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ABSTRACT: Reaction of the lithium dithiolene radical 2° with the imidazolium salt [{(Me)CN(i-Pr)},CH]*[CI]~ (in a 1:1 molar
ratio) gives the first stable naked anionic dithiolene radical 3°, which, when coupled with hexasulfide, [{(Me)CN(i-
Pr)},CH]*,[S¢])*™ (4), and N-heterocyclic silylene 5, unexpectedly results in synergic THF ring-opening via a radical mechanism.
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he presence of anionic dithiolene-based radicals in

transition-metal complexes was first proposed nearly six
decades ago."” Subsequently, the radical character of the
monoanionic dithiolene moieties in transition-metal complexes
has been extensively studied.”™"” In the absence of transition-
metal coordination, highly reactive anionic dithiolene radical
species have been probed both computationally and by electron
paramagnetic resonance.'*~'” The prototype anionic dithiolene
radical (C,H,S,"”) was studied in a low-temperature matrix."®
Notably, the first structurally characterized s-block element (i.e.,
lithium)-based dithiolene radical (2°; Scheme 1) was recently

Scheme 1. Synthesis of Naked Anionic Dithiolene Radical 3°
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reported by this laboratory.'”*° Radical 2° presents a convenient
platform for the synthesis of elusive main-group element-based
dithiolene radicals. To this end, by reaction of 2° with the
corresponding borane agents, we recently synthesized boron-
based dithiolene radicals [(L*)B(R;),, R; = C¢H,; or Br; L* =
R,timdt®, R = 2,6-iPr,C4H;].”" In contrast to these metal (or
semimetal) dithiolene radical species, a naked dithiolene radical
anion is intriguing due to its unique electronic and structural
character (i.e., bearing both anionic radical character and two
available coordination sites). Consequently, unusual utility
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would be expected from such a unique radical species. Herein,
we report the synthesis,”” structure,”” and computations”> of 3°
(Scheme 1), the first stable naked anionic dithiolene radical.
Furthermore, we report that reaction of 3* with N-heterocyclic
silylene (NHSi) (5), unexpectedly, affords synergetic ring-
opening reactions of THF in the presence of hexasulfide
[{(Me)CN(i-Pr)},CH]*,[Sc]*” (4), giving compounds 6 and 7
(Scheme 2).** Notably, low-oxidation-state main-group chem-
istry studies involving dithiolenes have only begun to emerge:
This laboratory recently prepared the first dianionic silicon
tris(dithiolene) complex via reaction of 2° with carbene-
stabilized disilicon(0).>?

Scheme 2. Synergic THF Ring-Opening by 3° and NHSi"'*?
(5) in the Presence of the Hexasulfide (4) (R = 2,6-

Diisopropylphenyl)
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The reaction of crystalline imidazole-based monothiolate 1
with elemental sulfur (in THF) gave raw 2° as a fine purple
powder (Scheme 1)."” Without further purification, this
material was combined with [{(Me)CN(i-Pr)},CH]*[CI]~
salt (1:1 molar ratio) in toluene and subsequently sonicated,
giving radical 3° and [{(Me)CN(i-Pr)},CH]%[Ss]*™ (4)
(Scheme 1). Refluxing of the mixture of 3° and 4 in THF,
followed by room-temperature recrystallization results in the
separation of 3° as dark purple X-ray quality single crystals (in
53.4% yield, based on the quantity of 1) from minor byproduct 4
(orange-red crystals).”” While reaction of pure 2* (crystals) with
the same imidazolium salt only gives 3°, formation of 4 (as
shown in Scheme 1) may suggest the presence of a certain
uncharacterized sulfide byproduct in the raw material of 2°.
Polysulfide dianions and radical monoanions have attracted
considerable attention due to their utility in organic syntheses,
oxygen-poor biological systems, and sulfur-based batteries.”**
Pyrrolidinium hexasulfide analogues of 4 have been synthesized
by reacting pyrrolidinjum TMS-S salts (TMS = trimethylsilyl)
with Sg.%¢

The paramagnetic properties of radical 3° are characterized by
room-temperature EPR spectroscopy. The EPR spectrum of 3°
in THF (Figure 1a) displays an S = 1/2 quintet (g,, = 2.017) due
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Figure 1. (a) Room-temperature X-band EPR spectrum of 3° in THF,
recorded at 9.584 GHz with a modulation amplitude of 0.02 mT and a
microwave power of 1 mW. (b) SOMO of [3°]".

to hyperfine coupling with two equivalent "*N (I = 1) nuclei, A,,
(*N) = 4.1 MHz These values are comparable to those
obtained for 2* (g,, = 2.016 and A,, (**N) = 3.9 MHz)."” While
the spin densities of the C,S, units in both [2-Ph]* (0.88)'" and
[3°]7 (0.87) are slightly larger than those (0.71, R, = Br; 0.77, R,
= C4H, ;) for boron dithiolene radicals, [ (L*)B(R;),, R; = C¢Hy;
or Br; L® = Rytimdt®, R = 2,6-iPr,C4H,],”" the spin density of the
terminal S(1) atom increases in sequence: [3°]~ (0.12) < [2-
Ph]° (0.18) < boron dithiolene radicals (0.27, R, = Br; 0.23,R, =
CeHyy)-

While the UV—vis absorption spectrum of 2° (purple) in
toluene shows two absorptions at 554 and 579 nm,'””" that of 3°
(violet) in THF demonstrates two absorptions at 526 and 616
nm. Regarding the solid-state structure of 3° (Figure 2), the
three sulfur atoms are coplanar with the five-membered
imidazole ring.”” The S(1)—C(1) bond distance [1.6591(18)
Al is only marginally shorter than that of the S(2)—C(2) bond
[1.6637(18) A] and the S(3)—C(3) bond [1.6698(18) A]. All of
them compare well to those for 2° (1.654—1.680 A)'” and for
the [3*]” model (1.683—1.686 A).”> The corresponding Wiberg
bond index (WBI) values of S—C bonds in the [3*]™ model

Figure 2. Molecular structure of 3°. Thermal ellipsoids represent 30%
probability. Hydrogen atoms have been omitted for clarity. Selected
bond distances (A) and angles (deg): S(1)—C(1), 1.6591(18); C(2)—
C(3), 1.420(2); C(2)—S(2), 1.6637(18); C(3)—S(3), 1.6698(18);
C(2)—C(3)-S(3), 129.87(14). Nonbonding distances (A): S(2)--
H(28), 3.004; S(3)---H(28), 2.902.

[1.446 for the S(1)—C(1) bond; 1.426 for the S(2)—C(2) and
S(3)—C(3) bonds] suggest the modest double-bond character
of all three sulfur—carbon bonds in 3°. While the imidazole ring
of the [{(Me)CN(i-Pr)},CH]* cation in 3° is almost
perpendicular to the dithiolene (ie., C,S,) plane, the proton
[H(28)] residing at the carbene carbon [C(28)] (Figure 2)
points to the middle of the C,S, unit of the dithiolene ligand.
However, the 3.004 A S(2)---H(28) and 2.902 A S(3)---H(28)
distances, much longer than the sum of covalent radii of sulfur
and hydrogen (1.36 A),”” rule out the presence of covalent
bonding interactions between the H(28) atom of the
imidazolium cation and the sulfur atoms [i.e., S(2) and S(3)]
of the anionic dithiolene fragment in 3°. Consequently, this
interaction between them is largely dominated by electrostatic
forces. Thus, 3° represents the first stable naked dithiolene
radical. In contrast to those of the dithiolate (NMe,),(C;S;)**
[dc-c = 1.371(8) A, ds_¢ = 1.724(6) A], the elongated C—C
[1.420(2) A] and concomitant shortened S—C bonds [1.667 A,
av] in the C,S, unit of 3° may be attributed to the SOMO of
[3°], possessing both C—C z-bonding and S—C #-antibondin
character (Figure 1b). Similar to 2pyrrolidinium hexasulfides,”
the byproduct 4 (see Figure $1)** exhibits a disordered chain-
like sulfur cluster, in which the negative charges are mainly
localized at the two terminal sulfur atoms.””

While being best known for their extensive utilities (as o-
donors) in transition-metal coordination and catalysis,*”*' N
heteroc;rclic silylenes (NHSis) may also react with radical
species‘2 (such as 2,2,6,6-tetramethylpiperidine-N-oxyl) or
muonium,™ giving a series of a new type of neutral silyl radicals.
Inspired by these interesting discoveries, we combined 3° with
NHSi®*" (Dipp = 2,6-diisopropylphenyl) (5),”** in the
presence of 4 (in an approximate molar ratio of 1:2:0.25) in
THE. This resulted in consecutive THF ring-opening reactions,
giving both 6 and 7 as colorless crystals (in 16.0% and 41.4%
yields, respectively) (Scheme 2).*> Compounds 6 and 7 were
effectively separated due to their different solubilities in THE/
hexane and toluene/hexane systems. While the formation of 6
involves a single THF ring-opening, compound 7 is obtained via
dual THF ring-opening. Both 6 and 7 exhibit similar *Si NMR
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resonances at —24.4 ppm and —24.3 ppm, respectively, which
are comparable to that (—38.8 ppm) for dithio-bridged
NHSiP#? dimers.**

THEF ring-opening reactions usually involve both Lewis acidic
metals (or metalloids) and appropriate nucleophiles,**™*
including frustrated Lewis pair systems.*® Although the
mechanistic details of the formation of 6 and 7 remain unclear,
one possible scenario is that the THF ring-openings may
proceed through radical processes, involving a three-component
(ie, 3% 4, and 5) synergetic interaction (Scheme 3). Notably,

Scheme 3. Proposed Mechanism of the Synthesis of 6 and 7%
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“The cation moieties of 3°, 4, 6, and 7 have been omitted for clarity.

each component itself is inert in THF. Inspired by the fact that
monoanionic polysulfide radicals may be formed in solution
through diszp_)roportionation or partial dissociation of polysulfide
dianions”**> and N-heterocyclic silylenes may react with radical
species,”” we thus propose that the reaction of hexasulfide
dianion 4 with § may give a transient sulfurized NHSi"""P-based
silyl radical and a Si*~ byproduct in situ. As soon as it was
formed, this NHSi”""P-based silyl radical intermediate, together
with 3°, may involve a radical ring-opening reaction of THF,
giving 6 (Scheme 3). Subsequently, the S;*~ radical could
conduct a one-electron oxidation of the dithiolate unit in 6
(considering the non-innocent character of dithiolenes), giving a
dithiolene radical intermediate and dianionic pentasulfide
[Ss]>". Eventually, the in situ formed dithiolene-based radical
species, NHSi??P (§), and [S]*~ would follow the radical routes
(mentioned above) to give 7 (Scheme 3). Notably, no reaction
was observed between § and 6 in THF-d;. However, with the
addition of 4 into the mixture of § and 6 in THF-dg, the
resonances of compound 7 are observed, accompanying the
weakened resonances of 6. This observation supports the
proposed scenario in Scheme 3.

X-ray structural analysis (Figure 3) confirms that crystalline 6
exists as a dianionic salt with two imidazolium counter-cations.
As a result of synergetic THF ring-opening, the —(CH,),0—
chain bridges the dithiolene and NHSi moieties. While the
carbon terminal [i.e, C(28)] is bound to one of the two
dithiolene sulfur atoms [i.e.,, S(2)], its oxygen atom is attached
to the silicon atom [i.e., Si(1)] of the NHSi®®? unit. The C—C
[1.356(3) A] and S—C bonds [1.718 A, av] in the C,S, unit of 6
compare well to those of (NMe,),(C5S;s) [dc_c = 1.371(8) A,

(71

Figure 3. Molecular structures of [6]*~ and [7]*". Thermal ellipsoids
represent 30% probability. Hydrogen atoms have been omitted for
clarity. Selected bond distances (A) and angles (deg): For [6]*7, S(1)—
C(1), 1.677(3); C(2)—C(3), 1.356(3); C(2)—S(2), 1.726(2); C(3)—
S(3), 1.710(3); Si(1)—0O(1), 1.6534(19); Si(1)—S(4), 2.0135(10);
C(2)—C(3)-S(3), 131.6(2); C(3)—C(2)-S(2), 128.7(2); O(1)—
Si(1)—S(4), 112.01(8); N(3)-Si(1)—N(4), 90.20(10). For [7]*,
S(1)—C(1), 1.661(6); C(2)—C(2A), 1.347(7); C(2)—S(2), 1.734(4);
Si(1)—0(1), 1.640(3); Si(1)—S(3), 2.0206(15); C(2A)—C(2)—S(2),
128.82(14); O(1)-Si(1)—S(3), 110.74(12); N(2)-Si(1)-N(3),
90.14(15).

ds_c = 1.724(6) A].*® The Si(1) atom in 6 is four-coordinate
and adopts a distorted tetrahedral geometry. The Si(1)—O(1)
bond of 6 [1.6534(19) A] is in-between those [1.620(2) and
1.639(2) A] in a dimeric bis(silaselenone)*” and that (1.6981 A)
in the simplified [6-Me]?>~ model.”* The Si—S bonds of both 6
[2.0135(10) A] and [6-Me]*~ (2.050 A)** are somewhat longer
than of the Si=S double bond in the first stable silanethione
[1.948(4) A],”° but shorter than the typical Si—S single bond
(2.11-2.17 A).>" This fact, coupled with 1.31 Si—S WBI,
suggests that the Si—S bond in 6 may have a modest double-
bond character. While the silicon atom in [6-Me]>~ bears a
positive charge of +1.85, the sulfur atom residing on the silicon
atom has a negative charge of —0.99. In addition, each of the two
terminal sulfur atoms of the dithiolene ligand in [6-Me]*~ has a
negative charge of —0.47, suggesting the delocalization of the
negative charge of the imidazole-based dithiolene moiety.
Notably, the nonbonding S--H distances in 6 [2.694 A S(3)--
H(69) and 2.712 A S(4)---H(58)] are somewhat shorter than
those in 3° (2.902 and 3.004 A).

In the solid-state structure of 7 (Figure 3), the two
—(CH,),0— chain-anchored [NHSi®*?(S)]™ moieties reside

https://dx.doi.org/10.1021/jacs.0c08495
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on opposite sides of the imidazole plane due to the steric
repulsion between them. Consequently, there is a two-fold axis
bisecting the silicon—carbon double bond [S(1)=C(1)]. In
contrast to the nearly planar C,S, units in 6 and [7-Me]*~ model
(the S—C—C-S torsion angle = 2.74° for 6 and 3.46° for [7-
Me]>"), the C,S, unit in 7 has a 14.85° S—C—C—S torsion
angle, which may largely be attributed to the steric repulsion
between the bulky ligands and the packing effects. The bonding
parameters involving heteroatoms in 7 [dg_¢ in the C,S, unit =
1.734(4) A, dg_o = 1.640(3) A, dg_g = 2.0206(15) A] are
comparable to those in the simplified [7-Me]*>~ model [dg_c in
the C,S, unit = 1.756 A, dg;_o = 1.700 A, dg;,_s = 2.044 A].*
Furthermore, each terminal sulfur atom residing on the silicon
atoms of [7-Me]*>” has a negative charge of —0.97, which is
similar to that in [6-Me]>~ (—0.99).

The first stable naked dithiolene radical anion 3° has been
synthesized by reaction of the lithium dithiolene radical anion 2°
with an imidazolium chloride, [{(Me)CN(i-Pr)},CH]*[CI]".
Radical 3°, together with hexasulfide (4) and NHSi"?? (5),
affords a three-component-synergic THF ring-opening, render-
ing compounds 6 and 7. This three-component system may be
employed as a new platform to open other cyclic ether rings.
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