the current state of boundary current 86 
observing systems globally. Next steps in the development of boundary current observing systems 87 
are considered, leading to several specific recommendations. 88 

1. Introduction 89 

Ocean boundary current systems are where society most frequently interacts with the ocean through 90 
fisheries, maritime transportation, oil and gas extraction, and recreation. These systems are home to 91 
intense and highly variable oceanic currents that redistribute mass, heat, salt, biogeochemical 92 
constituents, plankton, and pollution. Circulation patterns also influence the life history, foraging 93 
behavior, and abundance of many marine species (e.g., Mansfield et al., 2017). The coastal and open 94 
ocean are linked through boundary current systems where events such as coastal upwelling, sea level 95 
anomalies, primary productivity, fisheries, and weather are propagated between domains via various 96 
processes (e.g., eddies, Rossby waves, advection). Boundary currents may be broadly categorized as 97 
either western boundary currents (WBCs; Imawaki et al., 2013) or eastern boundary currents (EBCs) 98 
based on their governing dynamics. In each ocean basin, WBCs play a prominent role in the climate 99 
system by redistributing heat from the equator towards the poles, while EBCs are some of the most 100 
biologically productive regions in the world and respond dramatically to climate variability (Chavez 101 
et al., 2008; Chavez and Messié, 2009).  102 

In our changing climate, shifting hydrological cycles and weather patterns are expected to strongly 103 
impact oceanic boundary current processes. Observational evidence for such shifts is beginning to 104 
appear. Wu et al. (2012) noted enhanced warming of subtropical WBCs and their extensions during 105 
the twentieth century, possibly linked to their poleward shift or intensification. Changes in the 106 
stability of WBCs have also been noted, with instabilities in the Gulf Stream shifting westward 107 
(Andres, 2016), increasing influence of warm core rings on shelf circulation (Gawarkiewicz et al., 108 
2018), and a trend towards greater instability in the East Australian and Agulhas Currents (Sloyan 109 
and O’Kane, 2015; Beal and Elipot, 2016).  110 
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Oceanic ecosystems are being exposed to increasing pressure from major stressors including 111 
warming, deoxygenation, fishing, and acidification. EBCs in particular are projected to be strongly 112 
impacted by these stressors (Bakun et al., 2015). For instance, the Peru-Chile (Humboldt) Current 113 
system (Section 4.1.2), a highly productive EBC and a regional source of greenhouse gases, is 114 
naturally affected by upwelling of offshore waters with low oxygen and pH onto the continental shelf 115 
(Helly and Levin, 2004) and by periodic El Niño Southern Oscillation (ENSO) events that change the 116 
water masses distributions, oxygenation, and productivity (Chavez et al., 2008; Gutiérrez, 2016; 117 
Graco et al., 2017); further stress could have significant consequences for the regional ecosystem. 118 
Similarly, changes in the Gulf Stream under global warming are predicted to negatively impact 119 
fisheries in the Gulf of Maine and on the New England Shelf (Saba et al., 2016; Claret et al., 2018). 120 

Sustained, interdisciplinary observations in boundary current regions are required for a global ocean 121 
observing system. For OceanObs’09, Send et al. (2010) proposed a global network of sustained 122 
monitoring arrays as part of the Global Ocean Observing System (GOOS). Send et al. (2010) broadly 123 
defined the properties to be observed as 1) the transports of mass, heat, and freshwater needed for 124 
monitoring the global climate in conjunction with basin-scale measurements and 2) local boundary-125 
specific properties including eddy activity, changes in potential vorticity, air-sea interactions (Cronin 126 
et al., 2019), ecosystem dynamics, and biogeochemistry. More recently, the 2017 GOOS workshop 127 
on ‘Implementation of Multi-Disciplinary Sustained Ocean Observations’ (IMSOO; Palacz et al., 128 
2017) focused, in part, on how to proceed with the development of a truly multidisciplinary boundary 129 
current observing system, building upon the more physical and climate-focused plans of Send et al. 130 
(2010). In particular, it was noted that observations that resolve along-boundary variability are 131 
needed in order to understand climate impacts on various societally relevant uses of boundary current 132 
systems (e.g., fisheries). The need to maintain a global perspective that targets all boundary current 133 
systems has been repeatedly recognized (Send et al., 2010; Palacz et al., 2017), particularly in 134 
developing nations where fisheries can be centrally important (Palacz et al., 2017). To that end, 135 
IMSOO planned to review established observing systems in the California Current System and East 136 
Australian Current in order to develop a blueprint for an adaptive, multidisciplinary observing system 137 
with relocatable subsystems to capture finer scales (Palacz et al., 2017). 138 

Oceanic boundaries present a variety of challenges for sustained observing systems (Send et al., 139 
2010). With strong flows in relatively shallow areas, spatial scales of O(1)-O(10) km, and temporal 140 
scales often shorter than a few days (e.g., He et al., 2010; Todd et al., 2013; Rudnick et al, 2017), the 141 
broad-scale (i.e., Argo and gridded satellite altimetry), long-duration (e.g., HOTS, BATS, Station P, 142 
CARIACO) measurements that constitute the observing system for the ocean interior are insufficient 143 
for boundary current systems. Multiple observing strategies are needed to measure the Essential 144 
Ocean Variables (EOVs) that can be used to understand and track the physical and biogeochemical 145 
processes of interest within boundary currents (Lindstrom et al., 2012). The optimal combination of 146 
observing methods will depend upon characteristics unique to each region. Send et al. (2010) noted 147 
that an additional challenge in observing boundary current systems is that there is no well-defined 148 
offshore ‘end’ of a boundary current, but rather a temporally and spatially variable transition to the 149 
interior. At the same time, oceanic boundaries generally lie within exclusive economic zones (EEZs), 150 
so the implementation of observing platforms requires significant international cooperation. 151 

The overarching purpose of this review is to examine the current state of the boundary current system 152 
component of GOOS, updating and building upon the OceanObs’09 review of Send et al. (2010). 153 
Section 2 considers the scientific and societal needs that comprehensive boundary current observing 154 
systems must fulfill. Section 3 reviews how various observing techniques are employed in boundary 155 
currents, highlighting key scientific advances from each platform. Section 4 surveys the current state 156 



  Observing Boundary Current Systems 

 
5 

of boundary current observing systems globally. Table 2 provides a comprehensive collection of 157 
publications and datasets from the past decade, organized by region and platform. Section 5 then 158 
considers the future development of boundary current observing systems. Section 6 concludes with 159 
specific recommendations to promote development of a comprehensive global network of boundary 160 
current observing systems.  161 

2. Scientific and Societal Needs 162 

The Framework for Ocean Observing (Lindstrom et al., 2012), developed after OceanObs’09, 163 
recommended that ocean observing systems be 1) ‘fit for purpose’ and driven by ‘scientific inquiry 164 
and societal needs’; 2) include physical, biogeochemical, and biological observations; 3) operate 165 
collaboratively based on established best practices; 4) balance innovation with stability; 5) promote 166 
alignment of independent user groups; 6) build on existing infrastructure as much as possible; and 7) 167 
provide maximum benefit to all users from each observation. Here we present the scientific and 168 
societal needs that that should be met by comprehensive observing of oceanic boundary current 169 
systems, focusing on three broad categories: ecosystems and biogeochemistry (Section 2.1), weather 170 
and climate (Section 2.2), and connections between the shelves and deep ocean (Section 2.3).  171 

2.1 Ecosystems and Biogeochemistry 172 

Boundary current systems play an important role in carbon cycling through the physical and 173 
biological carbon pumps. WBCs are major sites of air-sea CO2 exchange (e.g., Rodgers et al., 2008; 174 
Gorgues et al., 2010; Nakano et al., 2011) and have been shown to exhibit enhanced contemporary 175 
carbon uptake from the atmosphere (Takahashi et al., 2009; Landschützer et al., 2014). WBC CO2 176 
uptake is driven by a large pCO2 disequilibrium with the overlying mid-latitude atmosphere, which is 177 
due to the rapid cooling of low Revelle factor waters advected from the tropics to midlatitudes. Since 178 
thick subtropical mode waters form during wintertime convection on the equatorward edges of the 179 
WBC extensions, the mode waters are key carbon sinks (e.g., Bates et al., 2002; Gruber et al., 2002; 180 
Ito and Follows, 2003; Levine et al., 2011; DeVries, 2014; Iudicone et al., 2016) and have been the 181 
target of detailed observational carbon studies (Andersson et al., 2013; Palevsky and Quay, 2017). 182 
However, it is still unclear how variability in the rate of mode water formation might impact ocean 183 
carbon uptake in these regions and what impacts these changes might have on the biological pump 184 
and higher trophic levels (e.g., fisheries). In the Kuroshio Extension region, there is evidence that the 185 
majority of carbon exported from the surface ocean during the spring and summer productive season 186 
is subsequently respired in the seasonal thermocline and ventilated back to the atmosphere during 187 
wintertime mode water formation (Palevsky et al., 2016; Fassbender et al., 2017a; Palevsky and 188 
Quay, 2017; Bushinsky and Emerson, 2018). The Southern Hemisphere WBCs are chronically 189 
undersampled, particularly during winter, leading to significant uncertainty in their contribution to 190 
the global ocean carbon sink.  191 

Boundary current systems are highly productive regions (Chavez et al., 2008). The mechanisms of 192 
nutrient supply to surface waters that drive increased primary productivity differ among EBC and 193 
WBC systems, but their global contributions are similar (Chavez and Toggweiller, 1995). In EBC 194 
systems, the dominant source of nutrients is coastal upwelling (Chavez and Messie, 2009), while in 195 
WBC systems, geostrophic and eddy driven upwelling predominate (Pelegri and Csanady, 1991). 196 
Nutrient streams are important in the Gulf Stream (Pelegrí and Csanady, 1991; Pelegrí et al., 1996; 197 
Palter and Lozier, 2008; Williams et al., 2006, 2011) and the Kuroshio (Guo et al., 2012, 2013), 198 
transporting subsurface positive nitrate anomalies which are delivered to the photic zone primarily by 199 
mesoscale and submesoscale processes (Nagai and Clayton, 2017; Zhang et al., 2018; Yamamoto et 200 
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al., 2018; Honda et al., 2018). Nutrient cycles and drivers have not yet been studied in WBC systems 201 
of the Southern Hemisphere. 202 

WBCs are also enriched in micro-nutrients (e.g., Fe, Zn, Cd, Co, and Ni) from land-sea exchanges. 203 
They ultimately feed open ocean surface waters and, at lower latitudes, the equatorial undercurrent, 204 
where these micro-nutrients are critical in maintaining high levels of productivity. For instance, iron 205 
transported by boundary currents in the western Pacific feeds into the Pacific Equatorial 206 
Undercurrent, which then supplies iron to the Equatorial East Pacific (e.g., Mackey et al., 2002; Ryan 207 
et al., 2006). In the North Atlantic, Gulf Stream rings supply iron to the subtropical gyre (e.g., 208 
Conway et al., 2018). Subpolar WBCs such as the Oyashio and Malvinas Current are also likely to 209 
transport waters enriched in nutrients; wind-driven and shelfbreak upwelling then supply nutrients to 210 
the euphotic layers, enhancing biological productivity (Matano and Palma, 2008; Ito et al., 2010; 211 
Valla and Piola, 2015). Locations at which subtropical and subpolar WBCs meet provide ideal 212 
environments for biological production as warm subtropical waters converge with nutrient-rich 213 
subpolar waters (Brandini et al., 2000).  214 

The upwelling of deep, poorly ventilated water masses rich in inorganic nutrients and CO2 and low in 215 
O2 make EBCs areas of high air-sea fluxes, and the sensitivity of the upwelling process to climate 216 
variability contributes to large interannual and decadal scale changes in the magnitude of these fluxes 217 
(Friederich et al., 2002; Brady et al., 2018). EBCs also exhibit strong cross-shore gradients in fluxes; 218 
narrow strips of the nearshore ocean act as intense sources of CO2 to the atmosphere, while the 219 
abundance of nutrients in these upwelled waters facilitates primary production that results in net 220 
uptake of CO2 (Hales et al., 2005). The supply of poorly ventilated waters combined with high levels 221 
of organic-matter remineralization resulting from intense primary production in surface waters can 222 
trigger periods of anoxia and low pH in shelf waters (Feely et al., 2008; Zhang et al., 2010) with 223 
severe consequences for demersal and pelagic ecosystems (Chan et al., 2008; Monteiro et al., 2008; 224 
Bertrand at al., 2011). 225 

Boundary currents play an important role in ocean ecosystems across all trophic levels. The intense 226 
levels of primary production associated with EBCs support rich ecosystems with relatively short food 227 
chains, and these systems provide at least 20% of the world’s wild-caught fish despite covering less 228 
than 1% of the global ocean (Chavez and Messié, 2009). WBCs and EBCs are also oceanic regions 229 
where coastal and open ocean ecosystems are brought together and interact. Modeling studies have 230 
suggested that boundary currents are hotspots of microbial biodiversity (Barton et al., 2010; Clayton 231 
et al., 2013). This has been supported in the Kuroshio Extension by some in situ surveys (Clayton et 232 
al., 2014, 2017). At the other end of the trophic spectrum, recent work combining tag data and 233 
satellite altimetry data has shown that white sharks (Carcharodon carcharias) actively occupy warm-234 
core anticyclonic eddies in the Gulf Stream (Gaube et al., 2018). The warmer waters in these 235 
mesoscale features allow the sharks to reduce the physiological costs of thermoregulation in cold 236 
water, thereby making prey more accessible and energetically more profitable. Similarly, the location 237 
of the Kuroshio axis and associated changes in water temperature have been shown to influence the 238 
behavior of juvenile Pacific bluefin tuna (Thunnus orientalis; Fujioka et al., 2018). In the Southern 239 
Benguela EBC upwelling system, the coastal, wind-driven upwelling along the southwest African 240 
coast supports planktonic food supplies for young pelagic fish, while the temperate Agulhas Bank 241 
shelf region provides suitable spawning habitat for large communities of fish including in particular 242 
anchovy and sardine (Hutchings et al., 2009c). Likewise, southern elephant seals feed along the 243 
intense fronts and eddies in the Brazil/Malvinas Confluence (Campagna et al., 2006). WBCs are also 244 
known to play an important role in the migration of other coastal and pelagic organisms, such as eels 245 
(Shinoda et al., 2011; Rypina et al., 2014) and salmon (Wagawa et al., 2016). 246 
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Marine heat waves (MHWs) are strongly linked with boundary current systems. For instance, the 247 
exceptional and devastating MHW event off Western Australia during summer of 2010/2011 was 248 
caused by a strengthening of the Leeuwin Current associated with La Niña conditions (Pearce and 249 
Feng, 2013; Feng et al., 2015), a 2014-2015 MHW had unprecedented impacts on the California 250 
Current System (Di Lorenzo and Mantua 2016; Zaba and Rudnick 2016), and a MHW in 2015-2016 251 
impacted the Tasman Sea (Oliver et al., 2017). These discrete, prolonged periods of anomalously 252 
warm waters at particular locations (Hobday et al., 2016) can stress ecosystems, leading to increased 253 
mortality of marine species, closing of commercial and recreational fisheries, and coral bleaching 254 
(Cavole et al., 2016; Stuart-Smith et al., 2018). The addition of other stressors such as ocean 255 
acidification and deoxygenation, which are projected to increase in future warming scenarios, could 256 
amplify the ecosystem impacts of MHWs. Sustained physical and biogeochemical observations are 257 
necessary to improve forecasts of the frequency and magnitude of MHWs, as well as to assess the 258 
risk and vulnerability of marine ecosystems to extreme climate events (Frölicher and Laufkötter, 259 
2018). 260 

2.2 Climate and Weather 261 

Boundary currents are an integral part of the global climate system as they redistribute heat and 262 
facilitate carbon uptake from the atmosphere (Section 2.1). In the Atlantic, boundary currents are key 263 
components of the Atlantic Meridional Overturning Circulation (AMOC; Frajka-Williams et al., 264 
2019). Low-latitude WBCs that connect the subtropics to the equator at thermocline and intermediate 265 
levels are important contributors to the mass and heat budgets of the equatorial oceans, which 266 
influence climate modes such as ENSO (Lengaigne et al., 2012). Low-latitude WBCs are also 267 
suspected to contribute to the decadal modulation of the equatorial thermocline background state 268 
(e.g., Lee and Fukumori, 2003). Sustained monitoring of WBC transports would be particularly 269 
useful for climate and seasonal-to-decadal forecast centers (see Smith et al., 2019). 270 

As climate change progresses, boundary current systems are likely to undergo further significant 271 
changes. Subtropical WBCs and their extensions are the fastest warming regions of the world ocean 272 
(Wu et al., 2012; Yang et al., 2016). Climate model simulations have suggested that western 273 
boundary current extensions may move poleward under climate change (Saba et al., 2016). This 274 
poleward expansion of energetic WBCs may impact extreme temperatures and marine species 275 
migration (Johnson et al., 2011), as well as enhance eddy activity regionally (e.g., Oliver et al., 276 
2015). While low-resolution climate models suggest strengthening and poleward migration of several 277 
of these currents under climate change, particularly in the Southern Hemisphere (Sen Gupta et al., 278 
2012; Hu et al., 2015; Pontes et al., 2016), studies leveraging in situ velocity and satellite data 279 
suggest no significant increase in their transports since the early 1990s (Rossby et al., 2014; Beal and 280 
Elipot, 2016). This discrepancy motivates the collection of long-term measurements of baroclinic 281 
changes in boundary currents (i.e., subsurface temperature and salinity properties), as well as the 282 
vertical structure of the velocity, in order to understand and predict future changes.  283 

In addition, ocean warming and a magnified hydrological cycle could drive significant changes in 284 
shelf ocean stratification, while changes to wind forcing will directly alter rates of upwelling. These 285 
ocean circulation processes, and meteorological forcing at the scales that impact upwelling, are 286 
poorly represented in climate models (Richter, 2015; Zuidema et al., 2016). Thus, we have little 287 
capability to predict how upwelling, winds and other physical drivers of ocean property exchanges at 288 
the coastal/open ocean boundary will change in the future. The impact these changes will have on 289 
coastal ecosystems is simply unknown. 290 
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Detection and attribution of global sea level variability has improved considerably in the last decade 291 
(Cazenave et al., 2014; Marzeion et al., 2014). The location and strength of WBCs considerably 292 
influence the mean local sea level (Domingues et al., 2016; Archer et al., 2017a) possibly accounting 293 
for part of the mismatch between forecasts and observations of sea level at the coast (Ezer, 2015). 294 
Relationships between large scale wind anomalies, basin-wide sea surface height (SSH), and WBCs 295 
(e.g., Boening et al., 2012; Volkov et al., 2019) suggest that observations of current strength and 296 
oceanic teleconnections can be used to improve seasonal to decadal coastal sea level forecasts, 297 
leading to improved assessments of impacts on infrastructure and groundwater quality (Slangen et 298 
al., 2014; Park and Sweet, 2015).  299 

Boundary current systems influence synoptic and longer scale weather patterns. Large upper ocean 300 
heat content within WBCs can fuel development and intensification of tropical cyclones (Bright et 301 
al., 2002; Wu et al., 2008; Nguyen and Molinari, 2012; Galarneau et al., 2013). Strong sea surface 302 
temperature (SST) gradients across WBCs, particularly during winter months, destabilize the 303 
atmospheric boundary layer, fueling the mid-latitude storm tracks and atmospheric blocking 304 
frequency, which in turn impact regional climate (Kelly et al., 2010; Nakamura, 2012; O’Reilly and 305 
Czaja, 2015; O’Reilly et al., 2016; Révelard et al., 2016; Ma et al., 2017). For instance, a weaker Gulf 306 
Stream SST front leads to a decrease in cold and dry spells over Europe (O’Reilly et al., 2016), while 307 
a sharper SST front in the Kuroshio Extension increases cyclogenesis and shifts the storm track 308 
northward, causing warming over eastern Asia and the western United States that can reduce snow 309 
cover by 4-6% (O’Reilly and Czaja, 2015; Révelard et al., 2016). Variability in the warm waters of 310 
the Agulhas influences summer rainfall over parts of South Africa (Jury et al., 1993; Nkwinkwa 311 
Njouodo et al., 2018). In EBC systems, SST minima are collocated with maxima in sea level pressure 312 
that are in turn associated with alongshore wind stress, wind stress curl, and cloud cover along the 313 
boundary (Sun et al., 2018), suggesting coupling with the full Hadley-Walker tropical atmospheric 314 
circulation, though the details of such coupling remain an open question. 315 

Accurate weather and climate forecasting thus requires accurate representation of boundary current 316 
systems. However, most of the current ocean reanalyses used to initialize the monthly, seasonal, and 317 
decadal forecasts exhibit large errors in the boundary currents (Rouault et al., 2003; Valdivieso et al., 318 
2017), hampering forecast performance. Coupled climate models, such as those used in the 319 
Intergovernmental Panel on Climate Change reports, also exhibit large deficiencies in boundary 320 
current regions (e.g., Zuidema et al., 2016; Siqueira and Kirtman, 2016), including warm SST biases 321 
in EBCs (e.g., Large and Danabasoglu, 2006). Current modelling and data assimilation capabilities 322 
are insufficient to fully represent boundary currents at the small spatial scales needed for forecasting. 323 
Subramanian et al. (2019) further consider how observing efforts, including within boundary 324 
currents, can contribute to improved subseasonal-to-seasonal forecasting. 325 

2.3 Shelf-Deep Ocean Connections 326 

The coastal ocean and nearshore zones support a broad range of human activities in maritime 327 
industries and resource extraction, and the environmental health and productivity of these regions 328 
deliver important ecosystem services. As already noted, the proximity of energetic boundary currents 329 
in deep water adjacent to continental shelves mediates shelf-sea/deep-ocean exchange of properties. 330 
Along many coasts, this forcing can match or exceed local drivers of circulation such as tides, wind, 331 
and river inflows. Coastal ocean and shelf edge dynamics have immediate impacts on ecosystem 332 
function and productivity on weekly to seasonal time scales, but can also drive multi-decadal changes 333 
in ecosystem structure through effects on habitat ranges and biodiversity, not only in coastal zones 334 
but also at basin scales.  335 



  Observing Boundary Current Systems 

 
9 

While we have a broad understanding of the dynamics of upwelling in both WBC and EBC regimes, 336 
quantitative estimates of net shelf-sea/deep-ocean exchanges of freshwater and tracers integrated over 337 
extended along-shelf distances are few. Quantifying these exchanges is challenging where shelf-edge 338 
flow-bathymetry interactions foster variability at short length and time scales. Similarly, exchange 339 
flows are not always readily observable at the sea surface from satellite or shore-based remote 340 
sensing technologies (Section 3.6) because they are associated with bottom boundary layer flow 341 
driven by the boundary current encountering the sea-floor or subduction at the sea surface due to 342 
boundary current detachment and mixing. Two efforts along the U.S. East Coast are striving to make 343 
such measurements using multi-platform observing arrays: the Processes driving Exchange At Cape 344 
Hatteras (PEACH) program and the Ocean Observatories Initiative (OOI; Smith et al., 2018; 345 
Trowbridge et al., 2019) Pioneer Array (see Section 4.2.1). Similarly, in situ and satellite remote 346 
sensing observations combined with high-resolution numerical simulations have provided insights 347 
into the shelf-sea/deep-ocean exchanges near the confluence of the Brazil and Malvinas Currents 348 
(Guerrero et al., 2014; Matano et al., 2014; Strub et al., 2015). 349 

On narrow continental shelves adjacent to intense boundary currents, the impact of deep-ocean 350 
circulation on the shelf system is immediate, driving significant fluxes across the continental shelf 351 
edge through mesoscale and boundary layer dynamics. For example, mesoscale and submesoscale 352 
meandering of the Agulhas jet leads to strong episodic exchanges with shelf waters (Leber et al., 353 
2017; Krug et al., 2017) that support high productivity over the eastern Agulhas Bank (Probyn et al., 354 
1994) and may influence the well-known sardine run (Fréon et al., 2010). On broad continental 355 
shelves, bathymetric constraints on cross-isobath flow can hamper exchange at the shelf edge, 356 
trapping terrestrial inflows and establishing appreciable cross-shelf buoyancy gradients that in turn 357 
sustain shelf-edge fronts (Fratantoni and Pickart 2007; Howatt et al., 2018).  358 

With changing climate, ocean warming and changes to the hydrological cycle could drive changes in 359 
vertical thermal stratification and across-shelf salinity stratification, altering ocean conditions at the 360 
inshore edge of boundary current systems (e.g., Gawarkiewicz et al., 2018) and potentially impacting 361 
across-shelf fluxes of nutrients and micro-nutrients that are important to sustaining coastal 362 
productivity (Fennel et al., 2006). Changes in watershed land use and global weather will alter the 363 
volume and characteristics of river flows discharged into the coastal zone. At continental shelf scales, 364 
key areas of uncertainty in the oceanographic response to climate variability and change include sub-365 
mesoscale processes and open ocean-shelf exchange. Sustained observing efforts are needed that 366 
more fully capture the influence of boundary currents on exchanges with the coastal zone. Designing 367 
and deploying boundary current observing systems capable of operating across shelf and deep ocean 368 
regimes to deliver coherent views of the shelf-edge exchange is challenging. 369 

3. Observing Techniques  370 

The highly variable and multi-scale characteristics of boundary currents necessitate an integrated 371 
observing system approach, in which high-resolution observations are nested within a backbone of 372 
observations over a broad area. Under the Framework for Ocean Observing (Lindstrom et al., 2012), 373 
design and implementation of ocean observing systems is focused around a set of EOVs that include 374 
physical, biogeochemical, and ecosystem parameters (Table 1 and http://www.goosocean.org/eov). 375 
Design of an observing system for a particular region (e.g., a specific boundary current system) 376 
should proceed through a series of ‘readiness levels’. In the concept phase, initial feasibility studies 377 
and peer review of proposed plans take place. Then, in the pilot phase, small-scale deployments are 378 
used to test and validate the proposed approach. Once the observing system reaches the mature phase, 379 
it is part of the sustained global ocean observing system. No single observing platform can provide 380 
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all of the necessary measurements (Table 1), so an optimal mix of observing platforms is needed. 381 
Determination of this mix of platforms will be specific to a particular boundary current system, 382 
taking into consideration the unique processes and scales at play in that system. Here we briefly 383 
review how various observing platforms are currently being used in boundary current systems; Table 384 
2 refers to many other examples of these observing techniques being applied to boundary current 385 
systems.  386 

3.1  Time Series 387 

Time series measured from platforms fixed to the seafloor have long been and continue to be central 388 
to observing system design and implementation since they uniquely enable collection of long-term 389 
measurements at high temporal resolution (minutes to hours) at key locations. Traditional tall 390 
moorings (e.g., Johns et al., 2005) typically carry instruments on the mooring wire, within subsurface 391 
floats, and on surface buoys, if present; instruments are available to measure most physical EOVs 392 
and a growing number of biogeochemical and ecosystem EOVs (Table 1). Moored surface buoys 393 
additionally carry suites of meteorological sensors on the buoy tower and sensors for biogeochemical 394 
and physical EOVs on the buoy bridle and mooring line just below the sea surface; these air- and sea- 395 
surface measurements can be combined to estimate the air-sea exchanges of heat, moisture, CO2, and 396 
momentum (Cronin et al., 2019). Inverted echo sounders (IESs) measure the time for sound pulses to 397 
travel from the bottom-mounted IES to the surface and back, which, in regions with good databases 398 
of hydrographic measurements, can provide full water column estimates of temperature, salinity, and 399 
density using the gravest empirical mode technique (Meinen and Watts, 2000). In the Florida Strait, a 400 
unique time series of volume transport has resulted from measuring the voltage induced in a 401 
submarine cable by seawater moving through the Earth’s magnetic field (Larsen and Stanford, 1985; 402 
Baringer and Larsen, 2001; Meinen et al., 2010). 403 

Dense, moored arrays of instruments remain the most effective way to return volume and property 404 
transport measurements with high temporal resolution. Subsurface moorings are more typical in 405 
WBCs due to the strong surface currents, although surface moorings have also been successfully 406 
deployed in the Gulf Stream (Weller et al., 2012) and Kuroshio Extension (Cronin et al., 2013). 407 
Arrays of IESs can be used to infer geostrophic shear profiles, and, with the addition of bottom 408 
pressure sensors (PIES) and near-bottom current measurements (CPIES), can provide estimates of 409 
the absolute geostrophic current (Donohue et al., 2010; Meinen et al., 2018). However, the high costs 410 
of building, deploying, and turning around such arrays makes them feasible only at a few key 411 
locations. Other observing assets are needed to provide spatially broad measurements. 412 

3.2 Ship-Based Measurements 413 

Measurements from both dedicated research vessels and ships of opportunity have been central to 414 
observing boundary current systems for decades. Research vessels can measure nearly every EOV 415 
(Table 1) through the full depth of the water column and are uniquely capable of collecting many 416 
types of samples (e.g., net tows, large-volume water samples). Ongoing sustained research vessel 417 
surveys of ocean boundary currents include the global GO-SHIP transects at 25-50 km resolution 418 
(Talley et al., 2016) and the California Cooperative Oceanic Fisheries Investigations (CalCOFI) 419 
surveys (McClatchie, 2014) in the California Current System (see Section 4.1.1). The servicing of 420 
boundary current mooring arrays, generally undertaken from research vessels, provides unique 421 
opportunities to undertake intensive process studies targeting key scientific questions. The primary 422 
limitations on research vessels’ contribution to sustained boundary current observing are their high 423 
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costs of operation (typically tens of thousands of dollars per day, excluding science personnel) and 424 
the infrequency of cruises.  425 

The World Meteorological Organization (WMO) Voluntary Observing Ship (VOS) Program and 426 
Ship Of Opportunity Program (SOOP) both make use of non-research vessels to collect observations 427 
globally, substantially augmenting the amount of ship-based observing. Both programs collect 428 
meteorological measurements with real-time observations benefiting weather forecasting, while 429 
SOOP additionally uses commercial ships to collect oceanographic measurements along frequently 430 
occupied trade routes in the global ocean. Oceanic measurements from SOOP include temperature 431 
profiles from expendable bathythermographs (XBTs) at 10-25 km resolution in boundary currents 432 
(Goni et al., 2019), surface temperature, salinity, plankton, and pCO2 from flow-through systems, 433 
and, on specially-equipped vessels, velocity profiles from hull-mounted ADCPs (e.g., M/V Oleander; 434 
Rossby et al., 2010). Several repeat transects across boundary currents have been maintained for 435 
multiple decades and so represent some of the longer data sets available (see Section 4). Fast-moving 436 
ships are often able to occupy transects directly across strong boundary currents in short periods of 437 
time, a feat not yet possible with other sampling platforms. However, subsurface measurements of 438 
variables other than temperature and velocity have remained elusive from ships of opportunity, and 439 
recovery of instruments deployed over the side is not practical on cargo vessels.  440 

3.3 Autonomous Underwater Gliders 441 

Autonomous underwater gliders (Rudnick, 2016b; Testor et al., 2019) routinely collect long-duration, 442 
high-resolution observations in a variety of boundary current systems globally (Todd et al., 2018a; 443 
Table 2). Gliders typically profile from the surface to 500-1000 m, taking 3-6 h to complete a cycle 444 
from the surface to depth and back while covering 3-6 km horizontally through the water at a speed 445 
of about 0.25 m s-1. During a mission lasting 3-6 months, a glider’s survey track extends well over 446 
2000 km. Owing to the relatively slow speed of gliders, care must be taken when interpreting the 447 
observations, which contain both spatial and temporal variability (Rudnick and Cole, 2011). 448 
Sustained deployment of networks of gliders can provide observations with both high spatial 449 
resolution and year-round coverage (e.g., Fig. 1a,b).  450 

Realizable glider-based sampling plans in boundary currents vary primarily due to the strength of 451 
currents relative to a glider’s speed. In EBCs and other boundary currents with relatively weak depth-452 
average currents, gliders can occupy repeat survey lines. The California Underwater Glider Network 453 
(CUGN; Fig. 1, left), which consists of three cross-shore transects off southern and central California 454 
that have been continuously occupied for more than a decade (Rudnick et al., 2017), exemplifies 455 
sustained glider observations in an EBC. In WBCs and other boundary currents where depth-average 456 
currents are significantly faster than a glider’s speed through the water, gliders can be navigated so as 457 
to cross the observed flow as they are advected downstream, returning oblique transects. For 458 
example, multi-year surveys of the Gulf Stream (Fig. 1, right; Todd et al., 2016, 2018b; Todd 2017; 459 
Todd and Locke-Wynn 2017) have now returned over 150 high-resolution transects across the WBC 460 
of the North Atlantic. Testor et al. (2019) further discuss efforts associated with the OceanGliders 461 
Boundary Ocean Observing Network (BOON). 462 

Gliders can carry a variety of sensors (e.g., Fig. 1c-f). Measurements of pressure, temperature (Fig. 463 
1d), conductivity, and depth-average currents are standard, enabling estimates of absolute 464 
geostrophic transport and other physical parameters at relevant scales in boundary currents. 465 
Measurements of bio-optical (e.g., Niewiadomska et al., 2008; Henderikx Freitas et al., 2016) and 466 
bio-acoustic properties (e.g., Baumgartner and Fratantoni, 2008; Van Uffelen et al., 2017), dissolved 467 
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oxygen (e.g., Fig. 1e; Perry et al., 2008), nitrate, turbulent microstructure (St. Laurent and Merrifield, 468 
2017), and velocity profiles (Fig. 1f; Todd et al., 2017) are becoming increasingly common. The 469 
main constraints on sensors for gliders are the requirements for small size, low power consumption, 470 
and multi-month stability. As sensor technology continues to mature, gliders will be well suited to 471 
carry sensors for additional EOVs, such as pH, in boundary currents. 472 

3.4 Drifters 473 

Surface Velocity Program (SVP) drifters drogued at 15 m depth (Niiler et. al. 1995; Niiler, 2001; 474 
Centurioni, 2018) deployed as part of the Global Drifter Program (GDP) and of the Global Surface 475 
Drifter Array (GSDA) are also important for understanding the structure and variability of boundary 476 
current systems. The GSDA archive dates back to February 1979 and includes over 32 million 477 
records of geographical location, 15-m depth velocity, and SST at 6-hour resolution (e.g., Hansen 478 
and Poulain, 1996; Lumpkin and Pazos, 2007). 479 

Drifter observations have been widely used in both EBCs and WBCs (see Table 2). Recently 480 
improved analysis techniques (e.g., Lumpkin, 2003; LaCasce, 2008; Koszalka and LaCasce, 2010; 481 
Laurindo et al., 2017) and expansion of the Lagrangian drifter array have allowed gridded, Eulerian 482 
statistics of near-surface velocity to be produced at higher resolution, resulting in improved estimates 483 
of near-surface flow in boundary currents (e.g., Fig. 2) at seasonal to interannual time scales (e.g., 484 
Niiler et. al, 2003; Lumpkin and Johnson, 2013). Drifter observations in boundary currents offer 485 
opportunities for new analyses of long-term variability and trends (e.g., Johnson, 2001; Lumpkin and 486 
Johnson, 2013) and the dispersion of tracers and marine debris in the upper ocean (Lumpkin et al., 487 
2012; Van Sebille et al., 2015), which is driven by turbulence at scales from surface waves through 488 
the submesoscale to large-scale geostrophic eddies (Lumpkin et al., 2017; Lund et al., 2018). 489 

3.5  Argo Floats 490 

Over the past two decades, autonomous profiling Argo floats have become cost-effective and robust 491 
platforms. Over 3700 active Argo floats provide global measurements of temperature, salinity, and 492 
pressure in the upper 2000 m of the ocean, and some are also equipped with sensors measuring 493 
biogeochemical properties (Riser et al., 2016; Jayne et al., 2017; Roemmich et al., 2019). Though the 494 
Argo network was not designed to capture the details of boundary currents and lacks the resolution 495 
necessary to resolve narrow boundary currents, Argo data have nevertheless been used extensively in 496 
both WBCs and EBCs (see Table 2). Argo complements other boundary current observing efforts by: 497 
providing collocated temperature and salinity measurements that are used to infer geostrophic shear 498 
from XBT temperature profiles, extending geostrophic shear from XBT and ocean glider data to 2000 499 
m, measuring reference velocities at parking depth (typically 1000 m), and linking transport 500 
measurements of boundary currents to the ocean interior through basin-wide integration (e.g., 501 
Zilberman et al., 2018). Following recommendations at OceanObs’09 (Roemmich et al., 2010), the 502 
Argo program is currently moving to double float density in WBC regions (Jayne et al., 2017). The 503 
Kuroshio (Fig. 3a) and Gulf Stream have historically been among the more densely-populated sectors 504 
in the Argo array, while other boundary current regions (e.g., the Peru-Chile system, Fig. 3b) lack the 505 
desired coverage.  506 

3.6 Remote Sensing 507 

Among the many oceanic variables that are routinely measured from satellites (Table 1), SSH, SST, 508 
and ocean color have been most used to study boundary current systems. Satellite measurements 509 
typically have resolutions of O(1)-O(10) km along the satellite track, with repeated measurements on 510 
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daily to ten-day time scales at a given location. Boundary currents often have strong signatures in 511 
both SSH and SST, so satellite-derived gradients in these properties can approximate the strength 512 
and/or position of these currents (e.g., Imawaki, 2001), including variability on longer time scales 513 
(e.g., Qiu and Chen, 2005; Qiu et al., 2014; Andres 2016). Synergy between dynamic height derived 514 
from temperature and salinity profiles and SSH can be exploited to produce synthetic reconstructions 515 
of boundary currents (van Sebille et al., 2010; Beal and Elipot, 2016; Majumder and Schmid, 2018; 516 
Zilberman et al., 2018), although these reconstructions crucially depend on assumptions about the 517 
non-steric (barotropic and mass) variability. Weaknesses of SSH for observing boundary currents 518 
include reduced measurement quality within 40 km of the coast due to large uncertainties in the wet-519 
tropospheric correction, unfiltered tides, and a lack of sufficient temporal and spatial resolution to 520 
capture the full spectrum of near-surface current variability observed by drifters (Poulain and Niiler, 521 
1989; Centurioni and Niiler, 2003; Fratantoni and Richardson, 2006; Centurioni et al., 2008, 2009; 522 
Maximenko et al., 2009). Products that combine SSH and drifter measurements have improved eddy 523 
kinetic energy and dynamic topography estimates (Maximenko et al., 2009; Lumpkin and Garzoli, 524 
2011; Rio et al., 2014, 2018). Estimates of chlorophyll derived from satellite ocean color 525 
measurements provide information on biological productivity in boundary current systems worldwide 526 
(e.g., Messié and Chavez, 2015; Gómez-Letona et al., 2017). Because ocean color observations have 527 
higher resolution (O(1) km) than satellite altimetry, they potentially provide insight into the rich 528 
fields of submesoscale instabilities that exist within boundary current systems (Fig. 4; Everett et al., 529 
2014; Lee and Kim, 2018). 530 

High-frequency (HF) radars (Paduan and Washburn, 2013) have been used effectively to monitor 531 
surface current variability of boundary currents (e.g., Kim et al., 2011; Archer et al., 2018). They 532 
directly map the total surface current within O(100) km of the coast at high resolution in time (~1 533 
hour) and space (~1 km) during long-term deployments (~10 years). HF radar observations have 534 
proven useful for investigating both the mean surface velocity structure of boundary currents and 535 
associated submesoscale features that develop as boundary currents meander and shed eddies (Soh 536 
and Kim, 2018; Archer et al., 2018). Combining HF radar velocity estimates with satellite-based 537 
measurements of SST and ocean color (e.g., Fig. 4) can provide a multidisciplinary view of surface 538 
circulation features at O(1)-km scales (e.g., Schaeffer et al., 2017). Some radar sites have been in 539 
continuous operation for more than a decade, offering opportunities to examine interannual to 540 
decadal variability of surface circulation. New radar sites can be installed and daisy-chained with 541 
existing sites, providing measurements of the alongshore evolution of boundary currents, as has been 542 
achieved along the west coast of the U.S. (Kim et al., 2011). 543 

4 Current Status of Regional Boundary Current Observing Systems 544 

Existing observing systems for particular boundary currents are in various stages of development. 545 
Here we review the current status of the observing systems currently operating in several EBCs and 546 
WBCs globally. The California Current System (Section 4.1.1) is arguably the most well sampled 547 
boundary current in the world, offering hope that a fully integrated physical and biogeochemical 548 
system is achievable. Other boundary current systems, particularly in the southern hemisphere, are 549 
much less sampled. As was the case a decade ago (Send et al., 2010) biogeochemical and ecosystem 550 
EOVs (Table 1) remain much less well sampled than physical EOVs. Table 2 provides a more 551 
comprehensive collection of recent scientific results for each boundary current system as well as 552 
sources of publicly available observations.  553 

4.1 Eastern Boundary Current Systems 554 
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4.1.1 California Current System 555 

The California Current System is the EBC system of the subtropical North Pacific (Checkley and 556 
Barth, 2009). The equatorward flowing California Current carries relatively cool and fresh waters of 557 
subpolar origin, while the poleward California Undercurrent (Gay and Chereskin, 2009; Todd et al., 558 
2011b) transports warmer saltier waters from the tropics along the continental margin. The California 559 
Current System is strongly influenced by the predominantly upwelling-favorable winds along the 560 
west coast of North America.  561 

Owing to the need to understand the collapse of the regional sardine fishery in the 1940s, there is a 562 
well-developed multidisciplinary observing system in the California Current System with a decades-563 
long history of routine observations by the CalCOFI program (McClatchie, 2014, and references 564 
therein). Since 1949, CalCOFI has made regular (currently quarterly) measurements of physical, 565 
biological, and chemical properties at fixed stations along survey lines oriented perpendicular to the 566 
coast from research vessels (Fig. 5). The establishment of the California Current Ecosystem Long 567 
Term Ecological Research program in 2004 brought further ship-based surveys and long-term 568 
moorings (Fig. 5) focused on nonlinear transitions in the pelagic ecosystem in response to ENSO, the 569 
Pacific Decadal Oscillation, and secular trends. In the Northern California Current, the Newport 570 
Hydrographic Line (44° 39.1’ N) has been continuously occupied since 1961 (Huyer et al., 2007). 571 
Since 2005, autonomous underwater gliders have continuously surveyed along three of the CalCOFI 572 
lines as part of the CUGN (Section 3.3; Figs. 1 and 5) as well as along cross-shore transects as far 573 
north as the Washington coast (Fig. 5), returning measurements of physical properties and some 574 
biological proxies; the gliders complement the ship-based surveys by providing observations at 575 
higher spatial and temporal resolution (e.g., Rudnick et al., 2017), albeit of a more limited set of 576 
properties. An array of PIES with end-point moorings off of southern California monitors full-depth 577 
geostrophic transport; gliders routinely retrieve data from the PIES and transmit them to shore (Send 578 
et al., 2013). Since 2007, NOAA has led large-scale coastal surveys along the U.S. West Coast every 579 
2-4 years to determine the spatial distributions of carbon, oxygen, nutrient, biological, and 580 
hydrographic parameters (Feely et al., 2008, 2018). Starting in 2010, moored platforms throughout 581 
the California Current System established high-frequency time series of physical and biogeochemical 582 
parameters (Nam et al., 2011; Harris et al., 2013; Sutton et al., 2016). More recently, the OOI 583 
Endurance Array (Smith et al., 2018; Trowbridge et al., 2019) has been deployed in the northern 584 
California Current System (Fig. 5); moorings on the shelf and continental slope provide high-585 
resolution time series while gliders provide high-spatial-resolution observations between the mooring 586 
sites. A network of shore-based HF-radars provides real-time surface currents within about 150 km 587 
of the coast along nearly the entire U.S. West Coast (Kim et al., 2011). 588 

4.1.2 Peru-Chile Current System 589 

The Peru-Chile Current System (or Humboldt Current System) is the EBC system of the subtropical 590 
south Pacific, extending from the equator to southern Chile (~45°S). It is characterized by a persistent 591 
stratus cloud deck, equatorward surface currents, strong wind-driven coastal upwelling, poleward 592 
undercurrents, and filaments and eddies that develop along the coasts of Peru and Chile (see Colas et 593 
al., 2012 and references therein). A subsurface oxygen minimum zone (e.g., Paulmier and Ruiz-Pino, 594 
2009) results in upwelled waters being nutrient rich but low in oxygen (e.g., Silva et al., 2009; 595 
Pizarro et al., 2016). Due to its proximity to the equator, the Peru-Chile Current System is strongly 596 
influenced by equatorial variability through propagation of Kelvin and coastal trapped waves 597 
(Dewitte et al., 2012; Mosquera-Vasquez et al., 2013) and anomalous advection during strong El 598 
Niños (e.g., Colas et al., 2008). 599 
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The dramatic impacts of El Niño events on both weather and fisheries have driven monitoring of 600 
oceanographic properties and fish stock assessments along the Peruvian coast since the 1960s (Fig. 6; 601 
Grados et al., 2018). Over the past decade, these surveys have taken place monthly along the northern 602 
Peruvian coast and at least twice per year along the entire Peruvian coast; shipboard ADCP surveys 603 
are conducted at least seasonally. Biweekly time series along the 100-m isobath between Paita (5°S) 604 
and Ilo (17°S), coastal tide-gauge stations, daily SST measurements at coastal laboratories, and a 605 
nearshore thermistor chain and bottom-mounted ADCP at 4°30’ S (Fig. 6) allow monitoring of 606 
temperature and sea level anomalies and associated fluctuations in thermocline, oxycline, and 607 
nutricline depths. Measurements from the TAO/TRITON moored array and the Argo program (Fig. 608 
3b) provide key broad-scale context to these coastal observations. Efforts are underway to improve 609 
monitoring of the Peru-Chile Current System. For instance, sustained glider surveys across the 610 
frontal region off northern Peru, where El Niño impacts are large, are planned to begin by 2020.  611 

4.1.3 Leeuwin Current System and South Australian Current System 612 

The boundary currents along the western and southern coasts of Australia have some unique features. 613 
The Leeuwin Current, which is the subtropical EBC of the southeastern Indian Ocean, is unusual in 614 
that it flows poleward along an eastern boundary, transporting warm, fresh tropical waters southward 615 
due to forcing by the Indonesian Throughflow and ocean atmosphere interactions in the Indian Ocean 616 
(Godfrey and Weaver, 1991); it is important for the upper ocean heat balance in the southeast Indian 617 
Ocean (Domingues et al., 2006). The Leeuwin Current hosts broad-scale downwelling (Furue et al., 618 
2017; Liang et al., 2017) where eastward surface currents merge with the Leeuwin Current and then 619 
downwell into the Leeuwin Undercurrent at depths of 200-1000 m. The equatorward Leeuwin 620 
Undercurrent carries waters of subantarctic origin along the western Australian coast (Woo and 621 
Pattiaratchi 2008), leaving the coast near 22°S to contribute to the lower limb of a zonal overturning 622 
(Furue et al., 2017) and the subtropical gyre (Schott et al., 2009). In winter, the Leeuwin Current 623 
merges with the southwestward-flowing Holloway Current off the northwest coast of Australia, the 624 
eastward-flowing South Australian Current off the south coast and the southward-flowing Zeehan 625 
Current off the west coast of Tasmania to form the longest shelf-break boundary current system in 626 
the world (Ridgway and Condie, 2004; D'Adamo et al., 2009; Ridgway and Godfrey, 2015). Along 627 
the continental slope south of Australia, the westward flowing Flinders Current results from the 628 
collision of the equatorward deep ocean Sverdrup transport with the deep shelf slope of the Great 629 
Australian Bight (Middleton and Cirano, 2002; Middleton and Bye, 2007) and is a unique northern 630 
boundary current. 631 

Coastal sea level observations at Fremantle have long been used as a proxy for the strength of the 632 
Leeuwin Current (Feng et al., 2003). Since 2008, the Australian Integrated Marine Observing System 633 
(IMOS; Hill et al., 2010) has been monitoring the shelf component of the Leeuwin Current near 32°S 634 
using shelf moorings (Feng et al., 2013), gliders, and HF radars (Fig. 7). Short-term deployments 635 
(2012-2014) have also been carried out off the northwest coast of Australia (Ridgway and Godfrey, 636 
2015). XBT surveys from Ships of Opportunity in and out of Fremantle, though not targeted for the 637 
Leeuwin Current, have taken place since the mid-1980s (Wijffels et al., 2008). IMOS makes ongoing 638 
observations of the South Australian Current system with dedicated moorings and glider missions 639 
monitoring the Flinders Current (Fig. 7). 640 

4.1.4 Benguela Current System 641 

The Benguela Current Large Marine Ecosystem is the eastern boundary upwelling system of the 642 
South Atlantic. The equatorward Benguela Current is unique in that it is bounded by warm currents 643 
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at its northern and southern edges, the Angola Current to the north and the Agulhas Current (Section 644 
4.2.4) to the south. Coastal upwelling is linked to the seasonal position of the South Atlantic high 645 
pressure system, resulting in a number of upwelling cells along the southern African coast with 646 
divergent seasonality; the strongest year-round upwelling occurs off Lüderitz (~26°S), effectively 647 
dividing the Benguela Current System into northern and southern sub-systems. The northern 648 
Benguela upwelling system is highly productive (e.g., Louw et al, 2016), but also prone to hypoxia 649 
over the continental shelf that is modulated by a seasonal poleward undercurrent bringing low-650 
oxygen waters to the shelf in summer and fall and an equatorward undercurrent that brings 651 
oxygenated water in winter and spring (Duncombe Rae, 2005; Mohrholz et al., 2008; Monteiro et al., 652 
2008). The southern Benguela upwelling system experiences intense, pulsed upwelling in summer 653 
and quiescence in winter (Shannon and Nelson, 1996; Weeks et al., 2006; Hutchings et al., 2009a), 654 
although the direction of net Ekman transport appears to be offshore year-round (Carr and Kearns 655 
2003). This region also experiences hypoxia (and occasionally, anoxia) in inshore waters, particularly 656 
in the region of St. Helena Bay (Pitcher and Probyn, 2011; Pitcher et al., 2014), but low-oxygen 657 
events are driven solely by bacterial respiration of organic matter from surface waters (Monteiro and 658 
van der Plas, 2006) and can result in mass mortalities of commercial fish stocks and rock lobster 659 
(e.g., Van der Lingen et al., 2006; Cockcroft et al., 2000, 2008). 660 

In the southern Benguela current system, monthly ship-based sampling of fisheries-relevant 661 
parameters took place through the 1950s and 1960s, then intermittently until 1988, after which 662 
surveys of fisheries, hydrographic, and chemical properties have been conducted 2-3 times per year 663 
(Fig. 8; Moloney et al., 2004). Since 2012, quarterly surveys as part of the Integrated Ecosystem 664 
Programme have additionally monitored the carbonate system. Various multifunctional moorings 665 
have been deployed over the years, including a buoy for oxygen and temperature and a harmful algal 666 
bloom detection system in the vicinity of St. Helena Bay (see Hutchings et al., 2009b).The Namibian 667 
Ministry of Fisheries and Marine Resources conducts regular monitoring of hydrographic conditions 668 
and commercial fish resources in Namibian waters of the northern Benguela (Fig. 8); regular 669 
shipboard oceanographic monitoring began in 1999 with sampling frequency varying from two to 670 
eight occupations annually along most lines and up to twice per month off Lüderitz during the lobster 671 
fishing season. Long-term, though intermittent, moored observations have been collected at 23°S, 672 
14’03°E, and coastal stations are maintained along the Namibian coast (Fig. 8). 673 

4.1.5 Canary Current System 674 

The Canary Current large marine ecosystem extends from the northern tip of the Iberian Peninsula 675 
(43°N) to south of Senegal (12°N), corresponding to the extent of the northeasterly trade winds in the 676 
northeastern Atlantic. Upwelling occurs year-round with meridional shifts in the trade winds leading 677 
to seasonality in the latitudinal range of upwelling, particularly in the south (Benazzouz et al. 2014; 678 
Faye et al., 2015), where strong intraseasonal to longer time-scale variability is driven by internal or 679 
remotely forced pulsations of the trade winds, passages of African easterly waves, and oceanic 680 
coastally trapped waves (Polo et al. 2008; Diakhaté et al. 2016; Oettli et al. 2016). The ecosystem is 681 
broadly divided by the Strait of Gibraltar into the Iberian and the Northwest African areas, though 682 
strong subregional differences are observed due to variability in factors including coastal 683 
configuration, oxygen concentration, nutrient fertilization, and productivity (Arístegui et al., 2009). 684 
The continental shelf in the Canary Current System is the most extensive of any EBC, and persistent 685 
circulation features are associated with the topography of the shelf. Large filaments of coastal 686 
upwelled water stretch offshore from the numerous capes and promontories (e.g., Cape Guir and 687 
Cape Blanc), transporting waters rich in organic matter into the oligotrophic subtropical gyre 688 
(Álvarez-Salgado et al. 2007; Lovechio et al., 2018). The Canary Archipelago interrupts the 689 
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equatorward flow of the Canary Current, leading to strong mesoscale variability downstream of the 690 
islands (Arístegui et al., 1994). Island eddies and upwelling filaments interact to exchange water 691 
properties, resulting in an efficient route for transporting organic matter to the open ocean (Arístegui 692 
et al., 1997; Barton et al., 1998). As a major upwelling area, the Canary Current System is a highly 693 
productive and the focus of intensive fisheries. Interannual and decadal variability in fisheries 694 
landings and distributions of small pelagic fishes has been related to environmental changes 695 
associated with the North Atlantic Oscillation and, to a lesser extent, ENSO in the southern part of 696 
the region (see reviews in Arístegui et al., 2006, 2009). 697 

There have been numerous process-oriented field programs in Canary Current System in the past 20 698 
years, including the Coastal Transition Zone (CTZ; Barton and Arístegui, 2004) and Canary Islands 699 
Azores Gibraltar Observations (CANIGO; Parrilla et al., 2002) programs. However, physical, 700 
biogeochemical, and ecosystem monitoring efforts have been less routine compared to other EBCs 701 
(Fig. 9). The European Station for Time series in the Ocean Canary Islands (ESTOC) has completed 702 
over 20 years of continuous meteorological and surface and mid-water physical and biogeochemical 703 
monitoring. The Cape Verde Ocean and Atmospheric Observatories (CVOO/CVAO) are a deep 704 
water mooring and an atmospheric station that have been deployed since 2006 in a region critical for 705 
climate and greenhouse gas studies and for investigating dust impacts on marine ecosystems. Both 706 
ESTOC and CVOO/CVAO are part of the European open ocean fixed point observatories (FixO3). 707 
An additional mooring has been recording oceanographic properties and particle fluxes with 708 
sediment traps off Cape Blanc continuously since 2003 (Nowald et al., 2015). Long-term 709 
measurements of coastal oceanic and atmospheric properties from buoys off Morocco and Senegal 710 
have begun during the last four years. Ship-based hydrographic and biogeochemical sampling has 711 
taken place twice per year since 2006 at the latitude of the Canary Archipelago as part of the 712 
RAPROCAN program (Fig. 9), which aims to monitor the Canary Current and maintain the ESTOC 713 
mooring. Gliders have periodically surveyed between the African coast and the Cape Verde Islands 714 
(Fig. 9; Karstensen et al., 2017; Kolodziejczyk et al., 2018). 715 

4.2 Western Boundary Current Systems 716 

4.2.1 Northwestern Atlantic 717 

The Gulf Stream comprises the upper limb of the AMOC in the North Atlantic subtropical gyre, 718 
carrying warm, saline waters from the tropics to higher latitudes. It flows along the eastern seaboard 719 
of the U.S. before separating from the continental margin near Cape Hatteras. The Labrador Current 720 
is the WBC of the subpolar gyre. The North Atlantic Deep Western Boundary Current is a deep limb 721 
of the AMOC that carries cold water masses from the tail of the Grand Banks of Newfoundland 722 
equatorward (Pickart and Watts, 1990). It encounters the Gulf Stream at the tail of the Grand Banks 723 
and again at Cape Hatteras, where a portion is entrained into the abyssal interior (Bower and Hunt, 724 
2000a,b; Pickart and Smethie, 1993) while the rest continues to flow equatorward along the western 725 
boundary and into the southern hemisphere (Section 4.2.6). The strength of the Deep Western 726 
Boundary Current may influence the latitude at which the Gulf Stream detaches from the continental 727 
margin (Thompson and Schmitz, 1989). Along the edge of the adjacent Middle Atlantic Bight shelf, a 728 
persistent shelfbreak front and associated shelfbreak jet (Linder and Gawarkiewicz, 1998) transport 729 
waters equatorward with secondary frontal circulation leading to upwelling and elevated primary 730 
productivity (Marra et al., 1990). The shelfbreak jet continues southward until just north of Cape 731 
Hatteras, where it turns offshore as it encounters the much stronger Gulf Stream (Gawarkiewicz and 732 
Linder, 2006).  733 
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The boundary current observing system for the subtropical northwest Atlantic (Fig. 10) is anchored 734 
by decades-long measurements at several fixed locations along the boundary. In the Florida Strait 735 
near 27°N, cable-based measurements of Gulf Stream transport and quarterly to bi-monthly ship-736 
based sampling have been ongoing since 1982 as part of the Western Boundary Time Series (WBTS; 737 
Baringer and Larsen, 2001; Meinen et al., 2010). Far to the northeast, where the Gulf Stream has 738 
separated from the continental margin, XBT, shipboard ADCP, and surface temperature and salinity 739 
measurements are obtained twice weekly from M/V Oleander, a cargo ship running between New 740 
Jersey and Bermuda (Rossby et al., 2010, 2014; Wang et al., 2010). The AX10 XBT line between 741 
New York and Puerto Rico crosses the Gulf Stream just upstream of the Oleander line and conducts 742 
high-resolution sampling within the boundary current (e.g., Domingues et al., 2018). Since 2015, 743 
gliders have been used to routinely survey across the Gulf Stream between Florida and Massachusetts 744 
(Todd 2017; Todd and Locke-Wynn, 2017; Todd et al., 2018b), providing subsurface observations 745 
that fill the gap between the WBTS and Oleander and AX10 lines. Two moored arrays with 746 
complementary repeat hydrographic sampling have focused on the Deep Western Boundary Current 747 
for a decade or more. The RAPID-MOCHA array of subsurface moorings and PIES near 26.5°N has 748 
been in place since 2004 with hydrographic stations reoccupied about every nine months (Meinen et 749 
al., 2013). Farther north, the Line W array of subsurface moorings was in place from 2004-2014 with 750 
repeat ship-based sampling every 6-12 months (Toole et al., 2017). The OOI Pioneer Array south of 751 
New England (Smith et al., 2018; Trowbridge et al., 2019) and the PEACH array near Cape Hatteras 752 
use a mixture of moorings, gliders (e.g., Gawarkiewicz et al., 2018), and land-based remote sensing 753 
(e.g., Haines et al., 2017) to characterize the dynamics of the shelfbreak jet and exchange between the 754 
shelf and deep ocean in the vicinity of the Gulf Stream and its eddies. In the subpolar northwestern 755 
Atlantic at 53°N, transport of the Labrador Current has been monitored since 1997 using a 756 
combination of moored and shipboard observations (Zantopp et al., 2017). 757 

4.2.2 Northwestern Pacific 758 

In the northwest Pacific, bifurcation of the westward North Equatorial current between 11° and 13°N 759 
along the Philippine coast (Qiu and Chen, 2010; Rudnick et al., 2015a) forms the poleward Kuroshio 760 
and the equatorward Mindanao Current. The Kuroshio becomes a more coherent jet as it flows along 761 
the Taiwanese coast (e.g., Centurioni et al., 2004), into the East China Sea, and along the southern 762 
Japanese coast before separating from the continental margin near 35°N to form the Kuroshio 763 
Extension, an eastward, meandering jet in the open North Pacific. The Mindanao carries waters from 764 
the North Pacific southward to feed tropical circulation in both the Pacific and the Indian Oceans 765 
(Schönau et al., 2015). The Oyashio is the western boundary current of the North Pacific subpolar 766 
gyre and converges with the Kuroshio to the east of Japan. This convergence region has rich frontal 767 
structure as various water masses meet and are modified and is a key area for fisheries (Yasuda, 768 
2003). 769 

The Japan Meteorological Agency (JMA) has carried out repeat hydrographic survey 2-5 times 770 
annually at the PN line in the East China Sea since 1971 (Aoyama et al., 2008; Fig. 11) and at the TK 771 
line south of Kyushu since 1987 (Oka and Kawabe, 2003) to monitor physical and biogeochemical 772 
EOVs in the Kuroshio. JMA has also monitored the Ryukyu Current system (Ichikawa et al., 2004) 773 
flowing south of the Ryukyu Islands at the OK line southeast of Okinawa, which is connected to a 774 
zonal section along 24°N. Furthermore, the JMA has maintained physical and biogeochemical 775 
surveys along 137°E across the western North Pacific to monitor major currents of the subtropical 776 
and tropical gyres including the Kuroshio (Nakano et al. 2015; Oka et al., 2018). Monthly fisheries 777 
surveys and hydrographic stations along the A-line off Hokkaido have been occupied since 1987 778 
(Kuroda et al., 2015) with collocated long-term moorings (Kono and Kawasaki, 1997). JAMSTEC 779 
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has sampled hydrographic stations K2 (47°N, 160°E) and KNOT (44°N, 155°E) in the subpolar north 780 
Pacific at least annually since 1997 (Wakita et al., 2010). The Kuroshio Extension Observatory 781 
(KEO; Cronin et al., 2015) is a surface mooring that has been located in the subtropical recirculation 782 
gyre south of the Kuroshio Extension at 32.3°N, 144.6°E (Fig. 11) since 2004. KEO monitors air-sea 783 
exchanges of heat, moisture, momentum, and CO2; sea surface temperature, salinity, and ocean 784 
acidification; and upper ocean temperature, salinity, and currents below the surface buoy. Since 2014 785 
a sediment trap mooring has been located at KEO (Honda et al., 2018). More recently, the CLIVAR 786 
Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) has deployed an array of 787 
subsurface moorings, some with real time data transmission, across the western Pacific, South China 788 
Sea and Indonesian seas (Fig. 11) that cover the major currents in these regions (e.g., Hu et al., 2013, 789 
2015; Zhang et al., 2014; Chen et al., 2015; Hu et al., 2016; Wang et al., 2017). Multiple XBT 790 
transects cross boundary currents within the region (see Goni et al., 2019). Gliders have been 791 
deployed for extended periods in the Kuroshio and Mindanao (Fig. 11), generally sampling obliquely 792 
across the boundary currents as they were advected downstream (e.g., Rainville et al., 2013; Schönau 793 
and Rudnick, 2017). 794 

4.2.3 Southwestern Pacific 795 

The East Australian Current is the subtropical western boundary of the South Pacific; it is a strong, 796 
meandering current with large poleward heat transport (Sloyan et al., 2016) that separates from the 797 
continental margin between 30°S and 32°S to join a dynamic eddy field (Cetina Heredia et al., 2014) 798 
in the Tasman Sea. The low-latitude WBC system of the South Pacific originates as the equatorward 799 
Gulf of Papua Current along the northeast coast of Australia, which then flows through the Solomon 800 
Sea as the New Guinea Coastal Undercurrent before feeding into the equatorial current system. This 801 
is a major contributor to the mass and heat budget of the tropical Pacific, acting as a conveyor belt for 802 
micro-nutrients from the western continental margins to the eastern Equatorial Pacific upwelling 803 
region. These low-latitude WBCs split into numerous branches around topographic obstacles and 804 
flow through narrow passages, presenting challenges for sustained observing. 805 

The sustained observing system for the East Australian Current and its extension (Fig. 7) currently 806 
consists of high-density XBT transects (PX05, PX06, PX30, PX34; Goni et al., 2019); Argo floats; a 807 
deep moored array at approximately 27°S; HF radar sites near 32°S and 30°S; a regional array of 808 
shelf moorings (including biogeochemical and biological sensors) at 30°S, 34°S, and 36°S; and 809 
numerous glider deployments from northern Australia (11°S) to the Tasman Sea (42°S) (Roughan 810 
and Morris, 2011; Roughan et al., 2013, 2015). These observational platforms complement each 811 
other well, providing a distributed boundary current observational system for the East Australian 812 
Current that has been shown to constrain ocean models well (Kerry et al., 2018). Additional sustained 813 
measurements are needed to characterize the seasonal changes in the transports of mass, heat, and 814 
freshwater in the East Australian Current and its eddy field. Effective monitoring strategies would be 815 
to deploy moored arrays in key regions; to increase Argo float and drifter density in the WBC region; 816 
and to implement glider sampling along existing high-density XBT lines within the East Australian 817 
Current, its eddy field, and recirculation. 818 

In the low-latitude WBC system, long-term, sustained observations of the heat and mass transport 819 
through the southern entrance of the Solomon Sea have been provided by gliders since 2007 (Davis 820 
et al., 2012) and an array of PIES since 2012 (Fig. 7). Concurrent, short-term process studies 821 
including mooring deployments have been conducted as part of the CLIVAR-SPICE program 822 
(Ganachaud et al., 2014). Future monitoring efforts should integrate measurements across platforms, 823 
with the existing measurements in the southern entrance complemented by observations at the 824 
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northern exits of the Solomon Sea (e.g., moorings, HF radars, and glider transects) to resolve the 825 
partitioning of the flow joining the equator (see Smith et al., 2019). 826 

4.2.4 Agulhas Current 827 

The Agulhas Current is the poleward WBC of the subtropical South Indian Ocean (Lutjeharms, 828 
2006). It flows as a fast (>1.5 m s-1), deep-reaching (>3000 m) jet along continental slope of 829 
southeast Africa (Beal and Bryden, 1999; Beal et al., 2015). Near 40°S, the Agulhas flows into the 830 
open ocean, where it retroflects under the influence of the large-scale wind stress curl to flow 831 
eastward into the Indian Ocean as the Agulhas Return Current (de Ruijter et al., 1999). Leakage of 832 
warm, salty Agulhas waters into the South Atlantic by rings, eddies and filaments (Boebel et al., 833 
2003; Richardson, 2007) is thought to influence the AMOC on time scales from decades to millennia 834 
(Beal et al., 2011). 835 

In 2010, the Agulhas Current Time-series experiment (ACT) established a moored array to measure 836 
the volume transport of the Agulhas Current along a satellite altimeter ground-track (#96) near 34°S 837 
(Fig. 8) for a period of three years. The array consisted of seven full-depth current meter moorings 838 
and four CPIES that captured the breadth and depth of the Agulhas jet, including during offshore 839 
meander events (Beal et al., 2015). Following ACT, a consortium of South African, U.S., and Dutch 840 
scientists deployed the Agulhas System Climate Array (ASCA) in 2016 for long-term monitoring of 841 
the Agulhas Current as part of GOOS. ASCA augmented the original ACT array design with 842 
conductivity-temperature recorders to measure the heat and freshwater fluxes. The long-term success 843 
of ASCA was dependent on an ambitious plan of capacity building and resource sharing among 844 
nations and, owing to a number of challenges, this plan was not fulfilled and the array was pulled out 845 
of the water in 2018, following a two-year deployment. In 2015, the Shelf Agulhas Glider 846 
Experiment (SAGE) demonstrated the feasibility of operating autonomous robotic platforms to 847 
sample the shelf regions of the Agulhas Current (Krug et al., 2017). Since SAGE, growing regional 848 
interest in monitoring with autonomous platforms led to formation of a South African multi-849 
institutional scientific consortium named Gliders in the Agulhas (GINA). GINA conducted two 850 
additional glider missions in 2017 and 2018 and is working towards the development of a sustained 851 
glider observing system for the Agulhas Current coastal and shelf regions. The influence of the 852 
Agulhas leakage on the AMOC has been monitored since 2013 by an array of CPIES and tall 853 
moorings as part of the SAMBA line at 34.5°S (Fig. 8; Ansorge et al., 2014). Thus far, no sustained 854 
ecological or biogeochemical measurements have been made in the Agulhas, though the addition of 855 
oxygen sensors to SAMBA moorings is planned.  856 

4.2.5 Southwestern Atlantic 857 

In the South Atlantic, the WBC system consists of the poleward Brazil current and the equatorward 858 
North Brazil Undercurrent, both of which originate from the bifurcation of the South Equatorial 859 
Current between 10°S and 20°S (e.g., da Silveira et al., 1994; Rodrigues et al., 2007), and the 860 
equatorward Malvinas current in the subpolar gyre. The Brazil Current and Malvinas Current both 861 
separate from the South American continental margin between 35°S and 40°S to flow eastward at the 862 
Brazil-Malvinas confluence (Olson et al., 1988). The North Brazil Undercurrent constitutes a 863 
bottleneck for the interhemispheric mean flow of the upper limb of the AMOC as it transports warm 864 
waters of South Atlantic origin across the equator (e.g., Schott et al., 1998; Zhang et al., 2011; Rühs 865 
et al., 2015). The Deep Western Boundary Current carries much of the lower limb of the AMOC off 866 
the coast of South America (Schott et al., 2005; Meinen et al., 2013). 867 
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For more than a decade, high density XBT transects (Goni et al., 2019) have been occupied near 22°S 868 
and 34°S (AX97 and AX18) across South Atlantic WBCs (Fig. 12; Dong et al., 2015; Lima et al., 869 
2016). Near 11°S, an array of four tall moorings and two PIES has measured transport of the North 870 
Brazil Current since 2013 (Fig. 12; Hummels et al., 2015). At 34.5°S (Fig. 12) an array of PIES, 871 
CPIES, and a bottom-mounted ADCP has monitored the Brazil Current and Deep Western Boundary 872 
Current (Meinen et al., 2013, 2017, 2018) in conjunction with periodic hydrographic surveys (Valla 873 
et al., 2018). A series of yearlong deployments of current meter arrays along 41°S since 1993 (Fig. 874 
12; Vivier and Provost, 1999; Spadone and Provost, 2009; Paniagua et al., 2018), in conjunction with 875 
satellite altimetry, has allowed for production of a 24-year transport time series for the Malvinas 876 
Current (Artana et al., 2018a). 877 

5 Future Outlook 878 

We recommend establishing and maintaining a global network of boundary current observing 879 
systems. Each distinct observing system will need to be tailored to the unique aspects of that 880 
particular boundary current system, but also follow best-practices established by the international 881 
community. Such a network of regional boundary current observing systems is a crucial element of 882 
GOOS. To date, boundary current observing systems in different regions and countries have 883 
developed largely independently. Development and maintenance of a global network of boundary 884 
current observing systems that is fit for purpose would benefit from the standards outlined in the 885 
Framework for Ocean Observing (Lindstrom et al., 2012). In particular, application of the 886 
Framework across boundary current observing systems should foster communication and data 887 
sharing; contribute to capacity building, particularly in developing countries; encourage confidence 888 
and support from funding agencies; and promote international collaboration and scientific and 889 
technological innovation.  890 

Boundary currents typically lie within the EEZs of coastal states, so development and maintenance of 891 
boundary current observing systems will require the cooperation and support of appropriate 892 
governing authorities. Considering the difficulty of obtaining international funding for observations 893 
in national waters, there is a need for a community of regional boundary observers. Moreover, many 894 
boundary currents span multiple countries, so that the observing system for a single boundary current 895 
system is likely to require collaboration and coordination between several countries. The advective 896 
nature of boundary currents may even require that mobile or drifting assets deployed within one 897 
country’s EEZ be recovered within another EEZ. Sharing of measurements taken within EEZs, 898 
particularly those that have economic impacts such as some biogeochemical measurements, remains 899 
a challenge. By moving toward international collaboration in the design and implementation of 900 
boundary current systems as suggested by the Framework for Ocean Observing, there is hope for 901 
building the high-level governance structure needed to surmount the challenges posed by boundary 902 
currents falling within EEZs. The Large Marine Ecosystems effort has identified distinct boundary 903 
regions that cross international borders and has gained international traction through the Global 904 
Environment Facility and the International Union for Conservation of Nature; leveraging this effort 905 
to facilitate international cooperation and governance for sustained boundary current observations 906 
may be fruitful.  907 

For any particular boundary current system, a complete observing system will require a combination 908 
of currently available observing platforms (Section 3), as well as future platforms, to optimally 909 
measure EOVs at necessary spatial and temporal resolutions to address relevant scientific and 910 
societal needs. Through the Framework process, specific observing platforms, sampling choices, and 911 
instruments would be matched to the relevant questions. Drifting and mobile assets that provide 912 
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spatially-resolved measurements at the expense of temporal resolution will need to be combined with 913 
moored assets that provide high-frequency measurements at key locations and land- or satellite-based 914 
remote sensing that provides spatially broad measurements of sea surface properties. Such integrated 915 
arrays, as are already in place in the California Current System, at the Ocean Observatories Initiative 916 
(OOI; Smith et al., 2018; Trowbridge et al., 2019) Endurance and Pioneer Arrays, and along the 917 
Australian coasts as part of the Integrated Marine Observing System, offer critical opportunities for 918 
intercalibration between instruments on fixed and mobile assets; such intercalibration is particularly 919 
important for biogeochemical sensors (e.g., Palevsky and Nicholson, 2018). Since similar needs arise 920 
in most boundary current systems, the Framework process should provide a means for determining 921 
the extent to which the same observing strategies should be applied to address similar needs in 922 
different systems. Additional studies that compare different sampling techniques in a given boundary 923 
current system could provide guidance on the strengths and limitations of each technique and how to 924 
better exploit their complementarity.  925 

While the discussion of observing platforms in Section 3 focused on mature observing platforms with 926 
proven records of sustained operation in boundary currents, there is no doubt that recently developed 927 
observing platforms and sensing technology will become integral parts of future boundary current 928 
observing systems. For instance, more fast-moving autonomous underwater vehicles (AUVs) and 929 
autonomous surface vehicles (ASVs) will be deployed to conduct adaptive and targeted sampling in 930 
response to real time needs. Propeller-driven AUVs have thus far seen limited use in boundary 931 
currents. Though able to carry large instrument payloads and move much faster (1-2 m s-1) than 932 
gliders, propeller-driven AUVs have been limited by battery endurance to missions typically lasting 933 
hours to days; improvements in battery technology and autonomous charging are expected to make 934 
propeller-driven vehicles capable of long-duration sampling in the near future. Fast-moving, long-935 
endurance ASVs (e.g., Saildrones, Wavegliders) are poised to become key platforms for making 936 
measurements near the air-sea interface, including meteorological measurements, pCO2, subsurface 937 
currents, and plankton biomass. Due to the use of renewable energy, these ASVs generally carry a 938 
larger number of sensors and have longer duration than other autonomous platforms (e.g., Zhang et 939 
al., 2017). Planned high-resolution, satellite-based altimetry measurements (e.g., SWOT), smaller 940 
and dramatically cheaper satellites (e.g., Cubesats), and, potentially, geostationary satellites 941 
positioned over boundary regions offer the prospect of dramatically increased spatial and temporal 942 
resolution of surface properties.  943 

At some locations, boundary currents have been continuously observed for many years using various 944 
techniques. For instance, the CalCOFI program has maintained quarterly ship-based stations for more 945 
than 65 years (McClatchie, 2014), the WBTS has made cable- and ship-based measurements in the 946 
Florida Strait for more than 35 years (Section 4.2.1), and hydrographic sampling has occurred 947 
monthly along the inside edge of the East Australian Current since the 1940s (Lynch et al., 2014) and 948 
is now an integral part of the East Australian Current observing system (Roughan and Morris, 2011). 949 
Long-term measurements like these are invaluable for capturing decadal variability and secular 950 
trends. Sites at which decades-long measurements exist should be maintained and serve as anchors 951 
for comprehensive boundary current observing systems. These long-term measurement sites at the 952 
boundaries also serve as points at which the boundary current observing systems are linked to the 953 
basin-scale ocean observing system. Since 2004, the WBTS has been integrated with the UK-US 954 
RAPID-MOCHA program that measures meridional transport at 26.5°N in the North Atlantic, while 955 
several long-standing, cross-Pacific XBT transects intersect the U.S. West coast within the CalCOFI 956 
domain (Goni et al., 2019).  957 
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Existing boundary current observing systems are largely focused on measuring physical processes, 958 
with biogeochemical and ecosystem processes only beginning to gain traction, largely due to the 959 
advent of new sensors. The California Current System (Section 4.1.1) and Benguela (Section 4.1.4) 960 
are exceptions, having had sustained observations of EOVs relevant to physics, biogeochemistry, and 961 
biology and ecosystems for over 65 years and 30 years, respectively. However, these ship-intensive 962 
models are unlikely to be suited to all boundary current systems due to a wide range of factors (e.g., 963 
cost, proximity to the coast, existing infrastructure, available man-power). Although the methods for 964 
measuring many of the EOVs needed to monitor biogeochemical and, to a greater extent, ecosystem 965 
processes are time-intensive and require a platform for collecting water, new sensors are being 966 
developed to reliably measure a range of biogeochemical and biological EOVs. Many of these 967 
sensors have been successfully deployed on BGC-Argo floats as part of the SOCCOM project 968 
(Johnson et al., 2017). Increasing the measurements of biological and ecological EOVs should be 969 
prioritized if we are to understand, monitor, and predict the physical-biological connections and 970 
processes that support marine-based industries and activities and, importantly, seafood security. 971 

Providing publicly available data in a timely manner is a key attribute of any ocean observing 972 
system. These observations should be provided in formats that are discoverable, accessible, and 973 
readily subset, following conventions agreed upon by the community (see Wilkinson et al. (2016) for 974 
a set of general principles for management of scientific data). Many platforms already provide 975 
observations in near real-time through a variety of services. Transmission of data through the Global 976 
Telecommunications System is particularly important if those observations are to be used in 977 
operational numerical modeling. Advances in real-time data collection from sub-surface moorings 978 
(e.g., Send et al., 2013) will be critical to providing boundary current observations in a timely manner 979 
for forecasting and prediction. Widespread dissemination of comprehensive boundary current 980 
observations can foster synergies with other disciplines, including the geophysics (tsunamis and 981 
earthquakes), physics, meteorological (e.g., tropical and extratropical cyclone forecasting; 982 
Domingues et al., 2019), and fisheries communities.  983 

In addition to providing raw observations, there is a need for providing synthesized data products that 984 
are tailored to user needs. Integration of complementary data types can yield useful metrics. Further 985 
advances in data analysis techniques and statistical methods should aid in using multi-platform data 986 
to increase temporal and/or spatial resolution of metrics. The Southern California Temperature Index 987 
(Rudnick et al., 2017) is an example of such a data product.  988 

Boundary current observations play a key role in constraining ocean models (e.g., Todd and Locke-989 
Wynn, 2017), while models play a complementary role by filling gaps between sparse observations 990 
in a dynamically consistent manner (e.g., Todd et al., 2011b, 2012; Gopalakrishnan et al., 2013). 991 
Increased availability of boundary current observations, particularly in regions that are currently 992 
poorly sampled, should lead to continued improvements in regional models and predictive tools. At 993 
the same time, higher resolution climate models that can resolve boundary currents are becoming 994 
more plentiful and should begin to rely on high-resolution boundary current observations as 995 
constraints. One specific goal would be to reduce climate models’ warm SST biases within EBCs; 996 
continuation and expansion of long-term measurements in EBCs as well as focused process studies to 997 
study upper ocean and atmospheric dynamics in EBCs would contribute to this goal. Observation 998 
impact studies derived from data assimilating models provide guidance on the value of a range of 999 
observation types in resolving boundary current transport, as well as for constraining the eddy field in 1000 
ocean reanalyses (e.g., Kerry et al., 2016, 2018). It remains an open question how best to integrate 1001 
models with interdisciplinary (e.g., biogeochemical) observations to study ecosystem dynamics, 1002 
though advances are being made in the assimilation of biological parameters (e.g., Song et al., 2012). 1003 
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Observing System Simulation Experiments tailored for boundary current systems can also provide 1004 
insight to the type, spatial distribution, and frequency of observations required to improve numerical 1005 
simulations of boundary current dynamics (Hoffman and Atlas, 2016). Targeted observations can 1006 
reduce biases in the initialization of models used to forecast extreme weather events and support local 1007 
decision making (Halliwell et al., 2017). 1008 

Downscaling coarse resolution climate model predictions through the application of higher resolution 1009 
regional and coastal models is now common and has shown promise, but still faces research 1010 
challenges. Furthermore, a significant amount of physical, biogeochemical and biological response 1011 
on the continental shelf is due to episodic oceanic and atmospheric events at timescales of variability 1012 
that are absent from coarse models and cannot be recovered locally. To be valid globally, the veracity 1013 
of downscaled models needs to be appraised by supporting observations of shelf edge fluxes in a 1014 
diversity of circulation regimes.  1015 

Funding sustained observing efforts is a significant challenge. Portions of the observing system that 1016 
have proven their readiness for long-term deployment have been discontinued after one or more 1017 
short-term funding cycles. For instance, it is currently not clear how ship-time and funding 1018 
challenges will be met for a re-establishment of ASCA (Section 4.2.4) in the future. In the typical 1019 
three-to-four-year cycles of scientific funding, early years (e.g., pilot phases) of observing efforts are 1020 
readily fundable based on the promise of quick scientific results. Observing efforts that have endured 1021 
for a decade or longer can leverage their long histories and clear relevance to decadal variability or 1022 
secular trends to secure continued funding. The middle years, roughly years 4 through 10 as 1023 
programs transition from pilot to mature components of the GOOS, are particularly difficult to fund. 1024 

The provision of robust three-dimensional and time-varying ocean circulation estimates in boundary 1025 
current systems, resolving scales of a few kilometers, is seemingly within reach through advances in 1026 
data-assimilative ocean models and rapid developments in observations platforms and sensors. 1027 
However, the development of integrated observing systems that deliver the scope of observations 1028 
required and the models capable of fully utilizing those observations is challenging. Success will 1029 
require coordinated international collaborations, bringing together the expertise of the ocean 1030 
modelling and observational communities. Establishment of an Ocean Boundary Task Team would 1031 
provide a mechanism for the exchange of information regarding observing and model strategies, 1032 
sensor developments, analysis techniques to combine data from the various observing platforms, and 1033 
model development and application. The Task Team would also enable capacity building, encourage 1034 
timely and appropriate transfer of knowledge, and provide a mechanism to instigate multinational 1035 
observing systems with shared goals amongst participating nations. Endorsement of the Task Team 1036 
by IOC/WMO or similar international organization is critical due to interests of multiple coastal state 1037 
EEZs and the resulting complex governance needs.  1038 

6 Summary Recommendations 1039 

The following actions are recommended to promote development of a comprehensive global network 1040 
of boundary current observing systems in the next decade: 1041 

1. Maintain existing long-term (i.e., multi-year) observational records; 1042 
2. Expand the use of mobile, autonomous platforms (e.g., gliders, AUVs, ASVs) to provide 1043 

continuous, high-resolution, broad-scale monitoring of EOVs; 1044 
3. Deploy moored platforms at key locations to measure high-frequency variability; 1045 
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4. Continue and expand the provisioning of real-time observations and encourage post-1046 
processed data to be made publicly available as quickly as possible; data should be 1047 
provided in readily discoverable formats that can easily be subset; 1048 

5. Continue development and expand deployment of sensors for ecological and 1049 
biogeochemical EOVs; 1050 

6. Establish an Ocean Boundary Task Team to foster international community development 1051 
and end-user engagement and to guide evolution of observing systems as user 1052 
requirements change; 1053 

7. Expand collaborations between observational efforts, modeling efforts, and societal users 1054 
to meet stakeholder and end-user needs; 1055 

8. Increase focus on exchange between continental shelves and the deep ocean boundary 1056 
currents to develop observing systems that span the continuum from the land to the deep 1057 
ocean. 1058 
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Table 1: List of Essential Ocean Variables from www.goosocean.org/eov with indications of which 2440 
observing platforms are able to sample each variable. 2441 
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Physics Sea state  X X  X  X X    
 Ocean surface stress   X  X   X    
 Sea ice   X  X   X    
 Sea surface height     X       
 Sea surface temperature X X X X X  X X X   
 Subsurface temperature X  X X    X X X  
 Surface currents X X X X X X X X    
 Subsurface currents X  X X   X X  X X 
 Sea surface salinity X  X X X  X X    
 Subsurface salinity X  X X    X    
 Ocean surface heat flux   X  X   X    
Biogeochemistry Oxygen X  X X   X X    
 Nutrients X  X    X X    
 Inorganic Carbon   X    X X    
 Transient tracers   X     X    
 Particulate matter X  X    X X    
 Nitrous oxide   X     X    
 Stable carbon isotopes       X X    
 Dissolved organic carbon        X    
 Ocean color     X       
Biology and 
Ecosystems Phytoplankton biomass and diversity X X X X X  X X    
 Zooplankton biomass and diversity X  X     X    
 Fish abundance and distribution X  X     X    

 
Marine turtles, birds, mammals abundance and 
distribution   X     X    

 Hard coral cover and composition        X    
 Seagrass cover        X    
 Macroalgal canopy cover        X    
 Mangrove cover        X    
 Ocean sound X  X     X    
 Microbe biomass and diversity (*emerging)        X    

 
Benthic invertebrate abundance and distribution 
(*emerging)        X    

  2442 
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Table 2: Examples of sustained boundary current observing efforts since 2009. Included are in situ 2443 
and land-based observing efforts extending longer than one year in the period 2009-2018. Key 2444 
references since 2009 and sources for publicly available data are included.  2445 

Region Platform References Data Source 

Agulhas Gliders Krug et al., 2017  

Agulhas Moorings 

Beal et al., 2015; Elipot and Beal, 
2015, 2018; Beal and Elipot, 2016; 
Kersalé et al. 2018 

http://www.aoml.noaa.gov/phod/research/moc/sam
oc/sam/; 

Agulhas XBT  
http://www.aoml.noaa.gov/phod/hdenxbt/index.ph
p; http://www-hrx.ucsd.edu 

Angola Current Moorings 
Kopte et al., 2017; 2018; 
Tchipalanga et al., 2018 

https://doi.org/10.1594/PANGAEA.868684; 
https://doi.org/10.1594/PANGAEA.886492 

Benguela Current Argo 
Pegliasco et al., 2015; Majumder 
and Schmid, 2018 http://www.argodatamgt.org 

Benguela Current Research Vessels  
http://www.mfmr.gov.na/; 
http://data.ocean.gov.za/pub/DATA/; 

Benguela Current Moorings Junker et al., 2017a, 2019 

https://doi.org/10.1594/PANGAEA.871251 
(Junker et al., 2017b); 
https://doi.org/10.1594/PANGAEA.871253 
(Junker et al., 2017c); 
https://doi.org/10.1594/PANGAEA.872098 
(Junker et al., 2017d);  
https://doi.org/10.1594/PANGAEA.872099 
(Junker et al., 2017e); https://www.ocims.gov.za 

Brazil Current Drifters Oliveira et al., 2009 http://www.aoml.noaa.gov/phod/gdp/index.php 

Brazil Current Moorings Meinen et al., 2017, 2018 
http://www.aoml.noaa.gov/phod/SAMOC_internat
ional/samoc_data.php 

Brazil Current Research Vessels Valla et al., 2018  

Brazil Current XBT 

Garzoli et al., 2012; Mata et al., 
2012; Lima et al., 2016; Majumder 
et al., 2019 

http://www.aoml.noaa.gov/phod/hdenxbt/index.ph
p 

Brazil Current Argo Schmid and Majumder, 2018 http://argodatamgt.org 
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North Brazil 
Undercurrent Moorings Hummels et al., 2015 

https://doi.org/10.1594/PANGAEA.886415; 
https://doi.org/10.1594/PANGAEA.886420; 
https://doi.org/10.1594/PANGAEA.886426; 
https://doi.org/10.1594/PANGAEA.886428 

California Current 
System Drifters  http://www.aoml.noaa.gov/phod/gdp/index.php 

California Current 
System Gliders 

Todd et al., 2011a,b, 2012; Pelland 
et al., 2013; Mazzini et al., 2014; 
Johnston and Rudnick, 2015; 
Adams et al., 2016; Zaba and 
Rudnick, 2016; Rudnick et al., 
2017; Henderikx Freitas et al., 
2018 

https://spraydata.ucsd.edu/projects/CUGN 
(Rudnick, 2016a); 
https://spraydata.ucsd.edu/projects/CORC (Send, 
2018); http://www.oceanobservatories.org/ 

California Current 
System 

High-Frequency 
Radar 

Kim, 2010; Kim et al., 2011; Kim 
and Kosro, 2013;  

California Current 
System Moorings 

Nam et al., 2011; Harris et al., 
2013; Ohman et al., 2013; 
Siedlecki et al., 2016; Sutton et al., 
2014, 2016; Fassbender et al., 
2016, 2017b, 2018 

http://www.oceanobservatories.org/; 
https://www.nodc.noaa.gov/ocads/oceans/Coastal/
north_america_west.html; 
ftp://data.ndbc.noaa.gov/data/oceansites/ 

 

California Current 
System Research Vessels 

Juranek et al., 2009; Fassbender et 
al., 2011, 2017b, 2018; Alin et al., 
2012; Bednaršek et al., 2014, 
2017, 2018; Reum et al., 2014, 
2016; Feely et al., 2016, 2018; 
McClatchie, 2014; McClatchie et 
al., 2016;  

http://www.calcofi.org; 
https://www.nodc.noaa.gov/ocads/oceans/Coastal/
north_america_west.html 

 

California Current 
System 

Ship of 
Opportunity Fassbender et al., 2018  

California Current 
System XBT 

Douglass et al., 2010; Auad et al., 
2011 http://www-hrx.ucsd.edu 

California Current 
System Argo Pegliasco et al., 2015 http://www.argodatamgt.org 

East Auckland 
Current XBT 

Bowen et al., 2017; Fernandez et 
al., 2018 http://www-hrx.ucsd.edu 

East Australian 
Current Argo Zilberman et al., 2014, 2018 

https://portal.aodn.org.au; 
http://www.argodatamgt.org  
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East Australian 
Current Drifters 

Brassington, 2010; Brassington et 
al., 2011 http://www.aoml.noaa.gov/phod/gdp/index.php 

East Australian 
Current Gliders 

Roughan et al., 2015; Schaeffer 
and Roughan, 2015; Schaeffer et 
al., 2016a, 2016b  

https://portal.aodn.org.au; 
http://imos.org.au/facilities/aodn/ 

East Australian 
Current 

High-Frequency 
Radar 

Roughan et al., 2015; Archer et al., 
2017b, 2018; Mantovanelli et al., 
2017; Schaeffer et al., 2017; Wyatt 
et al., 2018 

www.oceanography.unsw.edu.au/radar.html 

https://portal.aodn.org.au 

East Australian 
Current Moorings 

Roughan et al., 2013, 2015; 
Schaeffer et al., 2013, 2014; Lynch 
et al., 2014; Schaeffer and 
Roughan, 2017; Sloyan et al., 
2016; Alford et al., 2017 https://portal.aodn.org.au 

East Australian 
Current XBT 

Hill et al., 2011; Suthers et al., 
2011; Sloyan and O'Kane 2015; 
Zilberman et al., 2018;  

https://portal.aodn.org.au; http://www-
hrx.ucsd.edu 

Gulf Stream Gliders 

Todd et al., 2016, 2018b; Todd, 
2017; Todd and Locke-Wynn, 
2017; Gula et al., 2019 

https://spraydata.ucsd.edu/projects/GS (Todd and 
Owens, 2016) 

Gulf Stream 
High-Frequency 
Radar 

Parks et al., 2009; Archer et al., 
2015, 2017a; Haines et al., 2017 http://cordc.ucsd.edu/projects/mapping/maps/ 

Gulf Stream Moorings 

Weller et al., 2012; Bigorre et al. 
2013; Bane et al., 2017; Lowcher 
et al., 2017 http://www.whoi.edu/science/PO/linew/ 

Gulf Stream Research Vessels Meinen et al., 2010 
http://www.aoml.noaa.gov/phod/floridacurrent/; 
http://www.whoi.edu/science/PO/linew/ 

Gulf Stream 
Ship of 
Opportunity 

Rossby et al., 2010; Wang et al., 
2010 http://oleander.bios.edu/ 

Gulf Stream XBT Domingues et al., 2018 
http://www.aoml.noaa.gov/phod/hdenxbt/index.ph
p 

Gulf Stream Submarine Cable Meinen, et al., 2010 http://www.aoml.noaa.gov/phod/floridacurrent/ 

Kuroshio Argo 

Sugimoto and Hanawa, 2014; Oka 
et al., 2015; Bushinsky et al., 
2016; Inoue et al., 2016a,b; 
Fassbender et al., 2017a; 

http://www.argodatamgt.org 
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Bushinsky and Emerson, 2018 

Kuroshio HF Radar Yang et al., 2015  

Kuroshio Drifters 
Velez-Belchi et al., 2013; Gordon 
et al., 2014; Andres et al., 2015 http://www.aoml.noaa.gov/phod/gdp/index.php 

Kuroshio Gliders 

Rudnick et al., 2011; Rudnick et 
al., 2013; Johnston et al., 2013; 
Rainville et al., 2013; Lien et al., 
2014; Lien et al., 2015  

 Kuroshio Moorings 

Bond et al., 2011; Cronin et al., 
2013, 2015; Hu et al., 2013; Wada 
et al., 2013; Lien et al. 2014, 2015; 
Sutton et al., 2014, 2016, 2017; 
Zhou et al., 2014; Chen et al., 
2015; Yange et al., 2015; Zhang et 
al., 2015; Fassbender et al., 2017a; 
Honda et al., 2018  

https://www.nodc.noaa.gov/ocads/oceans/Mooring
s/Pacific.html; 
ftp://data.ndbc.noaa.gov/data/oceansites 

 

Kuroshio Research Vessels 

Yasunaka et al., 2013, 2014; 
Sugimoto and Hanawa, 2014; 
Yang et al., 2015; Nakano et al., 
2015; Oka et al., 2018  

Kuroshio 
Ship of 
Opportunity 

Palevsky et al., 2016; Palevsky and 
Quay 2017  

Kuroshio XBT Nagano et al., 2016 http://www-hrx.ucsd.edu 

Labrador Current Gliders 
deYoung et al., 2018; Howatt et 
al., 2018  

Labrador Current Moorings deYoung et al., 2018  

Leeuwin Current Gliders Pattiaratchi et al., 2011  

Leeuwin Current Argo Furue et al., 2017 http://www.argodatamgt.org 

Leeuwin Current 
High-Frequency 
Radar Mihanović et al., 2016  

Leeuwin Current Moorings Lynch et al., 2014;  

Loop Current (Gulf 
Gliders Gopalakrishnan et al., 2013; 

Rudnick et al., 2015b; Todd et al., https://spraydata.ucsd.edu/projects/GoM (Rudnick, 
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Malvinas Current Argo Artana et al., 2016, 2018b; http://www.argodatamgt.org 

Malvinas Current Moorings 

Valla and Piola, 2015; Ferrari et 
al., 2017; Artana et al., 2018a; 
Paniagua et al., 2018 

https://doi.org/10.17882/51492 (Saraceno et al., 
2017); https://www.seanoe.org/data/00403/51479/; 
https://www.seanoe.org/data/00403/51492/ 

Mediterranean Gliders Heslop et al., 2012  

Middle Atlantic 
Bight Gliders 

Castelao, et al., 2010; Todd et al., 
2013; Zhang and Gawarkiewicz, 
2015; Dever et al., 2016; 
Gawarkiewicz et al., 2018 http://www.oceanobservatories.org/ 

Middle Atlantic 
Bight Moorings 

Chen et al., 2018; Gawarkiewicz et 
al., 2018; Zhang and Partida, 2018 http://www.oceanobservatories.org/ 

Mindanao Gliders 
Schönau et al., 2015; Schönau and 
Rudnick, 2017  

Mindanao Moorings 
Zhang et al., 2014; Hu et al., 2016; 
Wang et al., 2017  

NE Atlantic 
(Subpolar) Gliders 

Houpert et al., 2018 
 

Canary Current 
System Drifters Menna et al., 2016  

Canary Current 
System Gliders 

Karstensen et al. 2017; 
Kolodziejczyk et al., 2018  

Canary Current 
System Mooring Nowald et al., 2015 http://www.fixo3.eu 

Canary Current 
System Research Vessels 

Steinfeldt 2015; Capet et al., 2017; 
Klenz et al., 2018; Machu et al., 
2019; Thomsen et al., 2019   

Canary Current 
System Argo Pegliasco et al., 2015 http://www.argodatamgt.org 

NW Atlantic Deep 
Western Boundary 
Current Moorings 

Fischer et al., 2004, 2010; Dengler 
et al., 2006; Bacon and Saunders, 
2010; Johns et al., 2008, 2011; 
Toole et al., 2017; Zantopp et al., 

http://www.whoi.edu/science/PO/linew/; 
www.oceansites.org 
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2017 

NW Atlantic Deep 
Western Boundary 
Current Research Vessels van Sebille et al., 2011 http://www.whoi.edu/science/PO/linew/ 

Oyashio Research Vessels Kuroda et al., 2015, 2017 
http://tnfri.fra.affrc.go.jp/seika/a-line/a-
line_index2.html 

Peru-Chile Current 
System Gliders 

Pietri et al., 2013, 2014; Pizarro et 
al., 2016  

Peru-Chile Current 
System Argo Pegliasco et al., 2015 http://www.argodatamgt.org 

Peru-Chile Current 
System Research Vessels 

Espinoza et al., 2017; Graco et al., 
2017; Grados et al., 2018  

Peru-Chile Current 
System Research Vessels 

Escribano and Morales, 2012; 
Schneider et al., 2016 http://www.antares.ws 

Solomon Sea Argo Zilberman et al., 2013 http://www.argodatamgt.org 

Solomon Sea Gliders Davis et al., 2012 
https://spraydata.ucsd.edu/projects/Solomon 
(Davis, 2016) 

Solomon Sea Moorings 
Ganachaud et al., 2014, 2017; 
Alberty, 2018 

http://www.solomonseaoceanography.org/; 
10.6075/J09W0CS2 (Cravatte et al., 2019); 
10.6075/J0639N12 (Alberty et al., 2019) 

Solomon Sea XBT Zilberman et al., 2013 http://www-hrx.ucsd.edu 

Somali Current Drifters 
Beal et al., 2013; Centurioni et al., 
2017 http://www.aoml.noaa.gov/phod/gdp/index.php 

South China Sea Drifters Centurioni et al., 2009 http://www.aoml.noaa.gov/phod/gdp/index.php 
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 2448 

Figure 1: Examples of multi-year, glider-based sampling in (left) an eastern boundary current 2449 
system and (right) a western boundary current. Trajectories of all Spray gliders surveying the 2450 
California Current System along CalCOFI lines 66.7, 80.0, and 90.0 (Rudnick et al., 2017 and 2451 
references therein) and the Gulf Stream along the US East Coast (Todd 2017; Todd and Locke-Wynn 2452 
2017; Todd et al., 2018) are shown on the background map. (a,b) Glider sampling as a function of 2453 
month and cross-shore or cross-stream distance with sampling in all years in grey and calendar year 2454 
2017 in color; Gulf Stream sampling in 2017 is colored by along-stream distance from 25°N 2455 
following the mean 40-cm SSH contour (black trajectory on map with dots every 250 km). (c-f) 2456 
Example transects of salinity and dissolved oxygen along CalCOFI line 90.0 off Southern California 2457 
in May 2017 and of potential temperature and velocity toward 50° across the Gulf Stream near Cape 2458 
Hatteras in August 2017 (red transects on map). 2459 
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 2461 

Figure 2: Trajectories and near-surface velocity estimates from Global Drifter Program drifters in 2462 
the western Pacific and marginal seas. Over 1.2 million discrete measurements from 1982 to 2014 2463 
are included. Paths of various boundary currents are clearly visible, as is the rich eddy field in the 2464 
region of the Subtropical Countercurrent around 18-24°N. NEC = North Equatorial Current, NECC 2465 
= North Equatorial Counter Current, SEC = South Equatorial Current, SCS = South China Sea. 2466 
(Figure from Todd et al., 2018a.) 2467 
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 2469 

Figure 3: Sampling density of Argo float (including Core Argo and BGC Argo) profiles per 1° 2470 
latitude x 1° longitude bin, collected between January 2009 and September 2018, in the Kuroshio 2471 
region (left panel), and the Peru-Chile Current region (right panel). 2472 
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 2474 

Figure 4: Example of combined satellite- and land-based remote sensing of the Florida Current. (a) 2475 
SST from GHRSST and surface geostrophic currents from AVISO. (b) Chlorophyll from MODIS 2476 
AQUA and surface currents from HF radars (HF radar data from Archer et al., 2017a). 2477 
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 2478 

Figure 5: Map of observing efforts extending more than one year during the past decade for the 2479 
California Current System (Section 4.1.1). Glider trajectories are shown in orange, SOOP/XBT lines 2480 
are red, moorings are red dots, and stations routinely occupied by research vessels are green. 2481 
Contours are mean sea surface height over the period 2009-2017 from AVISO. 2482 
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 2484 

Figure 6: Map of the boundary current observing effort for the Peru-Chile Current System (Section 2485 
4.1.2) with details as in Fig. 5. 2486 
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 2488 

Figure 7: Map of the boundary current observing efforts for the Leeuwin and South Australian 2489 
Current Systems (Section 4.1.3) and the Southwestern Pacific (Section 4.2.3) with details as in Fig. 5. 2490 
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 2492 

Figure 8: Map of the boundary current observing effort for the Bengula Current System (Section 2493 
4.1.4) and the Agulhas Current (Section 4.2.4) with details as in Fig. 5. 2494 
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 2495 

Figure 9: Map of the boundary current observing effort for the Canary Curret System (Section 4.1.5) 2496 
with details as in Fig. 5.  2497 
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 2498 

Figure 10: Map of the boundary current observing efforts for the Northwestern Atlantic (Section 2499 
4.2.1) with details as in Fig. 5 and the addition of the submarine cable location in the Florida Strait. 2500 
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 2502 

Figure 11: Map of the boundary current observing effort for the Northwestern Pacific (Section 4.2.2) 2503 
with details as in Fig. 5. 2504 
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 2506 

Figure 12: Map of the boundary current observing system for the Southwestern Atlantic (Section 2507 
4.2.5) with details as in Fig. 5. 2508 


