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ABSTRACT
Machine learning models risk encoding unfairness on the part
of their developers or data sources. However, assessing fair-
ness is challenging as analysts might misidentify sources of
bias, fail to notice them, or misapply metrics. In this paper we
introduce Silva, a system for exploring potential sources of
unfairness in datasets or machine learning models interactively.
Silva directs user attention to relationships between attributes
through a global causal view, provides interactive recommen-
dations, presents intermediate results, and visualizes metrics.
We describe the implementation of Silva, identify salient de-
sign and technical challenges, and provide an evaluation of the
tool in comparison to an existing fairness optimization tool.
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CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Haptic devices; User studies;

INTRODUCTION
Machine learning has been introduced into domains such as
health-care[10, 22], internet search[35], market pricing[16,
27], and policy [21] with the goal of reducing costs and im-
proving accuracy in decision-making. However, these data-
driven applications risk silently introducing societal biases into
the decision-making process. For example, a recent analysis
of a recruiting system at Amazon [17], trained on hiring data
collected during a 10 year window, found that gender biases
encoded in the model were inadvertently incorporated in the
hiring process as a whole. Unable to convincingly resolve all
potential biases, Amazon abandoned the system. Similar ex-
amples make evident the need to study fairness in data-driven
systems [2], and it is now a crucial component in many work-
flows. Central to this is machine learning system practitioners’
ability to accurately and efficiently assess fairness.
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The machine learning community has focused on statistical
definitions to quantify fairness[28, 20, 15]. Given the com-
plexity of bias, many metrics [6] have been proposed. For
example, disparate impact is used to evaluate positive out-
comes for a privileged group against an unprivileged group.
Recent research has exposed usability flaws in metric-driven
approaches [54] – given the large number of metrics, practi-
tioners tended to over-calibrate to intuitive metrics regardless
of suitability of others. Automatic toolkits have been proposed
to resolve this "metric burden" in assessing fairness. However,
juggling metrics can be very challenging. There is often a
catch-22: existing proposed metrics can be mutually exclusive,
which means conclusions drawn with one metric could be con-
tradictory with those drawn from another. [37, 41]. The choice
and application of fairness metrics alone may be insufficient
without a deeper understanding of the data and problem.

One avenue for improving how practitioners make sense of
fairness metrics and their data is to employ causality to help
triangulate on sources/causes of bias. Recent research has used
causal relationships (e.g. the influence of height on weight) to
help individuals reason about sources of bias [36, 69, 46]. By
looking into causal relationships, one might track how hypo-
thetical attributes influence one another and potentially convey
bias in a dataset. Further, relationships might exist between
unexpected attributes that ought to be considered. Yet, as with
metrics, deciding on whether a particular influence path is
socially acceptable or fair requires deeper investigation. As
social conventions evolve over time, automatic results without
carefully encoded social awareness risk reaching incorrect or
biased conclusions (as was the case with Amazon’s hiring sys-
tem). As a result, though comprehensive causal information
may help to inform an analysis, it also may require burden-
some training and manual analysis time to properly evaluate.

In this paper we present Silva, an interactive system that uses
causality to help individuals assess machine learning fairness
effectively and efficiently. Silva allows users to interactively
diagnose sources of bias to improve fairness in data by help-
ing users to integrate their own social awareness and domain
expertise when making fairness decisions using metrics. Silva
helps provide additional context for users, assisting them in
delineating the impact of bias by connecting bias sources and
existing popular metrics through causal relationships between
data attributes. Causality not only provides additional context
for users when employing metrics, but also helps to expose
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hidden or unexpected relationships that may be meaningful
in evaluating fairness holistically. Within a broader machine
learning pipeline (Figure 1), we view Silva as promoting in-
teractive, high-feedback investigations during the model vali-
dation phase. Much as in traditional sensemaking processes
[48], tightening the assessment loop by exposing more infor-
mation and reducing costs of investigation might help users
better integrate their own social awareness and more deeply
investigate sources of unfairness.

We have several aims in this work: First, we examine how tools
can help users understand complex causal relationships which
lead to social bias in data through visualizations. Causality
discovery algorithms have long been studied, and probabilistic
graphical models [38] visualize causal relationships through
network diagrams. However, as complexity increases, tradi-
tional node-link diagrams can become difficult to interpret.
We explore the feasibility of causal visualizations for fairness
evaluations and identify ways in which automatic node high-
lighting and hiding may improve their utility. Second, we
consider how allowing users to explore "what if" questions en-
hances their ability to draw useful conclusions. In contrast to
existing tools which limit users to predefined definitions of un-
fairness, our design allows users to explore potential sources of
bias in a sandbox. Key here is understanding how users track
their progress and use affordances for storing, referring to,
and comparing between scenarios found while exploring. Fi-
nally, we consider how tools like Silva may be integrated into
a broader pipeline. Silva’s affordances for machine learning
model training, causal graph view of the data, group com-
parisons of user-selected subsets of data, and grouped metric
visualizations might be incorporated into a larger workflow.

Our work offers three core research contributions:

• We present Silva, an interactive sandbox environment that
uses causality linked with quantitative metrics to help indi-
viduals assesses machine learning fairness.

• We develop and study an interactive user interface and
causal graph visualization to help users ask hypothetical
"what if" questions as they examine causal paths.

• We present results of user studies which demonstrate the
effectiveness of Silva over comparable systems. Silva users
efficiently detected sources of social bias in datasets.

RELATED WORK
Machine learning fairness has drawn attention from a vari-
ety of fields including machine learning, HCI, databases, and
statistics. In general, the machine learning community has
focused on novel statistical definitions, metrics to quantita-
tively measure the fairness of algorithms and datasets, tools
for optimizing these metrics, and reasoning about sources of
(un)fairness. At the same time, the HCI community has exam-
ined the causes, sources, and consequences of fairness as it re-
lates to socio-technical systems, policy, and psychology in the
real world. An increasing interest has developed among both
of these communities towards investigating approaches that
make algorithmic ML tools more usable or robust. Connecting
to this broader investigatory area, Silva combines metrics and
approaches from the ML community with traditional usable
interface development from the data visualization and HCI
communities. In this section we will explore related work
within these various communities.

Understanding Fairness
Emerging applications of machine learning systems for
decision-making across a wide range of domains [2] (e.g.,
marketing [16, 27], policy [21] and search engine results [35])
have drawn much attention towards the implications of their
judgments and dependence on potentially biased training data.
As systems become increasingly integrated into domains not
traditionally associated with machine learning, researchers
have identified cases where models have marginalized groups
or otherwise unfairly influenced decisions. Researchers have
explored patterns underpinning cases of under-representation
[3, 24, 44], scrutinized existing systems to assess how they
handle unfairness, and explored the challenges of managing
unfairness [2, 12, 24]. For example, researchers identified how
image search results amplified stereotypes towards race [35].
Credit scoring systems have been examined to expose implicit
discrimination [57]. With the rise of data privacy legislation
and policy interests in data storage [25], attention has also
been drawn to how populations are affected by unfairness [63,
49], and the difficulties of resolving unfairness [29, 60].

Machine Learning Fairness
The machine learning community has developed many sta-
tistical definitions of fairness for both data and models [28,
20, 15, 6]. These measures of fairness quantify biases in de-
cisions (such as hiring or salary assignment) with respect
to different groups. Minimizing unfairness in data or in
learned models ought to reduce the impact of unfair biases
in (semi-)automated decision making. In general, fairness is
achieved through (conditional) independence between sensi-
tive attributes S, prediction O, and some target variables Y .
However, these metrics can be mutually exclusive [41, 37],
causing confusion to users if contradictory results are shown.
Further, machine learning system practitioners report that that
existing statistical definitions fail to meet their expectations
[8, 42] in terms of relating the results to fairness. Additionally,
[54] examined user attitudes towards unfairness and concluded
that, in reality, calibrated fairness is more preferred compared
to multiple statistic definitions which might lead to misappli-
cation or misinterpretation.



The lack of ubiquity and generalization of metrics has moti-
vated investigations of machine learning fairness through the
lens of causal reasoning [36, 69, 43, 40, 46]. Causal reason-
ing attempts to relate how attributes influence other attributes
(e.g. height influences weight – taller people tend to weigh
more). Causal reasoning can reveal sources of bias that arise
from such relationships between attributes. Nabi et al. [46]
presented causality to users through a graphical model, and
proposed path-specific fairness in which paths between sensi-
tive attributes and output attributes are blocked. This approach
proved to be intuitive for users. Unfortunately, path-specific
fairness requires strong assumptions to compute automatically
which are rarely feasible in practice [52].

Systems for Improving Fairness
There are two general patterns in systems intended to improve
fairness. On one hand, some systems try to optimize for
metrics and automatically deliver improved results. On the
other hand, some systems try to enable interactive exploration.

Optimization
The machine learning community has focused on mitigation of
unfairness at different stages of the machine learning pipeline.
There are two general threads of research. The first examines
ways to improve fairness by optimizing machine learning
algorithms [23, 32, 32, 33, 34, 67]. These are model-specific
or algorithm-specific approaches. The second thread [13, 28,
64, 50, 14, 55, 68, 1] applies optimizations during the pre-
processing or post-processing stage of the machine learning
pipeline. These methods are not tied to specific models, but
may be over-tailored to specific datasets. [64] considered
specific machine learning methods and incorporated fairness
metrics for a fair prediction which may not be sustainable
with other machine learning algorithms and existing metrics.
[13] proposed a convex optimization to transform the dataset
to remove bias and treats learning algorithms as block boxes.
However these methods fail to discover bias sources, do not
integrate up-to-date social awareness (which informs which
biases are unacceptable), and can be hard to balance.

Automated Systems
A number of hybrid automated and interactive systems exist.
IBM AI Fairness 360 (AIF) [4] is an automatic system that
identifies model or dataset biases based on existing fairness
metrics and employs bias-reducing algorithms (see above) to
reduce unwanted model bias. Google’s What-If tool [26] in-
corporates human interaction by providing visualization of
data features and hooks for programmatic mitigation of bias.
However, [19] highlight that many mechanisms employed by
automated systems encode assumptions which may not hold
true in all data and model contexts. Further, [11, 60, 62] sug-
gest that end-users may have misconceptions of the techniques
at play, and as the result the underestimate of the effect of
unfairness on underrepresented group or the implications of
using an automated tool to correct their data.

Interactive Systems
Interactive systems provide real-time feedback in response
to human input, and in a data science context are often em-
ployed improve the sensemaking process [48] of analysts.

HypDB[51] is designed to help users understand causality. In
particular it can help users understand and resolve the Simp-
son paradox[61]. Northstar[39], another interactive data anal-
ysis system, protects users from false discoveries and makes
advanced analytics and model building more accessible by
allowing users to focus on contributing their domain expertise
without having to take care of technically involved tasks. An-
chorViz[56], an interactive visualization that integrates human
knowledge about the target class with semantic data explo-
ration, supports discovering, labeling, and refining of concepts.
Those recent systems as well as sensemaking theory suggest
that interactive interfaces have the potential to close the gap be-
tween automated optimization-focused approaches and human
understanding when designed effectively.

Causal Fairness
Throughout this paper we refer to causality. In this subsection,
we provide a brief outline of causality concepts and literature.
Causality refers to causal relationships between variables (i.e.
one variable causes another). For example, a patient choosing
to smoke has a causal relationship with the chance that they
later will be diagnosed with cancer [47]. Causal relationships
are sometimes self-evident to analysts, but in many cases they
can be counter-intuitive or reflect biases in a dataset that ought
to be examined (e.g. a causal relationship between gender
identity and salary would often be considered socially unde-
sirable, and in the case of a hiring system would be important
to notice). There are many approaches to inferring the causal-
ity[38, 31]. One common way to express causality is based
on graphical model which presents the causal relationship as
a directed acyclic graph (DAG). The causal DAG represents
each variable as a node and leverages the direct edges between
nodes to model the interaction[45]. The AI community has
long worked to infer DAGs from raw data[58, 30, 30]. Causal
fairness is achieved if the given protected/sensitive attributes
have no causal relationship to the final outcome, and could
be indicated by a lack of paths from sensitive attributes to
outcome variables in the DAG structure.

Another advantage of employing the causality is to enforce
some do operations which change the state of portions of a
causal model while keeping the rest of model the same (e.g.
probing a salary model by adjusting past work experience).
Hence, the effects on a particular outcome[47] can be ob-
served, akin to what-if analysis. This has motivated the idea of
counterfactual fairness: actively modifying the value of sensi-
tive attributes’ do-operation to search for conditions in which
sensitive attributes will be not a cause of the outcome (e.g.
under what conditions does gender identity no longer have an
influence over salary in this dataset). However, [53] shows that
counterfactual fairness is obtained with strong assumptions
which are not always grounded in practice. As mentioned
before, path-based approaches face similar tractability issues.
Recent work [65] introduces a new idea for causality fair-
ness by taking the biased paths between of one DAG as the
input to generate more paths. However, the effect of this ap-
proach is largely based on the configuration of the input paths.
For the purposes of Silva, we encourage users to consider
counterfactuals and the influence of attributes through visual
representations of causality.



Figure 2. Silva’s main interface. (a) Dataset Panel allows users to select attributes for training classifiers and toggle the sensitivity of selected attributes.
(b) Causal graph generated by structural learning algorithms depicts the causal relationships among attributes. (c) Table Group displays information
on user-defined groups and the training dataset in the Group Table and Dataset Table, respectively. (d) Fairness Dashboard contains groups of bar
charts showing fairness values across models, metrics, and groups. The four components work together to aid users in the bias exploration process.

SILVA
Before we outline our core design rationale, we illustrate one
intended real-world use case for Silva:

Alex is a government-employed data scientist who is analyzing
a crime dataset with 5 attributes: biological sex, age, race,
prior counts, and charge degree. Alex has a series of machine
learning models trained on a subset of the 5 attributes to predict
whether a person will reoffend (commit another crime). Before
applying the classifier in real-world scenarios, Alex needs to
make sure the model is fair. More specifically, they need to
find out which attributes may introduce significant bias to the
classifiers and reason about the source of these biases.

Alex loads up Silva and imports their dataset (Figure 2). They
immediately see their data reflected in the interface. In the
Causal Graph visualization, a few recommended initial at-
tributes to explore are shown (not depicted). Alex hypothe-
sizes that "sex" may be a sensitive attribute, and that age is an
important attribute for classifier accuracy. They select "sex"
and "age" by clicking on the checkboxes in the Dataset Panel
and saving these as a group. The fairness scores are displayed
on the bottom in the Table Group and in the plots on the right
in the Fairness Dashboard.

Alex notices that the Causal Graph has been updated with
recommendations for two previously unselected nodes – "prior
counts" and "charge degree". The arrow from "sex" to "prior
counts" shows that the attribute "sex" influences the number

of prior counts which in turn determines whether a person will
reoffend. This is surprising to Alex, who initially believed that
"sex" directly determined whether a person will reoffend. As
a result, they mark the attribute "sex" as sensitive by clicking
on the toggle. Immediately, the node representing "sex" turns
dark green as a way to draw attention. Alex forms a group
again and notices a decrease in 4 of the 5 fairness values.

Alex hovers on the node for "prior counts" and "charge degree"
to view the median and variance of the two attributes, picking
the former because of its higher variance (which can indicate
that it encodes impactful information). When they mark it as
sensitive, its two parent nodes "sex" and "age" are highlighted.
A summary message under the graph reminds Alex that those
two attributes might have caused "prior counts". After looking
at the data table, they also include "race" in the dataset. Three
other groups are formed along the way, and Alex is now ready
to dig into the factors influencing the fairness scores.

Having chosen 5 different groups, Alex now looks at the bar
chart grid which plots fairness values for all of their groups.
Alex’s random forest models perform best in this dataset, so
they mainly focus on results in the second panel. Alex hovers
on the overview charts to review the definitions of the 5 met-
rics, and decides that Theil Index, a measure of segregation
and inequality, is the most relevant for their particular use
case. They sort the groups based on Theil Index by clicking
on the column header, and click on the first row to see bars



corresponding to the highest-value group more clearly. They
also note that a bar in the Equal Opportunity Difference (EOD)
charts is particularly low. Curious about the reason behind
it, they hover on that bar to view sensitive and non-sensitive
attributes included in that specific group. When they click on
it, all the bars that correspond to that group in the dashboard
area are highlighted to facilitate comparison of fairness values.
The corresponding row in the group table is also highlighted,
making it easier for Alex to locate that group in the table
and read more about its composition, other fairness values,
and its ranking in terms of Theil Index. Now with a deeper
understanding of their dataset, Alex feels prepared to report
their findings about potential biases that may make this dataset
systematically unsuitable for their organization.

Core Design Rationale
Through Silva, we aim to help individuals assess machine
learning fairness effectively and efficiently. At its core, Silva
encourages users to openly explore their data and experiment.
Causality acts both as another data channel and a means to
promote reflection on part of the analyst. Quantitative mea-
sures help to ground the investigation and provide comparison
points. We had 6 goals in mind when designing Silva:

Connect Causality and Statistical Metrics
We view causality and fairness metrics as providing overview
and detail for a user. Fairness metrics give attribute-specific
feedback, but may lack holistic context for accurately inter-
preting results and reasoning about sources of bias. The causal
graph provides this overview for inter- and intra-attribute is-
sues. The causal graph ought to help the user track sources
one-by-one to their root causes if metrics contradict each
other. Additionally, Silva could help to trace and exclude
unavoidable sources of unfairness through the its recommen-
dation mechanic. By showing unexpected causal relationships
through recommendations, it may provoke analysts to think
introspectively about societal or implicit biases. This connec-
tion between metrics and causality must be fluid and implicit
for the user, and is emphasized through shared elements and
redundancy in the Silva interface.

Explore Freely
Compared to existing tools like AIF and Google What-If, Silva
offers users more freedom to investigate each attribute in a
dataset through customized groups over multiple iterations.
Instead of looking at the protected attributes provided by a
black-box, users have an opportunity to identify and reason
about sensitive attributes themselves. In addition to providing
a overview of causal and attribute data, we preserve local
structures in the causal graph so that users can examine details
that may be important in their analysis. We believe that active
engagement in the model validation process might help to
bridge the gap between users and the bias mitigation process.

Link Views
The four distinct components of Silva (see Figure 2) work
together to support users as they search for bias and unfairness.
When possible, we design tools so that they link to one an-
other (much as in Attribute Explorer [59] and other dynamic
querying systems). For example, nodes in the causal graph

correspond to attributes in the dataset and in the dataset panel.
Changes or highlights in one view are reflected in the others.
In addition, the same set of operations can be performed both
within multiple views in the tool, adding redundancy. Simi-
larly, the group table and fairness dashboard are also connected
to help users integrate data in both parts: fairness values corre-
sponding to the same group are highlighted across the tool as
a means to facilitate comparisons.

Encourage Connections and Comparisons
One of the major goals of Silva is to bring different factors
and measures of machine learning fairness together into one
interface so that connections among them are more obvious to
users. We allow arbitrary grouping of attributes in a dataset
to help users to track bias among different sets of attributes
over the course of their exploration. For each attribute group
that users generate, we calculate 5 fairness metrics across
3 different machine learning models. In other words, we
compute 15 different fairness values for every single group
and map them to plots. Users are free to look at a specific
plot that interests them the most, but they are also given the
power to compare fairness scores along different dimensions.
Further, they can recover past groups if they wish to compare
to prior moments in their analysis.

Guide the Extraction of Insights
Besides helping users to explore connections, we also pro-
vide informative hints and annotations consistent with users’
current phases of exploration to keep them on the right track.
We keep in mind that users of Silva might come from vastly
different backgrounds and thus we add numerous tools to help
people of all levels succeed in their tasks, including pop-up
definitions for fairness metrics and summaries of causal re-
lationships. Further, in an attempt to reduce excessive time
spent on trivial attributes or unproductive elements, we include
recommended nodes, path, and next steps in the causal graph
to help users focus their effort on the attributes that matter
more to the results. We also show detailed messages when
users make an illegal move such as forming a group without
any sensitive attributes to correct their mistakes.

Extend, Not Replace
Silva can be easily integrated into existing machine learning
pipelines and coupled with existing tools. Silva might pro-
vide reliable input suggestions to power users’ applications
of "What-If" and AIF. Both tools offer excellent visualization
and bias mitigation solutions. However, the steps that lead
to their choices of "protected attributes" seem to be hidden
from users. If users are able to identify the attributes through
Silva before using "What-if" or AIF, then they will likely gain
more insights from these tools. In addition, Silva can also be
extended into automated machine learning or bias mitigation
pipelines.

Implementation
Silva was implemented as a back-end web application us-
ing the Bokeh [9] visualization library for chart elements
and page templating. A Python 3 Flask server supports the
Bokeh instance and provides user account and logging capabil-
ities. Bokeh simplified the process of implementing interactive



client-server calls, hastening interface development. To make
Silva easily extensible for future upstream and downstream
data science applications, we created all high-level model ob-
jects in Python and represented data using Pandas DataFrames.
Client side interface elements and callback events were imple-
mented in plain JavaScript.

Silva’s final design is the result of several iterations. To guide
our development during the early stages of the project, we
conducted pilot studies, inviting participants to use Silva to
analyze a large dataset of their choice. We found that (1)
participants tended to work with the causal graph directly
and spent a lot of time switching between the dataset panel
and the graph to form new groups; (2) individuals expressed
strong preferences for charts to compare fairness values; (3)
non-experts needed clarifications on definitions of fairness con-
cepts. These findings inspired us to add more linkage between
Dataset Panel (A) and Causal Graph (B), as well as between
Table Group (C) and Fairness Dashboard (D). We reorganized
Silva’s workflow, making it possible to create and modify
groups on the causal graph. We also added a animations and
hover highlights to emphasize the linkages/connections be-
tween different components of Silva and facilitate comparison
across groups, models, and fairness metrics. This augmented
interactivity, along with higher data density, allowed us to
bring the 4 distinct components of Silva together.

Causality Computation and Visualization
One key element on Silva is identifying causal relationships
between data attributes. A number of methods (and corre-
sponding toolkits) exist for causality computation. Probabilis-
tic models are one of the most prominent approaches [38,
47], and structure learning algorithms are often used to ex-
tract attribute relationships. For Silva, we opted to employ
off-the-shelf techniques. We adapted the dependency model
illustrated in [38] and used the library Tetrad, integrated into
Silva’s back-end, to extract the underlying causal structure.
One potential issue in causal models is redundancy (differ-
ent underlying graphical structures which express the same
causality). For the use cases explored in this paper we did
not notice this issue, but it might emerge in a practical setting.
In this case, there are a number of approaches for mitigating
redundancy[31]. Scalability is also a concern here, which we
revisit in the Discussion. Causal data is visualized for users in
the form of a node-link diagram via the Bokeh framework. We
use different colors and styles of nodes to imply the different
types of attributes, and attempt to hide or merge isolated or
low-signal nodes when there are many attributes on screen. In
particular, long chains are compressed into summary nodes.
Silva also recommends potential sensitive attributes to users
by showing suggested attributes as dashed nodes on the causal
graph once certain nodes are selected.

Model Training and Testing
Silva provides users three different types of models, Multi-
layer Perceptron (MLP), Random Forest (RF) and Logistic
Regression (LGF). We opted to include these models as they
are widely deployed in practice. Data are automatically split
into training, validation and testing sets. We take a threshold

for the classification which achieves the best accuracy on vali-
dation datasets. For the purposes of this investigation, we did
not include parameter tuning. We argue that state-of-the-art
auto-tuning approaches could be extended to improve model
accuracy, making use of Silva’s back-end portability.

Metric Calculation and Visualization
After model training, Silva calculates metrics based on the
results of the model on the testing dataset. For our initial inves-
tigation, we followed the pattern of both AIF 360 and Google
What-if[5, 26], including five metrics: Statistical Parity Differ-
ence (SPD), Equal Opportunity Difference (EOD), Average
Odds Difference (AOD), Disparate Impact (DI), and Theil
Index (TI). These metrics are all commonly used in practice
and offer different insight into fairness. There are additional
metrics which might be included, and there are numerous ways
to improve metric calculation [54]. For the purpose of this
investigation, we used standard approaches and added hooks
in the back-end for additional metrics (or potentially even
user-defined ones). Metrics are displayed through a dashboard,
visualizing individual and summary results for comparison.

EVALUATION
In order to understand how Silva might help both data scien-
tists and inexperienced users efficiently assess machine learn-
ing fairness, reason about sources of bias, and correctly iden-
tify bias, we conducted a controlled user study. Through this
study we sought to identify promising application scenarios
for Silva and potential shortcomings for future development.
Silva’s central features include: visualizations of causal in-
teractions, interactive exploration of sensitive attributes, and
comparisons of user-identified attribute groups. Our study
assesses each of these components in isolation and together.
In terms of the effectiveness of Silva, our study also evaluated
whether individuals correctly located sources of unfairness in
a model or dataset.

As no comparable causal investigation tools existed at the time
of Silva’s development, we aimed in our evaluation to contrast
Silva against state-of-the-art tools that a practitioner might
plausibly use for similar use cases. IBM AI Fairness 360
(AIF) [4] is a widely distributed open-source toolkit for bias
debugging and has recently been extended as an automatic sys-
tem for social bias detection and mitigation. Its performance
in unfairness assessments is well established. We chose AIF
as a comparison case for Silva. While affordances are not
a 1-to-1 match and AIF is a more mature software product
(which might offer it an unfair advantage), its mix of manual
and automated tools acts as a beneficial counterpoint for the in-
teractive sandbox approach of Silva. In particular, by choosing
AIF we hoped to expose trade-offs between the immediacy of
automated systems (AIF) and the understanding gained over
exploration (Silva).

Methodology
During our user study, participants used Silva and AIF to com-
plete two different tasks in a 50 minute session. Afterwards,
users assessed both systems through surveys. Our study em-
ploys two datasets: Adult Census Income (Adult)1[67] and
1https://archive.ics.uci.edu/ml/datasets/adult



Berkeley Dataset 1973 (Berkeley) [7]. These datasets are
open-source and have been widely employed by bias evalua-
tion and explanation researchers. As these datasets have been
well studied, there exists reliable ground truth data on attribute
sensitivity and bias.

Participants’ first task was to explore whether there is bias in
salary predictions for an individual if predictions are above
$50,000 per year in the Adult dataset. Their second task was
to investigate whether there is bias in Berkeley’s graduate
school admissions (a well-known case study for Simpson’s
paradox). These two datasets have been widely applied in
machine learning fairness research. It is well established that
salaries in the Adult dataset reflect biases with respect to race
and gender, but admission outcomes in the Berkeley dataset do
not encode biases with respect to gender [7, 67]. As Berkeley
is a relatively small dataset, we anticipate that both skilled
and unskilled participants will perform well in the second
task, however Silva participants (should the tool prove effec-
tive) ought to perform better. On the other hand, the Adult
dataset has higher complexity, which might expose gaps be-
tween novice and expert participants, as well as potentially
emphasize the benefits of Silva.

The two user study tasks are representative of common patterns
encountered by data scientists [18]. Given a prediction task,
a data scientist might first identify relevant data attributes
based on their existing experience and knowledge. Then, they
may use tools to explore the given dataset in more detail.
To mimic this process, we first asked participants to identify
attributes relevant to the prediction task, and to identify any
potential bias in the dataset. Participants make use of their
own knowledge without the aid of any tool. Then, they explore
the dataset with the assigned tool (Silva or AIF). After using
one tool, users are asked to re-identify relevant attributes and
sources of bias. They use the other tool during the second task.
We counterbalance both dataset and tool order so that there is
even exposure to experimental conditions. During the study,
participants were asked to evaluate tool components after they
finished using them. At the end of the study, we asked users
to complete a post-survey, reflecting on their answers on the
pre-survey, and providing qualitative feedback.

As Silva and AIF may be relatively complicated, we provided
participants with short tutorial videos explaining the tools used
in the study. The tutorials showcased a separate dataset not
used in the user study. We used the same examples to develop
the tutorial video, and both videos had comparable length.
As AIF also has debiasing components that are not present
in Silva, our protocol stopped participants at the end of the
bias detection phase of the tool. We also provided participants
with cheat sheets and plain English definitions of statistical
fairness metrics in case they forgot instructional content. After
training, participants were given a few minutes to use the tool
and ask the experimenter questions.

Participants were recruited through a university research pool
as well as through social media. Participants were screened
based on prior exposure and experience with data analysis, the
study tasks, machine learning background, and algorithmic
fairness. The pre-screen was employed to select two groups of

Figure 3. Mean and standard error for self-reported usefulness feedback
(0 being neutral, 1 being useful) split by tool and dataset.

participants in roughly equal proportions: 1) Novices who do
not have experience with fairness analysis nor solid knowledge
of the two datasets of the studies, and 2) Skilled participants
who have at least some working knowledge of machine learn-
ing and machine learning fairness. We make use of pre-screen
responses as a comparison point in our post-survey analysis.

33 individuals participated in our study. Of those participants,
30 completed the entire protocol and submitted usable survey
responses. 3 participants either did not use both tools or did
not submit post-surveys and left the session early. 10 partici-
pants identified as male and 20 as female. 14 were university
graduate students, and the other 16 were university undergrad-
uate students. 15 participants ultimately fit into our Skilled
category and another 15 fit our Novice category. Participants
were grouped evenly (7 or 8 per Latin square cell) into tool
and dataset conditions, counterbalanced for order effects.

Results
Self-reported Usability
Participants reported their experiences with each component
of Silva and AIF on a 5-point Likert scale ranging from not
useful at all (−2) to very useful (2). Participants had the option
to state that they did not use a component and did not feel
comfortable rating it. These were counted as missing data in
our analysis.

In general, users of Silva rated the causal graph highly (M:1.1,
SD:0.85), indicating that they found this central feature to be
very useful in helping them finish their tasks. Participants also
reported that saving groups (M:0.75 , SD:0.79), metric visual-
ization (M: 0.93, SD: 0.98) and toggling sensitive attributes
(M:0.79, SD:0.89 ) were useful as well. For AIF, participants’
results show moderate usefulness ratings for the automatic
and efficient analytic result (M: 0.27, SD:1.2) and the metric
visualization (M:0.29, SD: 1.13).

We averaged survey responses for each tool into a single factor
for comparison (factor analysis confirmed item-level agree-
ment). Overall, participants reported significantly higher re-
sponses for Silva ((M: 0.90, SD: 0.56) compared to AIF (M:
0.29, SD: 1.13). This suggests that Silva indeed provided
value to participants in completing the tasks, and that it may
outperform AIF in terms of overall usability.

In order to understand how task, tool, and participant experi-
ence relate to each other with respect to these self-reported
utility measures, we constructed a mixed-effect linear model



Figure 4. Mean and standard error for discovery F-score (higher is more
accurate) split by tool and dataset.

testing interactions between all three independent measures
and predicting for averaged self-reported utility. We employ a
mixed-effect model to account for repeated measures in our
within-subjects study design. The model detected two signif-
icant main effects: task (F(1,24) = 7.78, p = .01) and tool
(F(1,24) = 15.71, p = .0005) as depicted in Figure 3. In gen-
eral, individuals reported more positive responses to Silva and
after completing the Adult task. It is possible that the high
complexity of the Adult dataset allowed individuals to more
fully explore and make use of tool capabilities, exposing more
potential benefits of the tool. We did not detect a main effect
for novice/skilled and did not find any significant interaction
effects. This is also encouraging, as it suggests that experience
did not ultimately play an observable role in tool satisfaction.

Examining Participant Discoveries
In addition to evaluating the usefulness of Silva from the
perspective of self-reported utility, we also considered effec-
tiveness in terms of true positive discoveries vs. false positive
discoveries made by participants during their investigation.

In our post-survey, participants were required to identify and
explain whether there was social unfairness in the Adult pre-
diction task and whether there exists gender bias in admissions
in the Berkeley task. As these tasks have ground truth answers,
we can compare whether the answer participants provide (and
the evidence they cite to justify their response) is valid or not.
We employ an F-score to measure the truth discovery rate. F-
score is the harmonic mean of precision (how many identified
biases are indeed biases?) and recall (how many biases are
identified?) in the evidence given by the participants. A high
F-score indicates that users are able to correctly identify many
biased attributes without mistakenly selecting many unbiased
attributes. A low F-score indicates that users make mistakes
when identifying biased attributes, either by missing many
biased attributes or by incorrectly selecting many unbiased
attributes.

In general, Silva achieved a higher F-score (M:0.63, SD:0.38)
in helping identify unfairness in existing datasets compared
to AIF (M: 0.35, SD: 0.37). A two-tailed t-test indicates that
these differences are significant (t(58) = 2.93, p < .0049). To
further validate these claims, we constructed another mixed-
effect linear model examining potential interactions between
task, skill, and tool in predicting the overall F-score of par-
ticipant assessments. Our results mirror our earlier model
predictions for self-reported utility. While there were no inter-
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Figure 5. Reasoning path of practitioners.

action effects and skill did not play an observable role in dis-
covery f-score, we again observed a main effect between task
(F(1,24) = 11.13, p= .0028) and tool (F(1,24) = 11.19, p=
.0027) as depicted in Figure 4. Generally, skilled practition-
ers achieve a marginally higher F-score in discovering the
unfairness compared to novices for both datasets. Notably,
participants tended to achieve a higher accuracy with a more
complex dataset (Adult). This implies that complexity pro-
vides users with more room to explore (and potentially make
mistakes). Experience may not be a necessity in our scenarios.
This is especially encouraging, as it provides further evidence
that Silva may help both novice and expert users to obtain
useful results.

Qualitative Feedback
We collected qualitative responses concerning how partici-
pants’ working process and their user-experience. Here we
briefly outline some themes we noted:

Reasoning on the sources of unfairness: We invited users
to briefly describe why they believe certain attributes lead
to potential social bias. Although some participants did not
justify their reasoning, fifteen responses explained how they
arrived at their conclusion. We identified a general pattern
participants followed to come to their conclusion in Figure 5.
We note that practitioners’ high-level descriptions suggest a
loop of creating and validating hypotheses. The central causal
graph in Silva played a role in helping participants compare
among different groups and enable them to develop alternative
explanations (as evidenced by the discovery metric results).
The way that participants leveraged Silva is consistent with
sensemaking theory [48].

Causal graph proved helpful: In their responses, partici-
pants expressed their appreciation of the causal graph. One
claimed, "I can see the relationship between different attributes
in Silva"; and another expressed, "the causal graph shows the
influence of sex in Berkeley". Participant mentioned the ability
of the causal graph to expose dependencies ("...causal graph
was the most helpful as it differentiated dependencies") and
attribute-level relationships ("Silva allows a lot of explanations
to help us determine why it is ok or not by looking at direct
and indirect relationships").

Interactivity is valued: Participants pointed out that Silva
interactions provided valuable information for making sense of
unfairness, especially in comparison to AIF. One commented
on AIF that, "I want to know why it is biased, not machine tell
me why," compared to a Silva participants’ claim, "Silva has
more components to help me explore the data." The lack of
interactivity in AIF was a broader concern among participants.



One expressed "I don’t know any details and reasons of their
results." Another claimed "AI 360 could have more analytic
options," and "It would be better if AI 360 incorporates the
features of Silva". While AIF’s automated efficiency might
speed investigations, the lack of interactivity could ultimately
have a negative impact on overall user experience. Combined
with the quantitative results, there is evidence that increased
interactivity lead to an improved fairness analysis process.

DISCUSSION AND LIMITATIONS
In this section, we discuss the results of evaluation, and iden-
tify some potential limitations for Silva, and highlight areas
for future investigation.

Conclusion of Evaluation
The results from the evaluation suggest that Silva’s interac-
tivity helps practitioners effectively identify bias in machine
learning algorithms and datasets. Encouragingly, we also
noticed that participant skill level did not play a role in our
outcome measures. In addition to being robust to user skill
level, Silva offered efficient exploration over both datasets in
the study, suggesting that it can be generally applied, even
in competition to a mature software platform. User feedback
indicates that Silva enhanced their sensemaking process, but
further studies are necessary to explore this fully.

Potential Limitations
Scalability: As with any interactive data-driven system, scal-
ability is a major potential limitation. There are three problem
areas where scalability issues might emerge:
(1) Training, modeling, and metric calculations: The training
time of models largely depends on the model complexity, scale
of the datasets and hardware constraints. This is an ongoing
area of study in the machine learning research community.
While we endeavored to use recent approaches available, new
research advances may assist in making training/causality com-
putations more efficient at scale.
(2) Communication and latency: Due to pre-computation,
the interactive visualizations themselves remained performant
with large-scale or complex data. That may not remain true as
complexity increases. Data might reach scales that cannot reli-
ably be transmitted over a web connection or stored in browser
memory. This might necessitate additional load balancing
between the front- and back-end. Likewise, computations for
interactions (e.g. hiding nodes in SVG) might reach a point
where latency occurs. Both cases are known issues for web
tools, and there are numerous approaches for mitigating them.
(3) Human factors: In addition to computational complex-
ity, graphs may be overly complicated if there are many at-
tributes or relationships (i.e. graph spaghetti), leading users
to make mistakes or experience overload. While we introduce
some fixes in Silva like bundling similar nodes, this is a con-
cern. Affordances such as attribute selection and navigation
may be challenging to use, especially at high attribute counts.
There are some potential fixes: One might employ scalable
widgets (e.g. fisheye menus) and limit detail through cluster-
ing/hierarchies. We leave this for future study. While we did
not notice divisions based on user skill, training was still a

significant component in our experimental protocol. In a pro-
duction context, training and providing adequate information
on metrics could also pose scalability concerns.

Representing causality: Though probabilistic graphical mod-
els are one of the most useful unifying approaches for con-
necting both graph theory and causality, it can be difficult
for novices to understand the causal graph. Even for skilled
users, two participants expressed that they wanted to learn the
strength of the dependency through the edges that connects
attributes in the user study. At the moment, Silva provides a
summary table with short explanations of deterministic rela-
tionships. There is an opportunity for providing greater detail
to help explain the quantitative strength of the deterministic
relationship in addition to the summary view, at the risk of
additional complexity.

As the graph is automatically learned by default structure
learning algorithms, sometimes the causal graph structure
might be counter-intuitive [38]. Consistency of the causality
structure has been long studied in the artificial intelligence
community. Multiple independence testing could be a window
to handle this issue. Many efficient independence testing
methods have been proposed to interactively construct causal
views with the help of users and may prove to be helpful.
As mentioned earlier, redundancy might also pose an issue,
especially as complexity increases.

Offering paths for mitigation: Two participants commented
that discoveries made with Silva are an important step for re-
solving unfairness; however, it would be beneficial for Silva to
provide some heuristics for selection of down-stream mitiga-
tion. Silva outputs the privileged group and under-privileged
group with respect to biased attributes, which defines the
groups that are unfairly represented by the algorithm. Many
optimal policy algorithms use these group definitions as input
to achieve fairness through the counterfactual settings. Silva
can couple well with those down-stream approaches, though
at present it has not been integrated into a pipeline with them.

Potential Benefits and Future Work
Efficiency gains over time: Although it took a few minutes
for users to familiarize themselves with Silva’s components
and to ramp up their understanding during our lab study, users
were quick to analyze the dataset afterwards. We noted that
participants working with more complex data tended to ramp
up more quickly. We posit that the high level of interactivity
might play a role here. By inviting users to explore, Silva
might soften the initial barrier to entry and encourage users
to experiment with new features. This could be beneficial for
novice data scientist adoption.

Enhanced reasoning: As mentioned in the evaluation, we
noticed that users tended to follow a sensemaking loop of
creating and validating hypotheses in Silva. This feedback
loop has proved difficult to achieve with existing optimization
tools (which resonates with participants’ negative reactions
to "black-box" recommendations by AIF). In addition, users
noted that the causal graph enhanced their understanding of
the test dataset and model. We infer that Silva might help
users enhance their sensemaking process of machine learning



unfairness assessment through their interactions. There is an
opportunity for additional investigation of the mental model of
practitioners as they evaluate data fairness, building on current
design research on machine learning user experiences [66].

Deeper causality: One central design goal for Silva was to
help users explore the connection between causality and metric
results as a means to accelerate fairness evaluation. We found
that when there are direct causal relationships from sensitive
attributes (, Silva performs well. For example, if two sensitive
attributes both affect fairness, existing metrics might provide
two different values for their impact. The causal graph can
help the user trace why the influence from each attribute is
different. We hypothesize that the direct causal relationship
permits users to explore and isolate sources of unfairness in
their data. However, it might be hard for the user to identify
specific influences if data are very complex or intra-correlated.
Visualizing causality in these scenarios remains an active area
of study. Further, there is a potential for providing additional
signals to users about causality. For example, in complex
datasets, large causal chains might be hard for users to parse.
Improved visual metaphors and interactive tools might assist
users in untangling these relationships.

Pipeline integration: In Figure 1, we identified Silva’s major
target area. In practice, this represents a slice of a much
larger data science pipeline. Thinking holistically, there are a
number of opportunities for greater integration of Silva into
data science workflows, which might provide benefits for users
both in terms of understanding and efficiency. Silva users
appreciated the explanatory ability of the tool, but expressed
a desire for pathways to mitigate bias. Including some of the
automated features for mitigation (such as those in AIF) could
help to close this loop. Further, additional interactivity for data
exploration might remove some of the "black-box" concerns
users expressed about recommendations. Leading in to Silva,
there is also an opportunity to connect the tool to existing
exploratory data analytics platforms, supporting users from
hypothesis generation to final fairness mitigation/decision-
making. Along these lines, we hope to conduct a larger, long-
term deployment of Silva by integrating it into a data science
pipeline in an institutional context.

CONCLUSION
This paper introduced Silva, an interactive system that helps
data scientists to reason effectively about unfairness in ma-
chine learning applications. Silva couples well with existing
machine learning pipelines. It integrates a causality viewer to
assist users in identifying the influence of potential bias, multi-
group comparisons to help users compare subsets of data, and
a visualization of metrics to quantify potential bias. In a user
study we demonstrated that Silva was favored by both skilled
and novice participants. Silva achieved a higher F-score accu-
racy in assisting participants in locating socially unfair biases
in benchmark datasets. The user study also indicates that
the usability and effectiveness of Silva is not dependent on
practitioners’ skills, which means that Silva might be more
widely applicable. As a whole, we have provided some initial
signs that integrating causal reasoning in interactive fairness
assessment tools can provide benefits for analysts.
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