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The approach of a quantum state to a cosmological singularity is studied through the evolution of its

moments in a simple version of a Bianchi I model. In spite of the simplicity, the model exhibits several

instructive and unexpected features of the moments. They are investigated here both analytically and

numerically in an approximation in which anisotropy is assumed to vary slowly, while numerical methods

are also used to analyze the case of a rapidly evolving anisotropy. Physical conclusions are drawn mainly

regarding two questions. First, quantum uncertainty of anisotropies does not necessarily eliminate the

existence of isotropic solutions, with potential implications for the interpretation of minisuperspace

truncations as well as structure-formation scenarios in the early universe. Second, backreaction of moments

on basic expectation values is found to delay the approach to the classical singularity.
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I. INTRODUCTION

The dynamics of anisotropic cosmological models is

believed to give a reliable description of the approach

to a spacelike singularity in general relativity, based on

the Belinskii-Khalatnikov-Lifshitz (BKL) [1] scenario.

It is therefore of interest to analyze in detail the behavior

of quantized anisotropic models in order to determine

whether a singularity may persist in quantum gravity.

The most generic dynamics, given by the Bianchi IX

model, can be rather complicated classically [2], but

even in this case it consists of long stretches of time

during which the dynamics resembles that of the simpler

Bianchi I model.

The main goal of this paper is to analyze how the

presence of anisotropies may affect the behavior of a

quantum state, parametrized by its quantum fluctuations

and higher-order moments. These parameters can be

considered coordinates of a quantum phase space that

extends the classical phase space of the volume and

anisotropy degrees of freedom, parametrized here in a

Misner-like fashion. The quantum parameters, as opposed

to a wave function, preserve the geometrical nature of the

classical phase-space problem and are therefore appropriate

for a quantum understanding of the BKL scenario.

Misner variables [3,4] describe a homogeneous geom-

etry not directly through the coefficients in a line element

but rather through the volume and two anisotropy (or

shape) parameters. We will further restrict the dynamics by

assuming that only one of the anisotropy parameters is

nonzero. As geometrical variables, we will therefore have

the volume, one anisotropy parameter, the moments of each

of these variables and their momenta, and cross-moments

between volume and anisotropy. Even in the restricted

setting of a single anisotropy parameter and a quantum

dynamics is truncated to some fixed moment order, the

parameter space is therefore rather large, making the

analysis nontrivial and instructive.

For generic anisotropy, the system of dynamical equa-

tions for moments is highly coupled and hard to solve

analytically. We will therefore introduce an approximation

in which anisotropy varies much more slowly than the

volume, in which case several analytical expressions can be

obtained. Numerical results for moments up to fifth order

are shown for generic anisotropy.

In addition to computational questions in the analysis

of our system, this paper highlights two kinds of physical

interpretations of the technical results. First, isotropic

models within anisotropic ones can be used as test systems

of the minisuperspace truncation, in which the relation
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between a symmetric quantum model and a less-symmetric

one is an important open question; see, for instance, [5].

Our equations will allow us to determine conditions on the

moments of a state in the anisotropic model such that it

follows the behavior of the isotropic model. A general

argument against minisuperspace truncations is that quan-

tum uncertainty relations prevent anisotropic degrees of

freedom from being completely absent, questioning the

validity of a quantum model in which those degrees of

freedom have been neglected. We will find that in our

model, on the contrary, it is possible to find states that

follow exactly isotropic behavior.

While this result may be considered supportive of

minisuperspace truncations at least in the types of models

studied here, it also strengthens questions that have been

raised about quantum scenarios of structure formation

[6,7]: In early universe cosmology, inhomogeneity is

supposed to be generated out of quantum fluctuations of

an initially homogeneous state, but if the dynamics is

translation invariant, it should preserve the homogeneity of

any initial state. In our case, similarly, the isotropy of an

initial state is preserved by quantum evolution, but only

under additional conditions on higher-order moments.

Our second application is about the behavior of a quantum

state approaching an anisotropic singularity. We find that

different kinds ofmoments play different roles.We therefore

determine which moments can be used as indicators of

singular behavior. Such results are useful for establishing the

genericness of various proposals to avoid singularities by

quantum effects. Often, such proposals are analyzed by

using a specific class of initial or evolving states. While we

also fix our initial states, making the common Gaussian

choice, we are able to track the moments that grow most

strongly and might therefore have a dominant effect on the

quantum behavior near a singularity. We also draw lessons

about possiblemodifications of the approach to a singularity,

which seems to be sloweddownbybackreaction at leastwith

respect to the time variable chosen here, given by depar-

ametrization with respect to a scalar field.

II. CANONICAL DESCRIPTION OF THE

CLASSICAL MODEL

Themetric of an anisotropic Bianchi I universe is given by

ds2 ¼ −N2dt2 þ
X

3

k¼1

a2kdx
2

k;

where ak are the scale factors in the different spatial

directions, and N is the lapse function. In the variables

introduced by Misner [3,4], this line element takes the form

ds2 ¼ −N2dt2 þ e2α
X

3

k¼1

e2βkdx2k: ð1Þ

The spatial volume is described by the variable α, defined

by eα ≔ ða1a2a3Þ1=3, whereas the three shape parameters

βk ¼ lnðak=eαÞ measure the degree of anisotropy of each

spatial direction. These three variables are not independent

but satisfy the constraint β1 þ β2 þ β3 ¼ 0. Therefore, for

convenience, we construct two independent shape param-

eters defined as

βþ ≔ −
1

2
β3 ¼ −

1

2
lnða3=ða1a2a3Þ1=3Þ;

β− ≔
1

2
ffiffiffi

3
p ðβ1 − β2Þ ¼

1

2
ffiffiffi

3
p lnða1=a2Þ: ð2Þ

We will consider a free, massless scalar field ϕ as

the matter source, with conjugate momentum pϕ. The

Hamiltonian constraint is then given by

C ≔ e−3αð−p2
α þ p2

þ þ p2
−Þ þ

1

2
e−3αp2

ϕ ¼ 0; ð3Þ

where we have absorbed constant factors (such as Newton’s

constant) inpϕ.Using this constraint, the conjugatemomenta

of the configurationvariables ðα; β�;ϕÞ are obtained in terms

of their derivatives with respect to coordinate time t,

pα ¼ −
e3α

2N
α;t; p� ¼ e3α

2N
β�;t; pϕ ¼ e3α

N
ϕ;t: ð4Þ

In order to simplify the effects of the anisotropy on the

system, we will consider only one anisotropic direction by

choosing a vanishing β−. In this way, the directions x1 and
x2 will be isotropic, as their corresponding scale factors are
equal, a1 ¼ a2, whereas the direction x3 will generically be
anisotropic. Therefore, we have just one shape parameter,

β ≔ βþ, which measures the ratio of the scale factor a3 with
respect to the geometric mean of the three scale factors.

Alternatively, we could eliminate the matter content and

use β− as internal time, such that 1

2
p2

ϕ in the following

expressions would play the role of p2
−. Our results therefore

apply to a matter model with restricted anisotropy, or to a

vacuum model with full anisotropy. While different depar-

ametrization choices lead to equivalent classical results,

they do not always imply equivalent quantum corrections.

In what follows, we will consider only one specific

deparametrization in order to obtain a specific system of

equations that determines the dynamics of quantum states.

Instead of choosing the logarithm of the scale factor α as

our basic variable, we will use the spatial volume v ¼ e3α.
1

1
More precisely, we will assume that v, as a phase-space

variable, can take both signs in order to obtain a simple phase
space. The definition v ¼ e3α > 0 then describes one set of
solutions but not the entire phase space. This distinction will
briefly be relevant below, when we introduce a suitable quantum
representation.
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Its conjugate momentum is proportional to the Hubble

parameter, describing the isotropic rate of expansion of the

universe,

pv ¼
1

3
e−3αpα ¼ −

2v;t

Nv
: ð5Þ

This variable is preferred for numerical purposes because it

places the singularity at a finite value of the geometric

variable, v ¼ 0. Moreover, even though the constraint

C ¼ 1

v

�

−v2p2
v þ p2

β þ
1

2
p2

ϕ

�

¼ 0 ð6Þ

in the volume parameter may appear more complicated

than the original (3), it will be straightforward to interpret

the quantum dynamics of moments of the volume, as

opposed to moments of its logarithm.

Since neither ϕ nor β appears explicitly in the constraint,

their conjugate momenta pϕ and pβ are conserved quan-

tities. The expression of the Hamiltonian constraint C is

also conserved through evolution; thus, one can infer that

the combination vpv is another constant of motion, which

will appear throughout this paper. As can be seen in the

definition (5), this combination is proportional to the

momentum pα, but we will refer to it as γ ≔ vpv because

we will not consider it a basic canonical variable.

In fact, after performing the deparametrization with

respect to ϕ, γ will represent the unconstrained

Hamiltonian Hiso ¼ −pϕjpβ¼0 of the reference isotropic

model (29). Including anisotropy, the deparametrized

dynamics is generated by the Hamiltonian,

H ≔ −pϕ ¼ ðγ2 − p2

βÞ1=2; ð7Þ

implying the classical equations of motion

_v ¼ γ

H
v; ð8Þ

_pv ¼ −
γ

H
pv; ð9Þ

_β ¼ −
pβ

H
; ð10Þ

_pβ ¼ 0; ð11Þ

where the dot represents a derivative with respect to the

scalar field ϕ. Since the equations are symmetric under the

transformation pv → −pv, pβ → −pβ, and ϕ → −ϕ and

we are interested in an expanding universe with a singu-

larity in the past, toward decreasing ϕ, we will without loss

of generality choose a positive sign for both pβ and pv (and,

thus, also for γ). In this way, and with the choice of sign

taken for pϕ when solving the constraint (6), the universe

expands as ϕ increases and the singularity is located at

ϕ → −∞.

The canonical variables of the system are ðv; pv; β; pβÞ.
An analysis of the structure of the classical model shows

that a canonical transformation to γ and its conjugate ln v
would simplify the canonical quantization of the system.

However, such a nonlinear transformation would imply a

complicated mapping between moments that do not pre-

serve the semiclassical order. The physical interpretation of

quantum moments would then be obscured because the

meaning of a quantum fluctuation of ln v is not as clear as

the volume fluctuation of v itself.

The equations of motion can easily be solved,

vðϕÞ ¼ vð0Þ exp
�

γ

H
ϕ

�

; ð12Þ

pvðϕÞ ¼ pvð0Þ exp
�

−
γ

H
ϕ

�

; ð13Þ

βðϕÞ ¼ βð0Þ − pβ

H
ϕ; ð14Þ

while pβ is a constant of motion, as already seen. Here,

vð0Þ; pvð0Þ, and βð0Þ are initial values of the different

variables at ϕ ¼ 0. As the volume v tends to zero,

approaching the singularity located at ϕ → −∞, its con-

jugate momentum, pv, diverges exponentially, keeping

their product γ constant. The ratio γ=H parametrizes the

rate of collapse of the volume toward the singularity. On the

other hand, the shape parameter β increases as a linear

function of ϕ with a velocity controlled by the constant of

motion pβ, making the universe more and more anisotropic

as it approaches the singularity. The variable β tends to

(plus) infinity for ϕ → −∞, producing a singularity as the

scale factor a3 tends to zero. The other two scale factors, a1
and a2, which are equal in our restricted model, may be

nonzero, but such that v ¼ a1a2a3 → 0 for ϕ → −∞.

Using the defining relationships of our variables and the

solutions (12)–(14), we can write

a1ðϕÞ ¼ vðϕÞ1=3 expðβðϕÞ=2Þ
¼ vð0Þ1=3 expðβð0Þ=2Þ expððγ=3 − pβ=2Þϕ=HÞ:

Therefore, a1 approaches zero or þ∞ at the singularity,

depending on the sign of ðγ=3 − pβ=2Þ. In the vacuum

model, we would have pϕ ¼ 0 and therefore γ ¼ pβ, such

that a1 ∝ expð−pβϕ=ð6HÞÞ → ∞ at the usual Kasner

singularity. With scalar matter, however, pβ is a free

parameter restricted only by pβ ≤ γ. This condition does

not fix the sign of γ=3 − pβ=2, and a1 may approach zero or

þ∞ depending on the initial conditions.

Let us remark that this condition introduces certain

boundaries in the phase space of the system. None-

theless, if the initial conditions are given inside these
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boundaries, the system will never cross them as the

Hamiltonian is conserved throughout evolution. Note that

jpβj > jγj is not possible on the constraint surface defined

by (6). Therefore, any initial state that fulfills this inequality

would not be physical. For the quantization procedure, in

order to obtain a well-defined Hamiltonian, one can simply

replace the classical expression (7) with jγ2 − p2

βj1=2.
Nevertheless, we will not spell this out explicitly because

it is not relevant for moment equations.

III. QUANTUM DYNAMICS

Having the classical dynamics of the system under

control, we proceed to analyze its quantum dynamics

following a formalism based on a moment decomposition

of the wave function developed for quantum cosmology in

[8,9]. The quantum dynamics of this model is ruled by a

Hamiltonian Ĥ, that depends on the basic operators v̂, p̂v,

β̂, and p̂β.
2
In order to analyze the quantum evolution

produced by this Hamiltonian, we will define the following

moments, which encode the complete information of the

quantum state:

Gijkl ≔ hðv̂ − vÞiðp̂v − pvÞjðβ̂ − βÞkðp̂β − pβÞliWeyl; ð15Þ

where the subscript “Weyl” indicates totally symmetric

ordering of the operators, and the expectation values

v ≔ hv̂i, pv ≔ hp̂vi, β ≔ hβ̂i and pβ ≔ hp̂βi have been

defined. We will refer to the sum of the indices of a given

moment iþ jþ kþ l as its order. This definition will be

relevant later onwhenwe consider truncations of the system.

Unlike the basic expectation values, moments of a state

are not completely arbitrary but restricted by (generalized)

uncertainty relations which follow from the positivity

condition of an algebraic state (the derivation of such

generalized inequalities for the case of one degree of

freedom is studied in [10]). These restrictions will play

an important role in some of our discussions, but in specific

cases we will mainly refer to the well-known second-order

version, which is nothing but Heisenberg’s uncertainty

relation. Provided these general conditions are obeyed by a

given set of moments, a state with these moments does

exist. However, it is not guaranteed to be a pure state,

demonstrating the general nature of states included in the

parametrization by moments.

A. Effective Hamiltonian and equations of motion

In this subsection, we will present the effective

Hamiltonian that rules the dynamics of the quantum

moments. Their equations of motion will be derived and

the structure of the corresponding system of equations will

be discussed. Following this analysis, we will perform a

redefinition of our variables, in particular the relative

moments (22) will be defined, in order to simplify the

coupling between different equations.

The dynamics of these variables is given by the follow-

ing effective Hamiltonian, defined as the expectation value

of the quantum Hamiltonian operator, which is assumed to

be Weyl ordered,

HQ ≔ hĤðv̂; p̂v; p̂βÞi

¼
X

i;j;k

1

i!j!k!

∂iþjþkHðv; pv; pβÞ
∂vi∂p

j
v∂p

k
β

Gij0k; ð16Þ

where Hðv; pv; βÞ is the classical Hamiltonian (7) and the

sum runs over all non-negative integer values of i, j, and k.
(If a Hamiltonian operator with a different ordering is

preferred, the effective Hamiltonian would contain terms

explicitly depending on ℏ that result from reordering

operations.) In particular, if i¼j¼k¼0, then Gij0k ¼ 1

because the state is normalized. The corresponding term in

the sum therefore produces the classical Hamiltonian,

Hðv; pv; pβÞ, evaluated in the basic expectation values.

For instance, the second-order Hamiltonian is

HQ ¼ H −
v2p2

v

2H3
G0002 þ vpv

H3
ðH2 − p2

βÞG1100

þ pβ

H3
vp2

vG
1001 −

v2p2

β

2H3
G0200 −

p2
vp

2

β

2H3
G2000

þ pβ

H3
v2pvG

0101: ð17Þ

Since β does not appear in the classical Hamiltonian,

only moments unrelated to β (and thus of the form Gij0k)

appear in the expression of the effective Hamiltonian. This

fact implies that pβ, as well as all its pure fluctuations

(moments of the form G000i), are constants of motion for

the quantum dynamics. Nonetheless, γ ¼ vpv will not be a

constant of motion at the quantum level because the full

quantum Hamiltonian HQ (16), but not the classical

Hamiltonian H (7), is conserved by quantum evolution.

Here, we define γ as the product of expectation values of v̂
and p̂v. An alternative definition, using

γ̃ ¼ 1

2
hv̂p̂v þ p̂vv̂i ¼ vpv þ G1100; ð18Þ

is less convenient for our purposes. If one were to use γ̂

as a basic operator, as done in affine quantum cosmology

[11–15], hγ̂i would be conserved as a consequence of

½γ̂; Ĥ� ¼ 0. However, neither γ nor γ̃ needs to be conserved

in our system because the assumed Weyl ordering in v̂ and

p̂v as basic operators implies that an operator quantizing a

2
Note that we define our classical phase space such that v is the

oriented volume and therefore can take both signs. The phase
space is therefore a standard cotangent bundle of the plane and
can be quantized by standard means, with self-adjoint basic

operators v̂, p̂v, β̂, and p̂β.
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classical expression, that depends on v and pv only through

γ, is not required to depend on v̂ and p̂v only through
1

2
hv̂p̂v þ p̂vv̂i. We will see explicit solutions in which,

indeed, neither γ nor γ̃ is conserved.

The equations of motion for the different variables are

obtained by computing Poisson brackets with the effective

Hamiltonian. The Poisson brackets between two expect-

ation values are related to the expectation value of their

commutator by the relation

fhX̂i; hŶig ¼ −ih½X̂; Ŷ�i; ð19Þ

extended to products of expectation values by the Leibniz

rule. This expression is standard for basic expectation

values, while it defines an extension of the classical bracket

for moments. A general expression for the brackets of

moments is known in closed form [8,9], but it is rather

lengthy and will not be displayed here. (See also [16,17] for

the structure of the underlying Poisson manifold.) These

brackets are not canonical and they contain linear and

quadratic terms in moments.
3
In particular, the origin of the

linear terms lies in the reordering of operators and, there-

fore, they appear multiplied by certain power of ℏ. Each of

this ℏ factors is considered as increasing the total moment

order by two. Our main arguments will use the schematic

form of the bracket,

fGijkl; Gmnopg ∼ GGqrst; ð20Þ

where “GG” on the right-hand side represents a finite sum

of terms quadratic in moments (or a moment multiplied by

certain power of ℏ) of a total order ðqrstÞ such that

qþ rþ sþ t ¼ iþ jþ kþ lþmþ nþ oþ p − 2. This

general statement about orders follows from an application

of (19), in which the commutator always reduces the total

moment order by two.

In this way one can, for instance, obtain the equation of

motion for the volume,

_v ¼ fv;HQg

¼ γ

H
vþ

X

i;j;k

1

i!j!k!

∂iþjþkþ1Hðv; pv; pβÞ
∂vi∂p

jþ1
v ∂pk

β

Gij0k; ð21Þ

where we have used the fact [8] that all the expectation

values (in particular v) Poisson commute with the moments

(15). One can then proceed in this way to find the equations

of motion for all the variables.

In general, the equations of motion for the moments and

expectation values form a highly coupled infinite system of

equations. Therefore, one usually needs to implement a

truncation in order to solve them. The main assumption is

that for semiclassical states peaked around a classical

trajectory, there is a hierarchy of moments ruled by their

order. For such states, higher-order moments are then less

relevant than lower-order moments. In particular, for the

numerical solutions that will be performed later on, we will

consider the system of equations up to fifth order in

moments. The equations of motion up to such a high order

are much too lengthy to be displayed here. Hence, in order

to give a grasp of the system we are dealing with, all the

equations up to second order in moments are displayed in

the Appendix A. In addition, in Appendix B the evolution

equation for the volume is given, truncated at fifth order.

For the specific Hamiltonian (7) under consideration, the

equations are not completely coupled. In particular, since

only moments Gij0k unrelated to the shape parameter

appear in the Hamiltonian, the set of equations of motion

for the variables fv; pv; β; pβ; G
ij0kg forms an independent

subsystem of equations that can be solved on its own. This

is due to the fact that the Poisson bracket fGij0l; Gkl0mg,
which must be computed to obtain the evolution equation

for Gij0l, does not generate any moment of the form Gabcd,

with c ≠ 0. In fact, the equation of motion for β depends on

fv; pv; pβ; G
ij0kg but not the other way around, and one

can thus conclude that the system fv; pv; pβ; G
ij0kg is

independent of the rest. One can even remove the depend-

ence on the volume from this system by performing a

further change of variables, as shown below.

For the main analysis of this paper, instead of using the

absolute moments Gijkl, we will use the relative moments,

Kijkl ≔
Gijkl

vip
j
v

¼ γ−jvj−iGijkl: ð22Þ

Furthermore, the momentum of the volume, pv, will be

replaced by the isotropic Hamiltonian γ ≔ vpv. As will be

explained in Sec. IV, a convenient property of this new set of

variables fv; γ; β; pβ; K
ijklg is that all but the volume v are

constants of motion in the limit of a slowly evolving

anisotropy ðpβ ≪ γÞ. More importantly, with this new set

of variables, the couplings between different equations of

motion simplify considerably as the equations of motion for

the variables fγ; pβ; K
ij0lg decouple from the equations for

v, β, and the rest of themoments,Kijklwith k ≠ 0. In fact, the

volume v and the shape parameter β only appear explicitly

in their own equations of motion as a time derivative

(or a logarithmic derivative in the case of the volume).

Schematically, one can write equations of motion as

_v

v
¼ F1ðγ; pβ; K

ij0lÞ; ð23Þ

_β ¼ F2ðγ; pβ; K
ij0lÞ; ð24Þ

3
Even for canonical pairs of basic operators, such as x̂ and p̂ in

quantum mechanics, the brackets of moments are noncanonical.
For instance, fG02; G20g ¼ 4G11 is not constant and therefore not
canonical.
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_γ ¼ F3ðγ; pβ; K
ij0lÞ; ð25Þ

_pβ ¼ 0; ð26Þ

_Kab0d ¼ Fab0dðγ; pβ; K
ij0lÞ; ð27Þ

where the right-hand sides are given in terms of the constant

pβ, the Hamiltonian of the reference isotropic model γ, and

moments Kij0l unrelated to the shape parameter, but are

independent of the volume v and β. Therefore, in order to

obtain the quantum backreaction effects on the classical

trajectories, it is enough to consider this subsystem of

equations. Similarly, the equation of motion for a generic

moment has the form

_Kabcd ¼ Fabcdðγ; pβ; K
ijklÞ: ð28Þ

Hence, the dynamics of the moments is only affected by the

expectation values γ and pβ, but not by v and β. The explicit

form of this system of equations, truncated at second order in

moments, is shown in Appendix C.

Finally, as with the classical system, the equations are

symmetric under the transformation pv → −pv, γ → −γ,

pβ → −pβ, and ϕ → −ϕ, provided that the moments are

also transformed as Gijkl
→ ð−1ÞjþlGijkl or, equivalently,

Kijkl
→ ð−1ÞlKijkl. Therefore, as already commented

above, a positive sign for γ and pβ will be considered

throughout the paper.

B. The isotropic (harmonic) case

Using the basic variables defined here, the isotropic case

is formally recovered by choosing β and pβ to vanish, along

with all the moments with some contribution from the

anisotropic sector (that is, Gijkl with kþ l ≠ 0). Restricting

all moments of this form is not consistent with uncertainty

relations in the anisotropy sector. The restriction therefore

amounts to a minisuperspace truncation of isotropic geom-

etries within anisotropic (but still homogeneous) ones. In

principle, therefore, the reduction is not expected to define

a subset of quantum solutions in the anisotropic model. A

detailed analysis of solutions will nevertheless show that

isotropic solutions do exist within the anisotropic quan-

tum model.

The classical Hamiltonian (7) is then simplified to be a

linear function of v and pv,

Hiso ¼ jγj ¼ jvpvj: ð29Þ

From the perspective of the quantum dynamics, this case is

very special, as the Hamiltonian turns out to be harmonic.

(It is quadratic in phase-space variables. A linear canonical

transformation maps it to an inverted harmonic oscillator.)

The most important property of this kind of Hamiltonians is

that different orders in moments are not coupled to one

another. Furthermore, the classical equations of motion do

not get corrections by quantum moments; there is no

quantum backreaction. Therefore, the expectation values

v and pv follow exactly their classical trajectories (12)

and (13),

v ¼ vð0Þeϕ; pv ¼ pvð0Þe−ϕ: ð30Þ

In addition, it is easy to obtain and solve the equations

of motion for the quantum moments. Note that the

infinite sum that defines the effective Hamiltonian (16)

is reduced to a finite sum, as only second-order derivatives

are nonvanishing. Therefore, for this harmonic case, one

obtains the following quantum Hamiltonian:

Hiso
Q ¼ vpv þ G1100 ð31Þ

without any truncation. The equations of motion for the

different moments,

_Gij00 ¼ ði − jÞGij00; ð32Þ

indeed show that there is no coupling between the equa-

tions of motion for different orders. Solving this equation,

one obtains an exponential evolution for the moments,

Gij00ðϕÞ ¼ Gij00ð0Þeði−jÞϕ: ð33Þ

In summary, as one approaches the singularity at v ¼ 0,

moments Gij00 with i > j decrease exponentially, whereas

moments Gij00 with i < j follow an exponentially increas-

ing behavior. Finally, moments of the form Gii00 are

constants of motion. Taking into account the time depend-

ence for the expectation values (30), we note also that all

relative moments Kij00 (22) are constant throughout evo-

lution since the time dependence of the absolute moments

Gij00 is compensated for by that of the expectation values.

IV. SLOWLY EVOLVING ANISOTROPY (pβ ≪ γ)

A natural generalization of the isotropic case analyzed in

the previous subsection is given by the case with a slowly

evolving anisotropy. In this section, we will analyze such a

case and will present the analytical form of the evolution of

the moments and expectation values. In addition to provid-

ing a detailed analytical understanding, this case will serve

as a reference to analyze more generic cases numerically.

As noted after Eq. (14), pβ is the velocity of the shape

parameter β and therefore measures the rate of (an)

isotropization of the universe, while γ is a measure of

the velocity of expansion of the isotropic reference model.

Therefore, the system dynamics should be close to the

isotropic dynamics whenever pβ ≪ γ is obeyed so that

H ≈Hiso. This condition means that the evolution of the

anisotropy is slow compared with the rate of expansion of
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the volume. These are statements about the rates of change

rather than the size of the homogeneous region. The

approximation may therefore be used in the late universe

(where the homogeneous volume may be assumed macro-

scopic) or in the early universe close to a spacelike

singularity (where the BKL scenario suggests the existence

of microscopic homogeneous patches).

In this section, we will consider an expansion of the

system of equations for large values of the parameter γ. In

particular, the equations of motion for the different

moments take the form

_Gijkl ¼ ði − jÞGijkl þOðγ−1Þ: ð34Þ

We therefore recover similar equations as in the harmonic

case above (32), but for all the moments and not only

for moments Gij00 of the isotropic sector. It is easy to

see that the generator of these equations is the effective

Hamiltonian H ¼ vpv þOðγ−1Þ. These equations can be

solved right away,

GijklðϕÞ ¼ Gijklð0Þeði−jÞϕ: ð35Þ

As one would expect, in the case of slowly evolving

anisotropy, the dynamics is dominated by the isotropic

sector. In particular, the increasing or decreasing behavior

of a corresponding moment Gijkl is completely determined

by the difference between its isotropic indices i and j.
Furthermore, at this level of approximation, the equations

for the expectation values do not get any quantum back-

reaction effects from the moments, and thus expectation

values follow the classical trajectory. In this way, the

relative moments Kijkl (22) are conserved quantities,

Kijkl ¼ Kijklð0Þ: ð36Þ

Let us now analyze the behavior of the system at next

order in 1=γ. We will consider an expansion for large γ,

keeping the volume and the relative moments Kijkl con-

stant. The classical Hamiltonian takes the form

H ¼ γ

�

1 −
p2

β

2γ2

�

þOðp4

β=γ
3Þ: ð37Þ

It can be expanded in order to get the quantum

Hamiltonian,

HQ ¼ γð1þ K1100Þ

−
1

2γ

X

i;j

ð−1Þiþjðp2

βK
ij00 þ 2pβK

ij01 þ Kij02Þ

þOð3Þ; ð38Þ

where the sum runs over all non-negative integer values of i
and j. In this expansion, Oð3Þ stands for terms of the form

Kij0kpn−k
β =γn−1 for n ≥ 3 and 0 ≥ k ≥ n. Therefore, the

present approximation should be valid as long as all those

terms are small. Here, we first expanded the classical

Hamiltonian and then derived its effective expression.

It is easy to see that the order can be reversed without

changing the result, for instance, using the second-order

example (17).

In the classical Hamiltonian, one can define the dimen-

sionless anharmonicity parameter pβ=γ, which is a constant
of motion and measures the departure of the system from

the harmonic behavior. In the quantum system, however,

there are infinitely many more parameters that produce

an anharmonic behavior, such as the moments Kij02 that

appear explicitly in the Hamiltonian above (38) and might

generate an anisotropy even if pβ ¼ 0 and β ¼ 0 at some

initial time. In fact, this case will be analyzed in detail in the

next section.

The equations of motion for the expectation values,

generated by the approximate Hamiltonian (38), are

_v ¼ v; ð39Þ

_γ ¼ −
1

2γ

X

i;j

ð−1Þiþjði − jÞ

× ðp2

βK
ij00 þ 2pβK

ij01 þ Kij02Þ; ð40Þ

_β ¼ −
1

γ

X

i;j

ð−1ÞiþjðpβK
ij00 þ Kij01Þ: ð41Þ

At this level of approximation, all moments of the form

Kij0k are constants of motion since the Poisson brackets

fKij0k; Klm0ng=γ are of the form KKab0d=γ2 with

a ¼ iþ j − 1, b ¼ lþm − 1, and d ¼ kþ n, while

“KK” is interpreted as explained for GG in (20). Any

such term turns out to be of order Oð3Þ and, thus, should
be neglected. In particular, this includes all purely isotropic

moments of the form Kij00, which only involve the

isotropic variables. Furthermore, all the moments that

appear in the Hamiltonian (38) and in the equations for

the expectation values above (39)–(41) are also included

in this category. Therefore, these last equations can be

easily integrated to obtain the evolution of the expectation

values,

v ¼ v0e
ϕ; ð42Þ

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

q

; ð43Þ

β ¼ β0 −
2p̃β

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

q

; ð44Þ

where the following constants have been defined:
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r≔−
X

i;j

ð−1Þiþjði−jÞðp2

βK
ij00þ2pβK

ij01þKij02Þ; ð45Þ

p̃β ≔
X

i;j

ð−1ÞiþjðpβK
ij00 þ Kij01Þ

¼ pβ þ
X

i≥1;j≥1

ðpβK
ij00 þ Kij01Þ: ð46Þ

(For these generic solutions, we have assumed that r ≠ 0;

see below.) Note that, in general, neither γ ¼ vpv nor

γ̃ ¼ vpv þ G1100 are constant, in contrast to the classical

solution. The dynamics of γ is instead governed by the

constant r, which is purely quantum and vanishes in the

classical limit. Since we are assuming a large value of γ0,

the solutions (43) and (44) can be approximated by linear

functions,

γ ≈ γ0 þ
r

2γ0
ϕ; ð47Þ

β ≈ β0 −
p̃β

γ0
ϕ: ð48Þ

The solution (44) for the shape parameter is valid only

for the generic case r ≠ 0. For special states in the quantum

case, r ¼ 0 is compatible with uncertainty relations. For

instance, at second order, while r depends on the moments

K2000 and K0200, which cannot both be zero, it does so in an

antisymmetric way because of the factor of (i − j) in (45).

Provided K2000 ¼ K0200, these moments therefore cancel

out. Moreover, while the general expression for r depends

on Kij02, the second-order moment K0002 does not con-

tribute because of the same factor of (i − j). In the special

case of r ¼ 0, then, γ ¼ γ0 is constant while β changes

linearly with time as in the approximate solution (47),

β ¼ β0 −
p̃β

γ0
ϕ: ð49Þ

Therefore, as in the classical limit, β is a linear function of

ϕ, but with a regularized value of pβ which takes into

account quantum effects.

The moments, except for the constant Kij0k which still

follow their isotropic behavior, do feel the effects of

anisotropy and are no longer constant. One class of

moments—those that imply only one factor in the shape

parameter Kij1k
—has simple equations of motion since

they only contain constant moments of the form Knm0l.

Schematically, the equations for such moments are given as

_Kij1k ¼ cijk

γ
; ð50Þ

with certain constants cijk that depend on pβ and moments

of the form Knm0l. This equation can be integrated, which

gives rise to

Kij1k ¼ dijk þ
2cijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
; ð51Þ

with integration constants dijk for r ≠ 0, and

Kij1k ¼ dijk þ
cijk

γ0
ϕ ð52Þ

for r ¼ 0.

This pattern continues, allowing us to iteratively solve

for the behavior of all moments. In the next step, using (20),
_Kij2k is given by a sum of terms of the form Kij1ðk−1Þ=γ,
each of which has a time dependence dijðk−1Þðγ20 þ
rϕÞ−1=2 þ 2cijðk−1Þ=r for r ≠ 0. Integrating, we have

Kij2k ¼
c
ð2Þ
ijkϕ

r
þ d

ð2Þ
ijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
þ e

ð2Þ
ijk; ð53Þ

with new constants c
ð2Þ
ijk , d

ð2Þ
ijk , and e

ð2Þ
ijk . The dominant

behavior is linear in ϕ. Finally, it is possible to obtain

that, at this level of approximation, a general moment Kijnk

has the dominant behavior,

Kijnk ∼
ðγ2

0
þ rϕÞn=2
rn

: ð54Þ

The demonstration follows by induction. Note that
_Kijðnþ1Þk is a sum of terms of the form KKijnðk−1Þ=γ (again,
see (20) for the meaning of KK), which all have the

dominant behavior,

_Kijðnþ1Þk
∼
ðγ2

0
þ rϕÞðn−1Þ=2

rn
; ð55Þ

according to (54). Integrating this expression, it is then

straightforward to obtain the form (54) for nþ 1. For third-

order moments, this result is confirmed in Appendix D. For

the particular case r ¼ 0, in which (54) no longer applies,

the evolution of the moments is faster and a moment of the

form Kijkl is given by a polynomial of order k in ϕ.

In summary, for this quasiharmonic case, we have found

that up to order Oð2Þ the volume follows its classical

trajectory, whereas γ is not constant anymore but is a linear

function in ϕ. The shape parameter β is a linear function of

ϕ, but with a quantum-corrected slope. Finally, depending

on whether the constant r is vanishing or not, relative

moments Kijkl go either as ϕk or as ϕk=2. Therefore, their

index on β governs their evolution rate.

V. ON THE QUANTUM GENERATION

OF ANISOTROPY

Before analyzing numerically generic values of pβ, let us

look at the particular case of β ¼ 0 and pβ ¼ 0. Classically,

there is then no initial anisotropy and the spacetime will
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remain isotropic throughout evolution. In a quantized

model, however, one would expect that some anisotropy

is generated by quantum fluctuations (or certain higher

moments) which are constrained by uncertainty relations to

be nonzero. This expectation is a common criticism of

minisuperspace quantizations, which start with symmetry

reductions at the classical level and therefore ignore

fluctuations of nonsymmetric variables. While symmetry

reduction leads to special solutions of the classical theory, it

is not clear whether their minisuperspace quantizations can

be considered approximations of solutions of some full

theory of quantum gravity.

In a more specific context, it would be interesting if

nonsymmetric degrees of freedom could, in fact, be

generated by quantum effects. This possibility, as a

physical scenario, is usually considered for inhomogeneity

rather than anisotropy in order to explain structure for-

mation in the early universe. In this context, it would

be desirable to excite nonsymmetric degrees of freedom

even if the initial state is symmetric (such as the homo-

geneous vacuum). Our model can be used as a test system

in which inhomogeneity is replaced by more tractable

anisotropy.

We will therefore be interested in initial states with

vanishing pβ. Nevertheless, the discussion in the present

section goes beyond what we found in the preceding

section because we will assume that some anharmonicity

parameters of the form Kij0kpn−k
β =γn−1 are not negligible

for certain n, such that 0 ≥ k ≥ n.
In order to make the appearance of anisotropy trans-

parent, we begin by analyzing the equation of motion for

the shape parameter, β. If pβ ¼ 0, it takes the particularly

simple form

_β ¼
X

i;j;k

1

γk
fði; j; kÞKij0ð2kþ1Þ; ð56Þ

where the sum runs over all non-negative integer values of

i, j, and k, and f is a function that only depends on the

indices i, j, and k. Therefore, the moments that produce a

nonvanishing derivative for the shape parameter are pre-

cisely those that are unrelated to this variable and, more-

over, have odd order in pβ. For any such moment,

uncertainty relations do not imply any lower bound.

Therefore, it is consistent to assume that all Kij0ð2kþ1Þ

are zero in a certain class of states. Specific examples

can easily be constructed using products of Gaussian

wave functions, such that Kij0ð2kþ1Þ¼Kij00K000ð2kþ1Þ¼0

because all odd-order moments vanish for a Gaussian.

It is therefore possible to choose an initial state for which

the right-hand side of equation (56) is zero. As time goes

on, the dynamics might activate some of the relevant

moments, Kij0ð2kþ1Þ, in which case the time derivative of

the shape parameter would become nonzero and an

anisotropy would be generated. However, using the

detailed dynamics at least up to fifth order in moments,

we have analytically confirmed that the time derivative of

any _Kij0ð2kþ1Þ ¼ 0 is identically zero provided pβ ¼ 0 and

all Kij0ð2kþ1Þ ¼ 0 at an initial time. The right-hand side of

(56) is then vanishing at all times, and no anisotropy is

generated.

This result can be understood based on the general

behavior of moment equations. Since the effective

Hamiltonian does not depend on β or its moments, a

nonzero fKij0ð2kþ1Þ; HQg can be obtained only via the

ðv; pvÞ part of the moments. Moreover, H is a function of

p2

β, such that only even-order moments of the form Kmn0ð2lÞ

contribute to HQ when pβ ¼ 0. The first property implies

that pβ orders of moments add up in fKij0ð2kþ1Þ; HQg,
which then contains only moments of odd order in pβ based

on the second property. Therefore, if all Kij0ð2kþ1Þ are zero
initially, they remain zero if pβ ¼ 0.

Although this result follows directly from properties of

the moment brackets, it is somewhat unexpected based on

general arguments about limitations of minisuperspace

quantization. Our result, however, relies on the specific

dynamics of the moments and not just on general expect-

ations on implications of uncertainty relations. It is also

consistent with detailed studies made in the case of

inhomogeneity [6,7], where an expectation opposite to

the usual criticism of minisuperspace quantization has been

formulated. Nevertheless, since our result relies on the

detailed dynamics, it may well change if other models are

considered, for instance, those with a nonvanishing

anisotropy potential. In our model, the coupling between

the different degrees of freedom is not strong. It could

therefore be possible that our result comes about because

the Hamiltonian (7) is a function (a square root) of the

harmonic (free) Hamiltonian ðv2p2
v − p2

βÞ, where the differ-
ent sectors ðv; pvÞ and ðβ; pβÞ are completely decoupled.

4

At high orders in moments, the nonlinearities and strong

couplings make it difficult to obtain analytical solutions.

We have, however, been able to obtain the general solution

of the system up to third order in moments. At this order,

the evolution of the expectation value of the volume v and γ
is given by

v ¼ v0jγ2 þ rϕj−ðK0102þ1

2
K1002−1

2
K0002Þ=reϕ;

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

q

; ð57Þ

where r ¼ K1002 − K0102 (here assumed to be nonzero) is

the truncation of (45) to third order. The shape parameter

has the following form:

4
Required inequalities such as v2p2

v − p2

β ≥ 0 can be imposed
on initial values and therefore do not introduce dynamical
coupling terms.
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β ¼ β0 þ
K0003

rγ
−
2p̃β

r
γ; ð58Þ

in terms of γ from (57), where

p̃β ¼ ðK1001 þ K0101 þ K1101 þ K2001 þ K0201Þ ð59Þ

is the truncation of (46) to third order.

All moments that appear in our solutions for the expect-

ation values are constants of motion. In general, a moment

of the form Kijkl is a polynomial of order k in γ and

therefore changes like ϕk=2 for large ϕ. Moreover, the

second-order moments that involve either v or pv depend

on ϕ through an expression logarithmic in γ. There is no

such logarithmic term in third-order moments, except for

K0120 andK1020, in which case this term is multiplied by ℏ2.

Therefore, in addition to the momentum pβ and its pure

fluctuations, K000i, almost all the moments Kij0l unrelated

to the shape parameter β are constants of motion. The only

three nonconstant fluctuations of the isotropic sector

increase as logarithmic functions of γ,

K0200 ¼ b1 þ
�

1þ K0102 þ K1002

K0102 − K1002

�

ln γ; ð60Þ

K1100 ¼ b2 − ln γ; ð61Þ

K2000 ¼ b3 þ
�

1 −
K0102 þ K1002

K0102 − K1002

�

ln γ; ð62Þ

where b1, b2, b3 are real constants. The explicit form for the

rest of the moments is given in Appendix E, including

fluctuations of the anisotropic sector and different corre-

lations between the two sectors.

The generic solution presented above is not valid in

the particular case in which the moments K0102 and K1002

are equal, such that r ¼ 0. If r ¼ 0, γ is constant and the

volume depends on ϕ by

v ¼ v0 exp

�

ϕþ ð2K0002 − 3ðK0102 þ K1002ÞÞ ϕ

4γ2

�

; ð63Þ

while the shape parameter increases as a linear function in

ϕ, as in the classical case,

β ¼ β0 −
2γ2p̃β þ K0003

2γ3
ϕ: ð64Þ

Therefore, even if β0 is vanishing, the quantum moments

will produce an anisotropy by acting as an effective pβ,

unless K0003 and those that appear in (59) vanish. None-

theless, as commented above, this is allowed by uncertainty

relations and one can indeed choose initial states that will

never generate an anisotropy.

The moments that were constant in the previous generic

solution are also constant in the case of r ¼ 0, as well as the

isotropic correlation K1100 ¼ b̃2. Therefore, in the isotropic
sector, only pure fluctuations of v and pv are dynamical,

and they increase faster (as linear functions of ϕ) than in the

previous case,

K0200 ¼ b̃1 −
K0102 þ K1002

2γ2
ϕ;

K2000 ¼ K0102 þ K1002

2γ2
ϕþ b̃3: ð65Þ

The rest of the moments is explicitly given in Appendix E.

Our model therefore suggests some middle ground

between the pessimistic expectations formulated in the

two distinct contexts of minisuperspace quantization on

one hand and structure formation on the other. General

criticism of the minisuperspace quantization argues that

none of the solutions of a minisuperspace model are

relevant for the full dynamics because nonsymmetric

degrees of freedom will always get excited, while concerns

about structure formation are based on the statement that a

symmetric initial state cannot evolve into a structured state

in which the symmetry is broken. In our model, we find that

anisotropy is, generically, generated, but there are also

states that retain an initial isotropic form. The latter is not

prohibited by uncertainty relations.

VI. NUMERICAL ANALYSIS OF THE MODEL

The complicated structure of equations of motion at high

orders in moments is illustrated by the equations collected

in the appendixes. It implies that analytical investigations

are possible only in certain particular cases, as shown here

for exact isotropy or slowly varying anisotropy. Going

beyond these regimes requires a numerical implementation

to solve the equations of motion and interpret the dynamics.

For this numerical study, a truncation of the system to fifth

order in moments has been considered by neglecting sixth

and higher-order moments. (For the consistency of such

truncations, see [18].)

The full phase space of our system has coordinates

fv; γ; β; pβ; K
ijklg. As shown by the schematic equa-

tions (23)–(28), the equations of motion for fγ; pβ; K
ij0kg

form an independent subsystem that is decoupled from the

remaining equations. Therefore, one can solve this sub-

system without considering the whole set of equations of

motion. Once the evolution of fγ; pβ; K
ij0kg has been

obtained, the equations of motion for the rest of the

moments, Kijkl with k ≠ 0, and for the expectation values

v and β can be solved.

For specific numerical solutions, we will assume an

initial quantum state given by a product of two Gaussians,

one in the volume v and the other one in the shape

parameter β, centered at initial expectation values v0 and

β0, respectively. The moments for such a state are
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Kijkl ¼
�

γ
−j
0
v
j−i
0

2−ðiþjþkþlÞℏjþlσ
i−j
v σk−lβ

i!j!
ði=2Þ!ðj=2Þ!

k!l!
ðk=2Þ!ðl=2Þ! ; if all indices are even;

0; otherwise;
ð66Þ

where σv and σβ are the Gaussian widths in the volume and

in the shape parameter, respectively, and γ0 is the initial

value of γ.

In order to construct a semiclassical state peaked on a

classical trajectory, we will impose small initial relative

fluctuations. In particular, for the isotropic sector, both

K2000 and K0200 have to be small,

K2000 ¼ σ2v

2v2
0

≪ 1; K0200 ¼ v2
0
ℏ
2

2σ2vγ
2

0

≪ 1: ð67Þ

Therefore, the Gaussian width needs to be chosen as

ℏv0=γ0 ≪ σv ≪ v0. In addition, if one requires the state

to be unsqueezed, with equal absolute fluctuations for

both conjugate variables, G0200 ¼ G2000, then one gets the

specific value σv ¼
ffiffiffi

ℏ
p

for the width. This is the value we

will consider for both the Gaussian width in the volume σv
and in the shape parameter σβ ¼

ffiffiffi

ℏ
p

. From this point on,

and for all the numerical simulations, ℏ will be set equal to

one. In these units, the Gaussian widths will then be chosen

as σv ¼ σβ ¼ 1, and the requirement of an initial peaked

state is summarized by the condition 1 ≪ v0 ≪ γ0.

However, the values of the Gaussian widths have also

been altered by several orders of magnitudes to check that

this choice does not qualitatively affect our main results.

Regarding initial conditions for the expectation values

fv0; γ0; β0; pβg, following the discussion of peaked states,

v0 and γ0 have been chosen to be very large, obeying the

constraint v0 ≪ γ0. In the anisotropic sector, β does not

appear in the equations of motion for the moments and is

therefore less relevant than the other variables, while we

would like to analyze the behavior of the system for

different values of pβ. For convenience, we will choose

a small initial value for β0 (around unity), so that we begin

our simulations with a nearly isotropic universe. Due to the

form of the Hamiltonian (7), the maximum allowed value

for pβ is pβ ¼ γ. Therefore, we will explore the behavior of

the system for different values of pβ between a very small

value (corresponding to slowly varying anisotropy) and the

fixed γ0. Since we allow for small values of both β0 and pβ,

we do not use a sharply peaked state in these variables

because relative moments in the anisotropy sector may be

large if the basic expectation values are small.

Based on the possible values of pβ, this section is divided

into two parts. We will first consider slowly varying

anisotropy, that is pβ ≪ γ, in order to test the analytical

results obtained in Secs. III B and IV. In the second part, we

will consider solutions in which the shape parameter is

evolving more rapidly, leaving the previous quasiharmonic

regime. In this case, pβ will be of the same order of

magnitude as γ. Since we observe different behaviors of

the system for different values of γ0, we will further

subdivide the second part into three parts. In the first

and second parts, we will analyze the evolution of the

moments for small and big values of backreaction on the

evolution of the expectation values v and β.

A. Slowly varying anisotropy (pβ ≪ γ)

In Sec. IV, we have found approximate analytical

solutions for slowly evolving anisotropy. At zeroth order

in the anharmonicity parameters, all moments Kijkl are

constants of motion, whereas at next order, including terms

of order 1=γ, their evolution is determined either by a

polynomial of order k in internal time ϕ (r ¼ 0) or by a

dependence of the form ϕk=2 (r ≠ 0).

Numerically, we have observed that moments of the form

Kij00 follow the same qualitative behavior as the isotropic

ones: they are constant throughout the whole evolution and

do not feel the presence of an anisotropy as long as pβ is

small. Moments of the anisotropy sector, K00ij, do not have

an isotropic counterpart. According to our analytical

results, pure moments of pβ, K
000n, are exactly conserved

during evolution, which is easily confirmed numerically.

Perhaps surprisingly, we find out that pure fluctuations of β,

K00n0, are also conserved up to a high degree of precision.

Based on the approximate analytical solution, by contrast,

one would expect an evolution of the form ϕn or ϕn=2. This

discrepancy seems to be a consequence of the specific

initial state, in particular the uncorrelated nature of the

anisotropic state for β and pβ. Therefore, most correlations

of the form Kijnm, with n ≠ 0 and m ≠ 0, are zero; and

they are the only moments that contribute to _K00n0.

The correlations are not conserved and may therefore

build up during evolution, but the rate is suppressed by

a factor of 1=H compared with the evolution of expectation

values.

While generic correlations of the form K00nm, with n ≠ 0

and m ≠ 0, are not conserved in numerical solutions but

rather evolve as linear functions in time ϕ, they do not

follow the analytical behavior (54) unless n ¼ 2.

For general moments Gijkl mix both sectors, the evolu-

tion slightly differs from the approximate one. In general,

the behavior of a specific moment Gijkl is qualitatively

the same as its isotropic counterpart, either increasing or

decreasing depending on the sign of the difference (i − j),
but some of them are slightly accelerated or decelerated.

The different behavior does not seem to follow any specific

rule based on the values of the indices. Some examples of
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such corrections are shown in the plots depicted in

Figs. 1–3, where the evolution of some relative moments

Kijkl are shown. The study clearly shows how the presence

of anisotropy affects the evolution of the moments. In all

the cases, we observe that, instead of a polynomial of order k,
the moments follow a linear dependence in time, that is,

Kijkl ¼ cijklϕ with constants cijkl.
There might be several reasons for such a disagreement.

On the one hand, the approximate analytical solution could

be invalid because one or several anharmonicity parameters

might not be negligible. On the other hand, it might well

happen that closer to the singularity, where this formalism

ceases to be valid, one recovers the commented polynomial

behavior. Finally, the choice of peaked states could in

principle play a relevant role in the behavior of the system,

but we have tested that this is not the case. If one allows for

a squeezed state, either by increasing or decreasing the

value of the Gaussian widths, σv and σβ, moments depart a

little bit more from their corresponding isotropic behavior.

But, in all cases, deviations from their isotropic counter-

parts stay small during the whole evolution.

In summary, for uncorrelated Gaussian initial states, we

have found that pure fluctuations of β (K00n0) and pβ

(K00n0) are conserved quantities, while the remaining

moments Kijkl are not stabilized to any specific constant

values as they approach the singularity. In fact, they

diverge linearly in internal time ϕ, either to plus or minus

infinity.

B. General anisotropy

We now present our extension of the numerical study to

the case of a general anisotropy. We have systematically

studied different ranges of values for all the parameters

involved in the evolution in order to understand the global

behavior. In particular, we have found a qualitative change

in the evolution of the moments, and in the approach of the

system to the singularity, depending on the value of γ0.

Apart from this, another important variable is pβ, which

measures the departure from the harmonic behavior.

As always, for the Hamiltonian (7) to be real, the relation

pβ < γ0 must hold, indicating a relationship between these

two scales. The relation between pβ and pv0
or v0, by

contrast, appears to be irrelevant for the qualitative physical

behavior of the system.

Accordingly, this subsection is divided into three parts.

In the first two, we analyze the behavior of the moments for

different ranges of values of γ0, whereas in the last one, the

effects of the quantum backreaction on classical trajectories

are studied.

FIG. 1. This plot shows an example of the evolution of a purely

anisotropic moment, more precisely the correlation between

the shape parameter and its conjugate momentum K0011, for

the case of a slowly variying anisotropy. For this plot, γ0 ¼ 108

and pβ ¼ 10−1 have been chosen.

FIG. 2. Here we show the linear evolution of two moments,

K0101 and K0110, for the slowly varying anisotropy case. Even if

both have a common isotropic counterpart, as their v and pv

indices are the same, they exhibit two opposite behaviors: K0101

is increasing, whereas K0110 is decreasing. But, in module, both

go to infinity and thus they slightly accelerate the exponential

diverging of the corresponding absolute moments, G0101 and

G0110. In any case, this variation is very small as compared with

the dominant isotropic behavior. As in the previous figure, here

we have chosen γ0 ¼ 108 and pβ ¼ 10−1.

ALONSO-SERRANO, BOJOWALD, and BRIZUELA PHYS. REV. D 101, 104062 (2020)

104062-12



1. Evolution of the moments for small values of γ0

We first turn to the behavior of the model for γ0 ≲ 1020.

In this regime, we have analyzed the increase of pβ

approaching its upper bound given by γ0. As commented

above, in order to construct the formalism under consid-

eration, we have introduced a truncation, assuming that

sixth- and higher-order moments are negligible. It is

expected that this approximation holds only as long as

the state is sufficiently peaked around the classical trajec-

tory. As one departs from the harmonic case, the numerical

solutions might eventually break down, signaling the

limited validity of the approximation. Due to such limi-

tations, in this case, it was not possible for us to consider

values of pβ greater than 0.3γ0.

While we depart from the limiting case of slowly

varying approximation, more and more moments begin

to deviate from their harmonic behavior. None of the

relative moments Kijkl stabilizes their behavior; they either

increase or decrease continually toward the singularity. It is

interesting to note that when we depart from the previous

regime, we see a certain dilation in the evolution of

moments for a given amount of scalar-field time. That

is, the evolution of a given moment for a large value of pβ

during a short period of time corresponds exactly to the

whole evolution of the same moment for a small value of pβ

but a longer period of time. This result indicates some

scaling in time, parametrized by pβ. Therefore, this variable

drives the velocity of evolution of the moments, in much

the same way that it controls the velocity of the anisotropy,

even though it is not canonically conjugate to the moments.

This effect can be seen especially in the last plot depicted in

Fig. 4, as the value of the ratio pβ=γ increases, the change

of sign occurs at earlier times.

Concerning the moments, there is a subset that domi-

nates the dynamics in the sense that they evolve faster than

the other ones, diverging exponentially toward the singu-

larity, and get a larger absolute value than the rest of the

moments. In particular, the most dominant moments are the

pure fluctuations of β (K00m0). The other relevant moments

are the correlations between β and v (Kn0m0) and between β

and pv (K0lm0). All the mentioned moments (with the

particular exception of K0130 for certain values of pβ) are

increasing for even values of the index m, corresponding to

β, and decreasing for odd values. But this rule does not

apply to other generic momentsKijkl. In fact, some of them,

depending on the value of pβ, diverge to minus or plus

infinity, as the commented K0130. Nonetheless, in the

following section (when the value of γ0 is larger than

the one considered here), we will see that almost all

moments will follow this rule.

On the contrary, pure fluctuations of pv (K0n00) evolve

very slowly, and they keep a small value along the whole

evolution. Therefore, these are the least affected moments

by the presence of the anisotropy.

2. Evolution of the moments for large values of γ0

For large values of γ0, approximately in the range

1021–1025, the isotropic dynamics completely dominates

the behavior of different moments. Even for large values of

pβ, up to 0.4γ0, the evolution of the moments follow

exactly the isotropic one and all Kijkl are constant. This is

also the case if one squeezes the state by modifying the

relation σv ¼
ffiffiffi

ℏ
p

by several orders of magnitude. The

regime of large γ0 might also be interpreted as the classical

limit of the model since it implies a very large value of the

classical part of the Hamiltonian, which then dominates

over all moment terms.

Contrary to the previous case where the maximum value

we could consider for pβ was found to be around 0.3γ0,

here we can choose values as large as 0.7γ0. This result is

consistent with the smallness of moment terms relative to

FIG. 3. The evolution of the moments K1012 and K1020 for γ0 ¼
108 and pβ ¼ 10−1. As opposed to the case shown in the previous

figure, in this case, the isotropic counterpart G10 exponentially

approaches zero toward the singularity. Therefore, as can be seen

in the plots, the anisotropy decelerates this approach to zero. The

only difference between both moments, G1012 and G1020, is that

the former will approach zero from negative values, whereas the

latter will tend to zero from positive values.
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the classical contribution to the Hamiltonian, such that

truncation effects should be negligible. Only for values

of pβ larger than 0.4γ0 do the moments depart from

their corresponding slowly varying anisotropic behavior.

Classical trajectories are then modified by quantum back-

reaction, as will be shown in the next subsection.

For this case, we observe that more moments depart from

their harmonic behavior than in the previous (small γ0)

case. For such moments, we have been able to find a

general rule that characterizes their divergence when

approaching the singularity. The key parameter is the

moment index that refers to the shape parameter β.

More precisely, as we approach the singularity, moments

Knmð2lÞm with an even index in β are increasing functions,

diverging to positive infinity, whereas moments Knmð2lþ1Þm

with an odd index in β are decreasing functions. This rule

agrees with what we found in the previous section for a

certain subset of moments, but here it is obeyed by almost

all activated moments, with a few exceptions.

The absolute value the moments reach at the end of their

evolution is much greater in this case than in the previous

one. Furthermore, moments, which in the previous case

were approximately constant, are now evolving. This

outcome is not related to the fact that here we have been

able to get closer to the limit of pβ ≈ γ0: even here, the

moments are completely constant if we use the maximum

value of the ratio pβ=γ0 considered before (around 0.3),

while for larger ratios the moments start increasing much

faster than in the previous case. In order to compare them,

we show the evolution of the same moments as in the

previous section in Fig. 5.

Finally, for extremely large values of γ0 ≳ 1025, the

previously mentioned effects are absent and all the Kijkl

follow an almost constant evolution even when we reach

the limit pβ ≈ γ0. This limiting case is relevant because it

shows that the dilation effects in evolution cannot be

explained simply by a pϕ enlarged by moment terms,

which would rescale any ϕ derivative in the equations of

motion. If this were the reason for dilation effects, it should

occur even in the case of very large γ0, in particular for

pβ ≈ γ0 which implies that pϕ is tiny, leading to large

rescaling factors of 1=pϕ.

3. Quantum modifications of the classical trajectories

The evolution of the expectation values β and v is

generically modified by quantum backreaction effects.

Nonetheless, in the approximation of slowly varying

anisotropy, we have analytically found, and numerically

checked, that these parameters follow their classical tra-

jectories up to a high degree of precision. But in the case of

rapidly varying anisotropy, pβ ≈ γ0, we do observe a

departure from the classical behavior.

FIG. 4. Examples of evolution of dominant moments of the

form K00m0, Kn0m0, and K0lm0 for a relatively small value of

γ0 ∼ 1020 in logarithmic plots. Different colors and dashing

correspond to different values of the ratio pβ=γ0. In particular,

purple and continuous (0.3), blue and dotted ð10−2Þ, green and

dashed ð10−8Þ, red and dot-dashed ð10−16Þ. Every sharp peak that
appears in the last plot corresponds to a change of sign of the

moment. Note that despite those changes the absolute value keeps

diverging with the same tendency.
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In the classical setting, the evolution of the shape

parameter β is a linearly increasing function of time,

viewed toward the singularity. However, as seen in

Fig. 6, for large values of γ0, quantum effects give rise to

a decrease of the anisotropization toward the singularity.

That is, quantum modifications decelerate the divergent

behavior of the shape parameter toward the singularity.

In the evolution of the volume v, which classically

follows an exponentially decreasing behavior toward the

singularity, we observe three qualitatively different behav-

iors in the presence of quantum effects: for relatively small

values of γ0, γ0 ≲ 1020, the volume collapses faster at the

beginning of the evolution, and then follows the standard

exponential behavior but with a slightly lower slope. Thus, it

approaches the singularity slower in the presence of quan-

tum corrections, as can be seen in Fig. 7. The early quantum

modification, appearing as a “jump” in the volume, is due to

the fact that the chosen initial state is not a coherent state of

the model. Therefore, initially vanishing moments are

turned on, reaching their “natural” value adapted to this

particular dynamics. This transition, which has also been

seen at late times in other models [9], produces the fast but

short initial collapse. Once the moments settle down to a

more coherent behavior, we observe the usual exponential

collapse of the volume. In this case, the small value of γ0 is

not strong enough to hide these quantum backreaction

effects at an early epoch of the evolution.

Correspondingly, for greater values of γ0, 10
21≲γ0≲1025,

we do not observe the initial jump in the volume. In that case,

quantumcorrections lead to a significant slowdownof the rate

of collapse of the volume toward the singularity, as seen in

Fig. 8. This result is consistent with the softening in the

increase of shape parameter toward the singularity and points

to a smoothening of the singularity by quantum effects.
5

FIG. 5. Evolution of the same moments as in Fig. 4 for

a larger value of γ0 ∼ 1021. In this case, we have chosen the

following pβ=γ0: 0.7 (purple and continuous line), 0.3 (blue and

dotted line), 10−2 (green and dashed line), and 10−8 (red and

dot-dashed line).

FIG. 6. In this plot, one can see how the quantum corrections

produce a decrease in the growth of the anisotropy close to the

singularity for 1021 ≲ γ0 ≲ 1025. Different colors correspond

to different truncations in moments. On the one hand, black

(classical solution), red (second-order), and green (third-order)

are almost overlapping continuous lines. On the other hand, the

fourth-order (purple and dashed) line shows the commented slow

down of the anisotropization.

5
Wewould like to point out that a previous study in the context

of quantum geometrodynamics also suggests an avoidance of the
classical singularity [19].
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(We would like to note that for this range of γ0 the fifth-order

truncation of the system has shown strong numerical

instabilities and, therefore, the commented result has been

derived from the system truncated up to fourth order.)

Finally, as explained previously, very large values of γ0,

γ0 ≳ 1025, correspond to the classical limit of the model.

For this case, quantum effects are not visible in our

numerical implementation, and expectation values follow

exactly their classical trajectories. In fact, due to the large

value of the classical Hamiltonian, one would expect that

quantum modifications of these trajectories will appear

only much closer to the singularity.

VII. CONCLUSIONS

We have considered a Bianchi I model written in terms

of Misner-type variables. For the sake of simplicity,

but without loss of generality, we have taken only one

anisotropic direction to perform our analysis. The classical

model contains a singularity located at a vanishing value of

the volume v ¼ 0. In this paper, we have studied the

quantum evolution of the system when approaching this

singularity. With additional approximations, the model is

simple enough to allow analytical statements about generic

moments, yet complex enough to show nontrivial behavior.

For such a purpose, we have made use of a formalism

based on a decomposition of a quantum state into its infinite

set of moments. Furthermore, we have considered a set of

variables that allow us to decouple the quantum evolution for

some of the relevant variables, simplifying both the analysis

and interpretation. Because of this choice, we have been able

to find analytical solutions for all moments when the

anisotropy evolves slowly (that is, when the conjugate

momentum of the shape parameter pβ is much smaller than

the Hamiltonian γ of the reference isotropic model) by

performing an expansion in pβ=γ. In this limiting case, we

can compare with the isotropic solution (pβ ¼ 0), showing

that the evolution of the volume is not affected. But those

moments that in the isotropic casewere constant now feel the

anisotropy and evolve, having a polynomial dependence on

time.We remark that themoments with vanishing index on β

play a special role in the evolution, beingconstants ofmotion.

Going beyond the previous approximation by including

terms of arbitrary powers in γ−1, we have analyzed the

particular scenario when, at an initial time, the shape

FIG. 8. The logarithm of the volume approaching the singularity

for 1021 ≲ γ0 ≲ 1025. The zoom-in shows (in a linear plot) the last

stages of the evolution of the volume toward the singularity.

Different colors and dashing correspond to different truncations

inmoments.On the one hand, black (classical solution), red (second

order), and green (third order) are almost overlapping continuous

lines.On the other hand, at fourth order (purple and dashed line), the

collapse of the volume is clearly slowed down by quantum effects.

FIG. 7. In the first plot, we represent the approach of the

volume to the singularity in a logarithmic scale for γ0 ∼ 1020. For

the sake of clarity, we only represent the classical evolution of the

volume (black and continuous line) and the solution truncated at

fifth order (purple and dashed line). In the second plot, in order to

show the differences among distinct truncations of the quantum

solution, we show the ratio of the volume truncated at nth order

(vn) with respect to the classical volume (vclass). The reference

line is represented by the continuous black line, whereas the

second and third-order truncations exactly overlap (represented

by the red and dot-dashed line). The more relevant effect appears

at the fourth order (given by the green and dotted line) and fifth

order (represented by the purple and dashed line), showing

clearly that, even if initially the collapse is faster than in the

classical case, it is slower at the final stages of the evolution.
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parameter β and its momentum pβ are zero. In this case, the

universe is initially isotropic, but one would expect the

generation of an anisotropy during quantum evolution,

owing to the performed classical reduction of symmetry

that is not consistent in the quantum realm. (Note that, based

on the uncertainty principle, not all moments can vanish.)

Nonetheless, we have found an analytic solution and shown

that anisotropy is not necessarily generated during quantum

evolution. This interestingnew result could be a consequence

of the completely decoupled nature of degrees of freedom in

the classical Hamiltonian, which may allow a classical

symmetry to be unaltered by quantization. Nevertheless, it

suggests an interesting middle ground between having no

symmetry-preserving solutions at all (a common criticism of

minisuperspace quantization) and not generating any non-

symmetric degrees of freedom (a concern sometimes voiced

about cosmological structure formation).

In order to go beyond the limiting case, we have

performed a numerical simulation of the complete

system up to fifth order in moments. We have used the

limiting case to check our method and study the evolution

of the moments toward the singularity. After that, we have

considered a general case and analyzed the evolution for the

different ranges of pβ and the initial value of γ. We have

shown how some moments are activated during evolution,

departing from their isotropic behavior and diverging as

they approach the singularity. The greater the value of pβ

with respect to γ0 the more dominant the moments, mainly

those that represent pure fluctuations in β. In addition, they

are not only more dominant for that range, but also allow us

to see a longer stretch of their evolution.

Concerning the expectation values, we have analyzed the

quantum evolution of the volume v and the shape parameter

β, which are determined by previous variables andmoments.

We have shown that quantum backreaction has a more

relevant effect when the initial value of γ is bigger. It then

appreciably acts only in a region near the singularity, where

we expect quantum effects even if the initial state is classical.

In that case, the shape parameter, which classically increases

toward the singularity, decelerates this divergent behavior,

softening the anisotropization close to the singularity. In a

similar sense, the exponential collapse of volume toward the

singularity has been smoothed by quantum backreaction

effects, decreasing the rate of collapse.

Finally,wewould like to note that several statements about

the generic moment orders relied on the β independence of

the classical Hamiltonian, whichwould no longer be the case

in models with an anisotropy potential. In such models, it

would be more difficult to obtain corresponding statements,

even if a similar behavior might still be realized. One would

then have to rely on numerical investigations based on the

methods developed here. Such results, however, would

always be state dependent and require a careful analysis

of implications of how one chooses an initial state.
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APPENDIX A: SECOND-ORDER EQUATIONS OF

MOTION FOR ABSOLUTE MOMENTS

In order to give an idea about the system of equations, we

present the second-order truncation of equations of motion,

used up to fifth order in the numerics. The equations of

motion for the variables fv; pv; β; pβg are

_v ¼ 1

H5

�

H4v2pv þ
3

2
v4pvp

2

βG
0200 − v2pβðp2

β þ 2p2
vv

2ÞG0101 − vpvpβð2p2

β þ p2
vv

2ÞG1001;

þ v2pv

�

p2
vv

2

2
þ p2

β

�

G0002 þ vp2

βð2p2

β þ p2
vv

2ÞG1100 þ pvp
2

β

�

p2

β þ
1

2
p2
vv

2

�

G2000

�

;

_pv ¼
1

H5

�

−H4vp2
v −

3

2
vp4

vp
2

βG
2000 −

1

2
vp2

vð2p2

β þ p2
vv

2ÞG0002 þ pβp
2
vðp2

β þ 2p2
vv

2ÞG1001;

− p2

βpvð2p2

β þ p2
vv

2ÞG1100 þ vpvpβð2p2

β þ v2p2
vÞG0101 −

1

2
vp2

βð2p2

β þ v2p2
vÞG0200

�

;

_β ¼ 1

H5

�

−H4pβ −
3

2
v2p2

vpβG
0002 −

1

2
p2
vpβðp2

β þ 2v2p2
vÞG2000 − vpvpβð2p2

β þ v2p2
vÞG1100;

þ v2pvðv2p2
v þ 2p2

βÞG0101 −
1

2
v2pβðp2

β þ 2v2p2
vÞG0200 þ vp2

vðv2p2
v þ 2p2

βÞG1001

�

;

_pβ ¼ 0:
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The equations for second-order moments are

_G0002 ¼ 0;

_G0011 ¼ vpv

H3
½pvpβG

1001 þ vpβG
0101 − vpvG

0002�;

_G0020 ¼ vpv

H3
½2pvpβG

1010 þ 2vpβG
0110 − 2vpvG

0011�;

_G0101 ¼ pv

H3
½−vpvpβG

0002 þ pvp
2

βG
1001 þ vð2p2

β − v2p2
vÞG0101�;

_G0110 ¼ pv

H3
½−vpvpβG

0011 − v2pvG
0101 þ pvp

2

βG
1010 þ vpvpβG

1100 þ v2pβG
0200 þ vð2p2

β − v2p2
vÞG0110�;

_G0200 ¼ pv

H3
½−2vpvpβG

0101 þ 2pvp
2

βG
1100 þ 2vð2p2

β − v2p2
vÞG0200�;

_G1001 ¼ v

H3
½vpvpβG

0002 − vp2

βG
0101 þ pvðv2p2

v − 2p2

βÞG1001�;

_G1010 ¼ v

H3
½p2

vpβG
2000 − vp2

vG
1001 þ vpvpβG

0011 þ vpvpβG
1100 − vp2

βG
0110 þ pvðv2p2

v − 2p2

βÞG1010�;

_G1100 ¼ 1

H3
½p2

vp
2

βG
2000 − vp2

vpβG
1001 þ v2pvpβG

0101 − v2p2

βG
0200�;

_G2000 ¼ 2v

H3
½vpvpβG

1001 − vp2

βG
1100 þ pvðv2p2

v − 2p2

βÞG2000�: ðA1Þ

APPENDIX B: THE EQUATION FOR THE VOLUME AT FIFTH ORDER IN MOMENTS

_v¼−
3p2

βðp4

βþ12γ2p2

βþ8γ4ÞG0500v6

8H11
þ
5ð3γp4

βþ4γ3p2

βÞG0400v5

8H9
þ
5pβγð15p4

βþ40γ2p2

βþ8γ4ÞG0401v5

8H11

−
ðp4

βþ4γ2p2

βÞG0300v4

2H7
−
pβð3p4

βþ24γ2p2

βþ8γ4ÞG0301v4

2H9
−
ð12p6

βþ159γ2p4

βþ136γ4p2

βþ8γ6ÞG0302v4

4H11

−
5p2

βγð18p4

βþ41γ2p2

βþ4γ4ÞG1400v4

8H11
þ
3p2

βγG
0200v3

2H5
þ
3ð3γp3

βþ2γ3pβÞG0201v3

2H7
þ
3ð2γ5þ21p2

βγ
3þ12p4

βγÞG0202v3

4H9

þ
15pβγð4p4

βþ13γ2p2

βþ4γ4ÞG0203v3

4H11
þ
p2

βð4p4

βþ27γ2p2

βþ4γ4ÞG1300v3

2H9
þ
pβð12p6

βþ159γ2p4

βþ136γ4p2

βþ8γ6ÞG1301v3

2H11

−
pβðp2

βþ2γ2ÞG0101v2

H5
−
ð2p4

βþ11γ2p2

βþ2γ4ÞG0102v2

2H7
−
pβð2p4

βþ21γ2p2

βþ12γ4ÞG0103v2

2H9

−
ð8p6

βþ136γ2p4

βþ159γ4p2

βþ12γ6ÞG0104v2

8H11
−
3p2

βγð4p2

βþγ2ÞG1200v2

2H7
−
3pβγð12p4

βþ21γ2p2

βþ2γ4ÞG1201v2

2H9

−
3γð48p6

βþ186γ2p4

βþ79γ4p2

βþ2γ6ÞG1202v2

4H11
−
p2

βð12p6

βþ159γ2p4

βþ136γ4p2

βþ8γ6ÞG2300v2

4H11
þγv

H
þ
ðγ3þ2p2

βγÞG0002v

2H5

þ
ð2γp3

βþ3γ3pβÞG0003v

2H7
þ
γð8p4

βþ24γ2p2

βþ3γ4ÞG0004v

8H9
þ
pβγð8p4

βþ40γ2p2

βþ15γ4ÞG0005v

8H11
þ
p2

βð2p2

βþγ2ÞG1100v

H5

þ
pβð2p4

βþ11γ2p2

βþ2γ4ÞG1101v

H7
þ
ð4p6

βþ54γ2p4

βþ45γ4p2

βþ2γ6ÞG1102v

2H9
þ
pβð4p6

βþ98γ2p4

βþ177γ4p2

βþ36γ6ÞG1103v

2H11

þ
3ð12γp6

βþ21γ3p4

βþ2γ5p2

βÞG2200v

4H9
þ
3pβγð36p6

βþ177γ2p4

βþ98γ4p2

βþ4γ6ÞG2201v

4H11
−
pβγð2p2

βþγ2ÞG1001

H5

−
ðγ5þ10p2

βγ
3þ4p4

βγÞG1002

2H7
−
ð4γp5

βþ22γ3p3

βþ9γ5pβÞG1003

2H9
−
ð9γ7þ138p2

βγ
5þ152p4

βγ
3þ16p6

βγÞG1004

8H11
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−
ð2p6

β þ 11γ2p4

β þ 2γ4p2

βÞG2100

2H7
−
ð2p7

β þ 45γ2p5

β þ 54γ4p3

β þ 4γ6pβÞG2101

2H9

−
ð4p8

β þ 194γ2p6

β þ 549γ4p4

β þ 194γ6p2

β þ 4γ8ÞG2102

4H11
−
3ð8γp8

β þ 56γ3p6

β þ 39γ5p4

β þ 2γ7p2

βÞG3200

4H11

þ
p2

βγð2p2

β þ γ2ÞG2000

2H5v
þ
ð2γp5

β þ 11γ3p3

β þ 2γ5pβÞG2001

2H7v
þ
ð2γ7 þ 45p2

βγ
5 þ 54p4

βγ
3 þ 4p6

βγÞG2002

4H9v

þ
ð4γp7

β þ 98γ3p5

β þ 177γ5p3

β þ 36γ7pβÞG2003

4H11v
þ
ð12γ2p6

β þ 21γ4p4

β þ 2γ6p2

βÞG3100

2H9v

þ
ð4pβγ

8 þ 98p3

βγ
6 þ 177p5

βγ
4 þ 36p7

βγ
2ÞG3101

2H11v
−
p2

βγ
3ð4p2

β þ γ2ÞG3000

2H7v2
−
ð2pβγ

7 þ 21p3

βγ
5 þ 12p5

βγ
3ÞG3001

2H9v2

−
ð2γ9 þ 79p2

βγ
7 þ 186p4

βγ
5 þ 48p6

βγ
3ÞG3002

4H11v2
−
ð12γ2p8

β þ 159γ4p6

β þ 136γ6p4

β þ 8γ8p2

βÞG4100

8H11v2

þ
ð4p2

βγ
7 þ 27p4

βγ
5 þ 4p6

βγ
3ÞG4000

8H9v3
þ
ð8pβγ

9 þ 136p3

βγ
7 þ 159p5

βγ
5 þ 12p7

βγ
3ÞG4001

8H11v3

−
ð4p2

βγ
9 þ 41p4

βγ
7 þ 18p6

βγ
5ÞG5000

8H11v4
:

APPENDIX C: SECOND-ORDER EQUATIONS OF MOTION FOR RELATIVE MOMENTS

Performing the change of variables fv; pv; β; pβ; G
ijklg to fv; γ; β; pβ; K

ijklg, the equations of motion for fγ; pβ; K
ij0lg

decouple from the rest, pβ and all its fluctuations K000n are constants of motion.

_γ ¼ γ2pβ

H3
ðpβðK0200 − K2000Þ − K0101 þ K1001Þ;

_pβ ¼ 0;

_K0002 ¼ 0;

_K0101 ¼ γpβ

H3
ðpβðK0101 þ K1001Þ − K0002Þ;

_K0200 ¼ 2γpβ

H3
ðpβðK0200 þ K1100Þ − K0101Þ;

_K1001 ¼ −
γpβ

H3
ðpβðK0101 þ K1001Þ − K0002Þ;

_K1100 ¼ −
γpβ

H3
ðpβðK0200 − K2000Þ − K0101 þ K1001Þ;

_K2000 ¼ −
2γpβ

H3
ðpβðK1100 þ K2000Þ − K1001Þ:

The moments Kijkl related to β are given by

_K0011 ¼ γ2

H3
ðpβðK0101 þ K1001Þ − K0002Þ;

_K0020 ¼ 2γ2

H3
ðpβðK0110 þ K1010Þ − K0011Þ;

_K0110 ¼ γ

H3
ð−γK0101 þ pβðγðK0200 þ K1100Þ − K0011Þ þ p2

βðK0110 þ K1010ÞÞ;

_K1010 ¼ −
γ

H3
ðγK1001 − pβðγðK1100 þ K2000Þ þ K0011Þ þ p2

βðK0110 þ K1010ÞÞ:
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Just as these equations, the equation for β is also independent of the volume,

_β ¼ −
1

2H5
ð−2γ4ðK0101 þ K1001Þ þ γ2p3

βðK0200 þ 4K1100 þ K2000 − 4ÞÞ

− 4γ2p2

βðK0101 þ K1001 þ pβð2γ4ðK0200 þ K1100 þ K2000 þ 1Þ þ 3γ2K0002Þ þ 2p5

βÞ:
Finally, the equation of motion for the volume is given by a logarithmic derivative,

_v

v
¼ γ

2H5
ð2γ4 − 4γ2p2

β þ 2p4

β þ γ2K0002 þ p2

βðγ2ð3K0200 þ 2K1100 þ K2000Þ þ 2K0002Þ

− 2γ2pβð2K0101 þ K1001Þ þ 2p4

βð2K1100 þ K2000Þ − 2p3

βðK0101 þ 2K1001ÞÞ:

APPENDIX D: THE SOLUTION FOR THE QUASIHARMONIC CASE TRUNCATED

AT THIRD ORDER IN MOMENTS

In this appendix, we present the solution for the quasiharmonic case up to order Oð2Þ and truncated at third order in

moments. For the generic case, with r ≠ 0, moments Kijkl go as ϕk=2 and, in particular moments of the form Kij0l are

constants of motion. The remaining moments are

K0011 ¼ c1 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ð−K0002 þ K0102 þ K1002 þ pβðK0101 − K0201 þ K1001 − K1101 − K2001ÞÞ;

K0012 ¼ c2 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK0102 þ K1002Þ − K0003Þ;

K0110 ¼ c3 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ð−K0101 þ K0201 þ K1101 þ pβðK0200 − K0300 þ K1100 − K1200 − K2100ÞÞ;

K0111 ¼ c4 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK0201 þ K1101Þ − K0102Þ;

K0210 ¼ c5 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK0300 þ K1200Þ − K0201Þ;

K1010 ¼ c6 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ð−K1001 þ K1101 þ K2001 þ pβðK1100 − K1200 þ K2000 − K2100 − K3000ÞÞ;

K1011 ¼ c7 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK1101 þ K2001Þ − K1002Þ;

K0021 ¼ c8 −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðc2 − pβc4 − pβc7Þ þ

4ϕ

r
ðK0003 þ pβð−2K0102 − 2K1002 þ pβðK0201 þ 2K1101 þ K2001ÞÞÞ;

K1110 ¼ c9 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK1200 þ K2100Þ − K1101Þ;

K0120 ¼ c10 −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðc4 − pβc5 − pβc9Þ þ

4ϕ

r
ðK0102 þ pβð−2K0201 − 2K1101 þ pβðK0300 þ 2K1200 þ K2100ÞÞÞ;

K2010 ¼ c11 þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðpβðK2100 þ K3000Þ − K2001Þ;

K0020 ¼ c12 −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðc1 − pβc3 − c4 þ pβc5 − pβc6 − c7 þ pβc9 þ pβc11Þ

þ 4ϕ

r
ðK0200 − 2K0300 þ 2K1100 − 4K1200 þ K2000 − 4K2100 − 2K3000Þp2

β

−
8ϕ

r
ððK0101 − 2K0201 þ K1001 − 3K1101 − 2K2001Þpβ þ K0002 − 2ðK0102 þ K1002ÞÞ;

K1020 ¼ c13 −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r
ðc7 − pβc9 − pβc11Þ þ

4ϕ

r
ðK1002 þ pβð−2K1101 − 2K2001 þ pβðK1200 þ 2K2100 þ K3000ÞÞÞ
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and finally

K0030 ¼ c14 þ
6

r
ð12ϕðc2 þ pβð−2c4 − 2c7 þ pβðc5 þ 2c9 þ c11ÞÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

q

ðpβðc10 þ c13Þ − c8ÞÞ

þ 12γ2
0

r2
ðc2 þ pβð−2c4 − 2c7 þ pβðc5 þ 2c9 þ c11ÞÞÞ

−
24γ2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r2
p3

βðK0300 þ 3K1200 þ 3K2100 þ K3000Þ

−
24γ2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r2
p2

βðK0201 þ 2K1101 þ K2001Þ

þ 24γ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r3
pβðK0102 þ K1002Þ

þ 24γ2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2
0
þ rϕ

p

r3
K0003

þ 8ðγ2
0
þ rϕÞ3=2
r3

p3

βðK0300 þ 3K1200 þ 3K2100 þ K3000Þ

−
24ðγ2

0
þ rϕÞ3=2
r3

p2

βðK0201 þ 2K1101 þ K2001Þ

þ 24ðγ2
0
þ rϕÞ3=2
r2

pβðK0102 þ K1002Þ

−
8ðγ2

0
þ rϕÞ3=2
r2

K0003;

with integration constants ci.
For the particular case with r ¼ 0, a moment of the form Kijkl is given by a polynomial of order k in ϕ,

K0011 ¼ c1 þ
ϕ

γ0
ð−K0002 þ K0102 þ K1002 þ pβðK0101 − K0201 þ K1001 − K1101 − K2001ÞÞ;

K0012 ¼ 1

γ0
ðγ0c2 − ϕK0003 þ pβϕðK0102 þ K1002ÞÞ;

K0020 ¼ c3 þ
p2

βϕ
2

γ2
0

ðK0200 − 2K0300 þ 2K1100 − 4K1200 þ K2000 − 4K2100 − 2K3000Þ

−
ϕ2

γ2
0

ð2ðK0101 − 2K0201 þ K1001 − 3K1101 − 2K2001Þpβ þ K0002 − 2ðK0102 þ K1002ÞÞ

−
2ϕ

γ0
ðc1 − c7 − c11 þ pβð−c6 þ c9 − c10 þ c13 þ c14ÞÞ;

K0021 ¼ c4 þ
ϕ2

γ2
0

ðK0003 þ pβð−2K0102 − 2K1002 þ pβðK0201 þ 2K1101 þ K2001ÞÞÞ þ 2ϕ

γ0
ðpβðc7 þ c11Þ − c2Þ;

K0030 ¼ c5 þ
pβϕ

3

γ3
0

ððK0300 þ 3K1200 þ 3K2100 þ K3000Þp2

β − 3ðK0201 þ 2K1101 þ K2001ÞpβÞ

þ ϕ3

γ3
0

ðpβðþ3K0102 þ 3K1002Þ − K0003Þ þ 3ϕ2

γ2
0

ðc2 þ pβð−2c7 − 2c11 þ pβðc9 þ 2c13 þ c14ÞÞÞ

þ 3ϕ

γ0
ðpβðc8 þ c12Þ − c4Þ

for pure anisotropy moments, and
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K0110 ¼ c6 þ
ϕ

γ0
ð−K0101 þ K0201 þ K1101 þ pβðK0200 − K0300 þ K1100 − K1200 − K2100ÞÞ;

K0111 ¼ 1

γ0
ðγ0c7 − ϕK0102 þ pβϕðK0201 þ K1101ÞÞ;

K0120 ¼ c8 þ
ϕ2

γ2
0

ðK0102 þ pβð−2K0201 − 2K1101 þ pβðK0300 þ 2K1200 þ K2100ÞÞÞ þ 2ϕ

γ0
ðpβðc9 þ c13Þ − c7Þ;

K0210 ¼ 1

γ0
ðγ0c9 − ϕK0201 þ pβϕðK0300 þ K1200ÞÞ;

K1010 ¼ c10 þ
ϕ

γ0
ð−K1001 þ K1101 þ K2001 þ pβðK1100 − K1200 þ K2000 − K2100 − K3000ÞÞ;

K1011 ¼ 1

γ0
ðγ0c11 − ϕK1002 þ pβϕðK1101 þ K2001ÞÞ;

K1020 ¼ c12 þ
ϕ2

γ2
0

ðK1002 þ pβð−2K1101 − 2K2001 þ pβðK1200 þ 2K2100 þ K3000ÞÞÞ þ 2ϕ

γ0
ðpβðc13 þ c14Þ − c11Þ;

K1110 ¼ 1

γ0
ðγ0c13 − ϕK1101 þ pβϕðK1200 þ K2100ÞÞ;

K2010 ¼ 1

γ0
ðγ0c14 − ϕK2001 þ pβϕðK2100 þ K3000ÞÞ

for moments with volume-anisotropy correlations.

APPENDIX E: THIRD-ORDER SOLUTION FOR THE pβ = 0 CASE

We present the solution for the system truncated at third order in moments for the particular case pβ ¼ 0. For the case

with r ≠ 0, the fluctuations of the anisotropic sector are

K0011 ¼ c1 þ
2ðK0002 − ðK0102 þ K1002ÞÞ

K0102 − K1002
γ; K0012 ¼ c2 þ

2K0003

K0102 − K1002
γ;

K0020 ¼ c3 þ
4γ

ðK0102 − K1002Þ2 ½ðK
0002 − 2ðK0102 þ K1002ÞÞγ þ ðK0102 − K1002Þðc1 þ c4 þ c5Þ�;

K0021 ¼ 1

ðK0102 − K1002Þ2 ½−8γ
2

0
K0003 − ðK0102 − K1002Þ2c6 þ 4ðK0102 − K1002Þc2γ þ 4K0003γ2�;

K0030 ¼ 1

ðK0102 − K1002Þ3 ½ðK
0102 − K1002Þ3c7 − 24ðK0102 − K1002Þγ2

0
c2

− 6ð8γ2
0
K0003 þ ðK0102 − K1002Þ2c6Þγ þ 12ðK0102 − K1002Þc2γ2 þ 8K0003γ3�;

where ci with i ¼ 1;…; 6 are real constants. The second-order correlations between the two sectors with their logarithmic

behavior read as

K0101 ¼ d1 þ
K0003

ðK0102 − K1002Þ ln γ;

K0110 ¼ d2 −
2

K0102 − K1002
ðK0201 − d1 þ K1101Þγ þ ððK0102 − K1002Þc2 þ 2γK0003Þ

ðK0102 − K1002Þ2 ln γ;

K1001 ¼ d3 −
K0003

ðK0102 − K1002Þ ln γ;

K1010 ¼ d4 −
2ð−d3 þ K1101 þ K2001Þ

K0102 − K1002
γ −

ððK0102 − K1002Þc2 þ 2γK0003Þ
ðK0102 − K1002Þ2 ln γ;

where di with i ¼ 1;…; 5 are real constants. And, finally, the third-order correlations between the two sectors
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K0111 ¼ −c5 þ
�

1þ K0102 þ K1002

K0102 − K1002

�

γ;

K0120 ¼ f1 þ
4K0102

ðK0102 − K1002Þ2 γ
2 −

4c5

K0102 − K1002
γ −

ℏ
2

2ðK0102 − K1002Þ ln γ;

K0210 ¼ f2 þ
2K0201

K0102 − K1002
γ; K1011 ¼ −c4 þ

�

K0102 þ K1002

K0102 − K1002
− 1

�

γ;

K1020 ¼ f3 þ
4K1002

ðK0102 − K1002Þ2 γ
2 −

4c4

K0102 − K1002
γ þ ℏ2

2ðK0102 − K1002Þ ln γ;

K1110 ¼ f4 þ
2K1101

K0102 − K1002
γ; K2010 ¼ f5 þ

2K2001

K0102 − K1002
γ;

where fi with i ¼ 1;…; 5 are real constants.

For the case with r ¼ 0, the solution is slightly different and the fluctuations of the anisotropic sector take the form

K0011 ¼ c̃1 −
ðK0002 − K0102 − K1002Þ

γ
ϕ; K0012 ¼ c̃2 −

K0003

γ
ϕ;

K0020 ¼ c̃3 −
2

γ
ðc̃1 þ c̃4 þ c̃5Þϕþ ðK0002 − 2K0102 − 2K1002Þϕ2

γ2
;

K0021 ¼ −c̃6 −
2c̃2

γ
ϕþ K0003

γ2
ϕ2; K0030 ¼ c̃7 þ

3c̃6

γ
ϕþ 3c̃2

γ2
ϕ2 −

K0003

γ3
ϕ3:

The second-order correlations between the two sectors are given as

K0101 ¼ d̃1 −
K0003

2γ2
ϕ; K0110 ¼ −d̃2 −

ðc̃2 − 2γðK0201 þ K1101 − d̃1ÞÞ
2γ2

ϕþ K0003

2γ3
ϕ2;

K1001 ¼ d̃3 þ
K0003

2γ2
ϕ; K1010 ¼ d̃4 þ

ð2γðK1101 þ K2001 − d̃3Þ þ c̃2Þ
2γ2

ϕ −
K0003

2γ3
ϕ2:

And finally, the third-order correlations between the two sectors take the form

K0111 ¼ −c̃5 −
K0102 þ K1002

2γ
ϕ; K0120 ¼ f̃1 þ

ð8γc̃5 þ ℏ
2Þ

4γ2
ϕþ K0102 þ K1002

2γ2
ϕ2; K0210 ¼ f̃2 −

K0201

γ
ϕ;

K1011 ¼ −c̃4 −
K0102 þ K1002

2γ
ϕ; K1020 ¼ f̃3 −

ðℏ2 − 8γc̃4Þ
4γ2

ϕþ K0102 þ K1002

2γ2
ϕ2;

K1110 ¼ f̃4 −
K1101

γ
ϕ; K2010 ¼ f̃5 −

K2001

γ
ϕ:
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