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Covariant models of loop quantum gravity generically imply dynamical signature change at high

density. This article presents detailed derivations that show the fruitful interplay of this new kind of

signature change with wave-function proposals of quantum cosmology, such as the no-boundary and

tunneling proposals. In particular, instabilities of inhomogeneous perturbations found in a Lorentzian path-

integral treatment are naturally cured. Importantly, dynamical signature change does not require Planckian

densities when off-shell instantons are relevant.
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I. INTRODUCTION

The no-boundary proposal [1] shares with models of

loop quantum gravity [2–4] a prominent role played

by signature change. It is therefore of interest to discuss

crucial technical differences but also unexpected synergies

between these two approaches.

A general difference is given by how signature change

features in these approaches to quantum cosmology—as a

postulate in the no-boundary proposal and as an unex-

pected, derived result in models of loop quantum cosmol-

ogy. The no-boundary proposal, in its simplest form with

only a cosmological constant as the energy ingredient,

implements specific initial conditions for the wave function

of a universe by closing off an expanding Lorentzian space-

time with a compact Euclidean cap at the big bang.

Euclidean signature is introduced because it makes it

possible to have 4-spherelike solutions that can provide

such a closing cap. Here, signature change happens in a

discontinuous manner by gluing together two semiclassical

geometries with different signatures.

Models of loop quantum cosmology, by contrast, do not

include Euclidean signature in their setup but rather derive,

after what usually amounts to a long analysis, a modified

space-time structure from other quantum effects in the

dynamical equations that define such models. As one generic

outcome, models of loop quantum cosmology may exhibit

space-time structures with nonsingular signature change

mediated by a curvature-dependent function that crosses

zero in a continuous manner. For the sake of clarity, we will

refer to the version of signature change realized in models of

loop quantum gravity as dynamical signature change.

Another difference is that the no-boundary proposal

contains signature change in the form of imaginary time,

or a Wick rotation used in a Euclidean path integral, while

models of loop quantum gravity work with real proper time.

The reference to imaginary time in the no-boundary proposal

can be eliminated by formulating it in a Lorentzian, as

opposed to Euclidean, path integral [5,6], suggesting a

potentially more direct correspondence with models of loop

quantum gravity. However, in this case the no-boundary

proposal is defined for off-shell instantons that solve the

Raychaudhuri equation but not the Friedmann equation in

order to implement the no-boundary initial condition of zero

scale factor. In loop quantum cosmology, by contrast, the

usual derivation of signature change requires certain iden-

tities that follow from a modified Friedmann equation (or its

extension to inhomogeneous modes) and seem unavailable if

only the Raychaudhuri equation is used.

On a more physical level, the no-boundary proposal

works at sub-Planckian densities, assuming a small

cosmological constant as the main source of stress-energy

of a young universe. This is in fact one of its appealing

features because it makes the proposal insensitive to

detailed properties of quantum gravity. In models of loop

quantum gravity, by contrast, signature change as dis-

cussed so far happens very close to Planckian densities. It

relies on certain effects of loop quantum gravity not

realized in classical general relativity, where signature

change would be singular [7–10].

Given these discrepancies, an application of loop quan-

tum gravity to the no-boundary proposal might seem

useless. However, the relationship turns out to be closer

than it appears at first sight, and it is actually fruitful: An

application of the Lorentzian path integral to formulate the

no-boundary proposal eliminates imaginary time giving the

initial state of the universe a more physical interpretation.
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But a new problem then arises because inhomogeneous

perturbations around no-boundary instantons have been

found to be unstable [11,12]. This result endangers the

proposal as a well-defined initial scenario of the universe.

Unexpectedly, however, several properties of dynamical

signature change in models of loop quantum cosmology

conspire to solve the stability problem of the no-boundary

proposal [13]. In the present paper, we highlight the details

of several new properties of signature change for off-shell

instantons in models of loop quantum gravity that are

relevant for this conclusion. Importantly, this new version

of dynamical signature change does not require Planckian

densities, even though it is derived from the same loop-

inspired modifications that lead to Planckian dynamical

signature change in models not based on the no-boundary

condition. On a technical level, our main results are

therefore that (i) dynamical signature change can be derived

for off-shell instantons in models of loop quantum gravity

and (ii) can have markedly different features in this setting

compared with on-shell solutions of modified constraint

equations. We expand on our previous work [13] to give

details of the saddle-point analysis and the structure of our

new off-shell instantons. Moreover, we generalize our

system to include and parametrize different quantization

ambiguities associated with loop quantum gravity. We also

point out several subtleties in the detailed derivation given

here, which may be technical but are nevertheless surpris-

ing and essential for our physical results.

II. INSTABILITIES IN THE LORENTZIAN

PATH INTEGRAL

We begin with a brief review of the Lorentzian path

integral, following [5,6]. Boundary conditions for the no-

boundary proposal can be formulated in a Lorentzian path

integral of the usual integrand expðiS=ℏÞ, as opposed to the
Euclidean path integral of expð−S=ℏÞ. Such an integral of a
phase factor over real configurations usually converges

very slowly, but convergence can be improved by an

application of Picard–Lefshetz theory, shifting the integra-

tion contour onto the complex plane. Because the value of

the integral is not changed thanks to Cauchy’s theorem,

provided the action S does not introduce poles in the

complex plane, it remains Lorentzian even though complex

configuration variables appear in the improved integration.

It is therefore possible to avoid the use of imaginary time,

and the original Lorentzian value of the path integral

remains unmodified.

Preparing for an application of Picard–Lefshetz theory,

the Lorentzian formulation of the no-boundary proposal

deals with the problem of time by fixing time reparamete-

rization invariance almost completely, specifying that the

lapse function equals NðtÞ ¼ M=aðtÞ with a positive

constant (rather than time-dependent function) M.

(The factor of 1=a is introduced for convenience, and

for the same reason transformed to the new variable

q ¼ a2 [11,12].) Only this constant M, rather than a

time-dependent function NðtÞ, is integrated over in path

integrals. Because there is no longer a free multiplier at any

given time, integration over M does not impose the

Hamiltonian constraint or the Friedmann equation except

at one time, which can be chosen to be the final moment

included in a given path integral. This is the reason why

path integrals in this formulation describe off-shell instan-

tons, as a consequence of a specific approach to the

problem of time.

A no-boundary instanton is then defined by the initial

condition qð0Þ ¼ 0, together with some fixed value of

qð1Þ ¼ q1. For small t, a linear function qðtÞ ¼ q1t can be

seen to solve the Raychaudhuri equation

d2q

dt2
¼ 2Λ ð1Þ

for q ¼ a2 in the presence of a cosmological constant Λ (as

well as positive spatial curvature). However, this initial

condition cannot be compatible with the Friedmann equa-

tion for the same ingredients, given by

�
dq

dt

�
2

¼ 4ðΛq − 1Þ: ð2Þ

The instantons considered in the Lorentzian formulation

therefore must be strictly off-shell. (In the original

Euclidean formulation, the condition q ¼ 0 is compatible

with the Wick-rotated version of (2).)

If the initial state is normalized, for simplicity assumed

to be Gaussian, repeated path integrations over real

configuration variables should preserve the Gaussian form.

No instabilities could then arise. However, as it turns out,

the equations of motion of inhomogeneous perturbations

have solutions with branch cuts on the positive-M axis [12].

Picard–Lefshetz theory determines that this branch cut

should be circumvented through the upper imaginary half-

plane in the complex M-space. Along this contour, the

action has a negative imaginary part, and the bounded

expðiS=ℏÞ is turned into an unbounded upside-down

Gaussian. Instabilities are then inevitable, a conclusion

which refers to general properties of the space-time

structure and also applies to alternative proposals of initial

conditions, such as the tunneling proposal [14].

In more detail, the tensor mode equation for h in the time

variable defined by choosing a lapse function N ¼ M=
ffiffiffi
q

p
,

written conveniently for v ¼ qh, is

v̈ −
q̈

q
v −

M2

q2
β∇2v ¼ 0 ð3Þ

where we include a parameter β ¼ �1 to see possible

implications of space-time signature. For Lorentzian sig-

nature, β ¼ 1, while β ¼ −1 for Euclidean signature. In our
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subsequent application of methods of loop quantum cos-

mology, β will be a continuous function with β → 1 at

small curvature (late times).

For small t, the mode equation implies that

v̈l ≈ −
βlðlþ 2ÞM2

q2
1

vl

t2
ð4Þ

for a fixed multipole number l, solved by any superposition

of the two independent solutions vl;� ¼ t
1

2
ð1�γlÞv1 where

v1 ¼ vð1Þ with

γl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4β

lðlþ 2ÞM2

q2
1

s
: ð5Þ

The action for (4), derived from tensor modes restricted to

leading terms at small t is

Sl ¼ 1

16πG

Z
1

0

�
_v2
l

M
− βlðlþ 2ÞMv2

l

q2

�

¼ 1

16πGM

Z
1

0

�
_v2
l
þ γ2

l
− 1

4t2
v2
l

�
; ð6Þ

inserting a small-t off-shell instanton with qðtÞ ¼ q1t in the
second step. The appearance ofM follows the characteristic

dependence of matter or perturbation actions on the lapse

function of a background metric.

Evaluated in vl;�, we have

Sl;� ¼ 1

32πGM
ð1� γlÞt�γl j1t¼0

v2
1
: ð7Þ

Only vl;þ leads to a finite action Sl;þ because γl > 0; we

therefore discard vl;−. For complex M in the upper half

plane, as dictated by Picard–Lefshetz theory,

Sl;þ ∝
1

M
¼ ReM − iImM

jMj2 ð8Þ

has a negative imaginary part which implies an

unbounded expðiS=ℏÞ.
Through γl, the solutions vl;� have a branch cut at

positive M for β > 0, in particular for β ¼ 1 as used in the

Lorentzian path-integral version of the no-boundary pro-

posal. However, we can already see that any dynamical

signature change that would turn β to negative values at

small t can resolve the problem: If this happens, there is no

branch cut on the realM-axis. An imaginary action and the

corresponding instability could then be avoided. However,

unlike in models of loop quantum gravity used so far, this

dynamical signature change should happen (i) for off-shell

instantons and (ii) at sub-Planckian curvature determined

by a small cosmological constant. Each of these two

conditions requires a detailed analysis.

III. OFF-SHELL INSTANTONS IN MODELS OF

LOOP QUANTUM GRAVITY

In models of loop quantum gravity, the Hamiltonian

constraint is modified by different effects motivated by

mathematical properties of discrete space, most importantly

inverse-triad corrections [15] and holonomy modifications

[16]. Holonomy modifications are used to describe

implications of the fact that loop quantum gravity imple-

ments operators not for the gravitational connection Ai
a (or

extrinsic curvature Ki
a) but only for its SU(2)-holonomies

in space [17,18]. Holonomies are based on parallel

transport,

he ¼ P exp

Z

e

Ai
aτi _e

adλ; ð9Þ

and are therefore integrated over spatial curves e (with path
ordering P of the noncommuting suð2Þ generators τi).

As functions of the gravitational connection Ai
a, they are

nonlinear and nonlocal.

In a homogeneous cosmological model, nonlocality in

space is not visible because a position-independent con-

nection then appears just as a collection of spatial constants

in the exponent of (9). If the model is isotropic, for instance,

any connection with positive spatial curvature can be

expressed as Ai
a ¼ ð1

2
þ cÞδia with a single canonical degree

of freedom c ¼ _a [19], using a basis adapted to the

symmetry. This degree of freedom is closely related to

extrinsic curvature, Ki
a ¼ cδia, which is more convenient in

setting up a class of states used in what follows [20,21].

Up to a constant phase factor, holonomies along integral

curves of the symmetry generators, taken in an irreducible

spin-j matrix representation of SU(2), then have matrix

elements of the formMe ¼ expðijl0μ
0cÞwith real numbers

−1 ≤ μ0 ≤ 1. The fixed parameter l0 determines the

coordinate size of a region in space which is taken as

representative of the entire homogeneous geometry. (This

region may but need not be the entire space. Nevertheless,

to be specific, it can be taken to equal l0 ¼
ffiffiffiffiffiffiffi
2π2

3
p

in the

closed model.) The variable μ0 then determines the length

of the curve as a fraction of the reference length l0.

Combining μ0 with j, any real number μ ¼ jμ0 can be

achieved as a coefficient in the exponent of

Mμ ¼ expðil0μcÞ: ð10Þ

A. Isotropic loop quantum cosmology

In a reduction of the symplectic structure of general

relativity to isotropic models, c is seen to be canonically

conjugate to a momentum p ∝ a2, such that

fc; pg ¼ 8πG

3l3

0

: ð11Þ
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Alternatively, because l0c automatically appears in matrix

elements of holonomies, we may view l0c and l
2

0
p as

canonical variables with a Poisson bracket independent

of l0.

1. Representation

We use the Poisson structure to set up a canonical

quantization [19,22], modeling properties of holonomies as

operators in loop quantum gravity [17,18]. In this theory, a

holonomy function (10) represents a normalizable state,

unlike what would usually be the case in the standard

representation of a canonical bracket (11). Loop quantiza-

tion therefore exploits the existence of an inequivalent

representation of (11) that exists if one does not require a

quantization of (10) as a basic operator to be continuous

in μ; see for instance [23].

This representation can be constructed by acting on the

nonseparable Hilbert space of almost-periodic functions of

c, defined as the space of functions linearly generated by

the basis (10) for all real μ with inner product

hMμ1
;Mμ2

i ¼ lim
C→∞

1

2C

Z
C

−C

M�
μ1
ðcÞMμ2

ðcÞdc: ð12Þ

The momentum l
2

0
p acts on the basis states via

l
2

0
p̂Mμ ¼

8πG

3

ℏ

i

d

dðl0cÞ
expðil0μcÞ

¼ 8π

3
l2
PμMμ ¼ l2

0
pμMμ: ð13Þ

The spectrum of l
2

0
p̂=l2

P therefore contains all real

numbers

pμ

l
2
P

¼ 8π

3
μ; ð14Þ

but it is discrete because the eigenstates Mμ are normal-

izable. (These two properties are compatible with each

other because the Hilbert space is nonseparable.)

To summarize, the nonlinearity of holonomies is imple-

mented through the use of almost-periodic functions as

states, on which the action of M̂μ,

M̂μ1
Mμ2

¼ Mμ1þμ2
; ð15Þ

is not weakly continuous at μ1 ¼ 0. (In the Hilbert space

used here, any two basis states, Mμ2
and Mμ1þμ2

, are

orthogonal for any μ1 ≠ 0.) Therefore, it is not possible

to derive a quantization of the linear phase-space function c
by taking a derivative of Mμ at μ ¼ 0. Only the nonlinear

functions MμðcÞ are represented as basic operators in

addition to p̂, which have to be used to construct possible

quantizations of the polynomial Hamiltonian constraint

(the Friedmann equation) of a cosmological model.

By replacing any polynomial reference to c ¼ _a in a

classical expression by periodic functions, holonomy

modifications are introduced. There is much freedom in

choosing a periodic function to replace a polynomial, with

the only condition that the classical polynomial should be

obtained as an approximation for small c (or some other

function of c being small, representing curvature). A

common choice is to replace c in the Friedmann equation

with sinðlðaÞcÞ=lðaÞ, where lðaÞ is interpreted as a

function that describes quantization ambiguities as well

as properties of an underlying discrete state. In particular,

the common choice lðaÞ ≈ lP=a with the Planck length

lP [24] leads to corrections in the Friedmann equation that

can be expanded in the dimensionless product l2
PH

2 with

the Hubble parameterH. Such corrections are relevant only
near Planckian curvature.

2. Inverse-a corrections

The momentum operator p̂ is represented directly as a

basic operator. Moreover, it has all real numbers as

eigenvalues, such that one could expect discretization

effects to be minimal even though the spectrum is formally

discrete. However, the discreteness can lead to significant

quantum corrections whenever an inverse of p is quantized.

Because p̂ has a discrete spectrum containing zero, it does

not have a densely defined inverse operator. Nevertheless,

we need to quantize inverse powers of a or p that appear

in the Hamiltonian constraint, for instance in the matter

energy.

Using methods of [25], it is possible to construct densely

defined operators such that their classical limits reproduce

the required inverse power of a. The construction of these

operators exploits the existence of commutator identities

such as

M̂−1
μ ½M̂μ;l0

ffiffiffiffi
p̂

p
� ¼ −

4π

3l0

l
2
Pμp

d−1=2: ð16Þ

On the left-hand side, all operators are densely defined on the

Hilbert space (taking the square root of p̂ through the

spectrum), and according to the right-hand side their combi-

nation quantizes an expression with classical limit propor-

tional to 1=a. An explicit calculation shows that the classical
limit is well approximated when the commutator acts on a

state Mμ2
with μ2 ≫ μ. For small μ2 < μ, the behavior

deviates from the classical limit, implying inverse-a correc-

tions as a consequence of discrete spatial geometry [15].

As with holonomy modifications, the representation of a

given inverse power of a as an operator via commutator

identities is not unique, leading to additional quantization

ambiguities. A detailed analysis of eigenvalues shows that

inverse-a corrections can be parametrized broadly by a

function fðaÞ, such that [26,27]
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ða−1Þμ ¼
1

aμ
fðaμÞ ð17Þ

where aμ is obtained by taking the square root of a p̂-

eigenvalue pμ in (13). For large eigenvalues, fðaμÞ ∼ 1,

while the small-μ behavior is a power law fðaμÞ ≈ a2nμ with

a positive integer n > 1.

Holonomymodifications and inverse-a corrections result
from modeling quantum-geometry effects of loop quantum

gravity in isotropic situations. As always in an interacting

theory, quantum corrections also arise from quantum

backreaction of fluctuations and higher moments of a state

on the expectation values [28,29]. Here, in accordance with

the idea that the no-boundary proposal can describe the

origin of space-time without strong quantum effects, we are

interested in regimes in which quantum backreaction is

subdominant compared with geometrical effects.

We will therefore analyze modified Friedmann equations

in which inverse-a corrections have been inserted, mainly

in the curvature and matter terms, and holonomy mod-

ifications have been used. For the latter, to be specific we

will work with a function sinðlðaÞcÞ=lðaÞ where the

a-dependence of lðaÞ is of power-law form, lðaÞ ¼
l0δðl0aÞ2x with constants δ (scaling like l

−1−2x
0

) and x.

The exponent x is a parameter in an effective description

and may therefore be running, such that it may take

different values in different ranges of a curvature scale

[30,31]. We will be able to ignore the running because our

main results apply asymptotically close to the initial state of

the no-boundary proposal. We will, however, take into

account the possibility of having different constant values

of x, depending on the theory and the underlying quantum-

gravity state. As we will review in more detail later on,

when the distinction will become important, two common

choices for x are x ¼ 0 (a constant co-moving length lðaÞ)
and x ¼ −1=2 (a constant geometrical length alðaÞ).

3. Modified background dynamics

If l depends on a in power-law form, it is convenient

to introduce canonical variables such that lðaÞc is propor-

tional to the new momentum:

Q ¼ 3ðl0aÞ2ð1−xÞ
8πGð1 − xÞ and P ¼ −l2xþ1

0
a2x _a: ð18Þ

Moreover, we will use the definition Q̄ ¼ 8

3
πGð1 − xÞQ ¼

ðl0aÞ2ð1−xÞ in order to obtain more compact equations. In

these variables, the classical constraint

Cclass ¼ l
3

0

�
−

3

8πG
að _a2 þ kÞ þ a3ρ

�
¼ 0; ð19Þ

is modified to

C ¼ −3

8πG

�
Q̄ð1−4xÞ=ð2ð1−xÞÞ sin

2ðδPÞ
δ2

þ Q̄1=ð2ð1−xÞÞκðQÞ
�

þmðQÞgðQÞ ¼ 0 ð20Þ

with inverse-a corrections in the curvature term, κðQÞ,
and in the matter term, gðQÞ multiplying the matter energy

m ¼ l
3

0
a3ρ contained in the averaging region of a homo-

geneous model. Classically, gðQÞ ¼ 1 while κðQÞ ¼ l
2

0
for

positive spatial curvature. In (19), we have included a factor

of the coordinate volume l
3

0
since the Hamiltonian con-

straint is spatially integrated.

Because the curvature term and the matter term depend

on a through different powers, κðQÞ ≠ gðQÞ in general. It is
also possible that the P-dependent term in (20) is modified

not just by holonomies (nonzero δ) but also by inverse-a
corrections. Such a term may be required if there are

explicit inverse powers of Q in (20), or if one extends the

isotropic models used here to anisotropic ones, in which

case even the classical constraint will have additional

inverse powers of the anisotropic scale factors [21]. For

now, we do not include such corrections in order to keep

our equations reasonably short, noting that they can always

be absorbed in the lapse function at the expense of further

modifying κðQÞ and gðQÞ. Appendix A demonstrates that a

modified lapse function that takes into account inverse-a
corrections in the P-dependent term would not change our

main results.

Canonical equations generated by C determine how P is

related to _Q ¼ fQ;NCg for a given lapse functionN. Upon

evaluating this relationship, inverting it for P as a function

of _Q, and inserting this expression in C, we obtain the

modified Friedmann equation [32]

�
_a

Na

�
2

¼ 8πG

3

�
mðaÞ
l
3

0
a3

gðaÞ − 3

8πG

κðaÞ
l
2

0
a2

�

×

�
1þ δ2

a4x

l
2

0

κðaÞ − mðaÞgðaÞ
l
3

0
a3ρQGðaÞ

�
; ð21Þ

transformed back from Q to a, with a density scale

ρQGðaÞ ¼
3

8πGδ2a2ð2xþ1Þ ð22Þ

related to δ.

There is a single constraint in homogeneous models.

Therefore, Hamilton’s equations of motion _Q ¼ fQ;NCg
and _P ¼ fP;NCg automatically preserve the constraint, for

any lapse function N: _C ¼ fC;NCg ¼ fC;NgC ≈ 0

vanishes when the constraint is satisfied. As a consequence,

the Friedmann equation of a homogeneous model can

easily be modified, as in (20), and then automatically

generates consistent continuity and Raychaudhuri equa-

tions. However, it is not guaranteed that these evolution
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equations correspond to consistent evolution of an isotropic

space-time setup as a background for a covariant theory of

cosmological perturbations. (See [31,33] for a discussion of

some subtleties in this context.) For isotropic models, it is

sometimes possible [34–36] to construct analog actions

which are covariant (of higher-curvature type) and produce

modified Friedmann equations of the form (21). However,

these actions fail to describe holonomy-modified equations

of motion in anisotropic models [37] or for perturbative

inhomogeneity [38].

4. Perturbation equations and covariance

The possibility of covariant perturbations on a modified

background dynamics is therefore to be shown and cannot

simply be assumed. In a canonical approach such as loop

quantum gravity or its cosmological models, covariance

can be tested systematically by an evaluation of Poisson

brackets of constraints for perturbative inhomogeneity.

Because inhomogeneous fields are subject to multiple

constraints, consistency of their equations is not guaran-

teed: The Hamiltonian constraint H½NðxÞ� and diffeomor-

phism constraint D½MaðxÞ� must be such that their Poisson

brackets, which generically are not identically zero and

even contain structure functions, vanish when the con-

straints are imposed. Moreover, for general covariance

to be realized in the classical or low-curvature limit,

their brackets must equal those of hypersurface deforma-

tions [39–41],

fD½Ma
1
�; D½Mb

2
�g ¼ D½LM1

Mc
2
� ð23Þ

fH½N�; D½Ma�g ¼ −H½LM2
N� ð24Þ

fH½N1�; H½N2�g ¼ D½βqabðN1∂bN2 − N2∂bN1Þ�; ð25Þ

in such a limit, where qab is the inverse spatial metric and

β ¼ �1 determines space-time signature. If these brackets

are closed after modifying the constraints, covariance

remains intact but as a symmetry it may receive quantum

corrections for instance in the structure function βqab.
Most modifications of holonomy form violate covari-

ance [42], which can intuitively be seen from the fact

that they only lead to corrections in terms of powers of _a,
while covariant higher-curvature actions would also require

higher time derivatives of a (or auxiliary fields). For

specific modifications of the terms in an inhomogeneous

constraint, it is possible to respect the closure condition of

constraint brackets. However, the classical brackets are

modified by a certain function

βðPÞ ¼ cosð2δPÞ ð26Þ

multiplying the bracket of two Hamiltonian constraints

[43–45], assuming that the background Friedmann equa-

tion is modified according to (20). The modified theory

therefore does not have gauge transformations of the

classical form, which are equivalent to coordinate changes.

Therefore, the form of covariance realized is not one of

standard coordinate changes, at least not for the original

metric variables. Nevertheless, under certain conditions it is

possible to apply a field redefinition of the metric, such that

the isotropic line element is not the usual canonical one,

ds2 ¼ −N2dt2 þ aðtÞ2dΩk; ð27Þ

but rather [46,47]

ds2β ¼ −βN2dt2 þ aðtÞ2dΩk: ð28Þ

When βðPÞ is negative, the line element is positive definite,

showing dynamical signature change. (In full generality,

implications of these modified geometries for space-time

structure are still being analyzed [48–50].) A modified

constraint (20), together with trigonometric identities,

implies that

β ¼ cosð2δPÞ ¼ 1 − 2sin2ðδPÞ
¼ 1 − 2δ2Q̄−ð1−4xÞ=ð2ð1−xÞÞ

×

�
8πG

3
mðQÞgðQÞ − Q̄1=ð2ð1−xÞÞκðQÞ

�

¼ 1 − 2δ2a2ð2xþ1Þ
�
8πG

3
ρg −

κ

a2

�

¼ 1 − 2
ρg

ρQGðaÞ
þ 3

4πG

κ

a2ρQGðaÞ
ð29Þ

where ρQGðaÞ has been defined in (22). If κ and g are such

that the curvature term κ=a2 is negligible compared with ρg

at small a, we have β < 0 for ρg > 1

2
ρQGðaÞ. The usual

choices of δ then require Planckian energy densities for

signature change to be realized.

B. Off-shell instantons

The derivation of (29) requires an application of the

Hamiltonian constraint (20) and is not available for off-

shell instantons. As one of the main results reported in [13],

it is nevertheless possible to derive β as a function of Q̈

instead of P. Unlike P, Q̈ is available for off-shell

instantons because it is determined by the Raychaudhuri

equation without reference to the Friedmann equation.

Signature change is therefore a well-defined space-time

phenomenon even for off-shell instantons, even though

they do not satisfy all the equations implied by generators

of hypersurface deformations. In the present paper, we

demonstrate the nontrivial nature of this result.

However, we should first demonstrate the existence of

off-shell instantons with no-boundary initial conditions,

qð0Þ ¼ 0 and qð1Þ ¼ q1, after a modification of back-

ground equations.
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1. Existence

Off-shell Lorentzian instantons are determined by solv-

ing the second-order Raychaudhuri equation for the scale

factor a or qð¼ a2Þ without imposing the first-order

Friedmann equation. The usual matter choice in this

context is a cosmological constant, 8πGm=3l3

0
¼ Λa3 ¼

Λq3=2. Since there is no inverse of a in such a matter term,

gðaÞ ¼ 1. Moreover, we follow [12] and choose the lapse

function N ¼ M=a ¼ M=
ffiffiffi
q

p
. We do not directly solve the

modified Friedmann equation (21), or

_q2 ¼ −4M2

�
κðqÞ
l2
0

−
1

3
Λq

��
1þ δ2q2x

�
κðqÞ
l2
0

−
1

3
Λq

��

ð30Þ

translated to q, but first take a second time derivative to

obtain

q̈ ¼ 2

3
ΛM2

�
1 −

3

Λl
2

0

dκ

dq

��
1þ δ2q2x

�
κðqÞ
l
2

0

−
1

3
Λq

��

− 4xδ2M2q2x−1
�
κðqÞ
l2

0

−
1

3
Λq

�

×

�
κðqÞ
l
2

0

−
1

6x
Λ

�
1þ 2x −

3

Λl
2

0

dκ

dq

�
q

�
: ð31Þ

The right-hand side of (31) contains factors such as q−1

(x ¼ 0) or q−2 (x ¼ −1=2), but the full expression is

nevertheless regular at q ¼ 0 if inverse-q corrections are

taken into account in κðqÞ. The no-boundary initial value

qð0Þ ¼ 0 can therefore be imposed. For small t,q is small and
the right-hand side of (31) is approximately constant.

A generic small-t behavior of qðtÞ ∝ tþOðt2Þ then follows.
It is not easy to find exact solutions of (31) for generic

x and δ. As a simpler example, wemay consider only inverse-

triad corrections (δ ¼ 0), in which case the equation reads

q̈ ¼ 2

3
ΛM2

�
1 −

3

Λl
2

0

dκ

dq

�
: ð32Þ

For large q, κ ≈ l
2

0
and we recover the classical equation. For

small q, κðqÞ ∝ l
2

0
qn is an integer power law in q, subject to

quantization ambiguities. A simple analytical solution for

qðtÞ can be found if κðqÞ ¼ κ0l
2

0
q2 is quadratic, which

implies

qðtÞ ¼
�
q1 þ

Λ

6
ðcosð2 ffiffiffiffiffi

κ0
p

MÞ − 1Þ
�
sinð2 ffiffiffiffiffi

κ0
p

MtÞ
sinð2 ffiffiffiffiffi

κ0
p

MÞ

þ Λ

6
ð1 − cosð2 ffiffiffiffiffi

κ0
p

MtÞÞ ð33Þ

for no-boundary conditions qð0Þ ¼ 0 and qð1Þ ¼ q1 as

in [12]. A discussion of stability requires only the small-t
behavior,

qðtÞ≈ 2M
ffiffiffiffiffi
κ0

p

sinð2 ffiffiffiffiffi
κ0

p
MÞ

�
q1þ

Λ

6
ðcosð2 ffiffiffiffiffi

κ0
p

MÞ−1Þ
�
tþOðt2Þ:

ð34Þ

As another example, holonomy modifications with

x ¼ −1=2 can be included if we assume an inverse-triad

correction of the form κ ¼ κ0l
2

0
q. The equation of motion

q̈ ¼ 2M2
Λ

3

�
1 −

3κ0

Λ

��
1þ δ2

�
κ0 −

Λ

3

��
ð35Þ

then gives us a constant q̈, just as in the classical case, and

is solved by

qðtÞ ¼ t2M2

�
Λ

3
− κ0

��
1 − δ2

�
Λ

3
− κ0

��

þ t

�
q1 −M2

�
Λ

3
− κ0

��
1 − δ2

�
Λ

3
− κ0

���
:

ð36Þ

2. Off-shell space-time structure

The analysis of hypersurface-deformation brackets in

[44] determines β through the canonical momentum P.
As indicated in (29), this expression can be written as a

function of the energy density ρ upon using the modified

Friedmann equation, but the latter is not available for

off-shell instantons. We will now demonstrate that it is

nevertheless possible to obtain a unique expression for β,

based on the canonical version of the second-order equa-

tion for q. In order to capture potential quantization

ambiguities based on the choice of basic variables that

appear in holonomies, we work with the general expres-

sions (18) for Q and P. The parameter x in P then

determines the a-dependence of holonomy modifications.

After P has been eliminated by inserting equations of

motion, we will transform to the variable q ¼ a2 preferred
for a comparison with the Lorentzian path integral.

We first derive the canonical version of modified

equations of motion generated by (20), again following

the choices of [12], in particular for the lapse function

N ¼ M=a. In this form, the constraint is given by

M

a
C ¼ −

3Ml0

8πG

��
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ sin2ðδPÞ

δ2

þ κðQÞ
�
þM

mðQÞgðQÞ
aðQÞ ð37Þ

and generates first-order equations of motion

_Q ¼ fQ;MC=ag

¼ −
3Ml0

8πG

�
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ sinð2δPÞ

δ
ð38Þ
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_P ¼ fP;MC=ag ¼ 3Ml0

8πG

�
−
16πGx

3

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ sin2ðδPÞ

δ2
þ dκ

dQ

�
−M

dðmg=aÞ
dQ

: ð39Þ

They imply the second-order equation

Q̈ ¼ −
3Ml0

8πG

�
−
16πGx

3

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ

_Q
sinð2δPÞ

δ
þ 2

�
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ

cosð2δPÞ _P
�

¼ 2

�
3Ml0

8πG

�
2
�
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ�8πGx

3δ2

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ

ð−sin2ð2δPÞ þ 2sin2ðδPÞ cosð2δPÞÞ

−

�
dκ

dQ
−
8πG

3

dðmg=ðl0aÞÞ
dQ

�
cosð2δPÞ

�
: ð40Þ

Notice that this second-order equation is independent of (31) because it is derived from the phase-space expressions of

equations of motion. As a second-order differential equation, it is not complete because it still contains P. The dynamics of

q or Q is therefore determined by (31), and only by this equation in a consideration of off-shell instantons. Equation (40)

then serves as an independent equation that can be used to determine cosð2δPÞ, or β according to (26), as a function ofQðtÞ.
The trigonometric identity cosð2δPÞ ¼ 1–2 sin2ðδPÞ allows us to simplify this expression to

Q̈ ¼ 2

�
3Ml0

8πG

�
2
�
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ��8πGx

3δ2

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ

−

�
dκ

dQ
−
8πG

3

dðmg=ðl0aÞÞ
dQ

��
cosð2δPÞ − 8πGx

3δ2

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ�

: ð41Þ

Importantly, we have eliminated all quadratic terms in cosð2δPÞ or sinð2δPÞ. Therefore, we can uniquely solve the

equation for

cosð2δPÞ ¼
8πGx
3δ2

ð8πG
3
ð1 − xÞQÞ−ð1þxÞ=ð1−xÞ þ 1

2
Q̈ð 8πG

3Ml0
Þ2ð8πG

3
ð1 − xÞQÞ2x=ð1−xÞ

8πGx
3δ2

ð8πG
3
ð1 − xÞQÞ−ð1þxÞ=ð1−xÞ − dκ=dQþ 8πG

3
dðmg=ðl0aÞÞ=dQ

¼

8
>>><
>>>:

1þ 4πGδ2

3xM2l2

0

ð8πG
3
ð1−xÞQÞð1þ3xÞ=ð1−xÞQ̈

1þδ2

x
ð8πG

3
ð1−xÞQÞð1þxÞ=ð1−xÞðdðmg=ðl0aÞÞ=dQ− 3

8πG
dκ=dQÞ

if x ≠ 0

1

2
Q̈ð 8πG

3Ml0
Þ2

8πG
3
dðmg=ðl0aÞÞ=dQ−dκ=dQ

if x ¼ 0

ð42Þ

in terms of Q̈, without taking a square root.

Writing cosð2δPÞ suggests that there is still a P, which
however is determined only by first-order equations that are

not available for off-shell instantons. For off-shell instan-

tons, we can instead use (42) as the only equation left in the

system that determines P. The resulting value of P may not

be real because the right-hand side of (42) is not restricted

to be between one and −1. This possibility of imaginary P
is the analog of an imaginary dq=dt implied by the classical

first-order equation (21) at the no-boundary initial time,

where q ¼ 0. As in this case, a complex P here is not

problematic in a discussion of off-shell instantons.

What is important is that (42) uniquely determines

cosð2δPÞ as a real function, even if P may not be real.

This real function can be taken as a definition of β

following (26) derived from the results of hypersurface-

deformation brackets for perturbative inhomogeneity.

These results use only the off-shell Poisson brackets of

constraints for inhomogeneous perturbations and therefore

remain available for off-shell instantons. We recall the

important feature seen in the final equation (41), which is

linear in cosð2δPÞ ¼ β, such that no roots need be taken

that could limit the allowed range of values. (The inter-

mediate step (40) demonstrates that this result is quite

nontrivial.) This outcome is crucial for our extension of

dynamical signature change in models of loop quantum

cosmology to off-shell instantons.

At this point, it is convenient to apply the inverse

transformation of (18) from Q to

MARTIN BOJOWALD and SUDDHASATTWA BRAHMA PHYS. REV. D 102, 106023 (2020)

106023-8



q ¼ a2 ¼ 1

l
2

0

�
8πG

3
ð1 − xÞQ

�
1=ð1−xÞ

: ð43Þ

Using

d

dQ
¼ dq

dQ

d

dq
¼ 8πG

3
l
2ðx−1Þ
0

qx
d

dq
ð44Þ

and

Q̈ ¼ 3l
2ð1−xÞ
0

8πG

�
q̈

qx
− x

_q2

q1þx

�
; ð45Þ

the resulting expression for the off-shell β ¼ cosð2δPÞ is

β ¼ 1þ 1

2
M−2δ2x−1l

2ð1þ2xÞ
0

q1þ2xðq̈ − x _q2=qÞ
1þ δ2x−1l4x

0
q1þ2xð8πG

3
dðmg=ðl0

ffiffiffi
q

p ÞÞ=dq − dκ=dqÞ
ð46Þ

for x ≠ 0 and

β ¼ l
2

0

2M2

q̈
8πG
3
dðmg=ðl0

ffiffiffi
q

p ÞÞ=dq − dκ=dq
ð47Þ

for x ¼ 0. (The expression for x ¼ 0 is independent of δ

but differs from the classical value one. The classical limit

β → 1 can be obtained from (42) if the limit δ → 0 is taken

before x → 0.)

3. Renormalization parameters

There are two common (but nonunique) choices for x:

If x ¼ 0,Q ¼ 3l2

0
a2=ð8πGÞ is proportional to the isotropic

version of a densitized triad, and P ¼ −l0 _a is the isotropic

component of the connection or extrinsic curvature. These

tensors are used as basic variables in loop quantum gravity.

At a technical level, this case is therefore preferred in

fundamental constructions. However, it implies a fixed

comoving discreteness scale δ in the holonomy used to

quantize the Hamiltonian constraint which can easily

grow to macroscopic values as the universe expands:

Writing the argument of holonomies in this case as

δP ¼ −δl0 _a ¼ −δl0aH shows that it can grow very large

during an inflationary period with nearly constant Hubble

parameter H.

Using a homogeneous cosmological model in consid-

erations of long evolution times, in particular during

inflation, means that one is applying an effective descrip-

tion of a fundamental theory on a vast range of scales. It is

not reasonable to expect that the same effective theory, with

constant parameters, remains valid over the whole range.

Parameters that describe the effective dynamics should

rather be adjusted, or renormalized, as the scales change.

The averaging of a fundamental state implicitly described

by a homogeneous minisuperspace model is therefore

expected to lead to a running x as well as δ. The effective

power-law exponent x may still describe the effective

evolution in sufficiently short periods of time, but it need

not be equal to zero or remain constant.

While the derivation of a running x from a fundamental

discrete theory is challenging, it is possible to model

possible outcomes of cosmic evolution by a succession

of phases with different x, such that x is nearly constant in

each phase (much like the energy density is usually

assumed to be of power-law form depending on the

dominant matter contribution). If x < 0, P ¼ −l2xþ1

0
a2x _a

contains a suppression by the scale factor, such that the

increase of the discreteness scale is slowed down compared

with x ¼ 0. For x ¼ −1=2, we have P ¼ −H, and the scale

remains constant if H is constant. This value is therefore

preferred from the perspective of model building if one

assumes that a long period of cosmic evolution can be

described without renormalization [51]. However, given the

general expectation that renormalization does take place,

the argument cannot be used to show that only the value

x ¼ −1=2 is possible [31].

New arguments that do not require long cosmic evolu-

tion are therefore necessary if one tries to restrict possible

choices of x. An example is the observation made in [44]

that the value x ¼ −1=2 may be preferred in constructions

of consistent holonomy modifications in the constraints for

perturbative inhomogeneity. We are now ready to derive a

new result of this form based on signature change in off-

shell instantons. We therefore return to our Eqs. (46)

and (47) for β depending on x, and recall that β < 0 is

of advantage in the no-boundary proposal because it moves

the branch cut of (5) from the real axis to the imaginary

axis, eliminating the imaginary part of the action evaluated

on no-boundary instantons.

First looking at the case of x ¼ 0, Eq. (47) evaluated for

small-t no-boundary solutions such that qðtÞ ∝ t, we see

that β ¼ 0. While this value differs significantly from the

classical behavior, it does not imply signature change with

β < 0. For x ¼ −1=2, assuming as usual that 8πGm=3l3

0
¼

Λq3=2 is determined completely by a cosmological constant

Λ and ignoring inverse-triad corrections (g ¼ 1 and

κ=l2

0
¼ 1), we obtain

β ¼ 1 − ðδ=MÞ2ðq̈þ 1

2
_q2=qÞ

1 − 2δ2Λ
ð48Þ

from (46). For sub-Planckian Λ, the denominator is close to

one. For small-t no-boundary solutions, we have qðtÞ ≈ ct
as shown in Sec. III B 1, such that

β ≈ 1 −
δ2c

2M2

1

t
< 0 ð49Þ

is negative as long as t < 1

2
δ2c=M2. Since we will now set

out to demonstrate that this version of signature change is
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able to rescue the no-boundary proposal, we have obtained

another reason why x ¼ −1=2 should be preferred com-

pared with x ¼ 0, if only these two choices are considered.

More generally, (46) evaluated on small-t off-shell instan-
tons implies that

β ¼ 1 − 1

2
ðMl0Þ−2δ2ðl2

0
cÞ2ð1þxÞt2x

1þ x−1δ2ðl2

0
cÞ1þ2x

Λt1þ2x
ð50Þ

for any x ≠ 0. For x < −1=2, both numerator and denom-

inator may be negative for small t. The presence of

signature change therefore depends on relationships

between parameters such as Λ and δ, and is not as generic

as in (49). The range −1=2 < x < 0 leads to a qualitative

behavior similar to x ¼ −1=2, but the phase of signature

change becomes shorter and shorter as x approaches zero

because the pole of t2x in the numerator of β then weakens.

The value x ¼ −1=2 therefore optimizes the generic nature

and duration of signature change, maximally stabilizing

perturbations around off-shell instantons.

As just mentioned, the function (49) has a pole at t ¼ 0,

which will imply a subtlety in our detailed stability analysis

given in the following subsection. When transforming (41)

for x ¼ −1=2 from Q to q using (44) and (45), we

encounter the expression

q̈ ¼ −
1

2

_q2

q
þM2

�
16πG

3
β
dðqρÞ
dq

þ 1 − β

δ2

�
; ð51Þ

evaluated here for κ ¼ l
2

0
and g ¼ 1, writing ρ ¼ m=l3

0
a3.

We can see that the pole of β has a direct relationship with

the no-boundary initial condition, which implies that the

left-hand side is zero while the pole of − 1

2
_q2=q ¼ − 1

2
c=t in

the first term on the right-hand side must be canceled if

the equation holds true. The pole in β, which changes the

asymptotic form of the mode equation (4), is therefore

directly implied by the no-boundary initial condition.

4. Stability

Covariant equations compatible with (21) have been

derived in [44], as well as in [43,52] for spherically

symmetric models with closely related properties [45].

For small t and q, we assume, as before, that gðqÞ ¼ g0q
n is

a power law with some integer n and positive g0 > 0.

Tensor perturbations hðηÞ in conformal time η are then

subject to [44]

h00 þ
�
2ð1þ nÞ a

0

a
−
β0

β

�
h0 −

β

Σ
∇2h ¼ 0 ð52Þ

with

Σ ¼ 1

g0

2n − 3

ð1þ nÞðn − 3Þ : ð53Þ

Since n is an integer, Σ > 0 unless n ¼ 2. From now on we

will assume the generic case, n ≠ 2 such that Σ is positive.

Again, we transform to q ¼ a2 instead of a and use a

time coordinate according to N ¼ M=a, obtaining

v̈ −

�̈
z

z
þ

_β
2

4β2
þ β̈

2β

�
vþM2

q2
β

Σ
∇2v ¼ 0 ð54Þ

where z ¼ q1þn=2=
ffiffiffiffiffiffi
jβj

p
and v ¼ zh. We first demonstrate

how dynamical signature change can lead to stability by

assuming that β is nearly constant and negative for some

range of small q, which leads to an easy comparison with

the results of [12]. For a tensor mode of multipole moment

l and an off-shell instanton (34), the small-tmode equation

is then

v̈l≈

�
nðnþ2Þ

4
−β

lðlþ2Þsin2ð2 ffiffiffiffiffi
κ0

p
MÞ

4Σκ0ðq1þ 1

6
Λðcosð2 ffiffiffiffiffi

κ0
p

MÞ−1Þ2Þ

�
vl

t2

¼ γ2
l
−1

4

vl

t2
:

As in [12], there are two independent solutions vl;� ¼
t
1

2
ð1�γlÞv1, but γl is modified. As an example, we can ignore

inverse-a corrections by setting n ¼ 0 and 2
ffiffiffiffiffi
κ0

p
M ≪ 1 in

(34), and obtain

γl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4β

lðlþ 2ÞM2

Σq2
1

s
: ð55Þ

The case of β ¼ 1, used in [12], implies branch cuts on the

real M-axis for both solutions vl;�. The action for modes

evaluated in these solutions, (7), then acquires imaginary

parts that lead to instability. With effects from loop

quantum cosmology, in particular dynamical signature

change, we have β < 0 such that γl does not have branch

cuts on the real M-axis. Therefore, one does not expect

unstable Gaussians to result from a path integration overM.

The full equation (55) also shows that inverse-a correc-

tions can change the positions of branch cuts. Even if

β > 0, inverse-a corrections can partially improve stability,

but real γl are then obtained only for a finite number of

multipoles, with a maximum value related to the ambiguity

parameter n. If we had only inverse-a corrections, models

of loop quantum gravity would not lead to complete

stability. Nevertheless, including inverse-a corrections in

(55) is useful because it shows that they do not interfere

with stability as implied by holonomy modifications when

β is negative.

In the asymptotic regime of very small t, which is most

relevant for no-boundary initial conditions, it is not possible

to assume nearly constant β because (49) has a pole at

t ¼ 0. This pole, rather than the classical 1=t2-behavior,
dominates the mode equation
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v̈l¼
�
z̈

z
þ

_β
2

4β2
þ β̈

2β

�
vlþ

M2
lðlþ2Þ
q2

β

Σ
vl≈

αlvl

t3
ð56Þ

where αl ¼ 1

2
δ2lðlþ 2Þ=ðΣcÞ > 0. This equation can be

solved by modified Bessel functions of the second kind,

and we obtain

vlðtÞ ¼
ffiffi
t

p K1ð
ffiffiffiffiffiffiffiffiffi
αl=t

p
Þ

K1ð
ffiffiffiffiffi
αl

p Þ v1 ð57Þ

for the regular solution.

The action is now given by

Sl ¼ 1

16πGM

Z
1

0

�
_v2
l
þ αl

4t3
v2
l

�
dt: ð58Þ

It is convenient to integrate by parts,

Sl ¼
1

16πGM
ðvl _vlÞj1t¼0

−
1

16πGM

Z
1

0

�
vlv̈l −

αl

4t3
v2
l

�
dt;

ð59Þ

in which the last integral vanishes thanks to the mode

equation. We can then simply insert the regular solution (57)

in the boundary term and use K0
1
ðzÞ ¼ −K0ðzÞ − K1ðzÞ=z:

Sl ¼ 1

32πG

ffiffiffiffiffi
αl

p

K1ð
ffiffiffiffiffi
αl

p Þ2
K1ð

ffiffiffiffiffiffiffiffiffi
αl=t

p
ÞK0ð

ffiffiffiffiffiffiffiffiffi
αl=t

p
Þffiffi

t
p

����
1

t¼0

v2
1
:

ð60Þ

The asymptotic behavior KjðzÞ ∼
ffiffiffiffiffiffiffiffiffiffi
π=2z

p
e−z for z ≫ j

shows that the action

Sl ∼
π

32πGK1ð
ffiffiffiffiffi
αl

p Þ2 expð−2
ffiffiffiffiffiffiffiffiffi
αl=t

p
Þ
����
1

t¼0

v2
1

¼ π

32πGK1ð
ffiffiffiffiffi
αl

p Þ2 v
2

1
ð61Þ

is finite.

The function (49) implies signature change if and only if

αl > 0 for all l. The same condition results in a real action

(61) without any imaginary part that could lead to insta-

bilities, as in (7). Moreover, the leading asymptotic order

in (56) is completely independent of M because the

M-dependence of the spatial derivative term in the general

mode equation cancels out with the M-dependence in (49).

The action, therefore, does not have any branch cuts in the

complex M-plane.

IV. CONCLUSIONS

Our detailed derivations of mode equations in the

Lorentzian no-boundary proposal for loop quantum

cosmology have revealed several subtle features which

conspire to stabilize perturbative inhomogeneity around

off-shell instantons with no-boundary conditions.
1
In par-

ticular, the possibility of sub-Planckian signature change in

off-shell instantons is surprising and constitutes a new

physical effect even though it is based on the same

constraint analysis [44] as in the standard on-shell treat-

ment in loop quantum cosmology. The precise form of the

signature function (49) then showed several important

features—related to its pole, the sign of its coefficients,

and the dependence on the lapse function—that played

important roles in our stabilization results. The constructive

interplay between loop quantum cosmology and the no-

boundary proposal (or any initial-value formulation in the

Lorentzian path integral) is therefore highly nontrivial.
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APPENDIX A: INVERSE-a CORRECTIONS,

ABSORBED IN THE LAPSE FUNCTION

If the P-dependent term in the Hamiltonian constraint

(20) contains inverse-a corrections ηðQÞ, they can be

absorbed in the lapse function provided κðQÞ and gðQÞ
are changed accordingly. For most of our calculations, we

worked with general expressions for the latter two func-

tions, but we assumed that N ¼ M=
ffiffiffi
q

p
with constant M.

If inverse-a corrections are absorbed in the lapse function,

our equations will receive additional terms because the

q-dependence of N changes. Here, we show that the

resulting equations do not endanger our main result.

In the constraint and Friedmann equations, we can in this

case simply replace N with NηðQÞ, κðQÞ with κðQÞ=ηðQÞ,
and gðQÞ with gðQÞ=ηðQÞ. Equation (21), for instance,

will be multiplied by η2 on the right, and (29) remains

unchanged because it is obtained by setting the constraint

equal to zero, such that any N or Nη cancel out.

However, new terms arise as soon as we start taking time

derivatives of our initial equations. While (30) is just

modified by using Mη instead of M, the term

−4M2η
dη

dq

�
κ

l
2

0

−
1

3
Λq

��
1þ δ2q2x

�
κ

l
2

0

−
1

3
Λq

��
ðA1Þ

1
Without incorporating the crucial input of dynamical

signature-change, one would not be able to see these features
as has been noted in [53,54]. These studies rather focused on
providing new insight on how the no-boundary wave function can
reveal new interesting dynamics in models of loop quantum
cosmology by setting up novel initial conditions.

LOOP QUANTUM GRAVITY, SIGNATURE CHANGE, AND THE … PHYS. REV. D 102, 106023 (2020)

106023-11



must be added to (31). Therefore,

q̈ ¼ 2

3
M2η2Λ

�
1 −

3

Λ
þ 2

d log η

d logq
−

6κ

Λl
2

0

d log η

dq

��
1þ δ2q2x

�
κðqÞ
l
2

0

−
1

3
Λq

��

− 4xδ2M2η2q2x−1
�
κðqÞ
l
2

0

−
1

3
Λq

��
κðqÞ
l
2

0

−
1

6x
Λ

�
1þ 2x −

3

Λ

dκ

dq

�
q

�
: ðA2Þ

In (38), we again simply replace M with Mη. In (39), we make the same replacement, but also add the term

3Ml0

8πG

dη

dq

��
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ sin2ðδPÞ

δ2
þ κ

�
−M

mgffiffiffiffi
Q

p ðA3Þ

implied by a Q-derivative of the constraint. The additional time derivative taken to derive (40) leads to further terms, such

that now

Q̈ ¼ 2

�
3Ml0η

8πG

�
2
�
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ�8πGx

3δ2

�
8πG

3
ð1 − xÞQ

�
−ð1þxÞ=ð1−xÞ

ð−sin2ð2δPÞ þ 2sin2ðδPÞ cosð2δPÞÞ

−

�
dκ

dQ
−
8πG

3

dðmg=l0aÞ
dQ

�
cosð2δPÞ þ d log η

dQ

��
8πG

3
ð1 − xÞQ

�
−2x=ð1−xÞ 1

2δ2
ðsin2ð2δPÞ − 2sin2ðδPÞ cosð2δPÞÞ

þ κ −
8πG

3

mg

l0aðQÞ

��
: ðA4Þ

The same trigonometric identities as in (40) then imply that Q̈ depends linearly on cosð2δPÞ, and our remaining results go

through.

APPENDIX B: SADDLE-POINT ANALYSIS

The background on-shell action for the solution (36),

here setting κ0 ¼ 1, has a strikingly similar form compared

with the classical one,

S0 ¼ −
3q2

1

4M
þ 1

2
Mq1ð−3þ δ2ðΛ − 3ÞÞ

�
Λ

3
− 1

�

þ 1

324
M3ðΛ − 3Þ2ðδ2ðΛ − 9Þ − 3Þðδ2ðΛþ 3Þ − 3Þ:

ðB1Þ

For saddle points, ∂S0=∂M ¼ 0, we once again get four

solutions. Their analytic forms are still somewhat involved,

M ¼ −
3

ffiffiffiffiffi
q1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ΛÞðδ2ðΛþ 3Þ − 3Þ

p ; ðB2Þ

M ¼ 3
ffiffiffiffiffi
q1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ΛÞðδ2ðΛþ 3Þ − 3Þ

p ; ðB3Þ

M ¼ −
3

ffiffiffiffiffi
q1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ΛÞðδ2ðΛ − 9Þ − 3Þ

p ; ðB4Þ

M ¼ 3
ffiffiffiffiffi
q1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − ΛÞðδ2ðΛ − 9Þ − 3Þ

p : ðB5Þ

On analyzing the conditions for their denominators to

remain real, we find that

jδj < 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=3þ 1

p if Λ > 3 ðB6Þ

or

jδj > 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=3þ 1

p if Λ < 3 ðB7Þ

for the first two solutions, and

jδj < 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=3 − 3

p if Λ > 9 ðB8Þ

or

jδj > 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ=3 − 3

p if 3 < Λ < 9 ðB9Þ

for the other two, whileΛ < 3 does not imply real solutions

in this case.

Thus, for sub-Planckian Λ, there are at least two

imaginary solutions, and all four solutions are imaginary

if jδj < 1=
ffiffiffi
2

p
[the limiting case for Λ → 3 in (B7)].

MARTIN BOJOWALD and SUDDHASATTWA BRAHMA PHYS. REV. D 102, 106023 (2020)

106023-12



For larger Λ, all four solutions may be real provided

jδj < 1=
ffiffiffi
2

p
.

Without holonomy modification, δ ¼ 0, there are only

two saddle-point solutions, both either real or purely

imaginary depending on the value of Λ. Interestingly, in

none of these cases does the reality of the saddle

points depend on the value of q1, unlike in Einstein

gravity. The reason for this is that we assume κ=l2

0
¼ q

for the spatial curvature in our specific solution, which

is a possible behavior of the inverse-triad term only near

q ∼ 0 (and assuming a specific power-law behavior).

As we go to larger q, especially near q ¼ q1, κ ≈ 1, as

it should, and analytical solutions are more difficult to

come by.
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