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An experimental study was conducted of particle diffusion within a porous bed when exposed to oscil-
latory flow. The particle oscillates up and down within the porous bed in response to the oscillatory flow,
but also becomes intermittently stuck for time intervals of varying duration. The combination of oscillat-
ing flow and random hindering of the particle motion by the porous bed leads to a diffusive process called

oscillatory diffusion. A variety of statistical measures are used to characterize the particle diffusion under
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the oscillatory flow. These measures show that the experimental data exhibit characteristics of both clas-
sical diffusive processes as well as oscillatory processes. The particle hold-up time duration was found to
be well fit by a log-normal distribution for all experimental cases examined. A simple stochastic model
that captures the key features of the oscillatory diffusion process is shown to yield statistical measures
that compare well with experimental data.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion of particulate matter in a porous medium is important
in a number of different applications. This topic is of particular
interest for problems involving biological materials, such as tis-
sues, bones, and polymeric films, which at small scales appear as
porous networks of connected structures. Drug-encapsulated lipo-
somes and nanoparticles can be used for targeted drug delivery to
tissues and tumors. A second application involves delivery of
antibiotic chemicals to bacterial colonies within biofilms. Lipo-
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somes, nanoparticles and lipid-polymer hybrid nanoparticles, with
particle sizes below 100 nm, have been found to be effective for use
as carriers (Forier et al., 2014a, 2014b; Li et al., 2015; Cheow et al.,
2011; Stewart, 2003; Peulen and Wilkinson, 2011). While a biofilm
appears as a gel-like continuum at a large scale, at the scale of a
10-100 nm particle it appears instead as a porous medium formed
by a network of connected proteins, called extracellular polymeric
substances (EPS). A third application area involves particle diffu-
sion through soil via groundwater transport. This problem is of
particular significance in determining the transport of microplas-
tics in the soil, and in estimating the subsequent exposure of soil
microbiome to these small plastic particles (da Costa et al., 2019;
Hodson et al., 2017; Rillig et al., 2019).
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Enhancement of particulate diffusion in a porous medium by
acoustic excitation has been demonstrated in several previous
experimental studies. For instance, ultrasound has been shown to
be effective for directing motion of the nanoparticles onto a speci-
fic biological tissue or for triggering liposome bursting and subse-
quent antibiotic release (Tiukinhoy-Laing et al., 2006; Paul et al.,
2014; Schroeder et al., 2009; Huang, 2008). Experiments reported
by Ma et al. (2015) found that low-intensity ultrasound signifi-
cantly enhances transport of liposomes into an alginate gel, includ-
ing both the liposome transport from solution to the gel outer
surface and liposome penetration into the gel. In a follow-up study
of diffusion of 20 nm and 100 nm diameter particles in an agarose
hydrogel subject to ultrasound, Ma et al. (2018) performed a
detailed experimental study that reported significantly enhanced
diffusion coefficient in the presence of ultrasound in comparison
to the ambient molecular diffusion coefficient. The acoustic excita-
tion was observed in this study to increase the effective diffusion
coefficient by between 74 and 133%, depending on the nanoparti-
cle size.

Enhancement of diffusion processes by acoustic excitation in a
packed bed of glass spheres was examined by Vogler and
Chrysikopoulos (2002) for solute diffusion and by Thomas and
Chrysikopoulos (2007) for particle diffusion. The experiments of
Thomas and Chrysikopoulos (2007) examined flow through a
packed bed of spheres and measured concentration of a tracer par-
ticle at the bed outlet versus time. Acoustic excitation was
observed to decrease the time required for observation of the con-
centration peak (i.e., to increase the transport speed of particles
through the bed) by about 7%, but not to significantly change the
shape of the concentration variation function. Since both acoustic
streaming and acoustic radiation pressure would also increase par-
ticle advection speed through the bed (Fogler and Lund, 1973), the
respective role of diffusion versus these other particle transport
mechanisms is not clear.

A one-dimensional stochastic model that attempted to explain
enhancement of particle diffusion by acoustic excitation in a por-
ous medium was proposed by Marshall (2016). The model demon-
strates that the combination of particle oscillation via an imposed
oscillatory flow field (e.g., from the acoustic excitation) and a ran-
dom hindering of the particle motion (e.g., via interaction of the
particles with the porous medium) results in a diffusive process,
which is termed oscillatory diffusion. In the limit of many time
steps, the stochastic model predictions reduce to a solution of
the standard diffusion equation. An expression for the diffusion
coefficient in terms of the stochastic model parameters was
obtained that leads to excellent agreement between predictions
of the stochastic model and the one-dimensional diffusion
equation.

The objective of the current paper is to improve fundamental
understanding of oscillatory diffusion by examining the detailed
motions of individual particles subject to oscillatory flow in a
packed bed of spheres. In order to measure diffusion dynamics at
the individual particle level, we examined oscillatory motion of
small tracer particles in a packed bed of spherical beads using a
refractive index-matching immersion in pure glycerin to make
the beads transparent. The particles were visually observed to
move in an oscillatory manner within the bed, while also becoming
intermittently trapped for varying periods of time via a filtration
mechanism. Traces of individual particles were ensemble-
averaged to obtain statistical measures that describe the problem
dynamics. Both traditional statistical measures as well as a new
measure developed to highlight the intermittent hindering of the
particle motion were examined. The experimental apparatus and
method are described in Section 2. The statistical analysis methods
used for the experimental data is described in Section 3. The exper-
imental results are presented in Section 4. A stochastic model that
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captures the essential dynamics of the oscillatory diffusion process
is described in Section 5, along with comparison of the stochastic
model predictions with experimental data. Conclusions are given
in Section 6.

2. Experimental method

Experiments examining particle diffusion in a quasi-two-
dimensional bed of spheres were conducted using the apparatus
shown in Fig. 1. The system used a variable-speed motor to oscil-
late a piston, causing an oscillatory sloshing flow through the por-
ous bed. Details of the motor-piston assembly are shown in Fig. 1b.
The motor shaft rotation frequency (Iron Horse MTR-P50_3BD18)
was controlled using an AC drive (Automation Direct GS1-10P5).
The shaft frequency was reduced with a worm gear box (Iron Horse
WG-175-005-H) with gear ratio of 5. A 10.2 cm pulley on the motor
shaft was connected to a similar pulley on a second shaft (the
‘bearing shaft’, identified as K in Fig. 1b) via a 140 cm V-belt. A
crank-and-piston assembly was used to convert the rotational
motion of the bearing shaft to vertical motion of the piston. The
piston was connected to the rotating bearing shaft via a 19 cm long
drive rod (M in Fig. 1b), which was connected to the bearing shaft
via an amplitude plate (L in Fig. 1b). The oscillation amplitude was
adjusted by moving the connection point of the drive shaft
between five available holes drilled into the amplitude plate,
which were located at radial distances of 1.3, 2.5, 4.1, 5.8 and
7.4 cm (+0.1 cm) from the center of rotation of the bearing rod.
The drive rod was attached using a ball joint to a vertical 61 cm
long threaded piston rod that connected to the piston. The piston
was formed from two 1.3 cm PVC end caps and a 1.3 cm coupling,
which were sanded to fit inside the 2.5 cm PVC pipe. The threaded
piston rod was passed through the piston and was held in place
with nuts on each end.

Supports were placed below the system and along the sides to
hold the system rigidly in place. A PVC ball valve (D in Fig. 1a)
and exit tube were installed to empty the fluid from the system.
The 2.5 cm pipe was connected to a 2.5 cm flange (E in Fig. 1a),
which was bolted onto the test apparatus. The test apparatus
was formed of two polycarbonate sheets with sides formed of
oak boards. The test section measured 7.6 cm wide, 1.9 cm thick
and 40.6 cm tall, with an additional 10.2 cm long transition section
that connects the test section to the flange. The sides of the poly-
carbonate sheets were coated with 6 mm diameter glass hemi-
spheres. In-between the two layers of hemispheres were placed
three layers of borosilicate glass beads with diameter dpe,q = 6
mm. Pure glycerin was used as the working fluid, which was
selected in order to match refractive index with the borosilicate
glass beads, so that the glass beads were transparent in the glyc-
erin. The glycerin had density p,, = 1.26 g/cm® and viscosity
Ug, = 0.95 Pa-s.

The porosity of the packed bed in the test section was measured
by filling the bed with water to a specified height. We then added
300 ml of additional water to the bed and measured the height
change Ah of the water in the bed. Dividing the volume of the
added water by the channel volume AAh, where A is the channel
cross-sectional area, yields the bed porosity ¢. The porosity mea-
surement was repeated 10 times, from which the average and stan-
dard deviation were computed to be ¢ = 0.334 + 0.006.

The oscillation amplitude y,,,, is defined as the amplitude that a
passive fluid particle would nominally travel within the porous
medium in response to the oscillating motion of the piston. Oscil-
lation amplitude was calibrated by first filling the liquid to a height
over the top of the porous bed and measuring the amplitude of
oscillation yp,;, of the fluid interface under the given piston oscilla-
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Fig. 1. Schematic diagrams of the experimental apparatus. (a) Overview of apparatus showing [A] piston rod, [B] fluid level, [C] piston, [D] valve, [E] flange, [F] test section, [G]
transparent beads, and [H] moving test particle. (b) Close-up of the drive mechanism, showing [I] variable-speed motor, []J] belt, [K] bearings and bearing shaft, [L] bar to set
oscillation amplitude, [M] drive shaft, [N] piston shaft, and [O] piston. (c) Close-up of the test section.

tion amplitude and frequency. The nominal oscillation amplitude
of a particle within the porous bed is then obtained as

yamp:yﬂuid/(p (1)

The nominal particle motion within the porous bed (with no
particle hindering) is therefore given by the equation

yp(t) = yampSin(wt) +Yo (2)

where w = 27f . and f,,. is the oscillation frequency. The nominal
oscillating velocity can be obtained by taking the time derivative of
(2), giving

Up(t) = UampCOS(E) (3)

where the amplitude of the velocity oscillation is given by
Vamp = @ Ygpp- The parameters Y, Vamp and f o, are used for nondi-
mensionalization of the experimental data.

Each experimental run examined motion in the porous bed of a
single moving test particle. The test particle was placed approxi-
mately mid-depth in the porous bed at the start of each run using
a 25.4 cm long hypodermic needle (14 gauge). Each run was
repeated nominally 20 times in order to obtain an ensemble of
samples. Two sizes of test particles were used in the experiments.
The first particle type consisted of fluorescent red polyethylene
spheres (Cospheric) with diameter d; = 0.52 4+ 0.03 mm, sphericity
P, =0.999996, and density p, = 1.22 + 0.03 g/cm>. The second
particle type consisted of black acrylic spheres (Avashop) with
diameter d, = 1.3 & 0.1 mm, sphericity ¥, = 0.996, and density
p, = 1.06 +0.02 g/cm®. None of the test particles were observed
to move a measurable amount when suspended in a bath of sta-
tionary glycerin. The particle diameter was measured using an
optical microscope (Nikon LABOPHOT-2), from which we obtained
both the mean and root-mean-square (rms) values for a sample of
25 particles of each type.

The particle density was obtained by measuring the time
required for particles to settle a distance of 6 cm at terminal veloc-
ity vr in a beaker of water, which yielded a terminal velocity of 3.
37 £ 0.02 cm/s and 5.10 + 0.08 cm/s for a sample of 20 particles of
type 1 and 2, respectively. The particle density was obtained by an
equilibrium condition between drag and gravitational force, giving

3G,
pp/pwf‘l"_@UT (4)

where for a sphere with Reynolds number Re, = p,, dvr/p,, in the
range Re, < 800, the drag coefficient can be approximated using
the Schiller-Naumann (1933) correlation as

24

Cp = =—(1 + 0.15Re%%87 5
0= g, (1 0.15RE) (5)
The particle Reynolds number at terminal velocity in water was
obtained as 19.96 and 74.49 for particles of type 1 and 2, respec-
tively. The uncertainty in the density measurement was estimated
from the measured uncertainties in diameter and terminal veloc-

ity, od and svr, using the standard variance equation

ap,\>2 ap,\>2 i
(Sr) o+ (52) (MT)Z} ©
The test particles were photographed using a video camera
(Sony Handycam) at 30 frames per second, with lighting provided
by a 50 W LED flood light. The camera was mounted with view-
point orthogonal to the side of the polycarbonate sheet on the side
of the test section. Fiji particle tracking software, with the plug-in
TrackMate, was used to track the motion of the moving particles
during each experimental run. This software identifies the test par-
ticle at each frame of the video sequence and outputs the location
in a coordinate frame. Because we experienced some gaps and
errors in the automated particle tracking, we also manually tracked
particle paths for each run. The particle location data was used to
compute statistical measures of the particle diffusion, as discussed
in Section 3.

opy =

3. Data analysis

The output of the particle tracking software is a string of data
indicating the particle position y(t) at times t;, i = 1,2,3,4,..., in
the vertical direction, denoted by y;. The statistical measures of a
diffusion process change as functions of time. The averages in these
statistics are taken over repeated realizations of the process (or dif-
ferent experimental ‘runs’). We call each of these runs a string, and
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refer to the entire set of strings for a given set of parameter values
as an ensemble. The ensemble average f;(t) = (f,(t)); and the time

average fn = (f,(t)); of some quantity f(t) are defined by

Ng
fE(t) = (fn(t»E = NLE nX::]fn(t)

Fo = (Fal®))p =1 [ofalt) dt

where subscript n denotes the string number, N is the number of
strings forming the ensemble, and (0,T) is the time interval over
which the data is taken. With this terminology, we define the mean,
variance, skew and kurtosis of the particle position as follows:

(7)

Ve(t) = ((O) (8a)
Yoarlt) = {0 = ye(OF), (8)
Vaenlt) = (VO =ye(O), (80)
Vi) = (/(®) = ye(0)])*), (8d)

The mean square deviation (MSD) is based on the difference
between the measured signal y(t) and a prescribed predicted signal
¥,(t), and it is defined by

yuso = (WO =y, OF) ), 9)

For a normal random walk process the predicted value might be
set to the initial particle height y,, whereas for oscillatory diffusion
the predicted value might be set to an oscillating function of the
form (2).

The autocorrelation function p(t) provides an indication of the
correlation between a signal at the current time and the same
function at a previous time, hence giving an indication of the
degree to which a signal repeats itself. A height difference function
Ay(t) is defined by

Ay(£) = y(£) = ye(0) (10)

which is equal to the deviation of the particle height from its
ensemble mean value. The autocorrelation function is then defined
as

p(T) = ((Ay(t — 7) Ay(t))7 ) (11)

where 7 is called the lag time.
The power spectrum e(f) describes the spectral make-up of a
signal’s 'energy’ in frequency space. The power spectrum is a plot

of the spectral energy density e(f) = |j/(f)\2 against the frequency
f. The power spectrum was computed for each data set, and then
averaged over all data sets in the ensemble.

As a baseline, we present examples for these various statistical
measures for a random walk process, as is typical of Brownian dif-
fusion. In order to be consistent with the data analysis approach
used in our experimental study, we have formed an ensemble with
20 strings and have used a run length with approximately the same
number of data points as in the experimental runs. For the example
calculation, we selected a case where the diffusion coefficient D
and the time step At for the random walk calculation were selected
as D =0.000125 and At = 0.01. The corresponding displacement
length ¢ for each random step was given by

& = [2DAt]'* =~ 0.00158 (12)
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Several different measures for the random walk computations
are plotted in Fig. 2, along with theoretical predictions (shown
using a dashed line). The ensemble variance y, . (t) is plotted versus
time in Fig. 2a, and it is found to agree well with the theoretical
prediction

Your(t) = 2Dt (13)

The mean-square deviation (MSD) for the random walk compu-
tation was computed as y),sp = 0.00127, which compares well with
the theoretical value yys, = (Vo (t)); = 0.00125. The ratio of the
kurtosis to the square of the variance is plotted versus time in
Fig. 2b, and it is compared to the theoretical prediction
Yire (£) /Y2, (t) = 3 for a normally distributed process.

The autocorrelation p(7) is plotted as a function of the delay
time 7 in Fig. 2c. For a random walk process, if a displacement
y(t) has a variance given by (13), then the correlation of y(t) with
itself at two times s and t is given by

Ely(s)y(t)] = 2D min(s, t) (14)

The theoretical value of the autocorrelation function defined by
(11) is a linear function of the lag time 7, given by

p(xy 2DT-71) . 1
yvar(T) B 2DT =1- T (15)

This theoretical value is shown in Fig. 2c to be in reasonably
good agreement with the predicted value from the random walk
computation. The computed power spectrum (Fig. 2d) is consistent

with the theoretical prediction e(f) o 1/f* for a random walk pro-
cess, indicated by the dashed line with slope —2 on the log-log
plot.

4. Experimental results

The experimental cases listed in Table 1 were analyzed in terms
of the statistical measures described in Section 3. Results are given
below for Case B-2, which is characteristic of the other cases exam-
ined. We then focus more on the measures of particle hold-up for
the different cases.

4.1. Standard statistical measures

After the particle is released in the oscillating flow field within
the central part of the porous bed, it is observed to oscillate up and
down with the imposed oscillatory flow, but to also intermittently
pause in a fixed position for different intervals of time before con-
tinuing in oscillatory motion. The particle eventually reaches either
the upper or lower boundary of the porous bed, at which time the
experiment is stopped. A typical particle string y(t) is plotted in
Fig. 3, along with the associated velocity »(t). In order to smooth
the data in the presence of experimental noise, we computed
velocity using a moving least-square fit to a set of five points sur-
rounding the point at which the velocity is desired (Ghazi and
Marshall, 2014). The particle position oscillates with the driving
frequency, but with an amplitude that varies with time. There
are time intervals where the particle oscillation amplitude is very
small, and other times where it approaches the nominal amplitude
yamp'

The mean, variance, and kurtosis of the particle displacement
were computed using ensemble averages over the different parti-
cle strings (Fig. 4), as discussed in Section 3. These ensemble-
averaged measures are found to oscillate in time at approximately
the driving frequency due to the phase differences between the dif-
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Fig. 2. Plots illustrating statistical measures for a random walk process, showing (a) the ensemble variance and (b) the ratio of the kurtosis over the variance squared as
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Table 1

Parameter values used for the different experimental runs. The uncertainty is +1 mm for oscillation amplitude, +0.03 mm for diameter of the small particles, and +0.1 mm for
diameter of the large particles. The uncertainty for frequency is 1% of the recorded value.

Run ID Test particle diameter Frequency Position amplitude Velocity amplitude Number of repeated Total run time,
d (mm) fosc (HZ) yamp (lTllTl) Vamp (mm/s) runs T/tDSE
R-1 0.52 0.15 15.0 141 20 260
R-2 0.52 0.25 15.3 24.0 13 138
R-3 0.52 0.50 17.3 54.3 20 1292
R-4 0.52 0.75 12.0 56.5 20 1211
R-5 0.52 0.25 31.0 48.7 21 128
R-6 0.52 0.25 429 67.4 20 50
B-1 1.3 0.15 15.0 141 21 241
B-2 13 0.25 153 24.0 20 348
B-3 13 0.50 17.3 543 20 1846
B-4 1.3 0.75 12.0 56.5 20 3557

ferent particle strings. The effect was observed to diminish as the
number of strings increases. The particle mean oscillates in time
with a slight upward drift. The variance exhibits a nearly linear
increase superimposed on the oscillations, typical of a diffusion
process. The ratio of kurtosis to variance squared ranges between
2 and 3, as was also the case for the random walk process (Fig. 2b).

The autocorrelation is plotted in Fig. 5a as a function of the
dimensionless lag time f 7. It is noted that for a random walk dif-
fusion process, the autocorrelation is a linear function of lag time
with decreasing slope, indicated by the dashed line in Fig. 5a. For
a purely oscillating process, the signal is perfectly correlated once
every oscillation period, and the resulting autocorrelation is an
oscillatory function. The curve observed in Fig. 5a for an oscillatory
diffusion process is a combination of these two trends, consisting
of an oscillating function with a downward trending mean value.
The power spectrum plotted in Fig. 5b is found to be similar to that

for random walk processes (Fig. 2d), with a variation closely fol-
lowing a line with slope of —2 on the log-log plot, indicating a

e(f) < 1/f* power-law dependence with frequency. A probability
density function (P.D.F.) for the velocity is plotted in Fig. 6 which
indicates that the particle velocity varies nearly as a Gaussian func-
tion (dashed line), with the exception of a high spike at f =0,
indicative of a particle that is not moving (or a 'captured’ particle).

4.2. Hold-up measures

In an oscillatory diffusion process, particles move periodically
up and down in the direction of oscillation, while intermittently
getting stuck (captured) for random intervals of time. This behav-
ior is in contrast to the simple one-dimensional random walk pro-
cess, for which the velocity magnitude is equal to a constant value

v = g/At = [2D/At]"/?. Particle hold-up is identified by time steps
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Fig. 3. Plot showing time variation of a sample experimental string for y(t) (bottom,
left-hand axis) and »(t) (top, right-hand axis) for Case B-2.

where the absolute value of the particle velocity » is less than a
prescribed fraction Cgy of the velocity amplitude, or

|V < Ceut Vamp (16)

When (16) is satisfied we say that the particle is in a captured
state, and when it is not we say that the particle is in a free state.
For each hold-up event, the hold-up duration time tp,, is set equal
to the number of consecutive cycles during which the particle is in
a captured state times the time step At. The set of hold-up duration
times for all strings in an ensemble was sorted into a set of bins,
and the number of hold-up events falling in each bin is denoted
as Npoai, Where the bin number i corresponds to a certain interval
of the hold-up duration time tq4. A plot showing the values of the
normalized number of hold-up events Npoia/(Neotf oscAbin) for these
bins is given in Fig. 7 for the case B-2, comparing results for Cg;
values of 0.1, 0.2 and 0.3 for a plot with 50 bins of uniform width.
In this plot, Ny, is the total number of hold-up events and Aty;, is
the bin width. For larger C., values there are more long-duration
hold-up events (with larger values of t,4), whereas for smaller
C.e values the long duration hold-up events tend to be broken
up into a series of shorter duration events. However, the symbols

2
-8
amp

y\'ul‘ /»yz

y mean /y amp
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in Fig. 7 seem to be scattered about a similar curve for all three
cases, suggesting that a common distribution of hold-up events
might apply.

In order to characterize the hold-up data, we fit the hold-up dis-
tribution plot for each case to a log-normal distribution, with
X = thouafosc treated as a random variable. The fit was done using
the following series of steps:

1. The experimental hold-up distribution was integrated in x to
obtain the cumulative distribution function (C.D.F.), denoted
by Fg(x), at the sample points x;.

2. The log-normal C.D.F., denoted by F;y(x), was fit to the experi-
mental C.D.F. using a least-squares fit, where the resulting pair
of nonlinear equations was solved for the coefficients y and o
using the Newton-Raphson iteration method.

3. The corresponding log-normal probability density function (P.
D.F.) p,y(x) was compared to the experimental P.D.F. for hold-
up time, which was obtained by plotting Npoia/(Nrotf oscAbbin) VEr-
sus x. The bin width Aty;, in this plot was adjusted to eliminate
bins with Npowa = 0.

In the above, the log-normal P.D.F. and C.D.F. functions are
defined by

_ 1 (Inx — )’
pLN(X) - XO'\/Z_TCexp <_ 262 ) (173)
Fin(x) = % + % erf <1";‘\;§“> (17b)

where erf(-) denotes the error function.

An example illustrating these steps is given in Fig. 8 for Case B-
4, where for this case and all further cases discussed in this section
we use 150 bins, C,; = 0.2, and a bin width of f ,, Aty = 1. The log-
normal coefficients y and ¢ were obtained for each case by a two-
step process. In the first step, a square error estimate is defined by

Neot

E=> " [Fe(x;) — Fin(x))? 18
i=1

where Fg(x) is the experimental cumulative distribution function.
The value of E is computed over a grid of u and ¢ values with step
size 0.01, and the values giving the lowest value of E were identi-
fied. In the second step, we obtained a formal least-square error

2
ar

Y kurt /y v

Fig. 4. Plots showing time variation of (a) mean (red) and variance (black) of y position and (b) ratio y;,,/y?%, for Case B-2. Theoretical results are indicated by dashed lines.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Plots showing (a) the autocorrelation and (b) the power spectrum for Case B-2. The dashed line in (a) is the theoretical expression in Eq. (15) for a random-walk

process, and the dashed line in (b) is for the theoretical power law for random walk diffusion.
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Fig. 6. Probability density function of velocity for Case B-2 at time f,,.t = 0.4. The
dashed line is for the Gaussian curve f(x) = 0.5exp(—x?).

by setting 9E/0u = OE/dc = 0, and solved the resulting nonlinear
system of equations with a Newton-Raphson iteration. The x and
o values obtained from the first step were used as initial guesses
for the iteration. The best-fit values of y and ¢ for all cases exam-
ined are listed in Table 2.

We note that the criterion for hold-up described above will reg-
ister a hold-up event for a sinusoidally oscillating velocity field
each time the velocity passes through zero. These hold-up events
are spurious, however, since the particle is not really captured by
the porous media, but rather they are simply an artifact of the
oscillating velocity field. In order to eliminate these spurious
hold-up events from consideration, we do not include hold-up
events with tu.4f,, < 0.5 either in fitting the coefficients y and o
or in the figures plotting hold-up duration distribution (such as
Fig. 8). Consequently, the log-normal function should be viewed
as a fit to the longer-time hold-up events, but may not be represen-
tative of short-time particle hold-up events. The half-period dura-
tion for the hold-up time cut-off used here is based on the length of
time that the velocity has a given sign during a single oscillation
before changing the direction of motion.
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Fig. 7. Plot showing the normalized number of hold-up events as a function of the
dimensionless hold time f tyq for Case B-2 with different values of the cut-off
coefficient: Co = 0.1 (squares), 0.2 (deltas), and 0.3 (circles).

The mean value of the log-normal distribution is given by

_ 2
Xy = exp(it + %) (19)

This theoretical mean value for log-normal distributions is
found to compare reasonably well with the experimental mean
value computed directly from the hold-up time distribution, as
listed in Table 2, considering that data for long-time hold-up
events is fairly sparse. The total percentage of run time that a par-
ticle spends in a free state (with |¢| > v.,) and in a captured state
(with || < ver and theafose > 0.5) were computed, as listed in
Table 2. The remaining time (not listed in the table) corresponds
to time spent by a particle in a captured state with tpeafos < 0.5.
For most cases examined, particles were observed to be in a cap-
tured state for a very significant percentage of the run time. Also
shown in Table 2 is the average frequency of hold-up events, which
was computed by the ratio f,,; = Niot/T of the total number of
hold-up events to the total run time.

The cumulative distribution function depends on the particle
diameter d and the oscillation frequency f,, and amplitude y,,,,.
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Fig. 8. Example comparing experimental data (symbols) and a log-normal fit (solid line) for (a) the complementary cumulative distribution function (1-C.D.F.) and (b) the

probability density function (P.D.F.) for Case B-4.

Table 2

Data on frequency of particle hold-up and best-fit values of dimensionless x and o coefficients from a log-normal distribution to the cumulative distribution function for particle

hold-up time.

Run ID Log-normal coefficients

Mean hold-up time tpoiqf osc

Percentage time in
each state

Hold-up frequency, fpotosc

n c Exp.

Log-normal Free Capt.

R-1 -0.125 0.491 0.977
R-2 -0.121 0.223 0.783
R-3 0.033 1.314
R-4 0.259 1.247 2.691
R-5 —0.046
R-6 0.044

B-1 —0.387
B-2 —0.086
B-3 —0.392 1.753
B-4 —0.557 1.804

0.357 0.737

2.810

0.996
0.908
2.432 2.451
2.819
0.316 0.935 1.004
0.339 1.002 1.107
0.724
0.426 0.943 1.005
3.189 3.141
2916

20.4 47.7
43.8 9.1

5.1 86.2
5.4 85.0
14.7 47.3
15.4 46.0
26.2 17.5
239 23.6
14.2 56.8
16.4 413

0.489
0.116
0.354
0.316
0.506
0.459
0.237
0.250
0.178
0.147
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Fig. 9. Comparison of complementary cumulative distribution function for cases
with particle diameters of d = 0.52 mm (red squares, Case R-4) and d = 1.3 mm
(black deltas, Case B-4). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

A plot of the complementary cumulative distribution function C.C.
D.F. (=1 — C.D.F.) is shown in Fig. 9 for cases with two different par-
ticle diameters, d = 0.52 mm (Case R-4) and d = 1.3 mm (Case B-
4), with the same oscillation frequency and amplitude. The C.C.D.
F. values for both particle sizes are fairly close, with the difference
that the larger particles exhibit more long-duration hold-up events
and the smaller particles experience more short-duration hold-up
events.

A comparison of the effect of oscillation frequency on the com-
plementary cumulative distribution function is shown in Fig. 10a
for Cases B-1 through B-4 with frequency varying from
fose =0.15 —0.75 Hz, all having the same oscillation amplitude
and particle diameter. A comparison of the effect of oscillation
amplitude on the complementary cumulative distribution function
is shown in Fig. 10b for Cases R-2, R-5 and R-6, with amplitude
varying from y,,, = 15.3 — 42.9 mm, all having the same oscilla-
tion frequency and particle diameter. Comparing these C.C.D.F.
plots with the values of run time listed in Table 1, we see that
the experimental runs fall into two categories - cases with rela-
tively short run-time and cases with relatively long run-time.
The C.C.D.F. is similar for all cases with short run-time (Cases R-
1, R-2, B-1, B-2, R-5, R-6), and it is again similar for all cases with
long run-time (Cases R-3, R-4, B-3, B-4); however, the C.C.D.F. for
the long run-time cases is shifted significantly to the right of that
for the short run-time cases (as soon in Fig. 10a). For cases where
the run times were relatively short, the longer-duration hold-up
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Fig. 10. Comparison of complementary cumulative distribution function for cases with (a) oscillation frequency of f,,. = 0.15 Hz (squares, Case B-1), f,,. = 0.25 Hz (X’s, Case
B-2), fosc = 0.50 Hz (circles, Case B-3), and f,,. = 0.75 Hz (deltas, Case B-4) and (b) oscillation amplitude of y,,, = 15.3 mm (squares, Case R-2), ¥,y, = 31.0 mm (deltas, Case

R-5), and y,,, = 42.9 mm (circles, Case R-6).

events had less of a chance to occur within the experimental time
frame than for cases with much longer values of Tf ..., which likely
explains the observed difference in the C.C.D.F. plots.

5. Stochastic model

Our proposed mechanism to explain oscillatory diffusion
involves the notion that a combination of particle oscillation and
random hindering yields a diffusion process (Marshall, 2016). For
millimeter-scale particles, the hindering occurs primarily via a fil-
tration process, in which particles randomly enter a pore space
that is sufficiently small to temporarily trap the particles. When
the velocity direction changes, the particle may or may not be able
to escape the pore space.

We propose a simple stochastic model in an effort to illustrate
the mechanics of the oscillatory diffusion process. In this model,
each particle exists in either a free state or a captured state. The
particle relaxation time scale, given by

om pd
3y, d 1814y,

(20)

tpart

where m = (7r/6)pd3 is the particle mass, is equal to 1.9 x 107 s
and 1.1 x 107* s for the small and large particle sizes, respectively.
Since these values are much smaller than the oscillation time tos,
which varies from 1.3 to 6.7 s for the different frequencies exam-
ined, we can assume that all particles in the free state move within
the porous bed in accordance with the fluid velocity given by (3).
The pore size b within the porous bed is a random variable that is
assumed to exhibit a log-normal distribution, given by

b= bmin + eXp(,upare + O-porez) (21)

where Z is a random variable with a standard normal distribution
and ft,,, and oper are adjustable parameters. The computations in
the current paper were all performed with w,,, = 0. The value of
bmin is set to the minimum geometrically possible pore size. When
a particle moves a multiple of the bead diameter dy.q, there is
assumed to be a random process during which the particle selects
a new pore to enter with size b given by (21). If the particle diam-
eter d < b, then the particle continues to be treated as free, whereas
if d > b the particle is considered to be captured by the pore.

A captured particle can be released from the pore when the
oscillating velocity field changes sign. However, we observe in
our experimental visualizations that sometimes particles bounce
around within a pore and remain trapped for multiple cycles. To
represent this distribution of release times, we formulated a prob-
abilistic process governing whether or not a captured particle
escapes at each time step for which the velocity v,(t) is opposite
in sign to its value at the time of particle capture. At each such time
step, a random number p with uniform probability distribution
between 0 and 1 is selected. A threshold value t, is selected in
the interval 0 < t, < 1, where the value of this threshold is propor-
tional to the product f . At so that the resulting particle behavior is
independent of the time step size At. If p <t;, the particle is
assigned to be in a free state and moves with velocity given by
(3), whereas if p > t, the particle remains in a captured state and
does not move.

This stochastic model was tested for a case with f . = 0.25 Hz,
Yamp = 15.3 mm, and d = 1.3 mm, which is comparable to the
experimental Case B-2. The bead diameter was djeqq = 6 mm. The
minimum pore space is given by the space between three touching
beads whose centers form an equilateral triangle, which gives

Pumin = (2v3 — 3)dpeaa/3 =2 0.928 mm. We selected the pore-size
parameter G, = 1 mm and the release threshold t, = 0.017 for
the computations shown as providing reasonable agreement with
the experimental data from Case B-2. The stochastic model was
used to generate an ensemble of 20 strings with a step size of
At = 0.033 s, from which the statistical measures listed in Section 3
were computed.

A plot showing an example trace data set predicted by the
stochastic model for the particle position y(t) and velocity v(t) is
shown in Fig. 11. The velocity is observed to be either oscillating
sinusoidally (in the free state) or zero (in the captured state). The
particle position similarly changes back and forth between oscillat-
ing in time (in the free state) and maintaining a constant value (in
the captured state). Ensemble-averaged data for the set of 20 data
strings are shown in Fig. 12a and b in comparison to the experi-
mental data for Case B-2. In Fig. 12a, the variance is observed to
increase in time by fluctuating about a nearly linear increase. A
dashed line with the same slope as the linear increase passing
through the origin is plotted in Fig. 12a. Fig. 12b shows the ratio
of the kurtosis to the square of the variance for y(t), which after
an initial transient oscillates about the theoretical value of 3 for a
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Fig. 11. Plot showing time variation of a sample experimental trace for y(t)
(bottom, left-hand axis) and (t) (top, right-hand axis) for the stochastic model.

normally-distributed process (dashed line). The computed auto-
correlation for the stochastic model predictions are plotted against
the lag time in Fig. 12c. The predicted autocorrelation curve is
nearly straight, as is also the case for a random walk process. The
autocorrelation function for the experimental data in Case B-2
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exhibited more oscillation than the stochastic model predictions,
but both curves are reasonably close to each other. The power
spectrum for the stochastic model predictions is plotted in

Fig. 12d, with a dashed line representing the e o f > power law
on the log-log plot. This power law gives a fairly close fit to the
mean slope of the data, as was also the case for the random walk
process and the experimental data.

Hold-up data for the stochastic model predictions is sensitive to
the value of the threshold parameter t;. Smaller values of t, cause
the particles to remain captured for longer times, whereas larger
values of t, lead to shorter capture times. In Fig. 13, the comple-
mentary cumulative distribution function and the probability den-
sity function are plotted for the stochastic model predictions with
t, = 0.017. The solid lines in these plots represent the best-fit log-
normal curves for the experimental data for Case B-2. The stochas-
tic model predictions exhibit more long-duration hold-up events
than the experimental log-normal fit. However, even with these
differences, the simple probabilistic release model assumed here
is nevertheless seen to yield reasonable predictions for distribution
of particle hold-up time.

6. Conclusions

An experimental study was conducted of a particle moving
under an oscillatory flow field in a porous bed of spherical glass
beads. Refractive index matching was used to visualize the particle
in the porous bed. The particle is observed to oscillate up and down

.
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Fig. 12. Plots comparing a variety of statistical measures for the experimental case B-2 (B-2, black line in plots a-c) and the stochastic model (SM, red line in plots a-c): (a) the
ensemble variance and (b) the ratio of the kurtosis over the variance squared as functions of time; (c) autocorrelation as a function of time delay, and (d) power spectrum for
the stochastic model. Dashed lines indicate (a) best fit to slope of variance passing through origin, (b) theoretical value for a normally distributed process, and (d) f > power
law typical of a random walk process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

10



J.S. Marshall, C. Arnold, K. Curran et al.

T T —
100 - a =] -
" , o
= 0 o
&)
. [
10" o oo e
I 0 9
[ O]
| 0
-2 L L 1 M .
10 1 2 3
LyoiaT ose
(a)

Chemical Engineering Science 231 (2021) 116239

10"

Ll

L L N L L B L L L

T
Ll

=
N 107 F E
-9 - E
10°F E
Sl by b bl 1 L

1055 5 55 3 35 4

thnlcl osc

(b)

Fig. 13. Plot showing (a) the complementary cumulative distribution function (1-C.D.F.) and (b) the probability density function (P.D.F.), with the stochastic model prediction
indicated by symbols and the log-normal fit for the experimental data in Case B-2 indicated by solid lines.

with the imposed oscillatory flow field, but also to intermittently
be captured by the porous bed for intervals of various durations.
The particle location data was extracted from video images, from
which the particle position and velocity were determined as func-
tions of time. Experiments were conducted with two different par-
ticle sizes and with various frequencies and amplitudes of the
oscillating flow field. Each condition was repeated approximately
20 times to generate an ensemble of data.

A variety of statistical measures were applied to the experimen-
tal data for particle position within the porous bed in the presence
of oscillatory flow, including ensemble averaging, autocorrelation,
spectral analysis, and distribution of particle hold-up times. These
measures were found to exhibit many attributes similar to diffu-
sive processes, including nearly linear increase in variance with
time, nearly linear decrease in autocorrelation as a function of

lag time, and a power-law dependence e oc f 2 between spectral
power and frequency. At the same time, the experimental data also
exhibited some attributes of an oscillatory process, which resulted
in superposition of oscillations for the variance and autocorrelation
functions onto the linear dependence typical of diffusive processes.
The distribution of particle hold-up duration that characterizes the
intermittent particle capturing was found to be well fit by a log-
normal distribution. The cumulative distribution plots were used
to compare the hold-up distribution data for the different cases
examined.

A simple one-dimensional stochastic model was generated to
explain the mechanism of the particle diffusion observed in this
experiment, which we refer to as oscillatory diffusion. In this model,
the particle switches back and forth between a free state and a cap-
tured state, with a possibility of a change in state occurring at a set
of decision points. The decision points correspond to times when
the distance traveled by a particle from its initial position is a mul-
tiple of the diameter of one of the beads making up the porous bed.
We envision that at each decision point, the particle moves into a
new pore within the porous bed. The size of this pore is selected as
a random variable with a log-normal distribution, with a minimum
value equal to the minimum geometrical value within the bed. If
the selected pore size is smaller than the particle diameter, the par-
ticle is considered to be captured in the pore; otherwise the parti-
cle moves freely. Captured particles are released during times
when the velocity direction is reversed depending on whether
the value of a random variable exceeds a prescribed threshold.
When this stochastic model was applied to the current experi-

11

ments, the data generated yielded statistical measures that com-
pared reasonably well with those obtained from the
experimental data. This agreement lends support to our interpreta-
tion of the underlying mechanism of the oscillatory diffusion
process.

The current study identified the size ratio between the particle
and the glass beads that make up the bed as the key parameter
determining the diffusive response of a particle to an imposed
oscillatory flow field. We caution, however, that the current exper-
iments and stochastic model are limited to particulate transport at
the millimeter size scale, in which particle hold-up is dominated by
filtration limitations. For much smaller-scale processes, such as the
problem of ultrasound-enhanced diffusion of nanoparticles in a
hydrogel, other processes come into play. For instance, for small-
scale particles, adhesive capture of the particles by the hydrogel
network is as important, or possibly more important, than capture
by a filtration process. The stochastic model also assumed that the
particle was either moving freely or at rest, and did not account for
an in-between state in which the surrounding porous media slows
down (but does not stop) the particle motion.
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