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Quantum approach to a Bianchi I singularity
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The approach of a quantum state to a cosmological singularity is studied through the evolution of its
moments in a simple version of a Bianchi I model. In spite of the simplicity, the model exhibits several
instructive and unexpected features of the moments. They are investigated here both analytically and
numerically in an approximation in which anisotropy is assumed to vary slowly, while numerical methods
are also used to analyze the case of a rapidly evolving anisotropy. Physical conclusions are drawn mainly
regarding two questions. First, quantum uncertainty of anisotropies does not necessarily eliminate the
existence of isotropic solutions, with potential implications for the interpretation of minisuperspace
truncations as well as structure-formation scenarios in the early universe. Second, backreaction of moments
on basic expectation values is found to delay the approach to the classical singularity.
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I. INTRODUCTION

The dynamics of anisotropic cosmological models is
believed to give a reliable description of the approach
to a spacelike singularity in general relativity, based on
the Belinskii-Khalatnikov-Lifshitz (BKL) [1] scenario.
It is therefore of interest to analyze in detail the behavior
of quantized anisotropic models in order to determine
whether a singularity may persist in quantum gravity.
The most generic dynamics, given by the Bianchi IX
model, can be rather complicated classically [2], but
even in this case it consists of long stretches of time
during which the dynamics resembles that of the simpler
Bianchi I model.

The main goal of this paper is to analyze how the
presence of anisotropies may affect the behavior of a
quantum state, parametrized by its quantum fluctuations
and higher-order moments. These parameters can be
considered coordinates of a quantum phase space that
extends the classical phase space of the volume and
anisotropy degrees of freedom, parametrized here in a
Misner-like fashion. The quantum parameters, as opposed
to a wave function, preserve the geometrical nature of the
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classical phase-space problem and are therefore appropriate
for a quantum understanding of the BKL scenario.

Misner variables [3,4] describe a homogeneous geom-
etry not directly through the coefficients in a line element
but rather through the volume and two anisotropy (or
shape) parameters. We will further restrict the dynamics by
assuming that only one of the anisotropy parameters is
nonzero. As geometrical variables, we will therefore have
the volume, one anisotropy parameter, the moments of each
of these variables and their momenta, and cross-moments
between volume and anisotropy. Even in the restricted
setting of a single anisotropy parameter and a quantum
dynamics is truncated to some fixed moment order, the
parameter space is therefore rather large, making the
analysis nontrivial and instructive.

For generic anisotropy, the system of dynamical equa-
tions for moments is highly coupled and hard to solve
analytically. We will therefore introduce an approximation
in which anisotropy varies much more slowly than the
volume, in which case several analytical expressions can be
obtained. Numerical results for moments up to fifth order
are shown for generic anisotropy.

In addition to computational questions in the analysis
of our system, this paper highlights two kinds of physical
interpretations of the technical results. First, isotropic
models within anisotropic ones can be used as test systems
of the minisuperspace truncation, in which the relation
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between a symmetric quantum model and a less-symmetric
one is an important open question; see, for instance, [5].
Our equations will allow us to determine conditions on the
moments of a state in the anisotropic model such that it
follows the behavior of the isotropic model. A general
argument against minisuperspace truncations is that quan-
tum uncertainty relations prevent anisotropic degrees of
freedom from being completely absent, questioning the
validity of a quantum model in which those degrees of
freedom have been neglected. We will find that in our
model, on the contrary, it is possible to find states that
follow exactly isotropic behavior.

While this result may be considered supportive of
minisuperspace truncations at least in the types of models
studied here, it also strengthens questions that have been
raised about quantum scenarios of structure formation
[6,7]: In early universe cosmology, inhomogeneity is
supposed to be generated out of quantum fluctuations of
an initially homogeneous state, but if the dynamics is
translation invariant, it should preserve the homogeneity of
any initial state. In our case, similarly, the isotropy of an
initial state is preserved by quantum evolution, but only
under additional conditions on higher-order moments.

Our second application is about the behavior of a quantum
state approaching an anisotropic singularity. We find that
different kinds of moments play different roles. We therefore
determine which moments can be used as indicators of
singular behavior. Such results are useful for establishing the
genericness of various proposals to avoid singularities by
quantum effects. Often, such proposals are analyzed by
using a specific class of initial or evolving states. While we
also fix our initial states, making the common Gaussian
choice, we are able to track the moments that grow most
strongly and might therefore have a dominant effect on the
quantum behavior near a singularity. We also draw lessons
about possible modifications of the approach to a singularity,
which seems to be slowed down by backreaction at least with
respect to the time variable chosen here, given by depar-
ametrization with respect to a scalar field.

II. CANONICAL DESCRIPTION OF THE
CLASSICAL MODEL

The metric of an anisotropic Bianchi [ universe is given by

3
ds? = —N2d? + Z aydxz,
k=1

where a; are the scale factors in the different spatial
directions, and N is the lapse function. In the variables
introduced by Misner [3,4], this line element takes the form

3
ds? = —N?dr* + e** Z e?edx?. (1)
k=1

The spatial volume is described by the variable «, defined
by % := (a1a2a3)1/ 3, whereas the three shape parameters
B = In(ay/e*) measure the degree of anisotropy of each
spatial direction. These three variables are not independent
but satisfy the constraint f; 4 f, + ;3 = 0. Therefore, for
convenience, we construct two independent shape param-
eters defined as

1
fy= ——ﬂ3 = ——ln(a3/(a1a2a3)1/3),
1 1
2V3 2V3

We will consider a free, massless scalar field ¢ as
the matter source, with conjugate momentum p,. The
Hamiltonian constraint is then given by

p_ = Pr—=p2) = In(a,/a). (2)

L
Ci= e (=pa+pi+p)+5¢7pp =0, (3)

where we have absorbed constant factors (such as Newton’s
constant) in p . Using this constraint, the conjugate momenta
of the configuration variables (a, .., ¢) are obtained in terms
of their derivatives with respect to coordinate time ¢,

3a e3a 3a

e e
ﬁﬁi,n Py = Wﬁﬁ,t- (4)

Pa = _'5}6(117

In order to simplify the effects of the anisotropy on the
system, we will consider only one anisotropic direction by
choosing a vanishing S_. In this way, the directions x; and
X, will be isotropic, as their corresponding scale factors are
equal, a; = a,, whereas the direction x; will generically be
anisotropic. Therefore, we have just one shape parameter,
p = p., which measures the ratio of the scale factor a3 with
respect to the geometric mean of the three scale factors.
Alternatively, we could eliminate the matter content and
use f_ as internal time, such that 1 p3  n the following

expressions would play the role of p%. Our results therefore
apply to a matter model with restricted anisotropy, or to a
vacuum model with full anisotropy. While different depar-
ametrization choices lead to equivalent classical results,
they do not always imply equivalent quantum corrections.
In what follows, we will consider only one specific
deparametrization in order to obtain a specific system of
equations that determines the dynamics of quantum states.

Instead of choosing the logarithm of the scale factor a as
our basic variable, we will use the spatial volume v = 3. :

'More precisely, we will assume that v, as a phase-space
variable, can take both signs in order to obtain a simple phase
space. The definition » = ¢* > 0 then describes one set of
solutions but not the entire phase space. This distinction will
briefly be relevant below, when we introduce a suitable quantum
representation.
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Its conjugate momentum is proportional to the Hubble
parameter, describing the isotropic rate of expansion of the
universe,

1 2v,

Pv = _e_Bapa =

3 Nv' )

This variable is preferred for numerical purposes because it
places the singularity at a finite value of the geometric
variable, v = 0. Moreover, even though the constraint

1 1
C:;(—vzp%+p§+§p§)> =0 (6)
in the volume parameter may appear more complicated
than the original (3), it will be straightforward to interpret
the quantum dynamics of moments of the volume, as
opposed to moments of its logarithm.

Since neither ¢ nor f appears explicitly in the constraint,
their conjugate momenta p, and py are conserved quan-
tities. The expression of the Hamiltonian constraint C is
also conserved through evolution; thus, one can infer that
the combination vp, is another constant of motion, which
will appear throughout this paper. As can be seen in the
definition (5), this combination is proportional to the
momentum p,, but we will refer to it as y := vp, because
we will not consider it a basic canonical variable.

In fact, after performing the deparametrization with
respect to ¢, y will represent the unconstrained
Hamiltonian Hjy, = —p| py=0 of the reference isotropic

model (29). Including anisotropy, the deparametrized
dynamics is generated by the Hamiltonian,

H:=—p, = (r* = p;)'/%, (7)

implying the classical equations of motion

b= (8)
b =10 (9)
p=-1r. (10)
ps =0, (11)

where the dot represents a derivative with respect to the
scalar field ¢. Since the equations are symmetric under the
transformation p, — —p,, ps = —ps, and ¢ — —¢ and
we are interested in an expanding universe with a singu-
larity in the past, toward decreasing ¢, we will without loss
of generality choose a positive sign for both pj and p, (and,
thus, also for y). In this way, and with the choice of sign
taken for p, when solving the constraint (6), the universe

expands as ¢ increases and the singularity is located at
¢ - —c0.

The canonical variables of the system are (v, p,. /. pp).
An analysis of the structure of the classical model shows
that a canonical transformation to y and its conjugate In v
would simplify the canonical quantization of the system.
However, such a nonlinear transformation would imply a
complicated mapping between moments that do not pre-
serve the semiclassical order. The physical interpretation of
quantum moments would then be obscured because the
meaning of a quantum fluctuation of In v is not as clear as
the volume fluctuation of v itself.

The equations of motion can easily be solved,

o) =00 exp (f). (12)
p1;(¢) :pv(o)exp (_17{45)7 (13)
B(#) = BO) -1 . (14)

while pg is a constant of motion, as already seen. Here,
v(0), p,(0), and $(0) are initial values of the different
variables at ¢ = 0. As the volume v tends to zero,
approaching the singularity located at ¢p — —o0, its con-
jugate momentum, p,, diverges exponentially, keeping
their product y constant. The ratio y/H parametrizes the
rate of collapse of the volume toward the singularity. On the
other hand, the shape parameter f increases as a linear
function of ¢ with a velocity controlled by the constant of
motion py, making the universe more and more anisotropic
as it approaches the singularity. The variable § tends to
(plus) infinity for ¢ — —o0, producing a singularity as the
scale factor aj tends to zero. The other two scale factors, a;
and a,, which are equal in our restricted model, may be
nonzero, but such that v = aja,az; - 0 for ¢ - —co.
Using the defining relationships of our variables and the
solutions (12)—(14), we can write

a(¢) = v(¢)""* exp(B()/2)
= v(0)'7 exp(5(0)/2) exp((r/3 = pp/2)¢p/ H).

Therefore, a; approaches zero or +oco at the singularity,
depending on the sign of (y/3 — ps/2). In the vacuum
model, we would have p, = 0 and therefore y = py, such
that a; o« exp(—ppp/(6H)) = oo at the usual Kasner
singularity. With scalar matter, however, Pp is a free
parameter restricted only by ps <y. This condition does
not fix the sign of y/3 — p;/2, and a; may approach zero or
+oc0 depending on the initial conditions.

Let us remark that this condition introduces certain
boundaries in the phase space of the system. None-
theless, if the initial conditions are given inside these
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boundaries, the system will never cross them as the
Hamiltonian is conserved throughout evolution. Note that
|ps| > |r| is not possible on the constraint surface defined
by (6). Therefore, any initial state that fulfills this inequality
would not be physical. For the quantization procedure, in
order to obtain a well-defined Hamiltonian, one can simply

replace the classical expression (7) with |y — p3|"/2.

Nevertheless, we will not spell this out explicitly because
it is not relevant for moment equations.

III. QUANTUM DYNAMICS

Having the classical dynamics of the system under
control, we proceed to analyze its quantum dynamics
following a formalism based on a moment decomposition
of the wave function developed for quantum cosmology in
[8,9]. The quantum dynamics of this model is ruled by a
Hamiltonian A, that depends on the basic operators 7, p,,
ﬁ, and 13/,.2 In order to analyze the quantum evolution
produced by this Hamiltonian, we will define the following
moments, which encode the complete information of the
quantum state:

Gijkl = <(f] - /U)i(ﬁv - pv)](ﬁ _ﬂ)k(ﬁﬂ - pﬁ)l>Weyl’ (15)

where the subscript “Weyl” indicates totally symmetric
ordering of the operators, and the expectation values
vi= <®>9 Py = <IA71)>’ p= <ﬁ> and Pp = <i7ﬁ> have been
defined. We will refer to the sum of the indices of a given
moment i + j + k + [ as its order. This definition will be
relevant later on when we consider truncations of the system.

Unlike the basic expectation values, moments of a state
are not completely arbitrary but restricted by (generalized)
uncertainty relations which follow from the positivity
condition of an algebraic state (the derivation of such
generalized inequalities for the case of one degree of
freedom is studied in [10]). These restrictions will play
an important role in some of our discussions, but in specific
cases we will mainly refer to the well-known second-order
version, which is nothing but Heisenberg’s uncertainty
relation. Provided these general conditions are obeyed by a
given set of moments, a state with these moments does
exist. However, it is not guaranteed to be a pure state,
demonstrating the general nature of states included in the
parametrization by moments.

A. Effective Hamiltonian and equations of motion

In this subsection, we will present the -effective
Hamiltonian that rules the dynamics of the quantum

*Note that we define our classical phase space such that v is the
oriented volume and therefore can take both signs. The phase
space is therefore a standard cotangent bundle of the plane and
can be quantized by standard means, with self-adjoint basic

operators 9, p,, ff, and py.

moments. Their equations of motion will be derived and
the structure of the corresponding system of equations will
be discussed. Following this analysis, we will perform a
redefinition of our variables, in particular the relative
moments (22) will be defined, in order to simplify the
coupling between different equations.

The dynamics of these variables is given by the follow-
ing effective Hamiltonian, defined as the expectation value
of the quantum Hamiltonian operator, which is assumed to
be Weyl ordered,

A

Hg = (H(D, Py, Pp))
1

o Z ai+j+kH(Uv Povs pﬂ)
LIkl

dv'0p,dpy

where H(v, p,, p) is the classical Hamiltonian (7) and the
sum runs over all non-negative integer values of i, j, and k.
(If a Hamiltonian operator with a different ordering is
preferred, the effective Hamiltonian would contain terms
explicitly depending on # that result from reordering
operations.) In particular, if i=j=k=0, then G/ =1
because the state is normalized. The corresponding term in
the sum therefore produces the classical Hamiltonian,
H(v, p,, ps), evaluated in the basic expectation values.
For instance, the second-order Hamiltonian is

Gij()k’ (16)

Uzp% vpy

_ 0002 Vg2 2\ 1100
2.2 2.2

Pp 21001 _ U Pp G020 _ PuPp G2000

MR 213 2H3

P
+ s PG (17)

Since f# does not appear in the classical Hamiltonian,
only moments unrelated to 8 (and thus of the form G/)
appear in the expression of the effective Hamiltonian. This
fact implies that pg, as well as all its pure fluctuations
(moments of the form G%%), are constants of motion for
the quantum dynamics. Nonetheless, y = vp, will not be a
constant of motion at the quantum level because the full
quantum Hamiltonian Hy, (16), but not the classical
Hamiltonian H (7), is conserved by quantum evolution.
Here, we define y as the product of expectation values of ¥
and p,. An alternative definition, using

(op, + p,0) = vp, + G", (18)

is less convenient for our purposes. If one were to use 7
as a basic operator, as done in affine quantum cosmology
[11-15], () would be conserved as a consequence of
[7, H | = 0. However, neither y nor 7 needs to be conserved
in our system because the assumed Weyl ordering in  and
D, as basic operators implies that an operator quantizing a
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classical expression, that depends on v and p,, only through
7, is not required to depend on # and p, only through
1(db, + P,0). We will see explicit solutions in which,
indeed, neither y nor 7 is conserved.

The equations of motion for the different variables are
obtained by computing Poisson brackets with the effective
Hamiltonian. The Poisson brackets between two expect-
ation values are related to the expectation value of their
commutator by the relation

{(%). (1)} = —i([X. 7). (19)

extended to products of expectation values by the Leibniz
rule. This expression is standard for basic expectation
values, while it defines an extension of the classical bracket
for moments. A general expression for the brackets of
moments is known in closed form [8,9], but it is rather
lengthy and will not be displayed here. (See also [16,17] for
the structure of the underlying Poisson manifold.) These
brackets are not canonical and they contain linear and
quadratic terms in moments.’ In particular, the origin of the
linear terms lies in the reordering of operators and, there-
fore, they appear multiplied by certain power of 7. Each of
this 7 factors is considered as increasing the total moment
order by two. Our main arguments will use the schematic
form of the bracket,

{Gijkl7 Gmnop} ~ GGq”I, (20)

where “GG” on the right-hand side represents a finite sum
of terms quadratic in moments (or a moment multiplied by
certain power of #) of a total order (grst) such that
qg+r+s+t=i+j+k+Il+m+n+o+ p—2 This
general statement about orders follows from an application
of (19), in which the commutator always reduces the total
moment order by two.

In this way one can, for instance, obtain the equation of
motion for the volume,

v={v,Hp}

1 O H(v, p,, g
:lv+ § — : ‘(+l p pﬂ> Gl]()k’ (21)

ijk

where we have used the fact [8] that all the expectation
values (in particular v) Poisson commute with the moments
(15). One can then proceed in this way to find the equations
of motion for all the variables.

In general, the equations of motion for the moments and
expectation values form a highly coupled infinite system of

3Even for canonical pairs of basic operators, such as X and p in
quantum mechanics, the brackets of moments are noncanonical.
For instance, {GOZ, Gzo} = 4G is not constant and therefore not
canonical.

equations. Therefore, one usually needs to implement a
truncation in order to solve them. The main assumption is
that for semiclassical states peaked around a classical
trajectory, there is a hierarchy of moments ruled by their
order. For such states, higher-order moments are then less
relevant than lower-order moments. In particular, for the
numerical solutions that will be performed later on, we will
consider the system of equations up to fifth order in
moments. The equations of motion up to such a high order
are much too lengthy to be displayed here. Hence, in order
to give a grasp of the system we are dealing with, all the
equations up to second order in moments are displayed in
the Appendix A. In addition, in Appendix B the evolution
equation for the volume is given, truncated at fifth order.

For the specific Hamiltonian (7) under consideration, the
equations are not completely coupled. In particular, since
only moments G“° unrelated to the shape parameter
appear in the Hamiltonian, the set of equations of motion
for the variables {v, p,. S, ps. G/°*} forms an independent
subsystem of equations that can be solved on its own. This
is due to the fact that the Poisson bracket {G"/%, GKom},
which must be computed to obtain the evolution equation
for G/%, does not generate any moment of the form G“*<¢,
with ¢ # 0. In fact, the equation of motion for  depends on
{v. p,. pg. GV%} but not the other way around, and one
can thus conclude that the system {v,p,.ps G} is
independent of the rest. One can even remove the depend-
ence on the volume from this system by performing a
further change of variables, as shown below.

For the main analysis of this paper, instead of using the
absolute moments G| we will use the relative moments,

B Gi Jjkl o
Kk = = — y=ipi=iGIk, (22)
v'p
Furthermore, the momentum of the volume, p,, will be
replaced by the isotropic Hamiltonian y := vp,. As will be
explained in Sec. IV, a convenient property of this new set of
variables {v,y, B, ps, K"} is that all but the volume v are
constants of motion in the limit of a slowly evolving
anisotropy (ps < y). More importantly, with this new set
of variables, the couplings between different equations of
motion simplify considerably as the equations of motion for
the variables {y, ps, K%'} decouple from the equations for
v, f3, and the rest of the moments, K'/¥ with k # 0. In fact, the
volume v and the shape parameter f only appear explicitly
in their own equations of motion as a time derivative
(or a logarithmic derivative in the case of the volume).
Schematically, one can write equations of motion as

;: Fl(}’, Pﬁ7K”Ol)’ (23)

B = Fi(y. pp. KI), (24)
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7 = Fi(y, pp. K7, (25)
j)ﬁ =0, (26)
K = FabOd(% Pp Kijoz), (27)

where the right-hand sides are given in terms of the constant
Pp» the Hamiltonian of the reference isotropic model y, and

moments K% unrelated to the shape parameter, but are
independent of the volume v and f. Therefore, in order to
obtain the quantum backreaction effects on the classical
trajectories, it is enough to consider this subsystem of
equations. Similarly, the equation of motion for a generic
moment has the form

kade = Fabcd(yv p/}’ Kijkl)' (28)

Hence, the dynamics of the moments is only affected by the
expectation values y and pg, but not by v and 5. The explicit
form of this system of equations, truncated at second order in
moments, is shown in Appendix C.

Finally, as with the classical system, the equations are
symmetric under the transformation p, —» —p,, v = —,
Pp = —pp, and ¢ — —¢, provided that the moments are
also transformed as G'/X — (—=1)/*GU* or, equivalently,
KUk — (=1)!K"*_ Therefore, as already commented
above, a positive sign for y and p; will be considered
throughout the paper.

B. The isotropic (harmonic) case

Using the basic variables defined here, the isotropic case
is formally recovered by choosing f§ and pj to vanish, along
with all the moments with some contribution from the
anisotropic sector (that is, G/* with k 4 [ # 0). Restricting
all moments of this form is not consistent with uncertainty
relations in the anisotropy sector. The restriction therefore
amounts to a minisuperspace truncation of isotropic geom-
etries within anisotropic (but still homogeneous) ones. In
principle, therefore, the reduction is not expected to define
a subset of quantum solutions in the anisotropic model. A
detailed analysis of solutions will nevertheless show that
isotropic solutions do exist within the anisotropic quan-
tum model.

The classical Hamiltonian (7) is then simplified to be a
linear function of » and p,,

H™ = |y| = |vp,

. (29)

From the perspective of the quantum dynamics, this case is
very special, as the Hamiltonian turns out to be harmonic.
(It is quadratic in phase-space variables. A linear canonical
transformation maps it to an inverted harmonic oscillator.)
The most important property of this kind of Hamiltonians is
that different orders in moments are not coupled to one

another. Furthermore, the classical equations of motion do
not get corrections by quantum moments; there is no
quantum backreaction. Therefore, the expectation values
v and p, follow exactly their classical trajectories (12)
and (13),
v=0(0)e’,  p,=p,(0)e " (30)
In addition, it is easy to obtain and solve the equations
of motion for the quantum moments. Note that the
infinite sum that defines the effective Hamiltonian (16)
is reduced to a finite sum, as only second-order derivatives
are nonvanishing. Therefore, for this harmonic case, one
obtains the following quantum Hamiltonian:

HE = vp, +G"® (31)

without any truncation. The equations of motion for the
different moments,

Gij()O _ (i —j)GijOO, (32)

indeed show that there is no coupling between the equa-
tions of motion for different orders. Solving this equation,
one obtains an exponential evolution for the moments,

GlI%(gp) = G0 (0)el=)9. (33)

In summary, as one approaches the singularity at v = 0,
moments G/% with i > j decrease exponentially, whereas
moments G/% with i < j follow an exponentially increas-
ing behavior. Finally, moments of the form G are
constants of motion. Taking into account the time depend-
ence for the expectation values (30), we note also that all
relative moments K% (22) are constant throughout evo-
lution since the time dependence of the absolute moments
G'/% is compensated for by that of the expectation values.

IV. SLOWLY EVOLVING ANISOTROPY (py < 7)

A natural generalization of the isotropic case analyzed in
the previous subsection is given by the case with a slowly
evolving anisotropy. In this section, we will analyze such a
case and will present the analytical form of the evolution of
the moments and expectation values. In addition to provid-
ing a detailed analytical understanding, this case will serve
as a reference to analyze more generic cases numerically.

As noted after Eq. (14), py is the velocity of the shape
parameter f and therefore measures the rate of (an)
isotropization of the universe, while y is a measure of
the velocity of expansion of the isotropic reference model.
Therefore, the system dynamics should be close to the
isotropic dynamics whenever p; <y is obeyed so that
H ~ H™°. This condition means that the evolution of the
anisotropy is slow compared with the rate of expansion of
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the volume. These are statements about the rates of change
rather than the size of the homogeneous region. The
approximation may therefore be used in the late universe
(where the homogeneous volume may be assumed macro-
scopic) or in the early universe close to a spacelike
singularity (where the BKL scenario suggests the existence
of microscopic homogeneous patches).

In this section, we will consider an expansion of the
system of equations for large values of the parameter y. In
particular, the equations of motion for the different
moments take the form

G = (i~ )G +O(™). (34)

We therefore recover similar equations as in the harmonic
case above (32), but for all the moments and not only
for moments G/% of the isotropic sector. It is easy to
see that the generator of these equations is the effective
Hamiltonian H = vp, + O(y~"). These equations can be
solved right away,
Gijkl(qg) — Gijkl(())e(i—j)(/{ (35)
As one would expect, in the case of slowly evolving
anisotropy, the dynamics is dominated by the isotropic
sector. In particular, the increasing or decreasing behavior
of a corresponding moment G*/¥ is completely determined
by the difference between its isotropic indices i and j.
Furthermore, at this level of approximation, the equations
for the expectation values do not get any quantum back-
reaction effects from the moments, and thus expectation
values follow the classical trajectory. In this way, the
relative moments K% (22) are conserved quantities,

KM = Kk (0). (36)

Let us now analyze the behavior of the system at next
order in 1/y. We will consider an expansion for large y,
keeping the volume and the relative moments K" con-
stant. The classical Hamiltonian takes the form

p2
H = y(l - 7/’) L O/, (37)

It can be expanded in order to get the quantum
Hamiltonian,

HQ — 7/(1 +K1100)
1

_2_2(_1)i+j(p/2}Kij00+2pﬁKij01 _|_Kij02)
4

ij

+0(3), (38)

where the sum runs over all non-negative integer values of i
and j. In this expansion, O(3) stands for terms of the form

K% pp=/y»~1 for n >3 and 0 > k > n. Therefore, the
present approximation should be valid as long as all those
terms are small. Here, we first expanded the classical
Hamiltonian and then derived its effective expression.
It is easy to see that the order can be reversed without
changing the result, for instance, using the second-order
example (17).

In the classical Hamiltonian, one can define the dimen-
sionless anharmonicity parameter p;/y, which is a constant
of motion and measures the departure of the system from
the harmonic behavior. In the quantum system, however,
there are infinitely many more parameters that produce
an anharmonic behavior, such as the moments K“/°2 that
appear explicitly in the Hamiltonian above (38) and might
generate an anisotropy even if p; =0 and = 0 at some
initial time. In fact, this case will be analyzed in detail in the
next section.

The equations of motion for the expectation values,
generated by the approximate Hamiltonian (38), are

b=, (39)
e S ()
2y T
X (p/Z}KUOO—l-ZpﬁKUO] _,’_KijOZ), (40)
ﬁ:__ -1 i+j p K1100+K1101 . 41
7/Z:( )" (pg ) (41)

i,j

At this level of approximation, all moments of the form
K'/%% are constants of motion since the Poisson brackets
{K'Ok glmOnl /y are of the form KK /y> with
a=i+j—-1, b=I14+m—-1, and d=k+n, while
“KK” is interpreted as explained for GG in (20). Any
such term turns out to be of order O(3) and, thus, should
be neglected. In particular, this includes all purely isotropic
moments of the form K79 which only involve the
isotropic variables. Furthermore, all the moments that
appear in the Hamiltonian (38) and in the equations for
the expectation values above (39)—(41) are also included
in this category. Therefore, these last equations can be
easily integrated to obtain the evolution of the expectation
values,

v = vye?, (42)

v =15+ 1. (43)

2p
SRRV (44)

where the following constants have been defined:

B =Po
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-

1+](l_ 2Kij00—|-2pﬂKij01+Kij02), (45)

Py = Z(_l)i+j(pﬁKij00 + Kion)
=Pyt Y (KK (46)

(For these generic solutions, we have assumed that r # 0;
see below.) Note that, in general, neither y = vp, nor
7 = vp, + G''% are constant, in contrast to the classical
solution. The dynamics of y is instead governed by the
constant r, which is purely quantum and vanishes in the
classical limit. Since we are assuming a large value of y,,
the solutions (43) and (44) can be approximated by linear
functions,

-
YRy + 59, 47
0ty (47)

B PBo— —45 (48)

The solution (44) for the shape parameter is valid only
for the generic case r # 0. For special states in the quantum
case, r = 0 is compatible with uncertainty relations. For
instance, at second order, while r depends on the moments
K000 and K200 \which cannot both be zero, it does so in an
antisymmetric way because of the factor of (i — j) in (45).
Provided K?0%0 = K929 these moments therefore cancel
out. Moreover, while the general expression for r depends
on K92 the second-order moment K°92 does not con-
tribute because of the same factor of (i — j). In the special
case of r =0, then, y = y, is constant while # changes
linearly with time as in the approximate solution (47),

_Ps
Y0

(49)

Therefore, as in the classical limit, f is a linear function of
¢, but with a regularized value of py which takes into
account quantum effects.

The moments, except for the constant K% which still
follow their isotropic behavior, do feel the effects of
anisotropy and are no longer constant. One class of
moments—those that imply only one factor in the shape
parameter K“'*—has simple equations of motion since
they only contain constant moments of the form K"
Schematically, the equations for such moments are given as

fik — Sk (50)
/4
with certain constants c;;; that depend on p; and moments
of the form K™% This equation can be integrated, which
gives rise to

- 2¢i V78 +
Kt]lk :dijk"—w’ (51)
r
with integration constants d;;. for r # 0, and
Killk = d; + Sk g (52)

70

for r =0.

This pattern continues, allowing us to iteratively solve
for the behavior of all moments. In the next step, using (20),
K% is given by a sum of terms of the form K%!(*-=1) /y,
each of which has a time dependence dl-j(k_l)(y% +
rp) ™2 + 2¢;j4-1)/ 7 for r # 0. Integrating, we have

@ o

co
i | Ve eﬁf,ﬁ, (53)
r r

ij2k —
K - ijk

2 42
ijk> dijk’

behavior is linear in ¢. Finally, it is p0551ble to obtain
that, at this level of approximation, a general moment K"k
has the dominant behavior,

with new constants ¢ and e . The dominant

(rg + )"
' '

Kk ~ (54)
The demonstration follows by induction. Note that
KDk ig 2 sum of terms of the form KKk~ /y (again,
see (20) for the meaning of KK), which all have the
dominant behavior,

(13+ )"
’,Jl

Kij(n+1)k ~ , (55)

according to (54). Integrating this expression, it is then
straightforward to obtain the form (54) for n + 1. For third-
order moments, this result is confirmed in Appendix D. For
the particular case » = 0, in which (54) no longer applies,
the evolution of the moments is faster and a moment of the
form K/¥ is given by a polynomial of order k in ¢.

In summary, for this quasiharmonic case, we have found
that up to order O(2) the volume follows its classical
trajectory, whereas y is not constant anymore but is a linear
function in ¢. The shape parameter f is a linear function of
¢, but with a quantum-corrected slope. Finally, depending
on whether the constant r is vanishing or not, relative
moments KK go either as ¢* or as ¢*/2. Therefore, their
index on f# governs their evolution rate.

V. ON THE QUANTUM GENERATION
OF ANISOTROPY

Before analyzing numerically generic values of pg, let us
look at the particular case of # = 0 and p; = 0. Classically,
there is then no initial anisotropy and the spacetime will

104062-8



QUANTUM APPROACH TO A BIANCHI I SINGULARITY

PHYS. REV. D 101, 104062 (2020)

remain isotropic throughout evolution. In a quantized
model, however, one would expect that some anisotropy
is generated by quantum fluctuations (or certain higher
moments) which are constrained by uncertainty relations to
be nonzero. This expectation is a common criticism of
minisuperspace quantizations, which start with symmetry
reductions at the classical level and therefore ignore
fluctuations of nonsymmetric variables. While symmetry
reduction leads to special solutions of the classical theory, it
is not clear whether their minisuperspace quantizations can
be considered approximations of solutions of some full
theory of quantum gravity.

In a more specific context, it would be interesting if
nonsymmetric degrees of freedom could, in fact, be
generated by quantum effects. This possibility, as a
physical scenario, is usually considered for inhomogeneity
rather than anisotropy in order to explain structure for-
mation in the early universe. In this context, it would
be desirable to excite nonsymmetric degrees of freedom
even if the initial state is symmetric (such as the homo-
geneous vacuum). Our model can be used as a test system
in which inhomogeneity is replaced by more tractable
anisotropy.

We will therefore be interested in initial states with
vanishing pg. Nevertheless, the discussion in the present
section goes beyond what we found in the preceding
section because we will assume that some anharmonicity
parameters of the form K% pi=*/y"~! are not negligible
for certain n, such that 0 > k > n.

In order to make the appearance of anisotropy trans-
parent, we begin by analyzing the equation of motion for
the shape parameter, /. If pp=0, it takes the particularly
simple form

B=3" 2 pli, Kook, (56)

i.jk

where the sum runs over all non-negative integer values of
i, j, and k, and f is a function that only depends on the
indices i, j, and k. Therefore, the moments that produce a
nonvanishing derivative for the shape parameter are pre-
cisely those that are unrelated to this variable and, more-
over, have odd order in pg. For any such moment,
uncertainty relations do not imply any lower bound.
Therefore, it is consistent to assume that all K@/0(2k+1)
are zero in a certain class of states. Specific examples
can easily be constructed using products of Gaussian
wave functions, such that K9O0(2k+1) — gij00 g000(2k+1) — ()
because all odd-order moments vanish for a Gaussian.

It is therefore possible to choose an initial state for which
the right-hand side of equation (56) is zero. As time goes
on, the dynamics might activate some of the relevant
moments, K02kt in which case the time derivative of
the shape parameter would become nonzero and an

anisotropy would be generated. However, using the
detailed dynamics at least up to fifth order in moments,
we have analytically confirmed that the time derivative of
any KOGk — 0 s identically zero provided p; = 0 and
all K'/02k+1) = ( at an initial time. The right-hand side of
(56) is then vanishing at all times, and no anisotropy is
generated.

This result can be understood based on the general
behavior of moment equations. Since the -effective
Hamiltonian does not depend on f or its moments, a
nonzero {K/°?*1) H,} can be obtained only via the
(v, p,) part of the moments. Moreover, H is a function of
p%,,, such that only even-order moments of the form K”"0(2)
contribute to H, when pg = 0. The first property implies
that ps orders of moments add up in {K/0CKHD H )},

which then contains only moments of odd order in pj based

on the second property. Therefore, if all K%/0(2k+1)

initially, they remain zero if pz = 0.

Although this result follows directly from properties of
the moment brackets, it is somewhat unexpected based on
general arguments about limitations of minisuperspace
quantization. Our result, however, relies on the specific
dynamics of the moments and not just on general expect-
ations on implications of uncertainty relations. It is also
consistent with detailed studies made in the case of
inhomogeneity [6,7], where an expectation opposite to
the usual criticism of minisuperspace quantization has been
formulated. Nevertheless, since our result relies on the
detailed dynamics, it may well change if other models are
considered, for instance, those with a nonvanishing
anisotropy potential. In our model, the coupling between
the different degrees of freedom is not strong. It could
therefore be possible that our result comes about because
the Hamiltonian (7) is a function (a square root) of the
harmonic (free) Hamiltonian (v”p3 — pj3), where the differ-
ent sectors (v, p,) and (f, py) are completely decoupled.”

At high orders in moments, the nonlinearities and strong
couplings make it difficult to obtain analytical solutions.
We have, however, been able to obtain the general solution
of the system up to third order in moments. At this order,
the evolution of the expectation value of the volume v and y
is given by

are zero

(50102121002 _1 20002
v = 1}0|y2 + I”Q’)| (K12 43K ;K )/"el/),

v =75+ ro. (57)

where r = K102 — g0102 (here assumed to be nonzero) is

the truncation of (45) to third order. The shape parameter
has the following form:

“Required inequalities such as v?p2 — pj; 2 0 can be imposed
on initial values and therefore do not introduce dynamical
coupling terms.
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K003 25
p=p+ - Tﬂ}’, (58)

ry

in terms of y from (57), where
Py = (K001 4 0101 4 1101 | g2001 | g0201)  (50)

is the truncation of (46) to third order.

All moments that appear in our solutions for the expect-
ation values are constants of motion. In general, a moment
of the form K" is a polynomial of order k in y and
therefore changes like ¢*/> for large ¢. Moreover, the
second-order moments that involve either » or p, depend
on ¢ through an expression logarithmic in y. There is no
such logarithmic term in third-order moments, except for
K°120 and K'%2°, in which case this term is multiplied by #2.
Therefore, in addition to the momentum p; and its pure
fluctuations, K% almost all the moments K% unrelated
to the shape parameter f are constants of motion. The only
three nonconstant fluctuations of the isotropic sector
increase as logarithmic functions of y,

KOIOZ +K1002
0200 __

K" = ) —Iny, (61)

K0102 +K1002
2000
K = b3 + <1 —W> 11’1}/, (62)

where b, b,, b; are real constants. The explicit form for the
rest of the moments is given in Appendix E, including
fluctuations of the anisotropic sector and different corre-
lations between the two sectors.

The generic solution presented above is not valid in
the particular case in which the moments K°'92 and K902
are equal, such that »r = 0. If » =0, y is constant and the
volume depends on ¢ by

v = vyexp |¢ + (2K02 — 3(K0102 K1002))% , (63)
14

while the shape parameter increases as a linear function in

¢, as in the classical case,

~ 27/21*']/} + K0003

B ="bo 273

¢ (64)

Therefore, even if f, is vanishing, the quantum moments
will produce an anisotropy by acting as an effective pg,
unless K93 and those that appear in (59) vanish. None-
theless, as commented above, this is allowed by uncertainty
relations and one can indeed choose initial states that will
never generate an anisotropy.

The moments that were constant in the previous generic
solution are also constant in the case of » = 0, as well as the
isotropic correlation K''% = h,. Therefore, in the isotropic
sector, only pure fluctuations of v and p, are dynamical,
and they increase faster (as linear functions of ¢) than in the
previous case,

. 0102 4 g1002
K0200 = bl - 27/2 ¢’
K0102 4 1002 N
K2000 qu + bs. (65)

The rest of the moments is explicitly given in Appendix E.

Our model therefore suggests some middle ground
between the pessimistic expectations formulated in the
two distinct contexts of minisuperspace quantization on
one hand and structure formation on the other. General
criticism of the minisuperspace quantization argues that
none of the solutions of a minisuperspace model are
relevant for the full dynamics because nonsymmetric
degrees of freedom will always get excited, while concerns
about structure formation are based on the statement that a
symmetric initial state cannot evolve into a structured state
in which the symmetry is broken. In our model, we find that
anisotropy 1is, generically, generated, but there are also
states that retain an initial isotropic form. The latter is not
prohibited by uncertainty relations.

VI. NUMERICAL ANALYSIS OF THE MODEL

The complicated structure of equations of motion at high
orders in moments is illustrated by the equations collected
in the appendixes. It implies that analytical investigations
are possible only in certain particular cases, as shown here
for exact isotropy or slowly varying anisotropy. Going
beyond these regimes requires a numerical implementation
to solve the equations of motion and interpret the dynamics.
For this numerical study, a truncation of the system to fifth
order in moments has been considered by neglecting sixth
and higher-order moments. (For the consistency of such
truncations, see [18].)

The full phase space of our system has coordinates
{v.7.B.ps. K'¥'}. As shown by the schematic equa-
tions (23)—~(28), the equations of motion for {y, ps, K'/°*}
form an independent subsystem that is decoupled from the
remaining equations. Therefore, one can solve this sub-
system without considering the whole set of equations of
motion. Once the evolution of {y, ps, K%} has been
obtained, the equations of motion for the rest of the
moments, K'/¥ with k # 0, and for the expectation values
v and S can be solved.

For specific numerical solutions, we will assume an
initial quantum state given by a product of two Gaussians,
one in the volume » and the other one in the shape
parameter /3, centered at initial expectation values v, and
P, respectively. The moments for such a state are
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ilj! k'

=J I =iy —(i+j+k+1) pj+1 =T k=1
Kkl — {70 v 2 W™ ou oy

07

where 6, and o are the Gaussian widths in the volume and
in the shape parameter, respectively, and y is the initial
value of y.

In order to construct a semiclassical state peaked on a
classical trajectory, we will impose small initial relative
fluctuations. In particular, for the isotropic sector, both
K2000 and K9200 have to be small,

2 2n?
K000 — 6—”2 <1, K0200 — _1102 s< 1. (67)
2UO 070

Therefore, the Gaussian width needs to be chosen as
hvy/yg < 0, < vy. In addition, if one requires the state
to be unsqueezed, with equal absolute fluctuations for
both conjugate variables, G*% = G?° then one gets the

specific value ¢, = v/ for the width. This is the value we
will consider for both the Gaussian width in the volume o,
and in the shape parameter o5 = V/A. From this point on,
and for all the numerical simulations, 7 will be set equal to
one. In these units, the Gaussian widths will then be chosen
as 0, = o5 = 1, and the requirement of an initial peaked
state is summarized by the condition 1 < vy < 7.
However, the values of the Gaussian widths have also
been altered by several orders of magnitudes to check that
this choice does not qualitatively affect our main results.

Regarding initial conditions for the expectation values
{v0.70.Bo. ps}, following the discussion of peaked states,
vy and y, have been chosen to be very large, obeying the
constraint vy < y,. In the anisotropic sector, f does not
appear in the equations of motion for the moments and is
therefore less relevant than the other variables, while we
would like to analyze the behavior of the system for
different values of ps. For convenience, we will choose
a small initial value for f; (around unity), so that we begin
our simulations with a nearly isotropic universe. Due to the
form of the Hamiltonian (7), the maximum allowed value
for pg is pg = y. Therefore, we will explore the behavior of
the system for different values of p; between a very small
value (corresponding to slowly varying anisotropy) and the
fixed y. Since we allow for small values of both 3, and pj,
we do not use a sharply peaked state in these variables
because relative moments in the anisotropy sector may be
large if the basic expectation values are small.

Based on the possible values of py, this section is divided
into two parts. We will first consider slowly varying
anisotropy, that is p;y <y, in order to test the analytical
results obtained in Secs. III B and IV. In the second part, we
will consider solutions in which the shape parameter is
evolving more rapidly, leaving the previous quasiharmonic

if all indices are even,

W21/ R72)(I72)1 (66)

otherwise,

|

regime. In this case, pg will be of the same order of
magnitude as y. Since we observe different behaviors of
the system for different values of y,, we will further
subdivide the second part into three parts. In the first
and second parts, we will analyze the evolution of the
moments for small and big values of backreaction on the
evolution of the expectation values v and f.

A. Slowly varying anisotropy (ps < 7)

In Sec. IV, we have found approximate analytical
solutions for slowly evolving anisotropy. At zeroth order
in the anharmonicity parameters, all moments KX are
constants of motion, whereas at next order, including terms
of order 1/y, their evolution is determined either by a
polynomial of order k in internal time ¢ (r = 0) or by a
dependence of the form ¢*/? (r # 0).

Numerically, we have observed that moments of the form
K'7% follow the same qualitative behavior as the isotropic
ones: they are constant throughout the whole evolution and
do not feel the presence of an anisotropy as long as py is
small. Moments of the anisotropy sector, K%/, do not have
an isotropic counterpart. According to our analytical
results, pure moments of pg, K, are exactly conserved
during evolution, which is easily confirmed numerically.
Perhaps surprisingly, we find out that pure fluctuations of 3,
K90 are also conserved up to a high degree of precision.
Based on the approximate analytical solution, by contrast,
one would expect an evolution of the form ¢” or ¢"/%. This
discrepancy seems to be a consequence of the specific
initial state, in particular the uncorrelated nature of the
anisotropic state for f# and pg. Therefore, most correlations
of the form K" with n # 0 and m # 0, are zero; and
they are the only moments that contribute to K%,
The correlations are not conserved and may therefore
build up during evolution, but the rate is suppressed by
a factor of 1/H compared with the evolution of expectation
values.

While generic correlations of the form K 00nm with n # 0
and m # 0, are not conserved in numerical solutions but
rather evolve as linear functions in time ¢, they do not
follow the analytical behavior (54) unless n = 2.

For general moments G/¥ mix both sectors, the evolu-
tion slightly differs from the approximate one. In general,
the behavior of a specific moment G/¥ is qualitatively
the same as its isotropic counterpart, either increasing or
decreasing depending on the sign of the difference (i — j),
but some of them are slightly accelerated or decelerated.
The different behavior does not seem to follow any specific
rule based on the values of the indices. Some examples of
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FIG. 1. This plot shows an example of the evolution of a purely
anisotropic moment, more precisely the correlation between
the shape parameter and its conjugate momentum K%'l for
the case of a slowly variying anisotropy. For this plot, y, = 108
and py = 107! have been chosen.

such corrections are shown in the plots depicted in
Figs. 1-3, where the evolution of some relative moments
K/ are shown. The study clearly shows how the presence
of anisotropy affects the evolution of the moments. In all
the cases, we observe that, instead of a polynomial of order &,
the moments follow a linear dependence in time, that is,
Kk = clikl gy with constants c/¥,

There might be several reasons for such a disagreement.
On the one hand, the approximate analytical solution could
be invalid because one or several anharmonicity parameters
might not be negligible. On the other hand, it might well
happen that closer to the singularity, where this formalism
ceases to be valid, one recovers the commented polynomial
behavior. Finally, the choice of peaked states could in
principle play a relevant role in the behavior of the system,
but we have tested that this is not the case. If one allows for
a squeezed state, either by increasing or decreasing the
value of the Gaussian widths, ¢, and 64, moments depart a
little bit more from their corresponding isotropic behavior.
But, in all cases, deviations from their isotropic counter-
parts stay small during the whole evolution.

In summary, for uncorrelated Gaussian initial states, we
have found that pure fluctuations of f (K®™) and py
(K%0) are conserved quantities, while the remaining
moments KK are not stabilized to any specific constant
values as they approach the singularity. In fact, they
diverge linearly in internal time ¢, either to plus or minus
infinity.

B. General anisotropy

We now present our extension of the numerical study to
the case of a general anisotropy. We have systematically
studied different ranges of values for all the parameters
involved in the evolution in order to understand the global

1(0101
25x10"13

2.x10713
15x10°13

1.x10"13

-50 -40 -30 -20 -10

-50 -40 -30 -20 -10

~5.x10712 |
-1.x10"M
-15x10"1 ¢
-2.x10"11
-25x10~1

FIG. 2. Here we show the linear evolution of two moments,
K901 and KO0, for the slowly varying anisotropy case. Even if
both have a common isotropic counterpart, as their v and p,
indices are the same, they exhibit two opposite behaviors: K0!
is increasing, whereas K°'10 is decreasing. But, in module, both
go to infinity and thus they slightly accelerate the exponential
diverging of the corresponding absolute moments, G°'°! and
G%'19 In any case, this variation is very small as compared with
the dominant isotropic behavior. As in the previous figure, here
we have chosen yo = 10% and py = 107",

behavior. In particular, we have found a qualitative change
in the evolution of the moments, and in the approach of the
system to the singularity, depending on the value of y,.
Apart from this, another important variable is pg, which
measures the departure from the harmonic behavior.
As always, for the Hamiltonian (7) to be real, the relation
Pp < yo must hold, indicating a relationship between these
two scales. The relation between p; and p,, or v,, by
contrast, appears to be irrelevant for the qualitative physical
behavior of the system.

Accordingly, this subsection is divided into three parts.
In the first two, we analyze the behavior of the moments for
different ranges of values of y(, whereas in the last one, the
effects of the quantum backreaction on classical trajectories
are studied.
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FIG. 3. The evolution of the moments K'°'2 and K'°% for y, =
10% and Dy = 107!, As opposed to the case shown in the previous
figure, in this case, the isotropic counterpart G'° exponentially
approaches zero toward the singularity. Therefore, as can be seen
in the plots, the anisotropy decelerates this approach to zero. The
only difference between both moments, G'°'? and G'%%, is that
the former will approach zero from negative values, whereas the
latter will tend to zero from positive values.

1. Evolution of the moments for small values of y,

We first turn to the behavior of the model for y, < 10%.
In this regime, we have analyzed the increase of pg
approaching its upper bound given by y,. As commented
above, in order to construct the formalism under consid-
eration, we have introduced a truncation, assuming that
sixth- and higher-order moments are negligible. It is
expected that this approximation holds only as long as
the state is sufficiently peaked around the classical trajec-
tory. As one departs from the harmonic case, the numerical
solutions might eventually break down, signaling the
limited validity of the approximation. Due to such limi-
tations, in this case, it was not possible for us to consider
values of py greater than 0.3y,.

While we depart from the limiting case of slowly
varying approximation, more and more moments begin
to deviate from their harmonic behavior. None of the

relative moments K/¥/ stabilizes their behavior; they either
increase or decrease continually toward the singularity. It is
interesting to note that when we depart from the previous
regime, we see a certain dilation in the evolution of
moments for a given amount of scalar-field time. That
is, the evolution of a given moment for a large value of pg
during a short period of time corresponds exactly to the
whole evolution of the same moment for a small value of pj
but a longer period of time. This result indicates some
scaling in time, parametrized by p;. Therefore, this variable
drives the velocity of evolution of the moments, in much
the same way that it controls the velocity of the anisotropy,
even though it is not canonically conjugate to the moments.
This effect can be seen especially in the last plot depicted in
Fig. 4, as the value of the ratio p;/y increases, the change
of sign occurs at earlier times.

Concerning the moments, there is a subset that domi-
nates the dynamics in the sense that they evolve faster than
the other ones, diverging exponentially toward the singu-
larity, and get a larger absolute value than the rest of the
moments. In particular, the most dominant moments are the
pure fluctuations of g (K%"°). The other relevant moments
are the correlations between 8 and v (K"°"°) and between f3
and p, (K°7). All the mentioned moments (with the
particular exception of K°!3° for certain values of pj;) are
increasing for even values of the index m, corresponding to
p, and decreasing for odd values. But this rule does not
apply to other generic moments K/¥_ In fact, some of them,
depending on the value of pg, diverge to minus or plus
infinity, as the commented K°*°. Nonetheless, in the
following section (when the value of y, is larger than
the one considered here), we will see that almost all
moments will follow this rule.

On the contrary, pure fluctuations of p, (K%) evolve
very slowly, and they keep a small value along the whole
evolution. Therefore, these are the least affected moments
by the presence of the anisotropy.

2. Evolution of the moments for large values of v,

For large values of y,, approximately in the range
10?'-10%, the isotropic dynamics completely dominates
the behavior of different moments. Even for large values of
pp, up to 0.4y, the evolution of the moments follow
exactly the isotropic one and all K/* are constant. This is
also the case if one squeezes the state by modifying the

relation ¢, = /2 by several orders of magnitude. The
regime of large y, might also be interpreted as the classical
limit of the model since it implies a very large value of the
classical part of the Hamiltonian, which then dominates
over all moment terms.

Contrary to the previous case where the maximum value
we could consider for p; was found to be around 0.3y,
here we can choose values as large as 0.7y,. This result is
consistent with the smallness of moment terms relative to

104062-13



ALONSO-SERRANO, BOJOWALD, and BRIZUELA

PHYS. REV. D 101, 104062 (2020)

In |K1020]
10

-30

n [K0130|
10

|
[
o

e

* :
-------- .
| H

———.

-15

FIG. 4. Examples of evolution of dominant moments of the
form K000 gn0m0 - and K9m0 for a relatively small value of
7o ~ 10% in logarithmic plots. Different colors and dashing
correspond to different values of the ratio pg/y. In particular,
purple and continuous (0.3), blue and dotted (10‘2), green and
dashed (1078), red and dot-dashed (107'¢). Every sharp peak that
appears in the last plot corresponds to a change of sign of the
moment. Note that despite those changes the absolute value keeps
diverging with the same tendency.

the classical contribution to the Hamiltonian, such that
truncation effects should be negligible. Only for values
of py larger than 0.4y, do the moments depart from
their corresponding slowly varying anisotropic behavior.
Classical trajectories are then modified by quantum back-
reaction, as will be shown in the next subsection.

For this case, we observe that more moments depart from
their harmonic behavior than in the previous (small y)
case. For such moments, we have been able to find a
general rule that characterizes their divergence when
approaching the singularity. The key parameter is the
moment index that refers to the shape parameter f.
More precisely, as we approach the singularity, moments
K" (20m with an even index in f are increasing functions,
diverging to positive infinity, whereas moments K"+ 1)m
with an odd index in f are decreasing functions. This rule
agrees with what we found in the previous section for a
certain subset of moments, but here it is obeyed by almost
all activated moments, with a few exceptions.

The absolute value the moments reach at the end of their
evolution is much greater in this case than in the previous
one. Furthermore, moments, which in the previous case
were approximately constant, are now evolving. This
outcome is not related to the fact that here we have been
able to get closer to the limit of ps~y,: even here, the
moments are completely constant if we use the maximum
value of the ratio py/y, considered before (around 0.3),
while for larger ratios the moments start increasing much
faster than in the previous case. In order to compare them,
we show the evolution of the same moments as in the
previous section in Fig. 5.

Finally, for extremely large values of y, > 10%, the
previously mentioned effects are absent and all the K/
follow an almost constant evolution even when we reach
the limit pg = y,. This limiting case is relevant because it
shows that the dilation effects in evolution cannot be
explained simply by a p, enlarged by moment terms,
which would rescale any ¢ derivative in the equations of
motion. If this were the reason for dilation effects, it should
occur even in the case of very large y, in particular for
Pp = yo which implies that p, is tiny, leading to large
rescaling factors of 1/p,.

3. Quantum modifications of the classical trajectories

The evolution of the expectation values f and v is
generically modified by quantum backreaction effects.
Nonetheless, in the approximation of slowly varying
anisotropy, we have analytically found, and numerically
checked, that these parameters follow their classical tra-
jectories up to a high degree of precision. But in the case of
rapidly varying anisotropy, ps =y, we do observe a
departure from the classical behavior.
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In [K1020|
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40

FIG. 5. Evolution of the same moments as in Fig. 4 for
a larger value of y, ~ 10?!. In this case, we have chosen the
following ps/yo: 0.7 (purple and continuous line), 0.3 (blue and
dotted line), 1072 (green and dashed line), and 10~ (red and
dot-dashed line).

In the classical setting, the evolution of the shape
parameter £ is a linearly increasing function of time,
viewed toward the singularity. However, as seen in
Fig. 6, for large values of y,, quantum effects give rise to
a decrease of the anisotropization toward the singularity.

B

50

¢

-50 —40 -30 20 -10

FIG. 6. In this plot, one can see how the quantum corrections
produce a decrease in the growth of the anisotropy close to the
singularity for 10?! <y, < 10%. Different colors correspond
to different truncations in moments. On the one hand, black
(classical solution), red (second-order), and green (third-order)
are almost overlapping continuous lines. On the other hand, the
fourth-order (purple and dashed) line shows the commented slow
down of the anisotropization.

That is, quantum modifications decelerate the divergent
behavior of the shape parameter toward the singularity.
In the evolution of the volume w», which classically
follows an exponentially decreasing behavior toward the
singularity, we observe three qualitatively different behav-
iors in the presence of quantum effects: for relatively small
values of y,, 7o < 10%°, the volume collapses faster at the
beginning of the evolution, and then follows the standard
exponential behavior but with a slightly lower slope. Thus, it
approaches the singularity slower in the presence of quan-
tum corrections, as can be seen in Fig. 7. The early quantum
modification, appearing as a “‘jump” in the volume, is due to
the fact that the chosen initial state is not a coherent state of
the model. Therefore, initially vanishing moments are
turned on, reaching their “natural” value adapted to this
particular dynamics. This transition, which has also been
seen at late times in other models [9], produces the fast but
short initial collapse. Once the moments settle down to a
more coherent behavior, we observe the usual exponential
collapse of the volume. In this case, the small value of y is
not strong enough to hide these quantum backreaction
effects at an early epoch of the evolution.
Correspondingly, for greater values of y,, 10?! <y, <107,
we do not observe the initial jump in the volume. In that case,
quantum corrections lead to a significant slow down of the rate
of collapse of the volume toward the singularity, as seen in
Fig. 8. This result is consistent with the softening in the
increase of shape parameter toward the singularity and points
to a smoothening of the singularity by quantum effects.’

*We would like to point out that a previous study in the context
of quantum geometrodynamics also suggests an avoidance of the
classical singularity [19].
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FIG. 7. In the first plot, we represent the approach of the

volume to the singularity in a logarithmic scale for y, ~ 10?. For
the sake of clarity, we only represent the classical evolution of the
volume (black and continuous line) and the solution truncated at
fifth order (purple and dashed line). In the second plot, in order to
show the differences among distinct truncations of the quantum
solution, we show the ratio of the volume truncated at nth order
(v,) with respect to the classical volume (v,). The reference
line is represented by the continuous black line, whereas the
second and third-order truncations exactly overlap (represented
by the red and dot-dashed line). The more relevant effect appears
at the fourth order (given by the green and dotted line) and fifth
order (represented by the purple and dashed line), showing
clearly that, even if initially the collapse is faster than in the
classical case, it is slower at the final stages of the evolution.

(We would like to note that for this range of y,, the fifth-order
truncation of the system has shown strong numerical
instabilities and, therefore, the commented result has been
derived from the system truncated up to fourth order.)

Finally, as explained previously, very large values of ¥,
Yo = 107, correspond to the classical limit of the model.
For this case, quantum effects are not visible in our
numerical implementation, and expectation values follow
exactly their classical trajectories. In fact, due to the large
value of the classical Hamiltonian, one would expect that
quantum modifications of these trajectories will appear
only much closer to the singularity.

S i
3.x10 .

25x1076 / Inv

/ 50

2.x10°8 ’

FIG. 8. The logarithm of the volume approaching the singularity
for 10! <y, < 10%. The zoom-in shows (in a linear plot) the last
stages of the evolution of the volume toward the singularity.
Different colors and dashing correspond to different truncations
in moments. On the one hand, black (classical solution), red (second
order), and green (third order) are almost overlapping continuous
lines. On the other hand, at fourth order (purple and dashed line), the
collapse of the volume is clearly slowed down by quantum effects.

VII. CONCLUSIONS

We have considered a Bianchi I model written in terms
of Misner-type variables. For the sake of simplicity,
but without loss of generality, we have taken only one
anisotropic direction to perform our analysis. The classical
model contains a singularity located at a vanishing value of
the volume v = 0. In this paper, we have studied the
quantum evolution of the system when approaching this
singularity. With additional approximations, the model is
simple enough to allow analytical statements about generic
moments, yet complex enough to show nontrivial behavior.

For such a purpose, we have made use of a formalism
based on a decomposition of a quantum state into its infinite
set of moments. Furthermore, we have considered a set of
variables that allow us to decouple the quantum evolution for
some of the relevant variables, simplifying both the analysis
and interpretation. Because of this choice, we have been able
to find analytical solutions for all moments when the
anisotropy evolves slowly (that is, when the conjugate
momentum of the shape parameter py is much smaller than
the Hamiltonian y of the reference isotropic model) by
performing an expansion in p,/y. In this limiting case, we
can compare with the isotropic solution (p; = 0), showing
that the evolution of the volume is not affected. But those
moments that in the isotropic case were constant now feel the
anisotropy and evolve, having a polynomial dependence on
time. We remark that the moments with vanishing index on /3
play a special role in the evolution, being constants of motion.

Going beyond the previous approximation by including
terms of arbitrary powers in y~!, we have analyzed the
particular scenario when, at an initial time, the shape
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parameter f# and its momentum p are zero. In this case, the
universe is initially isotropic, but one would expect the
generation of an anisotropy during quantum evolution,
owing to the performed classical reduction of symmetry
that is not consistent in the quantum realm. (Note that, based
on the uncertainty principle, not all moments can vanish.)
Nonetheless, we have found an analytic solution and shown
that anisotropy is not necessarily generated during quantum
evolution. This interesting new result could be a consequence
of the completely decoupled nature of degrees of freedom in
the classical Hamiltonian, which may allow a classical
symmetry to be unaltered by quantization. Nevertheless, it
suggests an interesting middle ground between having no
symmetry-preserving solutions at all (a common criticism of
minisuperspace quantization) and not generating any non-
symmetric degrees of freedom (a concern sometimes voiced
about cosmological structure formation).

In order to go beyond the limiting case, we have
performed a numerical simulation of the complete
system up to fifth order in moments. We have used the
limiting case to check our method and study the evolution
of the moments toward the singularity. After that, we have
considered a general case and analyzed the evolution for the
different ranges of p; and the initial value of y. We have
shown how some moments are activated during evolution,
departing from their isotropic behavior and diverging as
they approach the singularity. The greater the value of pj
with respect to y, the more dominant the moments, mainly
those that represent pure fluctuations in 4. In addition, they
are not only more dominant for that range, but also allow us
to see a longer stretch of their evolution.

Concerning the expectation values, we have analyzed the
quantum evolution of the volume v and the shape parameter
f, which are determined by previous variables and moments.
We have shown that quantum backreaction has a more
relevant effect when the initial value of y is bigger. It then
appreciably acts only in a region near the singularity, where
we expect quantum effects even if the initial state is classical.

In that case, the shape parameter, which classically increases
toward the singularity, decelerates this divergent behavior,
softening the anisotropization close to the singularity. In a
similar sense, the exponential collapse of volume toward the
singularity has been smoothed by quantum backreaction
effects, decreasing the rate of collapse.

Finally, we would like to note that several statements about
the generic moment orders relied on the f independence of
the classical Hamiltonian, which would no longer be the case
in models with an anisotropy potential. In such models, it
would be more difficult to obtain corresponding statements,
even if a similar behavior might still be realized. One would
then have to rely on numerical investigations based on the
methods developed here. Such results, however, would
always be state dependent and require a careful analysis
of implications of how one chooses an initial state.
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APPENDIX A: SECOND-ORDER EQUATIONS OF
MOTION FOR ABSOLUTE MOMENTS

In order to give an idea about the system of equations, we
present the second-order truncation of equations of motion,
used up to fifth order in the numerics. The equations of
motion for the variables {v, p,. S, ps} are

o 3
V=3 {H“vzm +500puppGP0 = v py(pj + 2piv) G = vpupy(2pj + piv?)GMY,

2

2

2,2
Py 1
+ v2p0< + pﬁ) G™ + vp;(2p; + pyv* )G + p, pj (pf, +5 p%vz> 62000] :

.1 3 1
Po=153 {—H“vp% =5 vPippGP = Swpi(2p + piv?)GO% + pupi(pj + 2p70?) G,

“ 2 2

1
= pppo(2pp + piv?)GM + vp,py(2p + v?pr) GO = S wpp(2ph + v2p3)G°2°°] :

1

2

, 3 1
p=— {—H“pﬁ — S0 pippGo* — Ep%pﬁ(p% +202p3)G* " — wp, py(2p; + v p3) G,

T H 2

1
+ 02 pu (0Pl 4 2p5) G = 502 py(pj + 207 p)GPX + opi(vPpi + 2p§)G1°°‘] :

104062-17



ALONSO-SERRANO, BOJOWALD, and BRIZUELA PHYS. REV. D 101, 104062 (2020)

The equations for second-order moments are

G2 — .

. vp
GOOll — HSU [pypﬁGIOOl + Up/;GOIOI _ vvaOOO2L

. v
G020 _ % 29, ppG"10 + 20p,GO10 — 29p, GO,

: p
GOlOl _ ?1’; [_vpvpﬂGOOO2 + pvp/%GIOOI + U(zp/Z} _ UZP%)GOIOI]’

GO]]O — % [—Upvp/;GOOH _ 1]2va0101 + pvszIOIO + Up”pﬂGIIOO + U2pﬂGO2OO + 0(2]92 _ vzp%)GOHO],

GO2OO _ % [_val;pﬂGOIOI + zpl}péGllOO + 211(2]7% _ UZP%)GOZOO]7

GIOOI _ % [vpypﬁGOO(n _ UpéGOIOI + pv(v2p% _ 2p/23)G1001],

GIOIO _ % [p%p/;GZOOO _ Up%GlOOl + Up,,p/,vGOOH + ’Up,,p/,’GHOO _ Up%GOIIO + pq)(UZP% _ zp‘%)GIOIO]’

GllOO — % [p%p%GZOOO _ Up%pﬁG]O()l + U2p1;pﬁG010] _ UzpéGOZOO],

(';2000 — % [UpypﬁGlom _ Up[2),G1100 + pv(UZP% _ 2[)/2})(;2000]. (Al)

APPENDIX B: THE EQUATION FOR THE VOLUME AT FIFTH ORDER IN MOMENTS

B 3p5(py+1277py+8y*) GP00° +5(3yp}§ +4y p)GH0v +5pﬂy(15p73 +40y% pj+8y*) G0
T 8H! SHO S
B (p;‘j —|—4y2p/23)G03001J4 _pﬁ(3p;§ —|—24}/2p§ +8y1) GO0 4 ~ (12p2 + 159}/2172 + 136y4p/2j +8y%) G302 %
2H7 2H9 Al
_Sp/%y( 18p2 +41y2p§ +4y") G104 N 3p/2}yG0200113 N 3(3}/p2 +2° pp) G013 +3(2y5 +21p§y3 + 12p2y)G0202113
8H!! 2H? 2H 4H°
N 15pr(4py+13y° py+4r*) G200 +p,2,(4p;+27y2p/2,+4y4)Gl3°%3 +pﬂ(12p2+ 159y% pjs+136y* p; +8y°) G101’
4H" 2H° 2H!
Py 277G 2pj+ 117 pp+2r)GYP0?  ps(2p5 421y  pp+12¢) GO0
H> 2H 2H?
(8p2—|— 1367/2])2 + 1597/4])% +12y0)GO1%4y2 31727/(4p/23—|—7/2)G1200112 3p/;}/(12p2+21y2p/23+2y4)G1201v2
B 8H! - 2H" - 2H°
_37(48p2+ 186y2p;§+79y4p;,+2y6)61202y2_ Py(12p5 4159y pj +136y* pj+8y°) G202 rv (r’ +2p5r) G0
4H! 4H! H 2H?
. (2rp; +373Pﬁ)GOOO3U+7(8P?; +24y% 3+ 374 G +P/f7(8p?; +40y% pj+ 157 G* % +P%;(2P%; +7%)G"%
2H 8H° 8H!! H>
+p/}(2p;§+ 1 1y2p§+2y4)G“01v+ (4pg+54y2p2+45y4p§+2y6)G11020+pﬁ(4p2+98y2p2+ 177y* pj+-36y°) G %
H’ 2H? 2H!
N 3(127pf+217° py+21° p3) GO0 N 3ppr(36p)+ 177y pj+ 987 i +4r°)G* v pyy(2pj+1*)G'™!
AH 4HT H’
(F° +10p3y° +4piy) G2 (4yp3+221° pj+97° py)G' (977 +138p5y° +152pjy® +16p5y) G

2H’ 2H° 8H!
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~ (2p§ + 11y?pj + 2% pj) G2 ~ (2pj + 4577 pj + 547* pjy + 4y°ps) G*1!

2H 2H°
(4p5 + 19477 p§ + 549y% p} + 194y° p7 + 4y%) G212 3(8ypli + 567° pS + 39y pjy + 2y p3) G20
4H1 4H1
ppr(2p5 + v G N (2ypj + 117 pj + 27 py) G N (27 +45ppr° + 54pgr’ +4phy)G**”
2Hv 2Hv 4H%v
N (4yp; + 98}/3])2 + 177}/5172 + 367" ps) G20 N (12y2p2 + 21y4p2 + 2y6p§)G3100
4H"yp 2H%v
| Bppr® 98P + 177" 4 36p°) G pr(4pj + )G (ppr” + 21 4 12pr°) G
2H''y 2H»? 2912
(2v" +T9psy" + 186p5y 4 48p§y>) G (127 p§ 4- 159y* p§; + 136y°pj; + 8y°pj) G
4H'T,? SHT 12
N (4pgr" + 27pgy° + 4p§r)GH% N (8ppr® +136pyy" + 159p3y° + 12pjy*) G
8Hv? 8H!y3
(4pjy® +41pjy" + 18pGy*) G
8H11 ’U4 :

APPENDIX C: SECOND-ORDER EQUATIONS OF MOTION FOR RELATIVE MOMENTS

Performing the change of variables {v, p,. 3, ps. G/*'} to {v, 7, B. ps. K'*'}, the equations of motion for {y, ps, K"/}
decouple from the rest, p; and all its fluctuations K% are constants of motion.

2
. VPp
= H}/ (pﬂ(Kozoo _ Kzooo) — Ko101 K10°1),
pp=0,
f0002 _ 0,
. rp
fo11 _ Ff(p/}(l(mm + K‘OOI) _ Koooz)’
. 2yp
0200 _ H3ﬁ (pﬁ(Kozoo + K”OO) _ KO‘OI),
. rp
Kloor _ —H—f(Pﬂ(KmO] +Klom) _Koooz)’
. YPp
K100 _ _F;(Pﬂ(KOZOO _ Kzooo) — KO01 K1001)
. 2yp
2000 _ H3ﬁ( /}(Kuoo + KZOOO) _ KlOOl)‘

The moments K"/* related to 8 are given by

2
: /4
oo _ m(pﬂ(Koml + K100y _ 0002y

. 2y2
K0020 — ? (pﬁ(KUHO + Kl()l()) _ KOO]])’

I'(O]l() — %(_},KOIOI +p/;(]/(K0200 + KIIOO) _ KOOII) +p§(K0110 + KIOIO))’

I'(IOIO —_ —%(yKIOOI —p/}(]/(KHOO +K2000) + KOOII) +p2(K0110 + KIOIO)).
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Just as these equations, the equation for f is also independent of the volume,
. 1
B = 55 (=274 (K001 4 K100 4 yzpz([{ozoo +4K1100 | 2000 _ 4))
—4y2p/2,(K°101 + Kool +p/,(2y4(K0200 K100 g2000 4 1) 4 3,2 g0002) +2p/5,).

Finally, the equation of motion for the volume is given by a logarithmic derivative,

vy

v 2HS
— 22 py(2KOI01 4 K1001) 4 2 p (K100 4 g2000) _ 3 (KOI01 4 pR1001))

(274 _ 4},2p‘% + 2}7;‘3 + },ZKOOOZ + pé(y2(3K0200 + 2K1100 + KZOOO) + 2K0002)

APPENDIX D: THE SOLUTION FOR THE QUASIHARMONIC CASE TRUNCATED
AT THIRD ORDER IN MOMENTS

In this appendix, we present the solution for the quasiharmonic case up to order O(2) and truncated at third order in
moments. For the generic case, with r # 0, moments K'/¥ go as ¢*/? and, in particular moments of the form K/ are
constants of motion. The remaining moments are

2\rd+rg
r

KOOII =c + (_KOOOZ + KOIOZ + KIOOZ + p/;(KmOl _ KOZOI + KIOOI _ K1101 _ KZOOI))’

p)
K912 — ¢, ¢ 2y 70r+ re (pﬂ(Komz + K1002) _ 0003

p)
KO0 — ¢ ¢ 2Vrotre (—KO101 4 o201 4 1101 +pﬁ(K020° — K0300 4 R1100 _ g1200 _ 2100y,
r

275+ rop
KOlll — C4—|— Or (pﬂ(

KOZO] +K1101) _ K()]OZ)’
2
K010 — ¢ ¢ 2Vro +rd (pp(KO30 4 f1200) _ 0201y
r
2\/v3 +r
K010 — ¢ 4 Yor ¢(_K1001 K0Ty 2001 |y (1100 _ 1200 | 2000 _ 2100 _ 3000

2
Ko — o VRt e
r

(pﬂ(KHOl + KZOOI) _ K1002>,

4/ri+ro 4¢
K021 — ¢ — or (¢ = ppca — pper) —1—7(1(0003 i pﬂ(—ZKOIOZ K002 pﬂ(Kozm 2K10T | g2001))y

K0 — ¢ +2\/ 7’(2)r+ re (pp(K1290 4 K2100) _ 1101

4\/y2 + rep 4¢
KO0120 Cro— 0 (c4 — ppcs —p/}cg) +T(K0102 + pﬁ(—ZKOQO' _ oK1t +pﬁ(K°3°0 + 2K1200 +K2‘°0))),

,
K210 — ¢ +2 78r+ r¢ (pp(K2100 4 3000y _ 2001
K020 — ¢, — 4 vio TV y(%r—'— r¢ (c; — PpC3 — C4 + PpCs — PpCe — C7 1 PpCo + Pﬂcll)
4 # (K200 — 20300 4 91100 _ 41200 4. 2000 _ 4R2100 _ g3000) 2
_?((KUIOI _ 2K0201 + Kl()Ol _ 3Kll()] _ 2K2001)p/j + KOOOZ _ 2(K0102 + K1002)>,
K020 — ¢ 4\/7(2)r+ rg (¢7 = paco = ppent) Jr?(Klooz + pp(=2K10T 22001 |y (K1200 4 9R2100 4 g3000)))
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and finally

K0030

6
=cu+ —(12¢(02 + pp(=2¢4 = 2¢7 + pples + 2¢9 + c11))) + /75 + rd(pplcro + c13) = ¢3))

127/
t— —52(cr + pp(=2c4 = 2¢7 + pyles +2¢o + c11)))

_ 2475y 70 +r¢ %(Kozoo - 3K1200 4 3K2100 | 3000
I"

_247’(2)\/7’0+r¢ 2(K0201+2K”°‘+K2001)
r

N 2473\/7v% + o

r3 pﬂ(KOIOZ +K1002)

4 247(2) V 7(2) +ro 0003

3

8(?’% +3r¢)3/2 pz(Ko3oo 4+ 3K1200 4 32100 4 K3000)
r

245+ )"
r3

24(y% + r¢ 3/2
+ (Or—z)pﬁ(Komz + Klooz)

(g +rg)? K003
r? ’

+

p/Z),(K0201 +2K1101 _I_KZO()I)

with integration constants c;.
For the particular case with » = 0, a moment of the form K“/* is given by a polynomial of order k in ¢,

KO = ¢, +ﬂ(_Koooz 4+ K0102 4 g1002 —|—p/,(K°'01 — K0201 4 g1001 _ ge1101 _ Kzom))
70

1
KOO]Z — %(}/OCZ _ ¢K0003 + pﬁ¢(K0102 + KIOOZ))’

2 42
KOO20 =3+ pﬂ? (KOZOO _ ZKOBOO + 2K1100 _ 4K1200 + KZOOO _ 4K2100 _ 2K3OOO)

70
_¢_22(2(K0101 _2K0201 +KIOOI _ 3KllOl _ 2K200])p/} —|—K0002 _ 2(K0102 + KIOOZ))
I
2¢

—%(01 — 7= ¢y + pp(=ce + cg = c19 + €13+ C14))s

2
k0021 _ Cs +¢ (Kooos+p (- 2K°'02—2K1002+pﬂ(K020'+2K“0] +K200])))+—¢(P/f(07+cn)—Cz),
0 Y0

3
K0030 + pid’ <(K0300 + 3K1200 + 3K2100 + K3000)p%j _ 3(K0201 + 2K1101 + KZOOI)pﬁ)
0
¢ 3K0102 3K1002 K0003 3¢2 2 2 2
+y_3( pp(+ + ) — )‘1‘—7/2 (c2 + pp(=2¢7 = 2¢y11 + pplco +2¢13 + c14)))
0 0

3¢
+ —(Pﬁ(cs +c12) = ¢4)
70

for pure anisotropy moments, and
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KOI]O = cq _;'_ﬂ(_KOlOl + KOZO[ + Kll()l + pﬂ(K0200 _ KO3OO + KllOO _ K1200 _ KZIOO))

70
1
KOlll — %(}’06'7 —¢K0102 + p/}¢(KOZOl + KllOl))’
¢’ 2¢
KOIZO = cq +y_2(K0102 + pﬂ(_ZKOZOI _ 2K1101 + p/;(K(BOO + 2K1200 + KZlOO))) —|—y—0(pﬁ(C9 + 013) - C7),
0

1
K0210 — % (J/OCQ _ ¢K0201 + pﬂ¢(KO3OO + K1200)>,

K010 = ¢ +f(_K1oo1 4+ K101 | g2001 —|—pﬁ(K“°° — K200 4 2000 _ g2100 —K3°°°))
70

1
K1011 — %(}’ocn —¢K1002 +pﬂ¢(K1101 —|—K2001)),

2 2
K020 = ¢, +£2(K1002 + pﬂ(—ZK“m — 2K2001 4 pﬂ(Klzoo +2K2100 4 K3000))) +—¢(Pﬂ(c13 + ) —cn)
70 70

1

K110 _ - (Yoc1s — KON 4 pyh(K1200 4 K2100))
1

2010 _ - (Yoc1s — KO 4 pyh(K2100 4 K300))

for moments with volume-anisotropy correlations.

APPENDIX E: THIRD-ORDER SOLUTION FOR THE p;=0 CASE

We present the solution for the system truncated at third order in moments for the particular case py = 0. For the case
with » # 0, the fluctuations of the anisotropic sector are

2(KO002 _ (0102 4 gr1002 9 g0003
KO = ¢ + ( 01(§2 1002 ))7 K™ = ¢ + 5155 om0 1
K - K K - K
4y
K920 — ¢, R gy [(Koooz — D(KO102 4 K1002))y 4 (KO102 _ g1002) (0 4, 4 es)].
1
0021 _ o gy [—8)/%[(0003 — (KO102 — g1002)20 4 q(KO102 _ g1002) 0 4 4 000352
1
0030 _ Ko T [(K0102 — g1002)3 0. 04 (K0102 — Klooz)y(z)c2
_ 6(87/(2)1(0003 (K102 = g1002)20 00y 4 1D(K0102 — g1002) 002 4 0003, 3]
where c; with i = 1, ..., 6 are real constants. The second-order correlations between the two sectors with their logarithmic

behavior read as

ool 0003
K =d, + (KO102 _ g1002y Iny,
) (K102 — 1002y 4 2y 0003)
KO0 — 4 _ K001 _ g 1 g0y, o Iny.
27 0102 _ 1002 ( 1 )id (K012 _ 10022 14
0003
KIOOI = d3 — ln]/,

(K0102 _ g 1002)

2(—d3 4 KllOl + KZOOI) ((KOIOZ _ KIOOZ)CZ + 2]/K0003)
K0102 _ K1002 v (KOIOZ _ K1002)2

K010 — g, — Iny,

where d; with i = 1,...,5 are real constants. And, finally, the third-order correlations between the two sectors
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K0102 +K1002
KO — o 4 ( )}',

I+ K0102 _ KIOOZ

4oz des n?

0120 _
K75 = fi+ (K002 — 10022 VT o2 _ grooa T 2(K0102 _ 1002

Iny,

A 0201 KO102 4 g1002
0210 _ 1011 _
K™% = fr+ 0102 _ ge100z 7 K™ = —cy + <K0102 — Kooz 1>7’
4K1002 4c n2
1020 _ 2 4
K™ = f3+ (K002 _ K1002)27 ~ k0102 _ ooz’ + 2(KO102 g 1002) Iny,
2K1101 2K2001
K110

_ 2010 _
=fa+ 0102 _ gei00z 7 K= = fs+ k0102 _ geio0z 7

where f; with i =1, ..., 5 are real constants.
For the case with r = 0, the solution is slightly different and the fluctuations of the anisotropic sector take the form

0002 _ 0102 _ 1002 0003
KOO]] — El _ ( )¢’ K0012 _ 52 _ ¢’
14 Y
o) 0002 _ 5 g0102 _ 5 gr1002Y 42
K0020=53—;(51+54+55)¢+( 72 L g
_ 2 K0003 _ 3¢ 3¢ K0003
K0021 _C6__2¢+ > ¢2’ K0030 C7+—6¢+—22¢2— . ¢3.
14 14 4 14 14
The second-order correlations between the two sectors are given as
. 0003 - (g = 2p(KO0 4 K101 _ 1)) 0003
KO101 dy — b, KO0 — —d, — 2 1 b+ 4)2’
2y? 2y? %
_ g0003 - (2p(KMOU 4 K001 _ ) 4 Gy) 0003
K100l — g, 4 b, K100 — g, 4 3 2 ¢ — 2.
2y? 2y? 23
And finally, the third-order correlations between the two sectors take the form
K002 4 k1002 . (8ys+h?) KO0102 | gr1002 . k0201
KoM = &5 — Ty @, K020 = f + 472 ¢+ 27 P, e P,
K002 4 k1002 . (R —8y8y) KO0102 | gr1002
KIOH = —C4 — 27/ ¢’ KIOZO = f3 - 47/2 . ¢ + 2}/2 ¢27
_ 1101 . 2001
Kll]O — f4 _ ¢’ KQOI() — f5 _ ¢
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