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Energy and rf cavity phase symmetry enforcement in multiturn energy
recovery linac models

R. Koscica ,* N. Banerjee, G. H. Hoffstaetter, W. Lou, and G. Premawardhana
CLASSE, Cornell University, Ithaca, New York 14853, USA

® (Received 3 April 2019; published 5 September 2019)

In a multipass energy recovery linac (ERL), each cavity must regain all energy expended from beam
acceleration during beam deceleration, and the beam should achieve specific energy targets during each
loop that returns it to the linac. For full energy recovery, and for every returning beam to meet loop energy
requirements, we must specify and maintain the phase and voltage of cavity fields in addition to selecting
adequate flight times. These parameters are found with a full scale numerical optimization program. If we
impose symmetry in time and energy during acceleration and deceleration, fewer parameters are needed,
simplifying the optimization. As an example, we present symmetric models of the Cornell BNL ERL Test
Accelerator (CBETA) with solutions that satisfy the optimization targets of loop energy and zero cavity
loading. An identical cavity design and nearly uniform linac layout make CBETA a potential candidate for

symmetric operation.
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I. INTRODUCTION

The energy recovery linac (ERL) was first proposed by
Tigner in 1965 as an economically efficient accelerator
capable of producing particle beams of high quality, high
current, and low cross-sectional area [1]. An ERL reclaims
energy from decelerating particle bunches to reduce the net
power consumption of the accelerating radio frequency (rf)
cavities. Return loops connect the exit end of the linac to
the entrance, allowing the beam to recirculate through
multiple accelerating passes of the linac. After the highest
energy target is achieved, the beam decelerates through
another series of linac encounters. In an ERL designed to
use common recovery transport, the beam traverses the
same physical linac and return loops during acceleration
and deceleration. The energy of a decelerating beam returns
to the rf cavities, which reuse this energy to accelerate
future particle beams [2]. The beam must satisfy two
conditions for full energy recovery: (i) Energy recovery.
During deceleration, each cavity should regain the same
amount of energy that it transferred to the beam during
acceleration. If satisfied, the power load on each cavity
from the beam will on average be zero in steady state.
(i1) Reasonable energy targets. If the beam is intended for
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experimental applications, it must achieve the desired
energy target. Additionally, the energy of the beam during
each return loop must satisfy design criteria for the
particular ERL construction. Due to the varying longi-
tudinal velocity (v) of the beam throughout the ERL, it is
challenging to find rf cavity phases that provide the desired
acceleration during all linac passes. Adjustment of loop
length alone may not guarantee the appropriate energy
recovery in all cavities. If all cavity phases are adjusted to
maximal energy gain for the highest energy particles, where
v~ ¢, then low-energy beams will experience 1f phases
slipped away from maximal energy gain, and synchrotron
radiation in the return loops can cause additional offsets in
beam time of flights [2]. The individual phases and voltage
settings of each rf cavity, as well as the time of flight
through the return loops, are the parameters for optimizing
cavity loads and the beam energies.

In this paper, we use a mixture of theory and numerical
optimization algorithms and present a time-symmetric
method of identifying loop lengths, rf voltage, and rf
phase settings. This symmetry reduces the number of fit
parameters required during optimization. During ERL
operation, it is possible for the symmetry to be intention-
ally broken due to energy extraction from use of the
highest energy beam; such an effect is not considered in
this study, which solely examines an ERL in steady state.
We use a model of the Cornell BNL ERL Test Accelerator
(CBETA), which is a common transport ERL with 4
physically distinct return loops and a linac that holds 6
evenly spaced accelerating cavities (Fig. 1).

CBETA brings a 6 MeV injected beam to 150 MeV over
4 accelerating passes and returns it to 6 MeV over 4
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FIG. 1. Layout of the CBETA ERL [3]. A 6 MeV beam is
generated in the injector, accelerates through a linac with six
7-cell cavities, circulates clockwise through the return loop, and
recirculates to cover a total of 4 accelerating and 4 decelerating
linac passes. The particle path concludes at the beam stop (top
right). Splitter and recombiner regions at either end of the linac
independently control the flight times of beams with the target
energies of the 4 loops.

subsequent decelerating passes [3]. The 150 MeV beam,
which travels around the 4th ERL loop, can be used as a

compact synchrotron radiation source or for internal target
experiments in nuclear and elementary particle physics [4].
Afterward, the high-energy beam is recirculated through
the full multi-turn path for deceleration.

Suppose that CBETA rf phases and loop lengths are set
to give full energy recovery and a maximum energy of
150 MeV for an ultrarelativistic beam (v = ¢), but we inject
a transversely on-axis 6 MeV electron beam with a 40 mA
current. In a simple thin lens cavity model (to be discussed
in more detail in the following sections), the six cavities
have positive loads of 46, 40, 38, 37, 38, and 39 kW.
However, only 2—4 kW are available for beam acceleration
in each cavity in the CBETA main linac [3]. In this
ultrarelativistic phasing scheme, the beam completes the
full ERL circulation with an energy of nearly 12 MeV. Over
the 8 passes, the beam also encounters phase slip from
the ultrarelativistic case, where the maximum phase slip
values at each cavity are 0.55, 0.37, 0.52, 0.37, 0.53, and
0.37 radians.

If the CBETA phases and loop lengths are set fora v = ¢
beam as previously described, but the 40 mA beam is
injected with a 12 MeV energy instead of 6 MeV, the six
cavities have positive loads of 28, 26, 26, 25, 25, and
26 kW. The maximum phase slip values for each cavity are
0.42, 0.28, 0.40, 0.28, 0.41, and 0.29 radians. From these
example loads and phase slips, as well as those of the
6 MeV case, we observe that energy recovery for a
nonultrarelativistic beam is not well achieved by using
v = ¢ phases, but the load and phase slip do decrease if a
more relativistic beam is used.

The beam power load can be reduced by optimizing the
phase and loop length settings for a 6 MeV injected beam.
In this study, we develop a symmetric acceleration system
with load and beam energy objectives. The system is

implemented in CBETA simulations to illustrate the use
of symmetry in enhancing the optimization process, and
the resulting objectives are calculated in ERL models of
increasing complexity. For CBETA, the maximum beam
energy is 150 MeV, and synchrotron radiation is not
relevant at this energy; we therefore do not consider energy
losses due to radiation. If higher energy ERLs are modeled,
synchrotron radiation would become relevant.

We also generalize our approach to ERLs where the
beam passes M times through a single linac of N cavities.
Each injected particle bunch results in M — 1 beams
looping back to the linac at different points in time. In a
common transport ERL, the beam that has been accelerated
by m < % linac passes has approximately the same energy
as the beam that is yet to be decelerated m times; these two
beams then traverse the same beam pipe, and one speaks of
a %-turn ERL.

If large energy aperture optics are used, all M — 1
returned beams can travel in one vacuum pipe. Such an
optics configuration can be realized with a fixed field
alternating-gradient (FFA) design, as in CBETA [3].
Assuming the beam energy stays constant during the return
loop, then the energy changes occur a total of M - N times
over all cavity encounters.

If the profile of energy gain and loss is symmetric
through the entire ERL, then we call this a symmetric ERL.
With this symmetry, the energy that the beam gains when it
traverses a cavity for the ith time is the same as the energy
that the beam loses during the (MN — i + 1)th time.

Using these notations, CBETA is a 4-turn ERL with
N = 6 and M = 8. Because of its FFA optics, CBETA only
has one vacuum pipe for all 7 returned beams. Additionally,
by adjusting parameters appropriately, it can be operated as
a symmetric ERL.

II. OPTIMIZATION SYSTEM PARAMETERS

Suppose an %—turn, single-linac ERL has N cavities and
M linac passes. To indicate individual loops and cavities,
we use indices m and n such that 1 <m <M and
1<n<N.

A. Objectives

During ERL operation, beam timing must ensure that
an appropriate amount of energy is transferred during each
and every cavity passage. Optimal energy recovery requires
there to be a minimal load on all rf cavities:

M
Eload,n = Z AE,, - 0eV (1)

m=1
where AFE,,, is the energy gain in cavity n during pass m.
When optimizing an ERL, we use Ej 4, as N objective
functions that are to be minimized. For the beam to follow
the design orbit, the beam energy Ejop ,, at the end of the
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mth linac pass must be close to the design energy, Eqy .,
to be compatible with the magnet settings,

m N
Eloop,m = Eloop,O + Z Z AEkn - Edes,m (2)
k=1 n=1

where Ejypo is the beam energy at initial injection.
An optimization then minimizes the objective functions
|Eloop,m - Edes,m| for1<m< (M - 1)

In a perfect ERL where E,,4 , = O for all n, Eq. (1) leads
0 Ejgop.st = Eloopo- Therefore, the objective function for
m = M 1is not used, and we have N + M — 1 objectives.

A symmetric ERL has Ey,, = Eges p—m- If the oper-
ation of the cavities guarantees a symmetric energy profile,
then also Ejyopm = Eioopm—m during each optimization
step, and the beam loading is symmetric as well:
Eroadn = Eioad N—n+1- If N is odd, then the central cavity
in the linac already has zero load when ERL symmetry
exists, and the central load ceases to be a useful objective.
Using the Gauss bracket to designate the floor of a real
number, we then obtain only [5] + % objectives. If an ERL
has return loops that can be designed or adjusted to match
an expected beam energy, one can further reduce the
number of objectives by not requiring specific target
energies in the intermediate loops, and only specifying
the highest energy of loop % In this case, the loop magnet
settings would need to be adjusted according to the post-
optimization energies of the intermediate loops. The system
then reduces to [§] + 1 objective functions.

For CBETA, we therefore generally have 13 objectives.
As a symmetric ERL, we have 7 objectives. If intermediate
energies are not used as targets, we only have to meet 4
objectives. In the latter scenario, appropriate choices of
optimization input parameters will increase the likelihood
that the resulting intermediate loop energies fall within the
design capabilities of the CBETA splitter and recombiner
sections.

B. Degrees of freedom

To identify d.o.f. that will optimize load and loop energy
objectives, we need independent parameters that affect
AE,,,. In general, we can control the following parameters
that affect cavity energy gain: (i) Initial rf phase of the nth
cavity, ¢ ,. (i) Voltage of the nth cavity, V,,. (iii) Travel
time through the mth loop, f1p - In total, these provide
2N+ M -1 d.o.f.

In a symmetric ERL, the last [%] cavities are operated
symmetrically to the first [%], and therefore do not provide
phase or voltage d.o.f. If N is odd, then the phase of the
central cavity must also be chosen such that it operates
symmetrically to itself; however, the voltage of this cavity
is still free. Together, the [NT“] voltages and [%] phases
yield N d.o.f. from the cavities. The energy symmetry also

makes the (M — m)th time of flight equal to the mth one.
There are then N + % d.o.f.

In the case of CBETA, we generally find 19 d.o.f. With
fully symmetric operation, we have 10 d.o.f.

C. Efficient optimization

In general, we can make the optimization more efficient
by having a small number of objectives and equally few
d.o.f. In each ERL system, there are more d.o.f than
objectives. To speed up the optimization process, one
can decrease the number of d.o.f. For example, one can
set all cavity voltages to the same value. In a general ERL,
there are N more d.o.f. than constraints; we can therefore
make the N voltages constant to achieve an optimization
system with an equal number of objectives and d.o.f.

A symmetric ERL has [%] voltage d.o.f., and these can
also be set to a constant value. If the voltage of one cavity
must be reduced for operational reasons, then that of the
symmetric cavity must be reduced as well, and the voltages
of the other cavities should be increased. In a reduced ERL
with only one loop energy (Ejgop ) to be optimized, we can
additionally set the return times of the intermediate loops to
fixed values. This removes %—1 d.o.f. The remaining
phases and the peak-energy return time lead to an equal
number of d.o.f. and objectives, [%] + 1, as found in Table I.

In CBETA, an optimization that only considers the
highest loop energy would then use 4 d.o.f: 3 cavity phases
and 1 time of flight for the %th loop. This minimal reduced
system for CBETA is found in the lower half of Table I.

During optimization, a solution generally cannot be
found if there are fewer d.o.f. than objective functions.
For example, the d.o.f. for the symmetric CBETA system

TABLEI Objectives and degrees of freedom (d.o.f.) for: a fully
independent ERL, one with symmetric operation, and a reduced
symmetric system where only the highest loop energy, Eloop%, is
used as an objective function. Also shown are decreased numbers
of d.o.f. when only voltage (V,,), or both voltage and intermediate
loop flight times (700, ,24), are set at constant values. Crossed out

options are unhelpful for optimization.

General

Single-Linac ERL Full System  Symmetric =~ Reduced
Objectives N+M-1 5 +4 A +1
DoF: all ON +M — 1 N+% NJF%
DoF: fixed V, N+M-1 H+4 N +4
DoF: fixed V,,, tip0p N+1 B+1 N +1
CBETA

Objectives 13 7 4
DoF: all 19 10 10
DoF: fixed V, 13 7 7
DoF: fixed V,, tiop 10 4 4
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should not be minimized with both constant V, and
constant £, 4, because this will result in using only

4 d.o.f. to fulfill 7 objectives (Table I, bottom row).

III. ERL SYMMETRY CONDITIONS

A symmetric ERL has a significantly reduced number of
objective functions and d.o.f. compared to a nonsymmetric
ERL, and it can therefore be optimized much more easily.
This is true for accelerator simulations as well as for
experimentally finding the desired accelerator settings. In
this section, we discuss operation conditions for a single-
linac, common transport system that create a symmetric
ERL. This is achieved most easily if the cavities are
arranged with mirror symmetry about the center of the
linac cryomodule. This means that the distance from the
nth cavity to the next is the same as the distance between
the N — nth cavity and its next neighbor. There will also be
cavity phases where the standing waves in the nth cavity
have a field that is the mirror image of the (N —n + 1)th
cavity field. Mirror symmetry in the fields always exists if
the geometry of the nth cavity is the mirror image of that of
the (N —n + 1)th one.

Most ERLs have linacs constructed from regularly
spaced cavities; if these ERLs are also single-linac and
use common recovery transport, then they are already
nearly symmetric physical systems, even if symmetry is
not an explicit design choice. In CBETA, the cavities are
designed identically, but they are installed such that all are
facing the same direction: an input coupler is located on
the downstream end of each cavity. However, because
the cavity cells are constructed in a symmetric way, and the
field from the input coupler is small compared to the
main cavity field, these cavities are symmetric to a
sufficient degree.

Mirror symmetry in the cavities, as well as over the
distance between cavities, can result in a symmetric ERL
if we choose the particle timing and cavity phases such that
following a particle forward from injection, or tracking it
backward in time from the beam stop, both result in exactly
the same electric fields seen by the particle. If these con-
ditions are met, the acceleration and deceleration profiles of
the forward and backward-traveling particle are then iden-
tical, and we have a symmetric ERL, i.e., the beam decel-
erates with the same energy steps as during acceleration.

To produce a symmetric ERL, we need a way to set
cavity phases such that accelerating and decelerating
cavities can be symmetric. In the following discussion,
we first show that symmetry can be established in a linear
sequence of two cavities. We then transfer this symmetry to
the closest equivalent single-linac ERL: a 2-pass, 1-cavity
system, where the same cavity is traversed twice. The ERL
is then expanded to an arbitrary even number of M passes
and 1 cavity. Finally, we combine the findings of the linear
and 1-cavity systems to arrive at the symmetry require-
ments for a general M-pass, N-cavity single-linac ERL.

A. Linear sequence: 2 cavities

Consider a straight linac with two independent cavities
(A, B) of frequency w, arranged in mirror symmetry about
their center. For A to add as much energy as B removes,
seek the input phase ¢;, z. The field of a standing wave in
cavity A depends on longitudinal position s, time ¢, and
input phase. Between entrance s = 0 and exit s = L of A,
the field observed by the particle is,

Eals 1) = Epo(s) sinfo(r = tin a) + Pinals (3)

where the particle enters A’s field at the input time ¢ = £, 4.
The input phase ¢;, 4 is independent of particle entrance
energy, but it can be expressed in an energy-dependent
form for particle speed v < c,

Pina = Phos + i = P4 + 9" (4)

where the relative input phase, ¢ , = 0, is the parameter

controlled during ERL operation. The phase offset qAS};
enables the particle with speed » to experience maximum
acceleration at an on-crest phase of ¢ , = 0. In general,
P4 # §y because v, # vp.

By convention, the spatial 1f field dependence E4¢(s) is
chosen to start with a positive value in the first cell. Due
to the symmetry or antisymmetry of this spatial function,
Epo(L — 5) = £E4(s), where the sign (+) is for odd and
(—) is for even numbers of cells per cavity.

The exit of B is a distance L, from the entrance of A, and
& describes the net field that the design particle experiences
from both A and B. The particle reaches s at time #(s).
Opposite fields in A and B therefore occur if,

E(Ly—s)==E(s) (5a)
EgIL — s, t(Ly — 5)] = =E4s, t(s)]. (5b)

At these positions, the time spent in B or remaining in A
must also be equivalent,

t(Ly—5) = ting = Ta = [t(s) = tinal, (6)

where 7', is the full duration that the particle spends
in A. We then equate the mirror symmetric field,
Ep[L —s,t(L; — s5)], with the cavity A field in Eq. (3)
using the spatial relation from Eq. (5b) and time from
Eq. (6),

EplL —s,t(Ly = s)]
= £E40(s) sin{@[T 4 — 1(5) + tin Al + Pin s}
= =Ex0(s) sin{@[t(s) = tina] + Pina}- (7)
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Equation (7) leads to ¢;, 5 for either odd or even-cell
cavities, using @y s = Pina + 0T 4,

Ding = —Pous = —Pina — 0T 4

¢in,B =TT - ¢out,A =7 - ¢in,A —wTy.

[odd]
[even]  (8)

With this relation, traveling backward in cavity B yields the
same time-dependent fields as traveling forward in A, and B
removes the same amount of energy that A adds.

Suppose that A and B are pillbox resonators operating in
the fundamental mode with # = 1, where one pillbox is
traversed in half an oscillation by a particle with » = c. The
energy gain of an ultrarelativistic particle is,

AE, =gV, cos(q’rfn‘A), 9)

where ¢ is the charge and V4 = V is cavity voltage [5].

If A and B are each series of adjacent pillboxes in a
multicell z-mode cavity, then the ultrarelativistic particle
crosses cavity A with a time of flight T4, = n 7, where
N 18 the odd or even number of cells per cavity. To find
the energy change from B, apply the Eq. (8) symmetry
conditions to the input phase of B,

AEp =qVp COS(_¢gu1,A)
= gV cos(wTy + ¢, )
= —qV,cos(¢f, 4) = —AE,
AEp = gqVgcos(m — ¢3ut,A)

[odd]

[even]
=gV, cos(m—wTy — i‘m)

= —qVcos(¢, 1) = —AE,.

This verifies the Eq. (8) symmetry conditions: B removes as
much energy as A adds.

We now search for a way to establish similar symmetry
in an ERL.

B. ERL: 1 cavity, 2 passes

Consider an ERL with the minimum number of cavities
and linac passes, N =1 and M =2. A particle will
encounter the cavity twice: first when accelerating (encoun-
ter 1), and second when decelerating (encounter 2). Unlike
in the case of A and B, here ¢;, , is affected by the original
cavity phase choice,

Ginp = Pin1 + O(T1 + tpsir)
= ¢out.1 + Wi (10)

where 7, is the amount of time spent over the return loop
between the first encounter’s exit and the second’s entrance.
If the cavity is symmetrically built and the proper 7, is
found to satisfy the linear sequence symmetry condition

from Eq. (8), the 1-cavity ERL will become symmetric.
Substitute this condition into Eq. (10) and set ¢b;, p = ¢ 2,

Otygir = =2ou 1 = =2(Pin 1 +@T)
a)tpﬁil' =n- 2¢0ut1 =rn- 2(¢in.1 +oT )

[odd]
[even] (11)

This is the necessary f,;; for symmetry.

C. ERL: 1 cavity, M passes

We now extend the symmetry to an ERL with one cavity,
but M > 2 passes. Let m represent the pass index, where
1 <m < M. The mth encounter of the cavity must hold a
symmetric phase relation with the (M — m + 1)th encoun-
ter, in the manner of Eq. (8).

In the form of Eq. (11), 7y, designates the time spent
on the return loop from the mth encounter exit to the
(M 4 1 — m)th entrance. For each m, this time between
pairs must be correctly related to the phase of the mth
encounter by Eq. (11). This is done by adjusting the time
spent in the mth return loop, fi4., ,,» between the exit of the
m™ encounter and the entrance of the (m + 1)th encounter.

The time between cavity pairs, 7, ,,, includes the times
T; spent within the cavity of encounter j, for j = (m + 1)
through (M — m), as well as the in-between f1o0p ;. times of
flight, where k = m through (M — m). Therefore,

NS

—1

Lpairm = tloop,% +2 (tloop,k + T(k+1))v (12)

k=m
where T = T p—iq1) and fioop k = Foop,(M—k) due to sym-
metry. The intermediate loop times become,

tloop,m = O-S(Ipair,m - tpair,(m+l)) - T(er]), (13)

for m <. The highest energy loop has Noop . = Lpair .-
With the full 7, ,, expansion from Eq. (11), this leads to
the loop times,

Wlhoop.m = ¢out.(m+l) - ¢out,m - a)T(erl)
= ¢in.(m+l) - ¢0ut,m- (14)

This can also be expressed in relative phases, ¢, . =
Ginj — (ﬁj for any encounter j. In the form of Eq. (4), if
the particle is ultrarelativistic, then all phase offsets are
identically q@f = ¢°. Then, fioop,m from Eq. (14) can be

written explicitly,

wtloop,m = ¢icn‘(m+1) - ¢(C)ut.m' (15)

The phase difference simply accumulates during the travel
time if the reference phases ¢j do not change between
cavity encounters.
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D. ERL: N cavities, M passes

Consider a large ERL with N cavities and M passes. As
in the 1-cavity ERL, ¢y, ,,,,, of all cavity encounters mn after
the first pass are dependent on the initial encounter phase,
@in.1n> where again 1 <m < M and 1 < n < N. Drift pipes
between cavities mn and m(n + 1) increase particle times
by Zgsifi,mn» While return loops have time of flight 71, ,,,- The
particle is injected into the ERL at a time 7 = 0, and it
enters cavity n on pass m at the input time #;, ;-

Let #,,, represent the full time that a beam would take
to travel through the symmetric ERL. For brevity, n’ =
N—-n+1and m' =M —m+ 1 will designate the cavity
and pass indices for the cavity encounter that is symmetric
to the one with n and m, where we let n', m’ refer to
the earlier encounter and n, m to the later encounter, i.e.,
m > m'. As in the example of two successive cavities, the
voltage of n and »n’ must satisfy V, =V, to permit
mirrored cavity interactions during symmetric acceleration
and deceleration. If N is odd, then n = n’ for the central
cavity, but this case can be treated identically to all other
paired cavities.

If @iy mn is known, use it to define the effective initial
cavity phase. Let ¢, be the phase seen by a particle that
enters cavity n at time ¢ = 0,

¢0,n = ¢in,mn — Olin

= ¢out,mn — Oyt mn> (16)

where the beam exits the cavity at time g, =
tinmn + Tmn- The phase of the nth cavity must satisfy
Eq. (8) to reverse the primed cavity acceleration. Substitute
Pinmn and @oye vy from Eq. (16) into the symmetry
conditions in Eq. (8) to solve for the unknown ¢, in
terms of time and known, primed quantities,

Ginmn = ~Poutm'n [odd]
Pon + Otimn = —(Pow + Otowtn)
Pon = =Pow = O(towm'n + tinmn)
Pon =1 = o — O(Loutm'n’ + tinmn)- [even]
(17)

When the ERL is symmetric, any point in time from Fig. 2
can be found by stepping forward from r = 0 or backwards
from t = t,.,. Cavity entrance times follow this principle,

- tout,m’n" (18)

tin,mn = Tiotal

If 1 18 taken as a known parameter, we can relate the
primed and unprimed initial phases. Substituting Eq. (18)
into Eq. (17), the ¢, constraints are,

lotal
- -
g . . 1
fin.12 Pout12 = Pin21
— =t
1=0 in 12 I=lout,12 ™ 1= tin21
u
VPV
u
n
fio0p, 1 Larift,21
C1
n
- U
n
n
n
|« J = J
Bl Symmetry Axis T
Pass 1 . Pass 2
Acceleration . Deceleration

FIG. 2. Cavity encounter sequence for a 2-pass ERL with
N = 2 physical cavities, denoted C1 and C2, and cavity phase
inputs ¢, ,,, and outputs @y, associated with corresponding
input/output times ¢. The total time spent in the ERL, ., is
represented by the length of the horizontal line. This schematic
can be extended to general multipass ERLs by inserting addi-
tional cavities or return loops on both sides of the dotted
symmetry axis.

¢0,n = _¢0,n

¢O.n == ¢0,n’ — Wl

[odd]
[even| (19)

= Wl

To ensure that dependent phases take the proper values in
passes m > 1, the parameter f,,, must accurately describe
the total time that a beam will spend in the ERL. Since the
central loop crosses the symmetry axis of the unwrapped
ERL, it is easiest to get a correct ., by setting the length
of loop ¥,

tloop,% = lotal — 2l‘out,%N’ (20)

where 7,y is the full duration that the beam spends

accelerating, from particle injection to exiting the last
cavity of the highest-energy pass.
When adjusting the cavities of a physical ERL, it is
typical to only have control over the velocity-dependent
in.1, relative input phases during the first pass. Symmetry
conditions for direct ERL control require rearranging
Eq. (19) to solve for the first-pass ¢? , relative phases,

in,1n

[odd]
[even] (21)

v _ AU
inln in,1n ¢ln ¢1n — Wl

111 n— - ¢1n 1n' ¢ln ¢1

— wf total *

If the particle is ultrarelativistic, then paired cavities n and

n’ have the same phase offset (fﬁ;/ in all passes, and Eq. (21)
simplifies,

v —

in,ln — ¢m 1n’ 2¢
m In =7 ¢m 1n 24);!/

[odd]
[even]  (22)

— i total

— Wl
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For complete ERL symmetry, all ¢, with n > n' must
follow Eq. (19). The % flight time must also follow Eq. (20).
Intermediate return loops may then be set at any reasonable
time of flight without disrupting this symmetry.

IV. CAVITY MODELS FOR ERL USE

The symmetry conditions and objectives are tested in ERL
simulations that use one of the following cavity representa-
tions to calculate particle energy and time of flight inter-
actions. Each model is an approximation the real CBETA
cavities, which have 7 cells with an elliptical geometry [3].
(1) Thin lens cavities (TL). Cavities are infinitely thin delta-
function energy kicks. (ii) Ultrarelativistic cavities (UR).
Particles are treated with ultrarelativistic flight time and
energy change formulas inside multicell pillbox cavities.
(iii) Finite time-tracked cavities (FT). Cavities are single-
cell pillboxes where nonultrarelativistic particle behavior
is considered. (iv) Runge Kutta cavities (RK).
Nonultrarelativistic particle time and energy effects are
calculated via integration through multicell pillbox cavity
fields. All models track particle time and energy within
cavities with ideal pillbox cell shapes. The first three variants
are tested in custom Mathematica programs [6]. The
latter, which is used as the accuracy reference for the other
three, is modeled in the Bmad accelerator toolkit [7]. Each
model is compatible with the symmetric and reduced
symmetric ERL objective systems from Table L.

A. Thin lens (TL) cavity model

As a first-order approximation, rf cavities can be
modeled as a delta-function acceleration over infinitesimal
time and distance. Each cavity imparts an instantaneous
energy kick consistent with an on-axis beam in an infinitely
thin, pillbox-shaped cavity,

AEr = gV cos(¢f)), (23)

where the relative input phase, ¢, is used in the
same form as Eq. (9) due to the negligible cavity transit
time. The voltage V describes the maximum possible
energy gain of a g-charged particle, at the relative input
phase ¢{ = 0. Thin lenses have the position and
entrance time of the midpoint of a typical finite-length
cavity. Since these cavities have zero length, and
effectively zero cells, symmetry in time must be
determined using the phase constraint from Eq. (8)
for even-cell cavities.

Drift pipes affect the particle time according to particle

velocity (¢4 = %). The pipes on either side of a thin lens
are extended by a distance that compensates for the missing

length of the thin cavity, thereby keeping the same overall
linac dimensions as a more realistic system.

B. Ultrarelativistic (UR) finite cavity model

The thin lens model neglects the length of a physical
cavity. For a better approximation of ERL interaction, we
modify the TL equation to model beam energy and time
behavior as ultrarelativistic within a cavity of nonzero
length. Outside of a cavity, the beam still has typical
energy-dependent velocity. For example, if a particle of
charge ¢ travels through a 7-cell z-mode cavity (n. = 7)
of length L = (neyzc)/w and voltage V, then time and
energy are modeled as,

AEyR = qV cos(¢f,)

L _ Neen?

TR =—= 24
UR = (24)

w

This energy change and time of flight across the cavity are
only accurate for a particle with speed c. The general
energy gain of any traveling particle with original energy
E;, would follow a more complex relation, and this
relationship is further explored the FT model.

C. Finite time-tracked (FT) cavity model

The UR model assumes that the electron beam travels at
the speed of light, which is not true for a typical MeV-order
ERL injection energy. We take this into account by
approximating that the particle spends the first half of
the cavity length with the initial velocity and half the
distance with its final velocity:

TFT:%<L+ 1), (25)

in Vout

with velocity calculated as,

LI <@>2 (26)

we then find the momentum,
q
Pout = Pin + gEin [cos(@Tgr + ¢in) — cos(in)].  (27)

Inserting Ty into Eq. (27) leads to a transcendental equation
for p,, that can be solved numerically, from which the final

energy is obtained by E,, = c+/(mc)? + p2,. The energy
difference is then,

AEF'I‘ =cC \/ (mc)2 + pgut - Einﬂ (28)

where E;, is the original particle energy when it enters the
cavity.
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D. Runge Kutta (RK) cavities

In the Bmad accelerator toolkit [7], cavities can be
tracked with the Runge Kutta 4 algorithm. Particle energy
and position are found via integration through the electric
and magnetic fields of the cavity. If the particle travels
through the exact center of the cavity (transversely on-
axis), then it will only experience a longitudinal electric
field, &;. If the cavity is an ideal pillbox, and the Bmad
auto-phase calculation is deactivated (direct ¢;, control),
then Bmad models the longitudinal s component of stand-
ing wave fields as,

£, = 2Lsin(ks) sinfo(r ) + bl (29
where the particle encounters voltage V over the pillbox
length L = Z< for rf frequency w, the speed of light is ¢, and
the wave vector is k = £ [7].

Note that for a pillbox run in the fundamental harmonic,
k = 0. The field in Eq. (29) is effectively the first harmonic
of a pillbox cavity. Since first harmonic fields are anti-
symmetric about the center of a cell, but CBETA cavities
operated in the fundamental harmonic should be symmetric
about the cell center, the typical first harmonic spatial and
time dependencies are shifted by 7 to create a center-
symmetric field pattern. This modified first harmonic field
models the physical field in elliptical cavities slightly better
than the fundamental pillbox mode would.

Cavities with multiple cells are represented as series of
consecutive pillboxes stacked end-to-end. The particle
enters the first cell with input phase ¢;,; the output phase
of the first cell becomes the input phase for the second cell,
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FIG. 3.

the second output feeds into the third input, and so forth.
This setup approximates the effect of a z-mode cavity,
although it does not perfectly account for nonultrarelativ-
istic time dependence between different cells.

When modeling symmetry in CBETA with RK cavities,
an on-axis particle is tracked through a 7-cell RK pillbox
using a 1D Runge Kutta algorithm.

E. Cavity model accuracy

Physical CBETA cavities have 7 cells with an elliptical
geometry. For the purposes of this study, we will approxi-
mate these as 7-cell pillbox stacks. To determine how well
the mathematical TL, UR, and FT approximations model a
real 7-cell pillbox system, we compare them to the most
rigorous model: a RK cavity. The RK model is the most
realistic in this regard because it directly integrates the
particle through the electric fields, while the other models
use approximations to determine the travel time and particle
energy profiles.

For this comparison, we introduce the FT7 model, which
represents a particle moving through 7 identical FT pillbox
cavity cells. This is an extension of the FT model, which in
its original form describes a single pillbox. The FT7
behavior is included as a demonstration of the difference
in accuracy between 1-cell or 7-cell time and energy effects,
but FT7 is not used in any subsequent full ERL models.

In Fig. 3, an on-axis particle with an energy of 6 MeV or
12 MeV at the cavity entrance is tracked through TL, UR,
FT, FT7, and RK models. Cavities are designed with the
CBETA frequency w = (27 - 1.3 GHz), and one cell has
length Z¢. Cavities with an active region shorter than 7 cells,
such as the zero-length TL model or the 1-cell FT model,
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Performance of TL, UR, FT, and FT7 cavity models with respect to a RK reference cavity at an incident beam energy of 6 MeV

(solid lines) or 12 MeV (dashed lines) and maximum energy gain of 6 MeV. For cavities with length shorter than 7 cells (TL and FT),
drift pipes have been added to either side to compensate for the length difference between the models.
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are extended to a comparable 7-cell length by adding
symmetric drift pipe extensions to either side of the active
cavity. Time of flight is then measured froms = Oto s = L,
where L = 72¢ s the length of a 7-cell cavity. In all models,
phase is defined as the ¢;, at the beginning of the cavity
itself, not the drift pipe extensions.

The TL and UR models have an identical, substantial
departure from RK energy gain, with errors on the order of
100 keV. The UR time of flight is also the least accurate,
due to its assumption of particle v = ¢ within the entire
cavity; the TL and FT have near-identical time of flight
behavior because the extended drift pipes on either side of
the TL cavity create a similar time-average effect as the FT
time-average calculation in Eq. (25). In all models, the
more relativistic 12 MeV particle experiences less depar-
ture from the RK reference than the 6 MeV; the cavity
performances converge for particles of higher energy.

Of the models considered, FT7 is most accurate to the
RK results, and therefore the closest to expected physical
cavity performance. If accuracy to physical systems is the
primary concern, then the FT7 should be used; however, if
simulation speed is also important, we should consider a
trade-off between the desired criteria. The FI7 model
requires the simulator to numerically solve 7 sets of
Egs. (25) and (28), which results in a more time-
consumptive calculation than the original FT model.
This is not ideal, particularly when a numerical optimiza-
tion may require thousands of iterations to converge on a
solution with the desired objective precision.

For our purposes, the differences in time or energy
accuracy between the FT and FT7 models are negligible
(Fig. 3) compared to the increase in simulation speed. In the
interests of running a large number of simulations within a
reasonable program run-time, the full ERL models in this
study consider only the TL, UR, FT, and RK cavities.

V. CBETA MODEL SOLUTIONS

The TL, UR, and FT models are simulated with
Mathematica scripts, while RK uses the Bmad simulator.
Each model ERL is constructed with CBETA-specific
parameters: M = 8 passes, N = 6 cavities, and the entran-
ces of neighboring cavities are placed 1.41 m apart. All
non-cavity components in the ERL are represented by drift
pipes of corresponding lengths. An ideal, on-axis 6 MeV
electron beam with zero transverse offset, longitudinal
bunch length, or energy spread is injected and reaches a
target energy of 150 MeV after 4 accelerating passes. After
traveling through the highest energy return loop, the beam
decelerates to 6 MeV over the remaining passes. The model
cavities use a 1.3 GHz first-harmonic frequency that
corresponds with the CBETA design.

The ERL model is made symmetric using the phase
conditions from Eqgs. (19) and (20). Inactive input param-
eters, i.e., the intermediate loop times of flight and all cavity
voltages, are manually set at predetermined values to

provide near-maximum acceleration. Intermediate loop
times are slightly more than 343 rf periods long, with
variations depending on the active length of the cavity
model. Voltages are set to achieve an average energy gain
of approximately 6 MeV per cavity. For CBETA, pre-
optimization settings are chosen such that beam energies
fall within £1 MeV of the four return loop design energies
(42, 78, 114, and 150 MeV).

After preoptimization settings are found, the d.o.f. are
varied to optimally satisfy the objective functions from
Egs. (1) and (2). Initial phases of cavities 1-3 and the
anticipated total time are varied until the objectives, loop 4
energy and cavity 1-3 load, fall within machine precision of
their design targets (Ejop4 — 150 MeV, Ejgyq, — 0). This
forms a 4-by-4 reduced optimization system, as shown in
Table I. The system is numerically solved by both
Mathematica and Bmad. The former uses Newton’s
method, while the latter uses Levenberg-Marquardt differ-
ential optimization [8].

During optimization, it is important to check that the
optimizer does not select an unphysical time. For example,
tiotal < D (toop,m) Would indicate a negative amount of
time spent in the Zth return loop. If the cavities have a
2r-periodic phase dependence, an unphysical optimized
time can be corrected by adding integer multiples of 2“—’)’ until
a positive central loop time of flight is found.

Optimized values of objective functions, defined in
Egs. (1) and (2) as the differences between modeled load
or energy and respective targets, are provided for each
model in Table II. The d.o.f. and fixed input values are also
present.

The optimal ¢y and f,,, settings for UR, FT, and RK
models correspond well, but the optimized TL phase
solutions deviate by around 10-15° by model. This may
be because ¢y, for TL cavities is measured at the start of the
thin lens itself, which is located in the center of a nonzero-
length UR, FT, or RK cavity. Interestingly, the UR, FT, and
RK solutions agree to within 2° for the first two cavity
phases, but they differ more significantly in the third phase.

The slight difference in intermediate o, return time of
flights may also be related to this phenomenon, as the
values were chosen for each model individually to achieve
pre-optimized beam energies close to the design energies.

The three Mathematica models arrive at approximately
machine precision on cavity load and central loop energy
objectives, as defined in Egs. (1) and (2). For comparison,
the typical beam energy falls on the order of 10-100 MeV,
and the objective offsets are on the order of 10-100 ueV.

The 2-3 order of magnitude lower precision on the RK
solution is a consequence of the Bmad numerical optimi-
zation algorithm used; the convergence of the Imdif
Bmad optimizer on a solution depend highly on the initial
parameter values, objective weights, and step size chosen
for optimization. The larger values of the load 4-6 objec-
tives in the RK model, which were not explicitly used in
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TABLE II. Peak loop energy and cavity load objectives after
optimization, resulting beam energy during each loop, and the
associated best input settings (phase, total time, loop time of
flights, and cavity voltage) after numerical optimization of ¢,
and -

Objective (ueV) TL UR FT RK
AEigop 4 37.1039 —43.8690 —72.3600 851488
Eload.1 —28.7071  5.3048 20.7573  —267.860
Ejpaa2 -3.9563  7.3761 20.6791 —=31.1397
Ejpaas —1.2033  28.7816  30.5586 —84.9664
Ejoaaa 0.7078  —28.5134 -30.8864 64570.0
E\aas 2.5891 -7.2699 -21.6011 67490.5
Eloads 26.5380 —5.6755 —21.3590 76797.8

Energy (MeV)

Ejoop.1 41.9300  42.0047  42.0157  42.1801
Ejoop2 77.9808  78.0055  78.0167  78.2023
Ejoop3 114.039  114.004 114011  114.226
Eloopa 150.000  150.000  150.000  150.000
Ejoops 114.039  114.004 114011  114.226
Eloops 77.9808  78.0055  78.0167  78.2023
Ejoop7 41.9299  42.0047 42.0157  42.1801
Ejoops 6.0000  6.0000  6.0000  6.0000

Input

b1 (©) —-16.5389  0.0087 1.2841  0.3851

$oa ) —47.6317 —40.4940 —39.6981 —41.5841
b3 (©) —87.7461 —72.3757 -78.0626 —83.5456
foral (1S) 2.15392 215430 2.15431 2.15429
Toop1 (US) 0.26418  0.26456  0.26456  0.26456
foop2 (15 0.26518  0.26456  0.26456  0.26455
foop.s (1S) 0.26418  0.26456  0.26456  0.26456
qV, (MeV) 6.0500  6.0500  6.0500  6.0500

optimization, appear because the RK model setup only
achieves about 0.1 eV precision between symmetric
accelerating and decelerating energies, as opposed to the
ueV-scale energy symmetry established in the three
Mathematica models. Nevertheless, in this solution, the
RK objective function most poorly satisfied (peak energy,
AEjgp4) is less than 1 eV away from the 150 MeV target.

With the introduction of ERL symmetry in the four
models of increasingly complex cavities, the necessary
optimization system is reduced to a 4-by-4 set of objective
functions and d.o.f. Although only half of the cavity loads
were used in optimization, the solutions from Table II
indicate that symmetry does result in correspondence
between the optimized loads 1-3 and the non-optimized
values of cavities 4-6. These solutions therefore show the
practical use of ERL symmetry to satisfy objective functions.

A. Solution sensitivity

Once optimal solutions are identified, we introduce
errors to the input parameters to determine the accuracy
required for successful ERL operation. The inputs to be

varied include all N phases, N voltages, and % loop
lengths in the system; output functions are the objectives
of maximum beam energy and all N cavity loads. For
small input permutations about the Table II solutions, the
objective function response is approximately linear;
we can therefore speak of an approximately constant
slope (sensitivity) of each objective to a single degree of
freedom (d.o.f.).

Objectives must be kept within a certain tolerable
range around the ideal values (zero load, 150 MeV peak
energy) for the ERL to operate in an acceptable manner.
If the tolerable range is small enough with respect to the
curvature of the objective function’s dependence on the
inputs, then the linear response model holds. Assume that
all inputs except one, denoted j, are set to the optimized
values from Table II. We denote each objective function as
f(j) for a particular objective f, such that f(j) = Ejpaq.,(J)
or f(j)= AEIOOP%( J)- The input j is therefore one of

2N + ¥ total input parameters, and the function f (/) is one
of the N + 1 objectives in consideration.

The objective tolerance, f, can be divided by that same
objective’s sensitivity to error in j, d%. f(j), to find the
maximum error Aj, that the input j can have before f(;)
exceeds tolerance. The smallest value in the set of {Aj},
for all functions f(j), therefore satisfies all f tolerances.

Ay = fo L%f(j)] h
Aj = min({Aj;}). (30)

Input j can be safely varied from its optimized solution
until the magnitude of objective function f(j) reaches its
tolerance limit.

The CBETA f tolerances are chosen as a maximum
load of 50 keV per cavity (2 kW for a 40 mA injection
current), and 150 keV offset from peak beam energy. If the
tolerances were large enough to give nonlinear objective
function responses, then a more detailed analysis may be
required; however, our 50 keV and 150 keV tolerances are
sufficiently small that a linear response model of objective
dependencies is valid. We then use Eq. (30) to determine
the Aj of each input when only that input is varied from the
ideal solution.

In Table III, sensitivity is inversely proportional to the
tolerable error range of a given parameter. Voltage sensi-
tivity appears similar across all models. The RK model
phases are consistently the most sensitive to error, while the
TL and UR phase sensitivities vary from high (£1.7°) to
low (+10°) based on cavity number. In the TL model, the
¢o.1 input may have the highest sensitivity because TL
cavities are separated by the longest intercavity drifts of all
models (1.41 m), and the first acceleration in each pass has
the largest impact on these drift times. In contrast, the UR
model has shorter drifts (0.60 m) with a fixed time interval
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TABLE III.  Error ranges where all objectives, f(j), are within
tolerance when only the indicated j parameter is imperfect.
Ranges represent £Aj offsets from ideal settings, as calculated
from Eq. (30). Injected particle energy is 6 MeV in all cases
except the FT;, column, which represents a FT model with an
injector energy of 12 MeV instead of 6 MeV.

Phase (°) TL UR FT FT), RK
o1 1.7339  10.0944 3.7625 4.6298 0.4957
o2 8.8545 7.0988 3.3278 3.4564 0.4776
o3 7.3789 1.6782 22341 2.0091 0.4725
boa 7.3845 1.6852 2.2395 2.0170 0.4725
bos 8.9274  7.0731 3.2569 3.4344 0.4776
bo6 1.7004  9.1458 3.3749 4.3917 0.4957
Voltage (keV)

qV, 38.103 37.541 37.758 37.642 37.391
qV, 37.433 37.557 37.757 37.719 37.609
qV; 37.470 38.373 38.003 38.111 37.617
qV, 37.495 38.368 37.992 38.105 37.807
qVs 37.524 37.550  37.732 37.708 37.851
qVe 38.352 37.531 37.716  37.629 37.871
Return (mm)

Loop 1 0.2557 0.2389 0.3162 0.2854 0.3277
Loop 2 0.3853 0.3582 0.4704 0.4280 0.3793
Loop 3 0.7730  0.7164 0.9478 0.8558 0.4503
Loop 4 0.3648 0.3582 0.4740 0.4276 0.6045

of % within each cavity: the drift time effect from the TL
model is less prominent. The high sensitivity in the ¢ 3 pair
of the UR model results from breaking the phase symmetry
condition, Eq. (19). The neighboring cavities (3 and 4) can
influence each others’ loads more directly than nonadjacent
pairs (1 and 6; 2 and 5), which distribute the broken
symmetry effect among themselves and all in-between
cavities. The FT and RK model phases fall between these
two extremes due to the presence of both energy-dependent
transit times and symmetry-breaking phases.

The loop length sensitivity of all models decreases as the
particle moves from loops 1 to 3. As a particle moves closer
to the optimized center of symmetry in loop 4, the energy
impact of symmetrically extending acceleration and decel-
eration paths (loops 1 and 7; 2 and 6; or 3 and 5) decreases
proportional to the number of remaining accelerations.
A change in the length of loop 1 affects the timing of
acceleration in pass 2, 3, and 4; a change in loop 3 only
affects acceleration in the 4th pass. Symmetry is preserved
when errors are introduced in loops 1, 2, or 3. However,
any error introduced in loop 4 breaks the symmetry, as the
central loop length condition from Eq. (20) is no longer
valid. This phenomenon may be responsible for the higher
loop 4 error sensitivity in TL, UR, and FT models
compared to loops 1-3.

In the FT}, column of Table III, the injector energy of
an FT model ERL is raised from 6 MeV to 12 MeV, the

maximum energy target is raised from 150 MeV to
156 MeV, and a solution has been optimized to machine
precision on energy recovery and the 156 MeV target. The
tolerable error ranges of four phases and two voltages
increase, but others decrease. The tolerable error on loop
length decreases for this higher injector energy. These
results indicate a complex relation between solution sensi-
tivity and injector energy, although further investigation in
this subject would be needed to determine any trends.

The individual sensitivity results are useful to establish
upper bounds for individual input error. However, in reality,
the combined effect from multiple error sources must be
considered. Further work is required to study the combined
sensitivity.

Suppose that we only have control over the input
designated j. Furthermore, suppose the expected error on
every other input i, for i # j, has a known standard
deviation, o;,. Using statistical error propagation formulas,
we can calculate an allowed error range o i for the special

input j, such that the objective f(|j| < o; ) is still within
tolerance,

_ 0000
%ir = ar 2
Zi(ﬁaio)

Error ranges for all objectives f(j) can be combined into the
seto; which has as many elements as the number of system

objectives. The smallest o; is the range of j required to
satisfy the most restrictive objective; therefore the range
required to satisfy all objectives is ¢; = min({c;, }).

Using the same tolerance bounds as for the single-
variable errors, we set o5y = 50 keV for load, and o7y =
150 keV for the maximum beam energy. In CBETA, the
expected o fluctuations for phase, voltage, and return loop
length inputs are 0.1°, 600 eV, and % mm, respectively.
These fluctuation ranges are consistent with the precision
of CBETA’s existing low-level rf (LLRF) system, as well
as that of other state of the art superconducting rf (SRF)
linacs [9]. A calculation of combined tolerances using
Eq. (31) gives the Table IV error ranges for individual input
J parameters with assumed o;, fluctuations on all other
settings.

The acceptable uncertainties listed in Table IV represent
the stability required from the cavity field regulation system
and the resolution required from the path length adjustment
system. The CBETA regulation system must keep dynamic
effects, such as noise or transient rf field responses, within
the o, limits in order to satisfy the objective tolerances.
The combined sensitivity results in Table IV indicate that
each input j must be regulated about twice as strictly as the
existing control precision in order to prevent objective
values from exceeding the oy, tolerance bounds. If the
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TABLE IV. Error tolerance ranges for cavity phase, voltage, and
return loop length, as calculated using Eq. (31) with expected o,
fluctuations on all input parameters. For a system that can feasibly
achieve and maintain operation within predefined objective
bounds, the input tolerance should be larger than expected o .

Input Group Expected 65  TL UR FT RK

$on ) 0.1000  0.0536 0.0507 0.0671 0.0608
qV, (keV) 0.6000  0.3222 0.3040 0.4024 0.3651
Loop (mm) 03333 0.1790 0.1689 0.2235 0.2028

modeled sensitivities are representative of real CBETA
error sensitivity, these results may indicate a need for
improved control systems in order to maintain operation
that satisfies our load and energy tolerances.

VI. LONGITUDINAL BEAM DYNAMICS

The modeled solutions and sensitivities thus far have
only considered a single-particle, on-axis beam with zero
time or energy spread. A more realistic particle distribu-
tion is expected to have nonzero dimensions in phase
space (x, py, ¥, Py, 2, P;), Where all coordinates are relative
to the position of the ideal single-particle scenario. By
convention, the six-by-six [R;;] matrix is defined to map
all phase space coordinates from an injected particle
into its final position. Since our models only track the
particle in the longitudinal phase space, all elements
involving (x, p,,y, py) coordinates follow the form of
an identity matrix. Consider a transversely on-axis beam
({(x,y, px. py) = 0) with finite spread in injection time and
energy (momentum). All longitudinal phase space coor-
dinates are defined with respect to an ideal particle with
coordinates z =0, § = % =0.

In the following analysis, we continue to model CBETA
as a sequence of cavities and drifts. All drifts add a velocity-
dependent time to the particle coordinates. In CBETA, the
splitter and recombiner regions are adjusted to minimize
the time-energy dependence (R5¢) incurred throughout each
FFA return loop. Ideally, CBETA should have Rss =0 in
each loop. In the TL, UR, FT, and RK models, all return
loops and intercavity drifts are modeled as straight drift

pipes, where #1,,, = Vlgfo—guﬂtly This yields Rsq < 0.01 through-
out the entire ERL.

The injected beam follows a Gaussian distribution in
time and energy, with o4p. =4 ps (o, ~ 1.1 mm) and
65 =5 x 107*. In the desired scenario, an injected beam
should achieve minimum ¢ spread during its highest-energy
pass. This will allow better control over the individual
particle energies after acceleration if a fraction of the beam
is siphoned off for experimental purposes. Furthermore, to
preserve the acceleration-deceleration symmetry found in
the optimized ideal particle solutions, it is preferred if the

m=4/8, n=6/6 m=8/8, n=6/6

+ Inject

Output

Sl S

z (mm) z (mm)

FIG. 4. Time evolution of 1000-particle Gaussian beam in
longitudinal phase space: an initial Gaussian (both plots, over-
laid), the beam after complete acceleration (left), and at beam stop
(right). The beam is in an FT model ERL with M = 8, N = 6, and
the ERL is set with ideal particle solutions (Table II). The ideal
particle is defined at coordinates (z,8) = (0,0). Vertical and
horizontal lines represent one standard deviation of the stated
output from the mean z or § coordinate.

beam has equivalent energy spread in the longitudinal
phase space profiles at the injector and stop.

When a Gaussian beam is run through an ERL with
settings optimized for the ideal particle, the longitudinal
phase space profile becomes distinct from the original
distribution after a complete, 8-pass ERL circula-
tion (Fig. 4).

Even in a symmetric ERL, the phase space distributions
of a nonideal beam before injection and after beam stop are
not necessarily symmetric. The high energy spread at beam
stop may be reduced if more objectives and d.o.f. are added
to the optimization system. A new objective could limit the
energy spread of the final beam to a certain tolerable range,
but this would also require new d.o.f. to ensure a useful
optimization system. For example, the voltages of paired
cavities could be independently varied instead of set to a
common value.

An easier solution to the phase space asymmetry
involves adjustment of the injected particle distribution.
Since the ERL converts a flat Gaussian z, é distribution into
a diagonal one, it is reasonable to suspect that, if we inject a
beam with initial tilt in the opposite direction, a symmetric
mirror image of the phase space distribution may emerge
after the ERL (e.g., Fig. 5, right). This beam would then
have equal energy spreads in injection and stop. Such an
injection pattern may also decrease the energy spread
during the M =4 return loop, which will allow better
control of the beam for experimental purposes.

The amount of tilt can be adjusted by varying the phase
of the final cavity in the injector section. A proper choice of
tilted input beam, such as the example in Fig. 6, allows
equal initial and final o;.
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FIG. 5. Tilted 1000-particle beam in longitudinal phase space
for the FT model, shown after full acceleration (left) and
deceleration (right). The input distribution is a tilted Gaussian:
each particle’s original Gaussian § coordinate is offset according
to the matrix slope from Eq. (35) and Table V; due to the
relatively large initial beam size, the edges of the final beam do
extend beyond the linear regime.

To identify the correct input distribution for a symmetric
output energy spread, consider the time and energy effects
across the complete ERL, from injection to beam stop, as
the 5th and 6th elements of the full coordinate transfer
matrix, [R;;],

|:Zstop:| _ |:R55 R56:| |:Zinj :| . (32)
éstop R65 R66 éinj

Elements can be evaluated numerically by injecting test
particles at known small (zjy;, &jyy) offsets from the ideal
particle, which is defined at coordinates (0,0), and meas-
uring the final (Zgop, Sgi0p) Values at the end of the ERL.
We additionally construct an equivalent [Q;;] matrix, which
describes the longitudinal phase space mapping of a

particle that travels backward through the ERL, from
injector to beam stop,

|:_Zinj :| _ |: QSS Q56 :| |:_Zst0p:| ' (33)
5inj Q65 Q66 5st0p
Due to the symmetry between ERL acceleration and
deceleration, the mapping of (Zipj, §;j) t0 (Zsiop» Fstop) MUSE
be identical in both Egs. (32) and (33) in order for particles
with offsets (zinj, 5,y # (0, 0) at injection to regain offsets
of the same magnitude at the beam stop. Therefore,
Oss = Ree, Os6 = Rse, Qs = Res, and Qgs = Rss.

If the initial particle has only a small offset from the ideal

case, then the ERL mapping can be considered linear, and
the two coordinates are linearly related (6 = Az). For the

m=4/8, n=6/6 m=38/8, n=6/6
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FIG. 6. Tilted 1000-particle beam in the UR model after full
acceleration (left), and at beam stop (right), where the beam tilt is
determined by scanning through injector phases until the one that
yields the most symmetric input/output 6 is found. Note that the
center of the final distribution after the ERL is a mirror image of
that before entering the accelerator. This symmetry also deter-
mines that the slope of the distribution is zero at its center after
half the ERL has been traversed.

initial and final beam distributions to have equal and
opposite tilt, it is required that,

I el |

An injected beam with small ¢, offset must then have the
net linear slope,

_I-Rss ___Res

A = - .

(35)

With this slope A, the beam will exit the ERL with the
same o5 energy spread and an opposite tilt angle as it had
at injection. In Table V, a particle with z =107 m or
6 = 1077 offset is used to calculate slopes with Eq. (35).
These slopes are used to add a vertical offset to all particles
in a Gaussian distribution of (z, §) particle coordinates
(Fig. 5); we then report the tilt amount as the angle of a
linear fit of the beam from the positive z-axis.

For beams with large o, the linear matrix transform no
longer accurately describes the behavior of particles at the
edges of the beam. With this type of beam, the proper tilt
pattern is determined by injecting multiple test beams with
different injector cavity phases, ¢;,.

A scan for the proper initial beam is conducted by
injecting multiple test beams of different longitudinal
profiles through the ERL. First, we simulate the pre-
ERL injector cryomodule as a single accelerating UR-
model cavity with a voltage of 1.5 MV. A beam with
Gaussian energy and time distributions passes through this
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TABLE V. Beam tilt parameters for a symmetric injector-stop
energy spread, found for a 1000-particle CBETA beam
(6, = 1.1 mm, 65 =5 x 107*) with matrices (top), or by scan-
ning through phases of a UR injector (bottom). Angle describes
the counter-clockwise angle between the positive z-axis in
longitudinal phase space and a linear fit of the beam. The beam
of order 10~ in both coordinates is much larger than the
7z=10"7m, §=10"7 offset used to calculate the matrix,
resulting in decreased accuracy for matrix tilted values.

Matrix TL UR FT RK
Slope A 32029 -0.6714 —-1.7748 —62.3799
Inj. Angle (°) 72.6608 —33.8772 —60.6006 —89.0816
Pass 4 Angle (°) —-0.9154 —-0.0042 —1.0045 6.7461
Stop Angle (°)  —71.5540 41.2810 63.4172  89.0879
oginj (keV) 21.8924  5.3765 12.0839  418.450
O s0p (keV) 205407  6.6398  13.5756  427.277
aﬁ,slop/aé,inj 0.9383 1.2350 1.1234 1.0211
Scan

Oinj ©) 27.0 =72 —18.0 -90.0
Inj. Angle (°) 72.1174 —40.6386 —64.4857 —81.5250
Pass 4 Angle (°) 03247  -2.0255 —4.2896 71.3807
Stop Angle (°)  —71.7822 37.9926  60.5429  89.4000
Opinj (keV) 20.8529  6.7300 14.3420  44.1964
Grsiop (keV) 205108  6.6338 124481  1009.8
G5 st0p/ Os.in 0.9836 09857  0.8680  22.4978

injector module. This beam is distributed about a prein-
jection particle energy and time, E and ¢, such that after
tilting, the central particle will have ideal particle injection
properties, Ej,; =6 MeV and f,; =0 s. Preinjection
parameters E and 7 are determined by the reverse process
of calculating which input energy and time will result in
ideal injection parameters after accelerating through the
injector module. The tilted beam is sent into the ERL, and
its output o5 is measured.

We then repeat the process with a new test beam by
varying the injector phase in steps of, for instance, 175
while using the same pre-injector Gaussian distribution.
Once the full range of phases is covered, from 0 to 27z, we
identify the injected beam that yields the most similar oy
energy spread in the injected and output distributions,
where ifﬁ—‘lp — 1. The ideal tilt would yield equal energy

spread at injection and beam stop, but practical beam
results are limited by the resolution of the scan.

Despite starting with Gaussian distributions of the same
mean and standard deviation, the scan and matrix tilting
methods yield different optimal linear-fit tilt angles. This is
because beams that have passed through an injector cavity
experience nonlinear curvature, while artificially tilted
Gaussian beams will retain the uniform slope imposed
in Eq. (35). For a beam with balanced acceleration and
deceleration phase space profiles, injected beams that are

tilted to match the Table V profiles will most effectively
preserve the ERL symmetry from the optimized single-
particle settings.

The TL model requires a positive initial tilt angle for the
most symmetric input/output energy spread, while UR, FT,
and RK models use a negative angle. The opposite tilt
needed may be a result of the cavity lengths: while UR, FT,
and RK models have 7 cells (odd), TL has O effective
cells (even).

The matrix of the RK model has an unexpectedly large
Rgs value of 165 m™~!, where Osiop = Reszinj When only zy
is nonzero. In the other models, all matrix elements have
magnitudes ranging between 0 and 7 (units of m, m~!, or
unitless). In the RK model, a particle with a small initial time
displacement will incur far larger energy displacement after
reaching beam stop. The slope calculation then requires a
nearly 90° linear tilt angle for tilt symmetry: this is the
arrangement with a ratio of time and energy spread, ;—‘“}, that

best matches the ERL matrix. The single UR injector cavity
used in the scan is unable to produce the extreme tilt angle
needed for the RK model; its most tilted beam output is less
than 82° from the horizontal, yet this tilt is insufficient to
create equivalent energy spreads at injection and beam stop.
To generate more tilt, a higher injector cavity voltage would
be needed, or multiple injector cavities could be applied.

VII. DISCUSSION

In each of the successive models (TL, UR, FT, RK), the
complexity of the cavity time and energy tracking has been
increased successively to better model the behavior a
realistic cavity. These steps were useful in determining
whether the initial time symmetry conditions derived for a
thin cavity situation could also be applied to finite-length,
nonultrarelativistic cavities, and finally to cavities that
consider a full integrated electric field profile.

For an ideal single particle, symmetry enforcement using
specific phase and flight time relations provide optimized
solutions well within the tolerable range of cavity power
load and peak beam energy objectives. However, the
combined sensitivity analysis suggests that our expected
instrument fluctuation range (¢ ) is about twice as large as
the error limits required to guarantee fulfillment of all
objectives. If optimized solutions from the models are
implemented in a system with the existing input control
resolution, the actual parameter settings may differ from
corresponding optimized values by a larger error margin
than needed to satisfy the objectives. As a result, the
objectives in such an imperfectly set system may not fall
within the desired load and energy target tolerances. The
discrepancy between existing and required error ranges
indicates a need for better control resolution than the
quantities expected for CBETA that we considered in
the sensitivity analysis. In practice, this may be achieved
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by either searching for solutions with lower error sensi-
tivity, or by improvement of the physical systems.

Applying symmetry to a system such as CBETA allows
simplification in the optimization process for ERLs like
CBETA. The models in this study considered only cavity,
drift pipe, and return loop pipe elements; more complex
effects, such as beam optics and transverse dynamics, have
not yet been examined. Further work is needed to confirm
how representative the pillbox cavity models are of ERL
loading and beam dynamics, as well as whether ERL
symmetry is feasible for implementation in a system with
elements beyond simple rf cavities and drifts. But this lies
outside the scope of this paper. Nevertheless, the initial
solutions found here indicate that symmetry enforcement is
useful for optimizing a reduced set of phase and flight time
settings to achieve cavity load and energy objectives. The
phases determined here phases will be used during beam
commissioning of CBETA.
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