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Abstract: A long-standing problem in quantum gravity and cosmology is the quanti-
zation of systems in which time evolution is generated by a constraint that must vanish
on solutions. Here, an algebraic formulation of this problem is presented, together with
new structures and results, which show that specific conditions need to be satisfied in
order for well-defined evolution to be possible.

1. Introduction

When time-reparameterization-invariant dynamical systems are cast as Hamiltonian the-
ories on a symplectic manifold one finds that time evolution and time-reparameterization
flows are generated by one and the same phase-space function—the Hamiltonian con-
straint. The straightforward application of the usual methods of symplectic reduction to
such dynamically constrained systems has the undesirable side-effect of also removing
their dynamics, and needs to be replaced by dynamical syplectic reduction. This paper
describes a method of dynamical reduction for the quantized versions of such systems,
where non-commutativity leads to a host of additional complications. However, since
dynamically constrained systems are rarely studied outside of canonical approaches to
quantum gravity we dedicate most of this introductory section to the review of their
classical (i.e. non-quantum) treatment. Our main results and the structure of the rest of
this manuscript are outlined at the end of the introduction.

Given a symplectic manifold (M,�) and C ∈ C∞(M), the symplectic reduction

[1] M/C of M by C is the orbit space of M ⊃ MC : C = 0 with respect to the gauge
flow FC (ǫ) = exp(ǫXC ) in MC generated by the Hamiltonian vector field XC of C ,
dC = �(XC , ·). Because LXC

C = �(XC , XC ) = 0, the flow preserves MC , and the
orbit space inherits a unique symplectic form �M/C from the presymplectic form i∗�
on MC , where i : MC → M is the inclusion of MC in M . The set of observables of the
constrained system, which solve the constraint equation C = 0 and are invariant under
the gauge flow, is given by C∞(M/C).
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In addition to implementing a constraint C = 0 by symplectic reduction, physical
systems usually require the definition of a dynamical flow. The canonical way is to select
a Hamiltonian function H ∈ C∞(M) which generates the dynamical flow FH (t) =
exp(t X H ) with the Hamiltonian vector field X H of H . A dynamical flow in the presence
of a constraint C = 0 is consistent if it preserves the constraint surface, that is, X H C =
�(XC , X H ) = −{C, H} = 0 on MC with the Poisson bracket {·, ·} defined by �. The
same condition ensures that the dynamical flow is well-defined on the reduced phase
space M/C because it is compatible with the gauge flow: By the Jacobi identity of {·, ·},
a gauge transformation (that is, the diffeomorphism induced by a gauge flow) commutes
with the dynamical flow up to a gauge transformation. Since {C, H} = 0 on MC , there
is a λ ∈ C∞(M) such that {C, H} = λC on M , and

[XC , X H ] = {{·, H}, C} − {{·, C}, H} = −{·, {C, H}} = −X{C,H} = −XλC .

In systems typically encountered in general relativity or its cosmological models, the
dynamical flow is simultaneously a gauge flow. A system is time-reparameterization

invariant if, given a solution f (t) of its dynamical flow such that d f/dt = { f, H} for
all t ∈ R, f (T (t)) is also a solution for any monotonic T ∈ C∞(R). Any such f (T (t))

can be obtained from f (t) by following the flow generated by the Hamiltonian itself
together with a suitable non-zero multiplier N ∈ C∞(R) via

lim
ǫ→0

f (t + ǫN (t)) − f (t)

ǫ
= N (t)

d f

dt
= { f, N H}.

Therefore the Hamiltonian function is itself the generator of a gauge flow. Observables
are functions on the orbit space of the gauge flow. This orbit space inherits a Poisson
structure from M , with symplectic leaves given by the level surfaces of H [2]. Adding a
constant to H does not change the dynamical flow. Therefore, without loss of generality,
we can assume the relevant symplectic leaf to be given by H = 0, such that the dynamical
generator H is also a constraint.

The Hamiltonian of a time-reparameterization invariant system is therefore a con-
straint, called the Hamiltonian constraint. In order to emphasize its nature as a constraint,
we will slightly change notation and refer to a Hamiltonian constraint as C . We refer to
symplectic reduction with a Hamiltonian constraint as dynamical symplectic reduction.
Associated with this process is the following long-standing problem [3,4]: Any observ-
able O ∈ C∞(M/C) on the reduced phase space can be pulled back to a function on
MC : C = 0 using the projection p : MC → M/C to the orbit space. By definition,
p∗O is constant on the orbits, or time independent if C is a Hamiltonian constraint. In
the reduced phase space, therefore, there is no recognizable time evolution in a time-
reparameterization invariant theory.

Classically, the problem of identifying time evolution in a time-reparameterization
invariant system is usually solved by fixing the gauge flow generated by a Hamilto-
nian constraint. This construction to determine observables and their evolution does not
use the reduced phase space. Given a symplectic manifold (M,�) and a Hamiltonian
constraint C ∈ C∞(M), a gauge fixing of the gauge flow is accomplished by a global
incisive section.

Definition 1. A section (L ,�L , ι) of the gauge flow generated by a constraint C on
(M,�) is a symplectic manifold (L ,�L) (called the gauge-fixed phase space) together
with an embedding ι : L → MC such that �L = ι∗i∗�.

A section (L ,�L , ι) of the gauge flow generated by a constraint C on (M,�) is
global if for every y ∈ MC there is an x ∈ L such that y = FC (ǫ)ι(x) for some ǫ.
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A section (L ,�L , ι) of the gauge flow generated by a constraint C on (M,�) is
incisive if, for all x1, x2 ∈ L , ι(x1) = FC (ǫ)ι(x2) for some ǫ implies x1 = x2.

The pull-back ι∗ : C∞(MC ) → C∞(L) maps functions on the constraint surface MC

to gauge-fixed observables on L .

Proposition 1. If (L ,�L , ι) is a global incisive section of the gauge flow of C on (M,�),

the gauge-fixed phase space (L ,�L) is symplectomorphic to the reduced phase space

(M/C,�M/C ).

Proof. Since a global incisive section intersects each gauge orbit exactly once, there is
a bijection between L and the reduced phase space. The symplectomorphism property
can then be shown in local coordinates: Locally, C can be used as a coordinate in a
neighborhood around a given point x ∈ MC ⊂ M . We use the gauge flow FC (ǫ) : x �→
xǫ ∈ MC to introduce a second coordinate z such that z(x) = 0 and z(xǫ) = ǫ. The two
functions C and z are canonically conjugate: {z, C} = XC z = dz/dǫ = 1. By Darboux’
theorem, there are dimM − 2 additional local coordinates q j and pk , such that

�M = dz ∧ dC +

1
2 dimM−1

∑

j=1

dq j ∧ d p j .

Since 0 = {q j , z} = ∂q j/∂C and 0 = {p j , z} = ∂p j/∂C , q j and pk together with z

define a local coordinate system on MC .

On MC , i∗� = ∑

1
2 dimM−1

j=1 dq j ∧ d p j is a presymplectic form. Local intervals of

gauge orbits of C are the coordinate lines of z. Therefore, q j and pk are local coordinates

on the reduced phase space, with symplectic form �M/C = ∑

1
2 dimM−1

j=1 dq j ∧ d p j . In

order for ι∗i∗� to be symplectic, any section of the gauge flow must locally be of the form
ι : y �→ (s(y), z(s(y))) with a canonical transformation s : y �→ (qJ , pk) and a smooth

function z(q j , pk). Therefore, �L = ι∗i∗� = s∗ ∑

1
2 dimM−1

j=1 dq j ∧ d p j = s∗�M/C .
⊓⊔

An incisive section (L ,�L , ι) evolves in M if there is a 1-parameter family of incisive
sections (L ,�L , ιt ), t ∈ (t1, t2) ⊂ R, such that ι = ιt0 for some t0 ∈ (t1, t2), and
L × (t1, t2) → U , (y, t) �→ ιt (y) is a diffeomorphism to an open submanifold U ⊂ MC .
For each value of t ∈ (t1, t2) the hypersurface ιt (L) ⊂ MC plays the role of a surface
of a fixed value of time. With this structure in place, any function f ∈ C∞(MC ) can be
viewed as evolving in time along any given gauge orbit by tracing it along the intersection
between the orbit and the constant-time surfaces.

f[x](t) = f ([x] ∩ ιt (L)) ,

where [x] is the gauge orbit passing through some x ∈ MC .

This time evolution takes place on the pre-symplectic manifold MC which is not the
usual setting for describing a dynamical physical system. Moreover, it is not a good
starting point for standard quantization as functions on MC do not have a well-defined
Poisson bracket due to the degeneracy of i∗�. However, an evolving incisive section
defines a family of functions in C∞(U), namely those that are constant along the curves
traced by points in L from one section to the next x(t) = ιt (y) for a fixed y ∈ L . This
family of functions can be arbitrarily extended to the entirety of MC :
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Definition 2. A subset F ⊂ C∞(MC ) is fashionable with respect to an evolving incisive
section (L ,�L , ιt ) if for all t, t ′ ∈ (t1, t2) the map ι∗t : F → C∞(L) is a bijection and
ι∗t f = ι∗

t ′ f for all f ∈ F .

Given a choice of fashionables, each function on the symplectic manifold L corresponds
to an evolving observable on MC and conversely, the set of evolving observables F

inherits a Poisson bracket from the symplectic structure on L .
This notion of evolution has no known analog in the reduced phase space. In practice

it is usually implemented through deparameterization [5–9], provided the constraint
surface admits a factorization of the form MC

∼= ι(L) × R ∋ (ι(x), Z) with a global
coordinate Z ∈ R such that {Z , C} �= 0. Then the map ιt : L → MC , x �→ (x, t) defines
a family of global incisive sections. Evolution defined by this family of sections and F ,
the Z -independent functions on MC , is called global relational evolution with respect
to Z .

Example. Let M = R
2(n+1) ∋ (Z , E, q1, p1, . . . qn, pn) with

� = dZ ∧ dE +

n
∑

i=1

dqi ∧ d pi

and a constraint C = E +h(Z , qi , pi ) linear in E . The constraint surface here consists of
points with coordinates (Z ,−h(qi , pi ), qi , pi ), so that (Z , qi , pi ) serve as coordinates
on MC . The choice L = R

2n ∋ (Q1, P1, . . . Qn, Pn) then leads to global incisive
deparameterized sections via ιt : (Qi , Pi ) �→ (t, Qi , Pi ) ∈ MC . Since for C∞(MC ) ∋
f = f (Z , qi , pi ) under this family of embeddings (ι∗t f )(Qi , Pi ) = f (t, Qi , Pi ), the
corresponding fashionables consist precisely of the functions that do not depend on Z .
Since the Hamiltonian vector field of E generates translations in Z and hence shifts from
ιt (L) to ιt ′(L), the set of fashionables correspond to the Poisson commutant E ′ = { f ∈
C∞(M) : { f, E} = 0} of E pulled back to MC . Relational evolution with respect to Z

is identical with Hamiltonian evolution in L generated by Ht (Qi , Pi ) = h(t, Qi , Pi ):
The gauge flow FC (ǫ) on M maps a function g ∈ C∞(M) to gǫ = FC (ǫ)∗g. In an
infinitesimal version, δg/δǫ := limǫ→0(gǫ − g)/ǫ is given by

δg

δǫ
= {g, C} = ∂g

∂ Z
+ {g, h} .

Specifically,

δqi

δǫ
= ∂h

∂pi

,
δpi

δǫ
= − ∂h

∂qi

,
δZ

δǫ
= 1 .

This pulls back to L as

δQi

δǫ
= ∂ Ht

∂ Pi

,
δPi

δǫ
= − ∂ Ht

∂ Qi

.

For a function on L , we have

δ f

δǫ
= lim

ǫ→0

f (Qi + ǫδQi/δǫ, Pi + ǫδPi/δǫ) − f (Qi , Pi )

ǫ

=
n

∑

i=1

(

∂ f

∂ Qi

δQi

δǫ
+

∂ f

∂ Pi

δPi

δǫ

)

= { f, H}L

computed precisely according to Hamilton’s equations on L .
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The quantization of a reduced phase space exists in the sense of deformation quanti-
zation [10,11] à la Fedosov or Kontsevich [12]. On the other hand, dynamical symplectic
reduction is usually quantized only for deparameterized systems as in the immediately
preceding example, using a standard Hilbert-space quantization of L on which the re-
duced Hamiltonian Ht (Qi , Pi ) is represented as an operator. In such examples, quantum
evolution exists and is unitary, but there are long-standing problems when one tries to
extend this notion to more complicated constrained systems in which no global analog
of Z exists [3,4]. For instance, given a constraint quadratic in E on the same phase
space as in the example, {Z , C} ∝ E may become zero along a gauge orbit such that
Z = const no longer defines a gauge section.

Heuristically, if there is no global analog of Z , evolution cannot be represented by a
family of unitary operators on a Hilbert space. Based on this observation, we diagnose
the main problem of standard approaches of deparameterization as an over-reliance on
Hilbert-space representations. In order to solve this problem, we initiate a theory of
algebraic sections as an algebraic quantization of classical gauge sections in systems
with a single constraint. By generalizing crucial steps of deparameterization and keeping
them strictly at the level of algebras of observables, utilizing factor spaces of algebras
instead of kernels of constraint operators acting on a Hilbert space, we define a quantum
version of Proposition 1 and derive several necessary conditions that must be met by the
constrained system in order for it to be dynamically reducible. While it remains difficult
to find sufficient conditions for such a result, the usefulness of our necessary conditions
is demonstrated by their restrictive nature in a specific example relevant to cosmology
provided at the end of this paper.

After setting the stage in Sect. 2, in Sect. 3 we define algebraic qantization of dynami-
cal symplectic reduction and prove several properties of the resulting quantum evolution
on an algebra of observables. For deparameterizable systems, which can be quantized
by well-established means as representations on a fixed Hilbert space, our algebraic re-
sults provide a more general treatment because they apply to all possible choices of the
Hilbert space. Moreover, our construction applies to non-deparameterizable systems,
even though the results in that case are less specific than for deparameterizable systems.
Several results and examples in Sect. 4 will demonstrate the non-trivial nature of our
constructions.

2. Preliminary Constructions

To set the stage, we introduce in this section more details of the systems of interest,
standard procedures to quantize them as well as their limitations, and basic algebraic
ingredients to be used in our main results.

2.1. Systems of interest. Quantum cosmology presents several versions of singly con-
strained systems, resulting from the generally covariant theory of general relativity from
which their classical analogs are derived. Since space appears to be homogeneous and
isotropic over long distances, one can approximately describe the expansion of the uni-
verse by a single time-dependent function, the scale factor a(t), subject to a single
constraint. The latter is derived from the Friedmann equation

1

a2

(

da

dt

)2

= 8π

3
ρ(a)
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with the matter energy density ρ(a) (written in units such that Newton’s constant and the
speed of light equal one). In canonical form, a multiple of the expansion rate a−1da/dt

is canonically conjugate to the volume V = a3,

pV = − 1

4πa

da

dt

such that {V, pV } = 1. The canonical Friedmann equation,

−6πV p2
V + E(V ) = 0

can be written as a constraint equation which equates the matter energy E(V ) =
Vρ(V 1/3) with a polynomial function of the volume and the expansion rate. For non-
relativistic matter (dominant at late times in the universe), the energy density changes
only by dilution in the expanding universe, such that ρ ∝ 1/V , or E(V ) = E constant.
The resulting constraint

C = −6πV p2
V + E , (1)

polynomial in V and pV and linear in E , is a prototype of a large set of models that have
been studied to understand quantum evolution in covariant systems.

The dependence of C on V and pV varies according to the cosmological model of
interest. Moreover, there are additional anisotropy degrees of freedom if one drops the
assumption of spatial isotropy. Many models of this type are known to have chaotic
dynamics [13], such that there is usually no practical access to the reduced phase space
M/C . Another set of models is motivated by modified gravity, for instance the applica-
tion of a variety of quantization procedures, which may replace the Heisenberg algebra
generated by V and pV by a different Lie algebra. Examples of this type have been pro-
duced by models of loop quantum cosmology [14,15], many of which can be formulated
based on the Lie algebra sl(2, R) instead of the Heisenberg algebra generated by V and
pV [16–20].

(If there are constraints in addition to C , which however do not contribute to the dy-
namical flow, one can combine standard symplectic reduction with dynamical symplectic
reduction. For instance, in some cosmological models, the single variable V could be
replaced by a pair (V1, V2) with momenta (pV1 , pV2), subject to rotational symmetry in
the plane. A phase-space formulation would then introduce a non-dynamical constraint
J = V1 pV1 − V2 pV2 = 0 given by angular momentum in the plane. If the dynamical
constraint C extended to the pair (V1, V2) is rotationally symmetric, it has vanishing
Poisson bracket with the non-dynamical constraint, {C, J } = 0, at least on the con-
straint surface J = 0 of J . In this example, and in many others of interest to gravity and
cosmology, the Hamiltonian constraint is accompanied by finitely many additional con-
straints. In such cases standard symplectic reduction of J can easily be combined with
dynamical symplectic reduction of C , also at the quantum level. A further generalization
to field theories would be required if one were to include perturbations around isotropic
cosmological models in order to describe inhomogeneous matter fields on an expanding
space-time background. Because time coordinates can be changed locally in general rel-
ativity, there would then be not only an infinite number of degrees of freedom, but also an
infinite number of dynamical constraints, one per point in space. Although such systems
are certainly important for modern cosmology, investigations of deparameterization in
this context have remained in their infancy. In particular, there seems to be no consensus
so far on the physical properties that should be required of deparameterization in the
presence of multiple dynamical constraints. In what follows, we will therefore consider
only the case of a single dynamical constraint.)
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In order to introduce evolution in the constrained picture, it is common to consider
the constant E as the momentum of a canonical variable Z on which the constraint
does not depend. The constraint can then be quantized on the kinematical Hilbert space
Hkin = L2(R, dλ) ⊗ HB whose first factor is the Schrödinger representation of the
Heisenberg algebra generated by E and Z , such that E = i�∂/∂λ, while HB is a unitary
representation of the algebra B generated by the original canonical variables, such as
the Heisenberg algebra generated by V and pV .

If C does not depend on Z , as in (1), the standard procedure of deparameterization,
first suggested by Dirac [5] and applied to quantum cosmology starting with [21], can
be used to quantize the dynamically constrained system: The constraint C is represented
as an operator on Hkin such that

Cψ = i�
∂ψ(λ)

∂λ
− Hψ(λ),

where H is a self-adjoint representation of the (V, pV )-dependent contribution to C on
HB. Zero eigenvectors of C are therefore given by

ψ(λ) = exp(−iλH/�)ψ0

with arbitrary ψ0 ∈ HB as an “initial state” with respect to evolution in λ. Because
U (λ) = exp(−iλH/�) is unitary, ψ(λ) is not normalizable in Hkin, such that zero is in
the continuous part of the spectrum of C .

In order to introduce a Hilbert-space structure on the solutions ψ(λ), we again make
use of the unitarity of U (λ) and define a new inner product on the solution space by
recycling the inner product (·, ·)B on HB: The physical inner product

(ψ(λ), φ(λ))phys = (ψ0, φ0)B

turns the solution space into the physical Hilbert space Hphys (which is not a subspace
of Hkin). Unitarity of U (λ) implies that the inner product does not depend on the choice
of an initial λ-time:

(ψ(λ − λ0), φ(λ − λ0))phys = (ψ0, U (−λ0)
†U (−λ0)φ0)B = (ψ0, φ0)B .

Moreover, any operator that commutes with U (λ), called a Dirac observable, has a unique
representation on Hphys However, it is usually hard to compute Dirac observables or to
show the existence of a large-enough set, and they do not evolve because, by definition,
they commute with U (λ).

In order to introduce an evolution picture on Hphys, one often represents any operator
B ∈ B by fixing an initial time, such that the action of B on ψ0 ∈ HB can be used.
However, this representation is not natural because choosing a different initial time λ0,
such that ψ0 is replaced by U (−λ0)ψ0, leads to a different (but unitarily equivalent)
representation unless B commutes with U (−λ0). With this construction, evolution is
realized by the λ-dependent expectation values

(ψ(λ), Bψ(λ))phys = (ψ0, Bψ0)B .

The compution of Dirac observables can therefore be avoided if one accepts the depen-
dence of representations on the choice of an initial time.

However, the applicability of these constructions is limited because they rely on time-
independent constraints which do not depend on the variable Z canonically conjugate
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to E . Generic matter models in quantum cosmology and other fields require such a de-
pendence. For instance, in order to determine evolution with respect to different choices
of time coordinates, one would have to interpret the gauge flows generated by NC with
some N ∈ A, rather than C itself, and N may well depend on Z in cases of interest.
Moreover, relativistic matter systems imply an energy density quadratic in E rather than
linear, a prominent example given by a homogeneous scalar field Z (such as the inflaton
often assumed in early-universe cosmology) with energy density

ρscalar = 1

2

E2

V 2
+ W (Z) (2)

where the function W (Z) is the scalar potential. The resulting constraint,

−12πV 2 p2
V + E2 + 2V 2W (Z) = 0 ,

is still polynomial in V and pV but quadratic in E . If W (Z) = W is constant, one can
often “take a square root” and replace the constraint for a scalar energy density with a
constraint linear in E by factorization,

(

E −
√

2V

√

6πp2
V − W

)(

E +
√

2V

√

6πp2
V − W

)

= 0 ,

followed by selecting one of the two parentheses as a “linearized” constraint. To the new,
linear constraint one can then apply deparameterization as sketched above [6]. However,
constant W (Z) = W is not generic within the set of physically motivated models, and
for non-constant W (Z) any factorization is non-trivial because [W (Z), E] �= 0.

Here, we propose an alternative way of reducing a quantum system with a Hamiltonian
constraint to a dynamical system, that solves most of these problems and also reveals
the non-trivial nature of introducing a well-defined evolution picture. We completely
avoid the construction of a physical Hilbert space Hphys distinct from the original,
kinematical Hilbert space Hkin. (Nevertheless, we will show that, if desired, a physical
Hilbert space can be derived from a subset of our ingredients using the Gelfand-Naimark-
Segal construction.) This feature brings our constructions closer to a relativistic setting
which seems violated in the construction described above in which time is an operator
represented only on Hkin, while all other observables are represented on Hphys. Our
approach is based on an algebraic notion of quantum states.

2.2. Algebraic states. The set of observables of a quantum system is given by the ∗-
invariant elements of a complex, unital ∗-algebra A. In this paper, we assume that A

is associative. (This assumption rules out some physical systems, such as magnetic
monopole densities [22,23], which however are usually considered exotic.) Our main
examples will be enveloping algebras of Lie algebras, which we assume to be represented
on a kinematical Hilbert space as unbounded operators. These algebras carry a useful
topology, introduced as the ρ-topology in [24].

Physical states of the quantum system defined by A are normalized positive linear
functionals ω : A → C, such that ω(1) = 1 and

ω
(

AA∗) ≥ 0 for all A ∈ A .

According to Theorem 1 in [24], such functionals are continuous in the ρ-topology
of A. The condition that ω (AA∗) is real for all A ∈ A implies that a physical state
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is real—ω(A) = ω(A∗). In addition, the stronger inequality condition leads to the
Cauchy–Schwarz inequality

|ω(AB∗)|2 ≤ |ω(AA∗)||ω(B B∗)| for all A, B ∈ A ;

see for instance [25].

As we will see, intermediate stages of quantum symplectic reduction require a weaker
notion of states which are not completely positive. We begin with

Definition 3. The set of kinematical states Ŵ on a unital ∗-algebra A is the set of con-
tinuous normalized linear functionals ω : A → C, such that ω(1) = 1.

Given the normalization condition, Ŵ is not a vector space, but it is closed with respect to
normalized sums: for any integer N ≥ 1, states ω1, . . . , ωN ∈ Ŵ and complex numbers

a1, . . . , aN ,
∑N

j=1 a jω j ∈ Ŵ if
∑N

j=1 a j = 1.

Definition 4. A dynamical flow onA is a one-parameter family of derivations �Dt : (a, b)×
A → A, where (a, b) ⊂ R, which is compatible with the ∗-structure on A—( �Dt A)∗ =
�Dt A∗ for all A ∈ A—and such that ω( �Dt A) is continuously differentiable with respect

to t for all ω ∈ Ŵ.

Given a dynamical flow �Dt on A, the time evolution of a kinematical state ω ∈ Ŵ is
a map (a, b) × A → C, (t, A) �→ ωt (A) such that ωt is a kinematical state and

d

dt
ωt (A) = ωt

(

�Dt A
)

(3)

for all t ∈ (a, b), with initial conditions ωt0 = ω for some t0 ∈ (a, b).

In order to make sure that a state has a unique time evolution (or a unique gauge flow
in what follows), we will assume that, for all algebras we consider, a differential equation
of the form (3) has a unique solution with the specified initial condition. Standard results
do not necessarily apply because our differential equations, though linear, are, in general,
formulated on an infinite-dimensional space and may have time-dependent coefficients.
(Although we will not pursue a formal proof of existence and uniqueness of solutions,
we note that time evolution in systems of interest in physics is usually obtained as a
unique Dyson series on a Hilbert space; see for instance [26].)

Lemma 1. If ω ∈ Ŵ is a kinematical state, its time evolution with respect to �Dt , t ∈
(a, b), returns a kinematical state for any t ∈ (a, b).

Proof. By definition, a derivation satisfies

�Dt (AB) = �Dt (A) B + A �Dt (B) (4)

for all A, B ∈ A. Choosing B = 1, we have �Dt (A) = �Dt (A) + A �Dt (1) for all A ∈ A.

It follows that �Dt (1) = 0, whence dωt (1)/dt = 0 for all t . Therefore, ωt (1) = 1 for all
t . ⊓⊔

Lemma 2. If ω ∈ Ŵ is positive, its time evolution is positive.
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Proof. To prove that ωt (AA∗) ≥ 0 continues to hold along the flow, it is sufficient to
show that (i) ωt (AA∗) is real for all t and (ii) dωt (AA∗)/dt is non-negative whenever
ωt (AA∗) = 0.

To prove (i), for each A ∈ A define a function of t via f A(t) = ωt (AA∗)−ωt (AA∗)
on Ŵ, so that ωt (AA∗) is real iff f A(t) = 0. Suppose all of the functions f A(t ′) = 0 for

some t ′ ∈ (a, b), then ωt ′(AA∗) is real for all A ∈ A, which implies ωt ′(A) = ωt ′(A∗),
and we get

d

dt
ωt (AA∗)

∣

∣

∣

∣

t=t ′
= ωt

(

�Dt (AA∗)
)
∣

∣

∣

t=t ′
= ωt ′

((

�Dt ′ A
)

A∗
)

+ ωt ′
(

A
(

�Dt ′ A∗
))

= ωt ′
((

�Dt ′ A
)

A∗
)

+ ωt ′
([(

�Dt ′ A
)

A∗
]∗)

= ωt ′
((

�Dt ′ A
)

A∗
)

+ ωt ′
((

�Dt ′ A
)

A∗
)

= 2Re
[

ωt ′
((

�Dt ′ A
)

A∗
)]

= 2Re

[

ωt ′
((

�Dt ′ A
)

A∗
)

]

= d

dt
ωt (AA∗)

∣

∣

∣

∣

t=t ′
,

which means that d f A(t)/dt = 0 at t = t ′. Since ωt0 = ω is positive, we have the
initial conditions f A(t0) = 0 for all A ∈ A. We see that { f A(t) = 0,∀t ∈ (a, b)}A∈A

satisfies the first-order ordinary differential equation system induced by the dynamical
flow and matches the given set of initial conditions. As previously discussed, here we
assume such solutions to the dynamical flow to be unique. Therefore ωt (AA∗) is real
for all t ∈ (a, b).

To prove (ii) we use the above result and assume that the inequality holds at t = t ′.
∣

∣

∣

∣

d

dt
ωt (AA∗)

∣

∣

∣

∣

t=t ′

∣

∣

∣

∣

2

= 4

∣

∣

∣
Re

[

ωt ′
((

�Dt ′ A
)

A∗
)]

∣

∣

∣

2

≤ 4

∣

∣

∣
ωt ′

((

�Dt ′ A
)

A∗
)
∣

∣

∣

2

≤ 4 ωt ′(A∗ A) ωt ′
((

�Dt ′ A
) (

�Dt ′ A
)∗)

.

Since ωt ′(A∗ A) ∈ R, ωt ′(A∗ A) = ωt ′(AA∗), and the expression on the right is zero if
ωt ′(AA∗) = 0. ⊓⊔

2.3. Constrained quantization. Our results in Sects. 3 and 4 apply to a specific type of
constrained systems relevant for quantizations of dynamical symplectic reduction.

Definition 5. A singly constrained quantum system is a complex, unital ∗-algebra A

together with a constraint C ∈ A such that

1. C∗ = C ,
2. C does not have a left-inverse in A, and
3. C is not a divisor of zero.

Remark. If C is a right divisor of zero, then by property 1 it is also a left divisor of
zero and vice versa, in which case there is an X ∈ A such that C X = 0. Using a
representation of A on the kinematical Hilbert space, any vector in the image of X is
then a zero eigenvector of C in the discrete spectrum, and one can simply solve the
constraint C = 0 by restriction to the zero eigenspace. Here we are primarily concerned
with the more complicated case of zero in the continuous part of the spectrum of C ,
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which is also most relevant for dynamical symplectic reduction of examples discussed
in Sect. 2.1.

Definition 6. The algebra of Dirac observables of a singly constrained quantum system
(A, C) is the commutant of C in A:

Aobs = C ′ = {A ∈ A : [A, C] = 0} .

The space of physical states of a singly constrained quantum system is given by the
space Ŵ(Aobs) of normalizaed positive linear functionals on Aobs.

Lemma 3. Aobs is a unital ∗-subalgebra of A.

Proof. Defined as the commutant of C , Aobs is a subalgebra. Since [1, C] = 0 and
[A∗, C] = −[A, C∗]∗ = −[A, C]∗ = 0 if A ∈ Aobs, using C∗ = C , it is a unital
∗-subalgebra. ⊓⊔
Definition 7. A kinematical state ω ∈ Ŵ is a solution of the constraint C if ω(AC) = 0
for all A ∈ A. The constraint surface ŴC ⊂ Ŵ is the subset of all solutions of C , closed
with respect to normalized sums.

Remark. Since we have assumed that C is without left-inverse in A, AC ⊂ A is a
strict subalgebra without unit. The condition ω(AC) = 0 is therefore consistent with
normalization of kinematical states. If zero is in the continuous spectrum, no normalized
positive states exist in ŴC . In such a case it is common to drop the normalization condition
and work with distributions instead of state vectors in a Hilbert space. Here, we instead
retain the normalizability condition and relax positivity. Our results (such as Corollary 2
in Sect. 3.3) imply the existence of kinematical states in ŴC for singly constrained
systems.

The constraint C in a singly constrained quantum system induces a gauge flow:

Definition 8. Two kinematical states ψ,ω ∈ Ŵ are C-equivalent, ω ∼C ψ , if there exist
a positive integer M together with A1, A2, . . . , AM ∈ A and λ1, λ2, . . . λM ∈ R, such
that

ψ = SA1C (λ1)SA2C (λ2) . . . SAM C (λM )ω

where for A ∈ A and λ ∈ R, the flow SA(λ) : Ŵ → Ŵ is defined by SA(0) = id and

i�
d

dλ
(SA(λ)ω(B)) = SA(λ)ω([B, A]).

Since B �→ [B, A] is a derivation, SA(λ) is well-defined by Lemma 1. By analogy
with classical reduction, we refer to flows generated by elements of AC as gauge. In
the classical case, the constraint C and the function f C , where f is any phase-space
function not equal to zero on the constraint surface, generate the same gauge flow on
the constraint surface: For f C , the flow equations

d

dλ′ = {·, f C} ≈ f {·, C}

can be mapped to the flow equations generated by C by rescaling the gauge parameter λ′
such that dλ = f dλ′. (For this reparameterization of the flow, the phase-space function
f is considered to be a function of λ′ on the space of solutions of the flow equations. The
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sign “≈” in the preceding equations refers to equality on the constraint surface, as usual
in the theory of constrained systems following Dirac.) In singly constrained quantum
systems, by contrast, the gauge flows generated by C and AC with some A ∈ A are
inequivalent: For ω ∈ ŴC , we have

ω([B, AC]) = ω(A[B, C]) �= ω(A)ω([B, C])
in general.

Remark. If zero is in the discrete spectrum of C represented on the kinematical Hilbert
space, the behavior of flows is rather different. Any quantum flow generated by AC is
then equivalent to the flow generated by C when restricted to constrained pure states,
given by vectors ψ in the Hilbert space such that Cψ = 0: on these states, SAC (λ)ψ =
exp(−iλAC/�)ψ such that

SAC (λ)ψ =
∞
∑

n=0

1

n!

(−iλ

�

)n

(AC)nψ = 0

for any A. The full gauge flow may nevertheless be non-trivial on general algebraic states
of Definition 3.

Lemma 4. The constraint surface ŴC is preserved by the flow induced by any algebra

element AC.

Proof. For any fixed A ∈ A and ω ∈ ŴC , following the same argument as in Lemma 2,
define functions fB(λ) = SAC (λ)ω(BC) on Ŵ, for B ∈ A. Suppose all fB(λ′) = 0 for
some λ′, then

i�
d fB

dλ

∣

∣

∣

∣

λ=λ′
= i�

d

dλ
(SAC (λ)ω(BC))

∣

∣

∣

∣

λ=λ′

= SAC (λ)ω([BC, AC])|λ=λ′

= SAC (λ′)ω (([BC, A] + A[B, C])C) = f([BC,A]+A[B,C])(λ′) = 0

for all B ∈ A. Moreover, we have initial conditions fB(0) = ω(BC) = 0 for all B.
It follows that { fB(λ) = 0,∀λ}B∈A is the solution to the flow induced by any algebra
element of the form AC that satisfies our initial conditions. Therefore, SAC (λ)ω(BC) =
0 for all λ, and SAC (λ)ω ∈ ŴC . ⊓⊔

Any two C-equivalent states on ŴC are indistinguishble by their evaluation in Dirac
observables:

Lemma 5. For any ω,ψ ∈ ŴC , if ω ∼C ψ , then ω(O) = ψ(O) for any O ∈ Aobs.

Proof. The two states ω and ψ are related by a succession of gauge flows SAC (λ). By
Lemma 4, each of these flows preservers ŴC . Therefore, for any A ∈ A and B ∈ Aobs,

i�
d

dλ
(SAC (λ)ω(B)) = SAC (λ)ω([B, AC])

= SAC (λ)ω (A[B, C] + [B, A]C)

= SAC (λ)ω ([B, A]C) = 0,

since SAC (λ)ω ∈ ŴC . Therefore, SAC (λ)ω(B) is constant along any gauge flow SAC (λ).
⊓⊔
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Equivalence classes [ω]C ∈ ŴC/ ∼C therefore define states on Aobs.

Corollary 1. The space of physical states Ŵphys is the convex subset of ŴC/ ∼C con-

taining all [ω]C with ω positive on Aobs.

The computation of a complete Aobs is usually very complicated in interesting models.
Moreover, a sufficiently large Aobs containing observables that can describe all mea-
surements of interest may not exist, in particular in chaotic systems [30,31]. The result
of Corollary 1 partially avoids a direct reference to Aobs by formulating the space of
physical states through an equivalence relation on the constrained states. However, one
still needs access to Aobs in order to implement the positivity condition. This reference to
Aobs cannot be avoided because it is generally impossible to extend positivity to all of A

for any ω ∈ ŴC : for any A = A∗ ∈ A and a positive ω ∈ Ŵ, we have ω(AC + C A) ∈ R

and ω([A, C]) ∈ iR. However for ω ∈ ŴC we must have

ω(AC + C A) = ω(2AC − [A, C]) = −ω([A, C]) ,

which, given the reality conditions, can be satisfied only if ω(AC +C A) = ω([A, C]) =
0. If C possesses a canonical conjugate Z = Z∗ ∈ A such that [Z , C] = i�1 (as we
will shortly demand for a “clock”), then for any normalized state ω([Z , C]) = i� �= 0,
so that no solution of the constraint is positive on all of A. Moreover, as in the classical
case, there is no evolution for physical states in a dynamically constrained system, since
the adjoint action of the constraint has been factored out.

In Sect. 3 we will solve both problems—formulating positivity conditions without
reference to Aobs and obtaining a consistent evolution picture—by introducing a new
notion of gauge sections. Our approach is motivated by the algebraic analogue of depa-
rameterization discussed in Sect. 2.1. In an unconstrained quantum system the dynamical
flow is usually driven by some self-adjoint Hamiltonian H = H∗ ∈ B via

dωt (B)

dt
= 1

i�
ωt ([B, H ]) + ωt

(

d

dt
B

)

, (5)

where the derivation 1
i�

[·, H ] + d
dt

(·) clearly satisfies Definition 4. The above evolution
of states can be formulated as a pure adjoint action of a constraint by extending the
kinematical algebra B by two new generators, “time” Z = Z∗ and “energy” E = E∗,
such that [Z , E] = i�1 and [Z , B] = 0 = [E, B] for all B in B. On this extended
algebra A, the constraint C := E + H ∈ A generates a gauge flow

d

dλ
ωλ(A) = 1

i�
ωλ ([A, C]) = 1

i�
ωλ ([A, H ] + [A, E]) = ωλ ([A, H ])

i�
+ ωλ

(

d

dZ
A

)

(6)
resembling the original dynamical flow on B for any A polynomial in Z . Explicit time
dependence of B(t) in the Hamiltonian case corresponds to Z -dependence of A ∈ A

in the constrained case. This process is called parameterization of the dynamical flow:
physical time t has been replaced by an arbitrary flow parameter λ.

One can follow this process in reverse: starting with the degrees of freedom de-
scribed by the extended algebra A and given a Hamiltonian constraint one could attempt
to deparameterize the system, reducing it to a an unconstrained dynamical system on a
subalgebra B ⊂ A. In the above parameterized theory, the gauge flow (6) is equivalent
to the dynamical flow (5) if Z ∈ A can be “demoted to a real number” t . The depa-
rameterization process of passing from A back to the smaller algebra B can therefore
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be interpreted as finding the states on A for which “the value of Z is fixed” to equal
t . For a general Hamiltonian constraint, this process requires finding a suitable clock
Z = Z∗: its values will keep track of time, and an associated algebra (the fashionables of
Definition 2) will play the role of the smaller “unextended” algebra of evolving degrees
of freedom.

2.4. Quantum clocks. Any kinematical observable Z = Z∗ ∈ A can formally serve
as a quantum reference system. In Sect. 3 we will use such reference systems to track
translations in time, where Z will serve as a “clock.” (Reference systems can be used
to track spatial translations as well [32–35].) Following Lemma 3 the commutant Z ′ =
{A ∈ A : [A, Z ] = 0} is a unital ∗-subalgebra of A. Furthermore, it is straightforward
to verify that for any t ∈ R the set (Z − t1)Z ′ is a two-sided ∗-ideal of Z ′. It follows
that the quotient Z ′/(Z − t1)Z ′ is unital and inherits a ∗-structure under the canonical
projection πt : Z ′ → Z ′/(Z − t1)Z ′. In order to be useful for keeping track of time,
such a quantum reference system needs some additional structure.

Definition 9. A quantum clock (Z ,F) is a reference observable Z = Z∗ ∈ A together
with a compatible fashionable algebra: a unital ∗-subalgebra F ⊂ Z ′, such that for all
t ∈ R, we have F ∩ ker πt = {0} and πt (F) = Z ′/(Z − t1)Z ′.

Remark. Keeping with the commonsense physics usage, the term “clock” will also be
used to refer to the reference observable Z itself, where it will be assumed that Z

possesses a compatible fashionable algebra.

The two conditions on F guarantee that πt restricted to F is a ∗-algebra isomor-
phism. The algebra of fashionables is therefore a realization of a family of quotient
algebras Z ′/(Z − t1)Z ′ as a single subalgebra of Z ′ (and hence of A). We denote the
∗-isomorphism νt : Z ′/(Z − t1)Z ′ → F , where for any X ∈ Z ′/(Z − t1)Z ′,

νt (X) := π−1
t (X) ∩ F (7)

yields a single element of F . This isomorphism inverts πt when the latter is restricted
to F , so that πt ◦ νt = id. As a direct consequence, we note

Lemma 6. For every t ∈ R, F + (Z − t1)Z ′ = Z ′.

Additionally, for each value of t we have a projection from Z ′ to its subalgebra F via
the composition of ∗-homomorphisms νt ◦ πt .

Each quotient algebra Z ′/(Z − t1)Z ′ possesses a natural relational interpretation:

Definition 10. For any kinematical observable A = A∗ ∈ A that commutes with a clock
Z , the relational observable for A when the value of Z is t ∈ R is the image of A under
the canonical projection, AZ=t := πt (A).

It is straightforward to check that AZ=t = A∗
Z=t under the inherited ∗-operation.

Remark. Time read by a reference clock behaves differently from the time of ordinary
quantum mechanics where it is an external parameter. In the latter case any observable
can be evaluated at a fixed time, in the former case this can only be done for observables
that commute with the clock.

We will use the notation ω̄ ∈ ŴZ ′ to denote normalized states on Z ′. For each t ,
canonical projection πt defines a “surface of constant time” within ŴZ ′ , which will be
used in Sect. 3.1 to fix the gauge flow of a quantum Hamiltonian constraint.
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Definition 11. For any t ∈ R the surface of constant time t of a clock Z is

ŴZ ′ |πt = {ω̄ ∈ ŴZ ′ : ω̄(B) = 0 for all B ∈ ker πt } .

Each state on this surface is a pull-back ŴZ ′ |πt ∋ ω̄ = ω̃ ◦πt of a state ω̃ on the quotient
algebra Z ′/(Z − t1)Z ′. The states belonging to such a surface that are positive on Z ′
can be interpreted as assigning a value to each A = A∗ ∈ Z ′ “when clock Z shows
time t”. Not every positive state ω̄ on the algebra Z ′ has a relational interpretation since
this would require ω̄((Z − t1)A) = 0 for any A ∈ Z ′ for some t ∈ R. A sequence of
relational states provides a notion of evolution over time in clock Z .

Definition 12. A one-parameter family of states ω̄t ∈ ŴZ ′ for t ∈ (a, b) ⊂ R is a time

evolution of ω̄ ∈ ŴZ ′ relative to Z if ω̄ = ω̄t0 for some t0 ∈ (a, b), and if for each
t ∈ (a, b) ω̄t is positive on Z ′ and ω̄t ∈ ŴZ ′ |πt .

While any positive state on a quotient Z ′/(Z − t1)Z ′ does have a relational interpre-
tation, these quotients give distinct algebras for different values of t . So a time evolution
in Z corresponds to a sequence of states on different disconnected algebras. The fash-
ionable algebra is needed precisely to “sew together” constant time degrees of freedom
at different values of the clock and to define clock-value-dependent states that can be
freely specified over a fixed algebra F . We define a one-parameter family of invertible
linear maps ψt : ŴZ ′ |πt → ŴF with the forward map given simply by restriction, for
ω̄ ∈ ŴZ ′ |πt

ψt (ω̄)(F) = ω̄(F), for all F ∈ F . (8)

We define its inverse using (7), for ω̃ ∈ ŴF

ψ−1
t (ω̃)(A) = ω̃ (νt (πt (A))) , for all A ∈ Z ′. (9)

Clearly, because it involves πt , the resultant state ψ−1
t (ω̃) ∈ ŴZ ′ |πt . It is also not difficult

to verify that ψ and ψ−1 invert each other on their domains of definition. The fashionable
algebra gives us the structure necessary to define time translation of a state from Z = t1
to Z = t2: ω̄1 ∈ ŴZ ′ |πt1

and ω̄2 ∈ ŴZ ′ |πt2
represent the same unevolved state at two

different times t1 and t2 if ω̄1(F) = ω̄2(F) for all F ∈ F , that is, if ω̄1 = ψ−1
t1

(ω̃) and

ω̄2 = ψ−1
t2

(ω̃) for some ω̃ ∈ ŴF .

A time evolution maps to a one-parameter family of positive states on the fashionable
algebra via ω̃t = ψt (ω̄t ). Conversely, any one-parameter family of positive states ω̃t ∈
ŴF maps to a time evolution with respect to Z via ω̄t = ψ−1

t (ω̃t ). The maps ψt and

ψ−1
t preserve positivity of states, because the underlying algebra maps that they utilize,

ı : F →֒ Z ′, πt , and νt are all ∗-homomorphisms. This can be stated somewhat more
broadly.

Lemma 7. If ω̄ ∈ ŴZ ′ |πt for some t ∈ R and ω̄ is positive on F ⊂ Z ′, then ω̄ is positive

on the whole of Z ′.

Proof. Since ω̄ ∈ ŴZ ′ |πt , we have ω̄((Z − t1)A) = 0 for all A ∈ Z ′. According
to Lemma 6, for any B ∈ Z ′ there are F ∈ F ⊂ Z ′ and B0 ∈ Z ′ such that B =
F + (Z − t1)B0. Thus
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ω̄
(

B B∗) = ω̄

(

F F∗ + F(Z − t1)B∗
0 + (Z − t1)B0 F∗ + (Z − t1)B0(Z − t1)B∗

0

)

= ω̄
(

F F∗) + ω̄

(

(Z − t1)
(

F B∗
0 + B0 F∗ + (Z − t1)B0 B∗

0

)

)

= ω̄
(

F F∗) ≥ 0.

⊓⊔
In what follows we use a clock as the basis for a new method of deparameterization

by (i) using the commutant Z ′ ⊂ A as a go-between of the kinematical algebra A and
the algebra of observables, Aobs, (ii) fixing gauge degrees of freedom using constant
time surfaces ŴZ ′ |πt , and (iii) demoting the clock observable Z to a real-valued time
parameter t . The constant-time surfaces are analogous to fixing an initial λ-time in stan-
dard deparameterization discussed in Sect. 2.1, but they are introduced in a subalgebra
of A and do not require the transition to an unrelated space such as Hphys. Moreover,
Dirac observables will be replaced by the more accessible fashionables F . (Since their
definition depends on the choice of time Z , and not just on the constraint C , they are “in
fashion” only as long as Z is used as time. This need to introduce fashionables has first
been identified in semiclassical calculations [27–29].)

3. Quantum Dynamical Reduction: Linear Case

In this section, we assume that the constraint is of a form C = CH such that [Z , CH ] =
i�1 for some Z ∈ A. This case is close to standard deparameterization, as shown by
(6). (As we will discuss in more detail in Sect. 4, a constraint should, in general, be
factorized in order to make it deparameterizable, in the sense that C = NCH with
suitable CH = C∗

H , N ∈ A.)

Definition 13. A quantum constraint CH ∈ A is deparameterized by the clock (Z ,F)

if [Z , CH ] = i�1 and the commutant of Z has the following properties:

1. Z ′ + ACH = A;
2. Z ′ ∩ ACH = {0};
3. the set Z ′ ∪ {CH } algebraically generates A.

The main result of this section is that deparameterization of a constraint CH by a
clock (Z ,F) is a realization of the constrained quantization of CH as an unconstrained
quantum mechanical system with degrees of freedom given by the fashionable algebra
F evolving in time. The consistency of this construction is shown by

Proposition 2. If CH ∈ A is deparameterized by (Z ,F), then there is a bijection be-

tween the constraint surface and the space of states on Z ′, φ : ŴCH
→ ŴZ ′ such that:

1. All gauge flows mapped to ŴZ ′ by φ are transversal to the constant time surfaces

ŴZ ′ |πt , t ∈ R.

2. The flow generated by CH itself is mapped to a dynamical flow on F .

3. Each positive state on F specifies a positive physical state [ω]CH
∈ ŴCH

/ ∼CH
.

Existence of φ follows immediately from conditions 1 and 2 of Definition 13. Since
Z ′ + ACH = A, any linear functional on A is completely defined by its restrictions to
ACH and Z ′. Since Z ′ ∩ ACH = {0} these two restrictions can be specified indepen-
dently. Any state in ŴCH

vanishes on ACH and defines a state on ŴZ ′ by restriction to
Z ′. Conversely any state on Z ′ can be uniquely extended to the entirety of A by setting
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the extension to vanish on ACH (see Eqs. (11) and (12) below). Deparameterization
provides sections of the quantum gauge flow (Definition 8) through constant-time sur-
faces ŴZ ′ |πt . Transversality of these sections, defined and proven in Sect. 3.1, is the local
quantum analog of incisiveness of a classical gauge section of Definition 1. Potential
issues arising from the weaker local nature of transversality are discussed in Sect. 3.5.
We prove properties 2 and 3 of the proposition in Sects. 3.2 and 3.3, respectively, and
provide an explicit example of a deparameterizable constraint in Sect. 3.4.

Remark. As shown in our discussion of cosmological models, condition 3 of Defini-
tion 13 is satisfied by the algebras of many physical examples of interest where CH and
kinematical observables are polynomial in an “energy” E ∈ A. This property is only
used in Sect. 3.1 specifically to ensure that all gauge flow generators can be projected
to Z ′ using finite power series. In other situations it may be possible to replace this
condition with sufficiently strong assumptions on the topology of A.

3.1. Proof of transversality. Let a quantum constraint CH be deparameterized by a clock
(Z ,F). In this subsection we prove that all of the flows generated by constraint elements
ACH ∈ ACH can be mapped to ŴZ ′ , and are separated by the constant-time surfaces of
Z . According to Definition 11, a constant-time surface ŴZ ′ |πt in ŴZ ′ contains precisely
those states on Z ′ that vanish on ker πt . A non-vanishing gauge flow that preserves
the values assigned by states to ker πt is therefore tangent to ŴZ ′ |πt and hence remains
unresolved by fixing the value of the clock. By contrast, a flow that is separated by the
ŴZ ′ |πt either pierces the surface or vanishes at each of its points. The corresponding
geometrical picture suggests a notion of transversality.

Definition 14. 1. A one-parameter family of states ω̄λ ∈ ŴZ ′ is transversal to a constant
time surfaceŴZ ′ |πt if for allλ′ such that ω̄λ′ ∈ ŴZ ′ |πt either d

dλ
ω̄λ(A)

∣

∣

λ=λ′ = 0, ∀A ∈
Z ′ or there is some B ∈ ker πt such that d

dλ
ω̄λ(B)

∣

∣

λ=λ′ �= 0.

2. A flow on Z ′ is transversal to ŴZ ′ |πt if every one-parameter family of states generated
by it is transversal to ŴZ ′ |πt .

To map gauge flows onto ŴZ ′ , let us first explicitly define the bijection between ŴCH

and ŴZ ′ . Taken together, the two conditions of deparameterization Z ′ ∩ACH = {0} and
Z ′ + ACH = A imply that every A can be written as

A = B + GCH , (10)

where B ∈ Z ′ is unique and G ∈ A is unique up to adding terms that are annihilated by
CH multiplied on their right because CH is not a divisor of zero in a single constrained
system. We define the forward map φ : ŴCH

→ ŴZ ′ by restriction: for any ω ∈ ŴCH
and

A ∈ Z ′

φ(ω)(A) = ω(A). (11)

We use decomposition (10) to define the inverse map: for any A ∈ A and ω̄ ∈ ŴZ ′ , we
have A = B + GCH , and define

φ−1(ω̄)(A) = ω̄(B). (12)

Since B = 0 for any A ∈ ACH by condition 2 of Definition 13, clearly φ−1(ω̄) ∈
ŴCH

⊂ Ŵ. A flow is mapped from ŴCH
to ŴZ ′ by mapping the one-parameter families

of states it generates: ω̄λ = φ(ωλ).
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We can further iterate relation (10) expressing G as a sum of elements from Z ′ and

ACH to get a second-order expression A = B + B̃CH + G̃C2
H with B, B̃ ∈ Z ′ and

G̃ ∈ A, and so on. In fact, since by condition 3 of Definition 13 the set Z ′ ∪ {CH }
algebraically generates A, every A ∈ A can be written as a finite-order polynomial in
CH

A = B0 + B1CH + B2C2
H + · · · BM C M

H , (13)

with Bi ∈ Z ′ and M ∈ N.
Further, the adjoint action of CH preserves the commutant of Z , since for any A ∈ Z ′

[[A, CH ] , Z ] = [[Z , CH ] , A] + [[A, Z ] , CH ] = 0, (14)

since [Z , CH ] = i�1 according to Definition 13, and [A, Z ] = 0; therefore [A, CH ] ∈
Z ′.

Lemma 8. For a constraint CH deparameterized by a clock (Z ,F), every gauge flow

mapped to ŴZ ′ from ŴCH
is determined by the derivation �DH F = 1

i�
[F, CH ] on Z ′.

Proof. First, we note that for F, B ∈ A

[F, BCH ] = B(i� �DH F) + [F, B]CH

Iterating by replacing B with BCH , we get for any integer n ≥ 1,

[F, BCn
H ] =

n
∑

i=1

(

n

i

)

(−1)i−1 B((i�)i �Di
H F)Cn−i

H + [F, B]Cn
H

= (−1)n−1 B((i�)n �Dn
H F) + GCH .

We have combined the terms proportional to CH using

G =
n−1
∑

i=1

(

n

i

)

(−1)i−1 B((i�)i �Di
H F)Cn−i−1

H + [F, B]Cn−1
H .

They all vanish when evaluated on states in ŴCH
. Using the above result and writing

A ∈ A as a polynomial in CH as in Eq. (13), we have

[F, ACH ] =
M+1
∑

n=1

(−1)n−1 Bn−1((i�)n �Dn
H F) + GCH (15)

for some G ∈ A and Bi ∈ Z ′. For any state ω ∈ ŴCH
, we have ω(GCH ) = 0, and hence

the flows induced by constraint elements ACH satisfy

i�
d

dλ
ωλ(F) = ωλ ([F, ACH ]) =

M+1
∑

n=1

(−1)n−1ωλ

(

Bn−1((i�)n �Dn
H F)

)

,

For F ∈ Z ′ we also have �Dn
H F ∈ Z ′, and the above expression can be computed entirely

through the states’ restriction to Z ′, and the action of �DH on Z ′. Hence, for ω̄λ = φ(ωλ)

i�
d

dλ
ω̄λ (F) = ω̄λ

(

M+1
∑

n=1

(−1)n−1(i�)n Bn−1
�Dn

H (F)

)

. (16)

⊓⊔
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For the flow generated on ŴZ ′ by CH itself, B0 = 1 and Bn = 0 for n > 1 in (15).
For F = 1 Eq. (16) implies that along the flow, dω̄λ ((Z − t1)) /dλ = 1 �= 0 for any
t ∈ R. Therefore this particular flow is transversal to all constant time surfaces ŴZ ′ |πt .
In fact, the property

ω̄

(

( �DH Z)F
)

= ω̄ (1F) = ω̄(F), (17)

is sufficient to ensure that all gauge flows mapped to ŴZ ′ are transversal to constant time

surfaces. To show this, we first establish a useful result that holds for any �DH Z ∈ Z ′
that commutes with all elements of Z ′, and a pair of non-negative integers i ≤ n:

�Di
H (Z − t1)n = �Di−1

H

(

n(Z − t1)n−1( �DH Z)

)

= �Di−2
H

(

n(n − 1)(Z − t1)n−2( �DH Z)2 + n(Z − t1)n−1( �D2
H Z)

)

= · · ·
= (Z − t1)n−i

(

n

i

)

( �DH Z)i + (Z − t1)n−i+1
(

· · ·
)

.

Therefore, for ω̄ ∈ ŴZ ′ |πt , and for any F1, F2 ∈ Z ′

ω̄

[

F1

(

�Di
H (Z − t1)n

)

F2

]

=
{

0 for i < n ;
ω̄

(

( �DH Z)n F1 F2

)

for i = n.
(18)

Lemma 9. If CH is deparameterized by (Z ,F), the flow of every ACH ∈ ACH mapped

to ŴZ ′ is transversal to every constant time surface ŴZ ′ |πt of Z.

Proof. Using (13) we write

A = B0 + B1CH + B2C2
H + · · · BM C M

H

with Bi ∈ Z ′. Suppose this flow is not transversal to ŴZ ′ |πt for some t ∈ R. Then,
according to Definition 14, there is a one-parameter family of states ω̄λ ∈ ŴZ ′ generated
by ACH according to Eq. (16) with ω̄λ0 ∈ ŴZ ′ |πt for some λ0 ∈ R, such that the flow
of ACH does not vanish at ω̄λ0 , and for any F ∈ Z ′ using (16),

0 = i�
d

dλ
ω̄λ

(

(Z − t1)M+1 F
)

∣

∣

∣

∣

λ=λ0

= ω̄λ0

(

M+1
∑

n=1

(−1)n−1(i�)n Bn−1
�Dn

H

(

(Z − t1)M+1 F
)

)

=
M+1
∑

n=1

(−1)n−1(i�)nω̄λ0

(

Bn−1

n
∑

m=1

(

n

m

)

(

�Dm
H (Z − t1)M+1

) (

�Dn−m
H F

)

)

=
M+1
∑

n=1

(−1)n−1(i�)n

n
∑

m=1

(

n

m

)

ω̄λ0

(

Bn−1

(

�Dm
H (Z − t1)M+1

) (

�Dn−m
H F

))
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=
M+1
∑

n=1

(−1)n−1(i�)n

n
∑

m=1

(

n

m

)

δm, M+1ω̄λ0

(

Bn−1( �DH Z)M+1
(

�Dn−m
H F

))

= (−1)M (i�)M+1ω̄λ0

(

BM 1M+1 F
)

= (−1)M (i�)M+1ω̄λ0 (BM F) , (19)

where the Kronecker delta comes directly from (18). This implies that ω̄λ0 (BM F) = 0
for all F ∈ Z ′. Iterating the argument, (16) also implies

0 = i�
d

dλ
ω̄λ

(

(Z − t1)M F
)

∣

∣

∣

∣

λ=λ0

= ω̄λ0

(

M+1
∑

n=1

(−1)n−1(i�)n Bn−1
�Dn

H

(

(Z − t1)M F
)

)

= ω̄λ0

(

M
∑

n=1

(−1)n−1(i�)n Bn−1
�Dn

H

(

(Z − t1)M F
)

)

+(−1)M (i�)M+1ω̄λ0

(

BM

[

�DM+1
H

(

(Z − t1)M F
)])

.

By (19), the second term in the final expression is zero for any F ∈ Z ′, giving

0 = ω̄λ0

(

M
∑

n=1

(−1)n−1(i�)n Bn−1
�Dn

H

(

(Z − t1)M F
)

)

=
M

∑

n=1

(−1)n−1(i�)n

n
∑

m=1

(

n

m

)

ω̄λ0

(

Bn−1

(

�Dm
H (Z − t1)M

) (

�Dn−m
H F

))

= (−1)M−1(i�)M ω̄λ0

(

BM−1( �DH Z)M F
)

= (−1)M−1(i�)M ω̄λ0 (BM−1 F) ,

which implies ω̄λ0 (BM−1 F) = 0 for all F ∈ Z ′. Continuing in this way, we establish
that ω̄λ0 (Bn F) = 0 for all n. Therefore the flow must completely vanish at ω̄λ0 since

i�
d

dλ
ω̄λ (F)

∣

∣

∣

∣

λ=λ0

=
M+1
∑

n=1

(−1)n−1(i�)nω̄

(

Bn−1( �Dn
H F)

)

= 0,

proving our claim by contradiction. ⊓⊔

3.2. Deparameterized time evolution. In this subsection we prove that for a constraint
CH that is deparameterized by (Z ,F), the adjoint action of CH projects to a dynamical
flow on the fashionable algebra F . Later on, in Sect. 3.3 we will link deparameterized
dynamics to the physical states and the Dirac observables of the constrained system.

Let SCH
(λ) denote the flow induced on Ŵ by the adjoint action of CH on A, which by

Lemma 4 preserves the constraint surface ŴCH
. Using the map defined in (11) and (12)

we can transfer this flow from ŴC to a flow on ŴZ ′ via S̄CH
(λ) = φ ◦ SCH

(λ) ◦ φ−1.

Explicitly, S̄CH
(λ)φ(ω) = φ(SCH

(λ)ω) for any ω ∈ ŴCH
. Using this relation, for any

ω̄ ∈ ŴZ ′ and any A ∈ Z ′

i�
d

dλ

(

S̄CH
(λ)ω̄(A)

)

= S̄CH
(λ)ω̄ ([A, CH ]) , (20)
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where we implicitly use the fact that [A, CH ] ∈ Z ′, which follows from Eq. (14).
Therefore, S̄CH

(λ) is generated simply by the adjoint action of CH on the subalgebra
Z ′. Referring back to Definition 12 from Sect. 2.4 we have the following result.

Lemma 10. Let CH be deparameterized by (Z ,F), then the flow S̄CH
(λ) = φ◦SCH

(λ)◦
φ−1 generates time evolution of states relative to Z on ŴZ ′ .

Proof. Since [·, CH ] is a ∗–compatible derivation on A, it is ∗-compatible also on Z ′.
All that needs to be shown is that the gauge flow S̄CH

(λ) maps states from ŴZ ′ |πt
to

ŴZ ′ |πt+λ
.

For convenience let us denote the one-parameter family of states ω̄λ := S̄CH
(λ)ω̄,

where ω̄ ∈ ŴZ ′ |πt
for some fixed t . Following the method of Lemma 2, for each A ∈ Z ′

we define a function that varies along the flow f A(λ) = ω̄λ ((Z − (t + λ)1)A). The state
ω̄λ belongs to ŴZ ′ |πt+λ

if and only if f A(λ) = ω̄λ ((Z − (t + λ)1)A) = 0 for all A ∈ Z ′.
Suppose all of the functions f A(λ′) = 0 for some λ′. We can compute their derivatives
along the flow using Eq. (20):

d f A

dλ

∣

∣

∣

∣

λ=λ′
= d

dλ
ω̄λ ((Z − (t + λ)1)A)

∣

∣

∣

∣

λ=λ′

= d

dλ

(

ω̄λ ((Z − t1)A) − λω̄λ(A)
)

∣

∣

∣

∣

λ=λ′

= 1

i�
ω̄λ′ ([(Z − t1)A, CH ]) − λ′

i�
ω̄λ′ ([A, CH ]) − ω̄λ′(A)

= 1

i�
ω̄λ′ ((Z − t1) [A, CH ]) − λ′

i�
ω̄λ′ ([A, CH ])

= 1

i�
ω̄λ′

(

(Z − (t + λ′)1) [A, CH ]
)

= 1

i�
f[A,CH ](λ

′) = 0.

The last equality follows since [A, CH ] ∈ Z ′. Furthermore, by our initial conditions
f A(0) = 0 for all A ∈ A since ω̄0 = ω̄ ∈ ŴZ ′ |πt+0

. It follows that { f A(λ) =
0, for all λ}A∈A is the solution to the flow given by Eq. (20) with ω̄ ∈ ŴZ ′ |πt

. Thus at
any point along the flow

ω̄λ ((Z − (t + λ)1)A) = 0, for all A ∈ Z ′.

Therefore S̄CH
(λ)ω̄ ∈ ŴZ ′ |πt+λ

, as required. ⊓⊔
Remark. The above lemma does not guarantee that for an arbitrary ω ∈ ŴCH

the family
φ(SCH

(λ)ω) is a time evolution relative to Z ; we also need φ(ω) ∈ ŴZ ′ |πt for some
t ∈ R.

As discussed in Sect. 2.4, time evolution of states ω̄t ∈ ŴZ ′ relative to Z maps to a
one-parameter family of states on the fashionable algebra ω̃t = ψt (ω̄t ), by restriction
of ω̄t to F : we have ω̃t (F) = ω̄t (F) for all F ∈ F . Furthermore, at each value t ∈ R

of the clock the adjoint action of CH can be projected from Z ′ to F using the map of
Eq. (7)

�D′
H (t)F := νt ◦ πt

(

�DH F
)

, (21)

which is a ∗-compatible derivation on F thanks to the fact that νt and πt are ∗-

homomorphisms. �D′
H (t) is therefore a dynamical flow on F according to Definition 4.
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Lemma 11. Let ω̄t = S̄CH
(t − t0)ω̄ for some t0 ∈ R and ω̄ ∈ ŴZ ′ |πt0

, then the image

ω̃t = ψt (ω̄t ) ∈ ŴF , where ψt is defined in (8) is generated by the dynamical flow �D′
H (t).

That is
d

dt
ω̃t (F) = ω̃t ( �D′

H (t)F). (22)

Proof. By Lemma 10, ω̄t ∈ ŴZ ′ |πt for all t . Using Eq. (20), for any A ∈ Z ′

d

dt
ω̄t (A) = ω̄t

(

1

i�
[A, CH ]

)

= ω̄t ( �DH F).

Since ω̃t (F) = ψt (ω̄t )(F) = ω̄t (F) for any F ∈ F , we also have

d

dt
ω̃t (F) = d

dt
ω̄t (F) = ω̄t ( �DH F).

Because ω̄t ∈ ŴZ ′ |πt
, it assigns the same value to all elements that belong to a given

coset generated by the ideal (Z − t1)Z ′. By definition in Eq. (21), for any value of

t , �D′
H (t)F and �DH F are in the same coset relative to the ideal (Z − t1)Z ′. Hence

ω̄t ( �DH F) = ω̄t ( �D′
H (t)F), from which (22) follows. ⊓⊔

As demanded by property 2 of Proposition 2, the gauge flow of CH deparameterized
by (Z ,F) projects to a dynamical flow on the unconstrained system defined by the
fashionable algebra F . The unconstrained dynamics on F can then be analyzed by the
methods of conventional quantum mechanics.

3.3. Positivity. For many applications it is also important to be able to reverse this
process, linking positive states on a fashionable algebra at a given value of the clock
with kinematical solutions to the constraint in Ŵ and ultimately with physical states in
ŴCH

/ ∼CH
. Combining Definition 13 and Lemma 6, deparameterization is accomplished

by finding a clock such that [Z , CH ] = i�1, and by splitting the kinematical algebra
into subalgebras that share only the null element,

A = ACH + (Z − t1)Z ′ + F ,

where F is a ∗–subalgebra of Z ′ isomorphic to Z ′/(Z − t1)Z ′ at each t .

Specifically, given a positive state ω̃ on F and a value of the clock t ∈ R, the

corresponding relational state is ω̄ = ψ−1
t (ω̃) ∈ ŴZ ′ |πt , which by Lemma 7 is positive

on Z ′. The corresponding solution of the constraint on A is ω = φ−1(ψ−1
t (ω̃)) ∈ ŴCH

,
which for any B ∈ Z ′ yields

ω((Z − t1)B) = ω̄((Z − t1)B) = 0

because ω̄ ∈ ŴZ ′ |πt . This, in turn, implies that

ω(Z) = t and ω(Z B) = t ω(B) = ω(Z) ω(B) .

We find that this relation extends beyond Z ′ to the whole of A: Given any A ∈ A, and
any state ω ∈ ŴCH

, that satisfies ω(Z B) = ω(Z) ω(B) for all B ∈ Z ′, there are B ∈ Z ′
and G ∈ A such that
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ω(Z A) = ω (Z B + ZGCH )

= ω(Z B)

= ω(Z)ω(B)

= ω(Z)ω (B + GCH ) = ω(Z)ω(A).

The following definition is therefore meaningful:

Definition 15. A state ω ∈ Ŵ is almost-positive with respect to a deparameterization of
CH by Z if

1. it annihilates the left ideal generated by CH : ω(ACH ) = 0 for all A ∈ A;
2. it is positive on the commutant of Z : ω(B B∗) ≥ 0 for all B ∈ Z ′;
3. it parameterizes left multiplication by Z : for all A ∈ A, ω(Z A) = ω(Z)ω(A).

The first condition ensures that ω ∈ ŴCH
solves the constraint. The second condition

ensures that ω restricts to some positive state on Z ′, and hence also on F . The third
condition ensures that this restriction belongs to the constant clock surface ŴZ ′ |πω(Z)

. In
other words,

Corollary 2. Every positive state on F has a unique extension to an almost-positive state

ω, for any given value of the clock ω(Z) = t ∈ R. Conversely, every almost positive

state ω restricts to a positive relational state on Z ′ and hence a positive state on F at

time ω(Z).

Remark. One way to interpret the last condition in Definition 15 is to notice that it
requires fluctuations of Z to vanish. For example, we have (�ω Z)2 := ω(Z2)−ω(Z)2 =
0. Just like a time parameter in ordinary quantum mechanics, Z is sharply defined in such
a state, but it does not correspond to an evolving observable since Z is not an element
of F . As already noted in Sect. 2.4, the combination of almost-positivity and conditions
required for deparameterization prevent ω from being positive on the whole of A. The
new notion of an almost-positive state, introduced here, may therefore be considered a
maximal implementation of positivity in an internal-time setting, in which evolution is
defined with respect to an algebra element. According to Lemma 7, positivity of states
can be extended from observables (realized here by F) to time (Z ∈ Z ′), but not to the
full algebra A.

According to Lemma 10, the gauge flow S̄CH
(λ) generated by CH and mapped to

ŴZ ′ drags states from the subspace ŴZ ′ |πt
to the subspace ŴZ ′ |πt+λ

of gauge-fixed states.

Lemma 12. The gauge flow SCH
on Ŵ drags an almost-positive state ω to another

almost-positive state SCH
(λ)ω, such that SCH

(λ)ω(Z) = ω(Z) + λ.

Proof. Lemma 4 guarantees that the flow remains on ŴCH
. Since the adjoint action

of CH is a ∗-compatible derivation on Z ′, according to Lemma 2 the corresponding
flow maps states that are positive on Z ′ to other states that are positive on Z ′. For any
almost-positive ω, along the flow ωλ := SCH

(λ)ω we have

d

dλ
ωλ(Z) = ωλ( �DH Z) = 1.

Therefore, ωλ(Z) = ω(Z) + λ.
To prove that parameterization of Z is preserved along the flow, we follow the method

of Lemma 2 and define a function f A(λ) = ωλ(Z A) − ωλ(Z)ωλ(A) for each A ∈ A.
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Condition 3 of Definition 15 holds for ωλ if and only if f A(λ) = 0 for all A ∈ A.
Suppose all of the functions f A(λ′) = 0 for some λ′. Taking an arbitrary A ∈ A

d

dλ
ωλ(Z A)

∣

∣

∣

∣

λ=λ′
=

(

ωλ

(

Z �DH A
)

+ ωλ(A)

)
∣

∣

∣

λ=λ′

= ωλ′(Z)
d

dλ
ωλ(A)

∣

∣

∣

∣

λ=λ′
+

d

dλ
ωλ(Z)

∣

∣

∣

∣

λ=λ′
ωλ′(A)

= d

dλ
(ωλ(Z)ωλ(A))

∣

∣

∣

∣

λ=λ′
.

Consequently, d f A(λ)/dλ = 0 at λ = λ′ for all f A(λ). Since f A(0) = ω(Z A) −
ω(Z)ω(A) = 0 for all A ∈ A, it follows that { f A(λ) = 0,∀λ}A∈A is the solution to the
flow generated by CH . Hence ωλ(Z A) = ωλ(Z)ωλ(A) remains true everywhere along
the flow. ⊓⊔

Since Aobs is not available in general, there is no full quantum analog of Proposition 1.
But any available Dirac observable O ∈ Aobs is a valid observable with respect to any
almost-positive state:

Lemma 13. If O ∈ Aobs, ω(O O∗) ≥ 0 for any almost-positive functional ω with

respect to a deparameterization of CH by some (Z ,F).

Proof. Since O ∈ Aobs ⊂ A is also an element of A, the decomposition induced
according to Definition 13 by deparameterization implies that we can write it as O =
ACH + B for some A ∈ A and B ∈ Z ′. The fact that O is in the commutant of CH

implies [O, CH ] = [B, CH ]+ [A, CH ]CH = 0. The second term on the left-hand side is
in ACH , while Eq. (14) implies that the first term is in Z ′. Since the two subalgebras are
linearly independent, the two terms must vanish separately, implying that [B, CH ] = 0.
Because CH is not a divisor of zero in a single constrained system, for A ∈ A we have
that ACH = 0 implies A = 0, and therefore [A, CH ] = 0. These results also imply that
A∗ and B∗ commute with CH . Now suppose that ω is almost-positive with respect to
deparameterization of CH by Z , then

ω(O O∗) = ω
(

ACH CH A∗ + BCH A∗ + ACH B∗ + B B∗)

= ω
((

AA∗CH + B A∗ + AB∗) CH

)

+ ω
(

B B∗)

= ω
(

B B∗) ≥ 0

because B ∈ Z ′, using ω(AC) = 0.

This completes the proof of Proposition 2.

3.4. Example: parameterized particle. Let A be the polynomial algebra, generated by
complex polynomials in the basic elements Z , E , Ai , with i = 1, 2, . . . , M , and 1 (=:
A0). The generating elements are ∗-invariant, Z = Z∗, E = E∗ and Ai = A∗

i , and are
subject to commutation relations [Z , E] = i�1, [Z , Ai ] = 0 = [E, Ai ] and [Ai , A j ] =
i�

∑M
k=0 αk

i j Ak for some αk
i j ∈ C. This algebra is an example of an enveloping algebra

of a Lie algebra, which we equip with the ρ-topology of [24].
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For any M-tuple of integers �n = (n1, n2, . . . nM ), we define A�n = A
n1

1 A
n2

2 . . . A
nM

M ,

with A�0 := 1. The set of monomials {A�n Zm E l} is linearly independent and forms a
linear basis on A. Let this system be subject to a single constraint of the form

CH = E + h(Z , Ai ),

where h is a polynomial with an ordering such that h = h∗ and therefore CH = C∗
H .

Consider the clock (Z ,F), where F is the algebra generated by all complex polyno-
mials in just the elements Ai , and is therefore spanned by the linear basis of monomials
{A�n}. Z = Z∗ is given, and, since Z commutes with itself and generators Ai , any ele-
ment of Z ′ can be written as a linear combination of monomials of the form A�n Zm . The
relational observables of this clock are given by the projection πt (A) ∈ Z ′/(Z − t1)Z ′
for any A ∈ Z ′, interpreted as “A when Z = t .” Here ker πt = (Z − t1)Z ′, and it is
easy to see that no non-zero elements of (Z − t1)Z ′ are polynomials in generators Ai

alone, therefore F ∩ ker πt = {0} as required by Definition 9. For a basis monomial of
Z ′ and any t ∈ R

A�n Zm = A�n ((Z − t1) + t1)m

= A�n
m

∑

k=0

(

m

k

)

(Z − t1)k tm−k

= A�n tm + A�n
m

∑

k=1

(

m

k

)

(Z − t1)k tm−k .

The last sum lies in the ideal (Z − t1)Z ′, and, therefore, in the kernel of πt ; hence,

πt

(

A�n Zm
)

= πt

(

A�n tm
)

= tmπt (A�n) .

Clearly, {πt (A�n)} linearly spans Z ′/(Z − t1)Z ′ for any t ∈ R, so that πt (F) = Z ′/(Z −
t1)Z ′. The pair (Z ,F) satisfy all requirements for a quantum clock given in Definition 9.

We now confirm that (Z ,F) deparameterizes CH according to Definition 13. We
immediately see that [Z , CH ] = [Z , E] = i�1 as required. Since the expression for
any non-zero element of ACH in terms of the basis monomials of A includes at least
one term of the form A�n Zm E l with l �= 0, we infer Z ′ ∩ ACH = {0}. By substituting
E = CH − h(Z , Ai ), we can write any element of A as a polynomial in Z , CH , and Ai .
Using the commutation relations, a factor of CH can be iteratively moved to the right
whenever present, so that any A ∈ A can be written as

A = p0(Z , Ai ) + p(Z , CH , Ai )CH ,

for some polynomials p0 and p. The first term is in Z ′, while the second is in ACH , the
two sets therefore linearly generate the whole of A. It is also immediately clear here that
Z ′ ∪ {CH } algebraically generates A: iteratively moving every factor of CH to the right
we can write

A = p1(Z , Ai ) + p2(Z , Ai )CH + · · · + pN (Z , Ai )C
N
H .

According to Proposition 2 the flow generated by CH gives rise to a dynamical flow
on the fashionables. To see this explicitly, we note that any B ∈ Z ′ can be written as a
polynomial p(Z , Ai ), so that the adjoint action of CH on Z ′ is given by

[B, CH ] = [B, E] + [B, h] = i�
∂p(s, Ai )

∂s

∣

∣

∣

∣

s=Z

+ [p(Z , Ai ), h(Z , Ai )],
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both terms in the final expression are in Z ′. Since [A�n, E] = 0, restricting this to F ∈ F

we have

�DH F = 1

i�
[F, CH ] = 1

i�
[F, h(Z , A�n)].

The projection from Z ′ to F here has the explicit form

νt ◦ πt

(

A�n Zm
)

= νt

(

tmπt (A�n)
)

= A�n tm,

so that the commutator of two basis monomials projects as

νt ◦ πt

([

A�n1
, A�n2

Zm
])

=
[

A�n1
, A�n2

]

tm .

It follows that

�D′
H (t)F = 1

i�
[F, h(t, A�n)].

Therefore, this deparameterized example reduces the original constrained quantum sys-
tem to an unconstrained quantum system with degrees of freedom generated by the basis
{A�n}, driven by the time-dependent Hamiltonian h(t, A�n).

In this example, Aobs = C ′
H contains CH itself and the identity element 1. Any

element of Aobs which is not a linear combination of a power of CH and 1 is a constant
of motion of the (possibly time-dependent) Hamiltonian h. For most choices of a classical
polynomial hclass, constants of motion which are E-independent and fulfill {O, hclass} =
0, are generically non-polynomial, if they even exist in closed form [27,28]. (The system
may be non-integrable.) No quantization of such an observable can exist in our A, and the
available Aobs is incomplete. Even if one extends A, for instance by using deformation
quantization, in most cases of physical interest it is impossible to find a complete set of
Dirac observables. Nevertheless, we have shown that it is possible to fix the gauge relative
to Z in any such system and uniquely specify physical states by relational observables,
with the only requirement on h that h ∈ Z ′ and h∗ = h.

3.5. Physical vs. relational states. In Sect. 2.3 we defined physical states as orbits on
ŴCH

of the entire collection of gauge flows generated by ACH , such that they are positive
on the Dirac observables Aobs. In Sect. 3.3 we established that relational states associated
with a deparameterization of a constraint CH by a clock (Z ,F) are represented on ŴCH

by almost positive states of Definition 15. According to Lemma 13 each almost positive
state is in the orbit corresponding to some physical state of the constraint. Furthermore,
since time-evolution in Z is generated by CH , it is tangential to the gauge orbit so
that all almost positive states along a time-evolution correspond to the same physical
state. Deparameterization of Definition 13 interprets orbits of physical states (or, more
accurately, a single preferred flow along these orbits) as time evolution relative to a
physical clock. This relation leaves room for two important concerns.

First, some physical states may not be sampled by the deparameterization relative to
a given clock Z : It may happen that a physical orbit [ω]CH

does not contain any state
that parameterizes Z as in the third condition of Definition 15. Stated differently, there is
no guarantee that φ

(

[ω]CH

)

∩ ŴZ ′ |πt �= ∅ for some t ∈ R. While this concern warrants
further investigation, it does not immediately appear to be physically problematic: since
a clock is a physical part of the constrained system, the ability to assign simultaneous
definite values to the clock and its commutant should in general require special states. At
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present, we do not claim that every physical state can be captured by deparameterization
relative to a given clock.

Second, a given deparameterization may suffer from the analog of Gribov problems in
gauge theories if a physical state is sampled by multiple relational states, in other words,
if φ

(

[ω]CH

)

∩ŴZ ′ |πt contains more than one state for some t ∈ R. If this happens, each of
those states will give rise to a time-evolution relative to Z , and a single physical state will
be associated with multiple inequivalent evolving states on F . However only the states
that are positive on Z ′ have a physically useful relational interpretation (see discussion
in Sects. 2.4 and 3.3). Therefore this possibility constitutes an ambiguity of physical
relational states only if φ

(

[ω]CH

)

∩ ŴZ ′ |πt contains more than one state that is positive
on Z ′. An indication that such physical ambiguity is avoided by deparameterization
comes from the following consideration. One would expect that multiple intersections
of two ŴZ ′ |πt by the orbit φ

(

[ω]CH

)

would be generated by following a Z ′-positivity-
preserving gauge flow. From Eq. (16) (together with (13)), we see that the only gauge flow
that, when mapped onto ŴZ ′ , is generated by a ∗-compatible derivation, and therefore
preserves positivity on Z ′, is the one generated by CH itself. For this particular flow we
note the following result.

Lemma 14. Let CH be deparameterized by a clock (Z ,F). Then, each one-parameter

family of states in ŴZ ′ along the constraint flow generated by CH intersects each constant

time surface at most once.

Proof. Along the flow of CH we have dω̄λ(Z)/dλ = ω̄λ( �DH Z) = 1 �= 0. Therefore,
ω̄λ(Z) is monotonic in λ, and any two states ω̄λ1 and ω̄λ2 with λ1 �= λ2 along this flow
assign different values to Z − t1 ∈ ker πt for any given t ∈ R. It is, therefore, not
possible for both states to belong to the same constant time surface ŴZ ′ |πt . ⊓⊔

4. General Polynomial Constraints

A general constraint element C is not immediately of the form required for deparame-
terization to exist. While the kinematical algebraic structure of most model theories that
are of interest to quantum gravity and quantum cosmology possesses clocks Z that are
not constant along the constraint flow, that is, [Z , C] �= 0, the condition [Z , C] = i�1

(or [Z , C] = a1 with a ∈ C) is not usually satisfied. For instance, most Hamiltonian
constraints in such systems are quadratic in momenta, resulting in [Z , [Z , C]] �= 0 for a
clock Z , as in the scalar example of cosmological models with energy density (2). There
are also examples of constraints for which [Z , C] ∈ Z ′ but not a multiple of the unit.

4.1. Linearization and cancellation. In some of these cases, it may be possible to “lin-
earize” the constraint by finding a suitable CH ∈ A which satisfies all three criteria of
a deparameterization with respect to Z and has a gauge flow and a constraint surface
related to those of C : If N ∈ A is such that C = NCH and CH as in Definition 13,
we have AC ⊂ ACH

and therefore ŴCH
⊂ ŴC . Moreover, ω ∼C ψ if ω ∼CH

ψ . If N

is invertible in A, ŴCH
= ŴC and ∼CH

=∼C , but this case is too restrictive for most
practical purposes.

Example. The constraint C = E2−h(Ai )
2 with Z -independent h = h∗ can be factorized

as C = (E−h)(E +h) = NCH with N = E−h and CH = E +h. We have [N , CH ] = 0,
but N does not have an inverse. However, if ω ∈ ŴCH

and ω(E) �= 0 it follows that
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ω(N ) �= 0, in which case it may be of interest to study evolution of the state with respect
to CH . More generally, we define C± = E ± h(Ai ) such that

C = C+C− = C−C+.

Since either ω(AC+) = 0 or ω(AC−) = 0 also imply ω(AC) = 0, every left solution
of C± is also a left solution of C . Therefore both constraint surfaces ŴC± are contained
within the constraint surface ŴC . Furthermore, normalized combinations of states from

ŴC+ and ŴC− also give us solutions to C . In particular, for any a
(+)
i , a

(−)
i ∈ C, ω

(+)
i ∈

ŴC+, and ω
(−)
i ∈ ŴC−

ω =
∑

i

a
(+)
i ω

(+)
i +

∑

i

a
(−)
i ω

(−)
i

is a left solution of C , which is normalized provided that
(

∑

i a
(+)
i +

∑

i a
(−)
i

)

= 1.

In this example the two subsets ŴC± are not disjoint. A solution to both constraint
factors must satisfy ω(AC+) = 0 and ω(AC−) = 0 for any A ∈ A. These conditions
are equivalent to requiring that both ω(AE) = 0 and ω(Ah) = 0 for all A ∈ A, since

ω(AE) = ω

(

A
1

2
(C+ + C−)

)

= 1

2
(ω(AC+) + ω(AC−)) = 0,

and similarly

ω(Ah) = ω

(

A
1

2
(C+ − C−)

)

= 1

2
(ω(AC+) − ω(AC−)) = 0.

Conversely, ω(AE) = 0 and ω(Ah) = 0 imply ω(AC+) = 0 and ω(AC−) = 0.
The only restriction on the values assigned by a kinematical state ω ∈ Ŵ, in addition to
continuity, is normalization ω(1) = 1. It is therefore possible to satisfy both ω(AE) = 0
and ω(Ah) = 0 for all A, unless AE + Bh = 1 for some A, B ∈ A. No such A and B

exist within our polynomial A, hence the intersection ŴC+∩ŴC− is non-empty. However
if we consider only the states that are positive on Z ′, as required by Definition 15, there
may be additional restrictions: suppose h = F F∗ +ǫ01 for some F ∈ F and real ǫ0 > 0.
Then, for any normalized state that is positive on F

ω(h) = ω
(

F F∗) + ǫ0 ≥ ǫ0 > 0,

which means ω(h) = 0 cannot be satisfied. Hence depending on h the sets of almost-
positive states with respect to internal clock Z defined by the two constraint factors may
be disjoint.

Using the original constraint C , the orbits are generated by the subalgebra AC , as
opposed to AC± if we use one of the factors instead. Neither of the two factors has
an inverse already contained within A (the only element with an explicit inverse in A

here is 1). Thus AC is a proper subset of AC±, and hence the original orbits of C are
contained within the larger orbits of C±. This guarantees, via Lemma 4, that a physical
state of the original constraint C is either entirely inside ŴC± or entirely outside of it.
However, some gauge flows generated by the factor constraints C± are not gauge orbits
of C and can potentially link distinct gauge orbits of the original constraint C . Therefore,
a physical state with respect to C± generally corresponds to a region of the space of
physical states with respect to the original constraint C .
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This complication would not arise if N had an inverse in A. However, even if N is
non-invertible there are in general some states on which its action can be “reversed” in
the following sense.

Definition 16. Left multiplication of A ∈ A can be canceled in ω ∈ Ŵ if for any B ∈ A,
ω(G AB) = 0 for all G ∈ A implies ω(G B) = 0 for all G ∈ A.

This state-by-state condition differs from the algebraic cancellation property. In our
concrete example, only the zero element is a divisor of zero in A. However, even though
C B = 0 implies B = 0, left multiplication by C cannot be canceled in any of its left
solutions ω ∈ ŴC . Setting B = 1, we get ω(GC1) = ω(GC) = 0 for all G ∈ A,
which is not equivalent to ω(G1) = 0 for all G ∈ A, since setting G = 1 would violate
normalization.

Definition 17. A constraint C is deparameterized by factorization with respect to an
internal clock Z , if there are N , CH ∈ A, such that (i) C = NCH , (ii) there is at least
one state ω ∈ ŴCH

in which left multiplication by N can be canceled, and (iii) CH = C∗
H

is deparameterized by (Z ,F).

In our concrete example, if we deparameterize our system using C+ as the constraint,
we consider only the states ω ∈ ŴC+ in which the left multiplication of C− can be
canceled. (In particular, this means that ω /∈ ŴC− .)

Lemma 15. For a constraint that is deparameterized by factorization as C = NCH , for

any A ∈ Aobs of C and ω ∈ ŴCH
such that left multiplication by N can be canceled in

ω, the value ω(A) is invariant along all of the gauge flows generated by CH .

Proof. We first observe that, since [A, C] = 0, in particular ω(B[A, C]) = 0 for any
B ∈ A. Which means

0 = ω (B[A, NCH ])
= ω (B N [A, CH ]) + ω (B[A, N ]CH ) = ω (B N [A, CH ]) .

Since this holds for any B, cancellation of left multiplication by N in ω implies that

ω (B[A, CH ]) = 0, for all B ∈ A.

The above property holds along all of the gauge flows generated by CH . To see this
let us fix an arbitrary G ∈ A and, following the method of Lemma 2, define functions
fB(λ) = SGCH

ω (B[A, CH ]) for each B ∈ A. Clearly, fB(0) = 0 for all B ∈ A.
Suppose all functions fB(λ′) = 0 for some λ′, then

i�
d fB

dλ

∣

∣

∣

∣

λ=λ′
= i�

d

dλ

(

SGCH
(λ)ω (B[A, CH ])

)

∣

∣

∣

∣

λ=λ′

= SGCH
(λ′)ω (B[A, CH ]GCH − GCH B[A, CH ])

= SGCH
(λ′)ω (B[A, CH ]GCH ) − fGCH B(λ′) = 0,

where we used the fact that SGCH
(λ′)ω ∈ ŴCH

according to Lemma 4. We see that
{ fB(λ) = 0,∀λ} is the solution of the dynamical flow generated by GCH that agrees
with our initial conditions. Since G was arbitrary, SGCH

(λ)ω (B[A, CH ]) = 0 for all
B, G ∈ A and λ ∈ R.
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Using the above result, the value of ω(A) along the gauge flow generated by BCH ,
with arbitrary B ∈ A, varies according to

i�
d

dλ

(

SBCH
(λ)ω(A)

)

= SBCH
(λ)ω([A, BCH ])

= SBCH
(λ)ω (B[A, CH ]) + SBCH

(λ)ω ([A, B]CH ) = 0, for all λ.

⊓⊔

Therefore, using gauge flows generated by CH does not affect the values assigned
to the set of Dirac observables of the original constraint C , so long as we use states on
which left multiplication of the factor N can be canceled. In this section’s example, the
roles of C+ and C− can be reversed since the two factors commute.

In principle this construction also applies to a constraint that can be written as a
product of non-commuting factors, as one would expect in the case of time-dependent
Hamiltonians h(Ai , Z). However, factorizing such a constraint is much more compli-
cated.

Example. If we factorize a constraint of the form C = E2 − H2 with [E, H ] �= 0, we
have C �= (E − H)(E + H), but we can try to find X ∈ Z ′ such that C = (E − H +
X)(E + H − X). Multiplying the two factors, we have

C = E2 − H2 − X2 + [E, H ] − [E, X ] + [X, H ] + 2H X

provided that

2H X = [H, E] + [H, X ] + [E, X ] + X2 .

This equation has a formal power-series solution X = ∑∞
n=1(i�)n Xn with

2H X1 = [H, E]
i�

and

2H Xn = [H, Xn−1]
i�

+
[E, Xn−1]

i�
+

n−1
∑

a=1

Xn−a Xa .

We can split X = 1
2
(X+ + X−) into its ∗-invariant and anti-∗-invariant contributions,

X+ = 1
2
(X + X∗) and X− = 1

2
(X − X∗), and define

H ′ = H − X+ and E ′ = E − X− .

As in the example with commuting factors, H ′∗ = H ′ and [Z , E ′] = [Z , E] = i�1 but
E ′∗ �= E ′. There are therefore almost-positive states, but the gauge flow of CH = E ′+H ′
does not induce a ∗-compatible derivation, unless it so happens that X− = 0.

For a systematic analysis of suitable factorizations, we need to carefully consider the
adjointness conditions imposed on the factors of the constraint.
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4.2. Adjointness relations. The adjointness relation C∗ = C imposed on constraints
guarantees that Aobs ⊂ A inherits a ∗-relation, which in turn makes it possible to define
physical states as positive linear functionals onAobs. This condition also restricts possible
factorization choices that could be applied to linearize constraints. Suppose a constraint
C = C∗ can be written as C = NCH , where N can be algebraically canceled within
A and CH = C∗

H allows a deparameterization with respect to Z∗ = Z ∈ A. Then C

can be deparameterized with respect to Z by factorization, using the same method as we
applied to C = C−C+ to cast a subset of its physical states as dynamical evolution in Z .
Under these conditions, CH uniformizes the flow generated by C : Since [Z , C] = i�N ,
we may consider N as the “non-constant rate” of evolution determined by C , while
evolution with respect to CH has constant rate.

In order to satisfy C = C∗ we need NCH = CH N∗, which can be rewritten as

[N , CH ] = CH (N∗ − N ). (23)

If the non-constant rate is required to be real when evaluated in a positive state ω, we
need N∗ = N . In this case, (23) implies [N , CH ] = 0, such that the rate is, in fact,
constant on solutions of the constraint because N is a constant of motion with respect
to CH . Conversely, if [N , CH ] = 0 we obtain (N − N∗)CH = 0, and if CH can be
algebraically canceled within A, we get N = N∗. These cases constitute two sufficient

conditions for factorization to result in a deparameterization.

Provided that the clock is part of a canonical pair, [Z , E] = i�1, as in the example
from the previous subsection, the most general form of a factorizable constraint is C =
N (E + H), where H = H∗ commutes with Z , and condition (23) holds for CH = E + H .
Further properties depend on the E-dependence of C .

4.2.1. Non-relativistic constraints

Definition 18. A constraint C ∈ A is non-relativistic of rate N ∈ A if there is a canonical
generator E ∈ A conjugate to Z ∈ A, [Z , E] = i�1, such that [Z , C] = i�N ∈ Z ′.

Definition 19. A non-relativistic constraint C ∈ A is of constant flow rate N ∈ A if
there is a CH ∈ A such that C = NCH and [N , CH ] = 0.

Lemma 16. Every deparameterizable non-relativistic constraint is of constant flow rate.

Proof. Since C∗ = C and Z∗ = Z imply [Z , C]∗ = −[Z , C], we immediately obtain
N∗ = N from N = [Z , C]/(i�). Using this in (23), we have [N , CH ] = 0. ⊓⊔

Remark. The condition [N , CH ] = 0 of constant flow rate shows the restrictive nature
of adjointness conditions: Only constants of motion with respect to CH are allowed as
factors of E in non-relativistic constraints. Written as [N , E] = −[N , H ] if CH = E+H ,
the condition amounts to a partial differential equation for N as a function of Z and the
remaining canonical variables.

Lemma 17. If a non-relativistic constraint C is deparameterizable, it is of the form

C = A1 E + A0 such that A1 = A∗
1 and [A0, A1] = A1[A1, E].

Proof. Since the constraint is non-relativistic, it is linear in E and can be written as
C = A1 E + A0 with A1 and A0 such that [Z , A1] = [Z , A0] = 0. The conditions
C = C∗ and Z = Z∗ imply that [Z , C]∗ = −[Z , C], and thus A1 = A∗

1. Since A1 plays
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the role of the factor N , it must be a left factor of A0: There must exist H ∈ A such that
A0 = A1 H and

C = A1(E + H).

In order for C to be deparameterizable, according to Lemma 16, the flow rate A1 = N

must be constant with respect to CH = E + H . Therefore, [A1, E] = −[A1, H ], which,
upon left multiplication with A1, implies A1[A1, E] = −[A1, A0] because A0 = A1 H .
⊓⊔

Remark. The condition H = H∗, obtained from C∗
H = CH for a deparameterizable

constraint, implies

A∗
0 = H A1 = A0 + [A1, H ] .

Therefore, A0 in C = A1 E + A0 is not self-adoint unless A1 commutes with H .

Remark. If, in spite of Lemma 16, we try to factorize a constraint of non-constant
flow rate, we end up with a non-self-adjoint CH . To see this, consider a non-relativistic
constraint of the form C = 1

2
(B1 E + E B1) + B0 with B0 = B∗

0 and invertible B1 = B∗
1 ,

we can write

C = B1 E + B0 − 1

2
[B1, E]

= B1

(

E +
1

2
(B−1

1 B0 + B0 B−1
1 ) +

1

2
[B−1

1 , B0] − 1

2
B−1

1 [B1, E]
)

.

Defining N = B1,

H = 1

2
(B−1

1 B0 + B0 B−1
1 )

and

E ′ = E +
1

2
[B−1

1 , B0] − 1

2
B−1

1 [B1, E] ,

we can write C = NCH with CH = E ′ + H . It follows that H = H∗, and [Z , E ′] =
[Z , E] = i� since [Z , B1] = 0 and [Z , B0] = 0 for a non-relativistic constraint.
However,

E ′∗ = E − 1

2
[B−1

1 , B0] +
1

2
[B1, E]B−1

1 �= E ′

and therefore C∗
H �= CH . For ω ∈ ŴCH

, we have ω(E ′) = −ω(H) ∈ R. If ω is almost-
positive, this equation is consistent even though E ′ �= E ′∗ while H∗ = H : because
E ′ �∈ Z ′, an almost-positive state may take on a real value in a non-self-adjoint E ′.
However, the gauge flow of CH �= C∗

H does not induce a ∗-preserving derivation on any
fashionable algebra F ⊂ Z ′ because, in general, [ f, E ′] �= 0 for f ∈ F unless B0 and
B1 are multiples of the unit.
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4.2.2. Relativistic constraints

Definition 20. A constraint C is relativistic if there is a canonical generator E conjugate
to Z , [Z , E] = i�1, such that 0 �= [Z , [Z , C]] ∈ Z ′.

A relativistic constraint that is deparameterizable by factorization has the form

C = (N1 E + N0)(E + H) = N1 E2 + (N0 + N1 H)E + N1[E, H ] + N0 H

where H∗ = H , and [Z , N1] = [Z , N0] = [Z , H ] = 0. Using C∗ = C and Z = Z∗,
we have

(

1

i�

[

Z ,
1

i�
[Z , C]

])

=
(

1

i�

[

Z ,
1

i�
[Z , C]

])∗
,

which quickly yields N1 = N∗
1 . The flow rate of C with respect to CH = E + H is given

by N1 E + N0, such that C = NCH . In contrast to linear or relativistic constraints, the
flow rate depends on E .

Lemma 18. If a relativistic constraint C that is deparameterizable by factorization is

of constant real flow rate N, it is of the form C = NCH with N = N1 E + N0 and

CH = E + H such that

N∗
0 = N0 + [N1, E] , (24)

[N1, E] + [N1, H ] = 0, (25)

and

N1[H, E] = [N0, E] + [N0, H ] (26)

Proof. For real flow rate, N = N∗ implies N∗ = E N1 + N∗
0 = N and therefore (24).

Constant flow rate, [N , CH ] = 0, results in

0 = ([N1, E] + [N1, H ]) E + N1[E, H ] + [N0, E] + [N0, H ]. (27)

Taking a commutator with Z on both sides, only the term proportional to E survives
giving us (25). Substituting this back into (27) results in (26). ⊓⊔

The three conditions of Lemma 18 together are sufficient to make the quadratic
constraint deparameterizable by factorization.

Lemma 19. A relativistic constraint with real constant flow rate N = E + N0 is of the

form C = Ẽ2−h such that Ẽ∗ = Ẽ and h∗ = h as well as [Z , Ẽ] = i�1 and [Z , h] = 0.

Proof. A relativistic constraint with flow rate N = E + N0, using N1 = 1 in terms
Lemma 18, can be written as C = E2 + A1 E + A0, where [Ai , Z ] = 0. Using the
notation of Lemma 18,

A1 = N0 + H and A0 = [E, H ] + N0 H . (28)

We have A∗
1 = A1 because N∗

0 = N0 from Eq. (24). Equation (25) is trivially satisfied,
while (26) becomes

[H, E] = [N0, E] + [N0, H ] . (29)

We rewrite

C =
(

E2 +
1

2
(A1 E + E A1) +

1

4
A2

1

)

− 1

4
A2

1 +
1

2
[A1, E] + A0
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=
(

E +
1

2
A1

)2

−
(

1

4
A2

1 − 1

2
[A1, E] − A0

)

= Ẽ2 − h

setting h = 1
4

A2
1 − 1

2
[A1, E]− A0 and Ẽ = E + 1

2
A1. Using (28) and (29), we compute

h = 1

4
A2

1 − 1

2
[N0, E] +

1

2
[H, E] − N0 H

= 1

4
A2

1 − 1

2
[N0, E] +

1

2
([N0, E] + [N0, H ]) − N0 H

= 1

4
A2

1 − 1

2
(N0 H + H N0)

such that [Z , h] = 0. By inspection, h∗ = h as well as Ẽ∗ = Ẽ . Moreover, since

[Z , A1] = 0, we have [Z , Ẽ] = [Z , E] = i�1. ⊓⊔
Lemma 20. A relativistic constraint of the form C = (E + g)2 − h, such that g∗ =
g, h∗ = h, and [Z , g] = [Z , h] = 0, is deparameterizable by factorization only if

[E + g, h] = 0.

Proof. The factorized version of such a constraint must be of the form

C = (E + N0)(E + H) = E2 + (N0 + H)E + [E, H ] + N0 H,

which we compare with

(E + g)2 − h = E2 + g2 + 2gE + [E, g] − h.

Taking a commutator with Z and equating the two expressions yields g = 1
2
(N0 + H).

Using this result to eliminate g and setting the two expressions equal gives

[E, H ] + N0 H = 1

4
(N0 + H)2 +

1

2
[E, N0] +

1

2
[E, H ] − h.

This expression can be rearranged to solve for h in terms of H , N0, and their commutators
with E

h = 1

2
([H, E] + [E, N0]) +

1

2

(

N 2
0 + H2 + 2N0 H − [N0, H ]

)

− N0 H.

We combine the first two terms using Eq. (26) (with N1 = 1):

h = 1

2
[N0, H ] +

1

4
N 2

0 +
1

4
H2 − 1

2
N0 H − 1

4
[N0, H ]

= 1

4

(

N 2
0 + H2 − 2N0 H + [N0, H ]

)

= 1

4
(N0 − H)2 .

Now consider the commutator

[E + g, N0 − H ] = [E +
1

2
(N0 + H), N0 − H ]

= [H, E] + [E, N0] − 1

2
[N0, H ] +

1

2
[H, N0]

= [N0, H ] + [H, N0] = 0,
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where in the final equality we once again used (26). This result immediately implies

[E + g, h] = [E + g,
1

4
(N0 − H)2] = 0

as a necessary condition for our constraint to be deparameterizable by factorization. ⊓⊔

Example. We assume that h =
√

h
2

has a square root
√

h =
√

h
∗

in A. Comparison of
the two constraint forms results in

g = 1

2
(N0 + H), and

√
h = 1

2
(N0 − H).

The factorizability condition (26) now gives

2[E,
√

h] = [
√

h, g] − [g,
√

h],

or

i�
∂
√

h

∂ Z
= [

√
h, g]. (30)

For example, in a two-component system with canonical generators [Z , E] = [q, p] =
i�1, setting

√
h = p +

1

2
(q2 − Z2), and g = Z(q − Z),

satisfies Eq. (30) and leads to the factorization

C = (E + Z(q − Z))2 −
(

p +
1

2
(q2 − Z2)

)2

=
(

E + p +
1

2
q2 − 3

2
Z2 + q Z

) (

E −
(

p +
1

2
(q − Z)2

))

.

s this example demonstrates, in general a constraint C ∈ A has to be of a specific form
in order for a deparameterization and therefore evolution with respect to a gauge section
to exist. This result showcases the power of our general approach to quantum dynamical
reduction. The restrictions of the type found in Lemmas 18–20 have not been anticipated
by the standard method of deparameterization on a fixed Hilbert space, which treats each
specific scenario individually and has mainly been applied to time-independent systems
in which C = NCH , where N and CH commute. The additional restrictions derived
here are the consequence of the inclusion of time dependence from the outset, as well as
the general algebraic treatment that is not tied to a specific Hilbert-space representation.
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