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We carry out direct numerical simulation together with an adhesive discrete element
method calculation (DNS-DEM) to investigate agglomeration of particles in homoge-
neous isotropic turbulence (HIT). We report an exponential-form scaling for the size
distribution of early-stage agglomerates, which is valid across a wide range of particle
inertia and interparticle adhesion values. Such scaling allows one to quantify the state of
agglomeration using a single scale parameter. An agglomeration kernel is then constructed
containing the information of agglomerate structures and the sticking probability. An
explicit relationship between the sticking probability and microscale particle properties
is also proposed based on the scaling analysis of the equation for head-on collisions. Our
results extend Smoluchowski’s theory to the condition of noncoalescing solid adhesive
particles and can reproduce DNS-DEM results with a simple one-dimensional simulation.

DOLI: 10.1103/PhysRevFluids.4.024304

I. INTRODUCTION

Clustering of particles suspended in turbulence has been extensively studied in experiments
[1,2], in simulations [3], and by theoretical approaches [4,5]. To predict the evolution of cluster
or agglomerate size, Smoluchowski’s equation, built on statistical collision kernels, is one of the
few theoretical tools that can be applied to large-scale systems [6-8]. For particles in turbulence, the
collision kernel is usually expressed as the product of the mean relative radial velocity and the radial
distribution functions (RDFs) of particle pairs at the distance of contact. For zero-inertia particles,
these two quantities can be statistically determined from those of turbulence flows [9]. In contrast,
inertial particles preferentially sample certain regions of the flow due to the centrifugation effect,
giving rise to higher values of both relative radial velocity and spatial concentration [10-14]. As
the inertia of particles further increases, particles from different regions of the flow come together.
A larger relative velocity, and consequently a larger collision rate, is then observed. Such effect is
termed as “caustics” [15,16] or the “sling effect” [17].

Based on these models of geometric collision kernel, Smoluchowski’s theory can be then
used to describe the growth of clusters assuming that colliding particles merge immediately to
form new larger spherical particles. The assumption of unity coagulation efficiency is normally
valid for droplets. However, it is not applicable to the agglomeration of solid noncoalescing
adhesive particles. Such systems are quite ubiquitous, ranging from electrostatic agglomerators
[18], flocculation during water treatment [19], and assemblage of preplanetary grains [20] to the
growth of dendrites during aerosol filtration [21,22]. The solid adhesive particles, across 1 to 102
microns, have two significant differences from Brownian nanoparticles or coalescing droplets:
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(1) The interparticle adhesion due to van der Waals attraction is short-ranged and relatively soft
[23]. It leads to the sticking and rebound behavior of colliding particles (i.e., nonunity coagulation
efficiency). (2) Formed agglomerates are usually nonspherical, whose structure will evolve due to
restructuring and breakage. It has been reported that even the simplest elastic repulsion between
particles considerably changes the picture of agglomeration [24]. Constructing a kernel function
that can reflect the influence of complicated interparticle interactions is a crucial problem that has
not been settled.

Solving this problem requires a fundamentally different approach—discrete element method
(DEM)—that tracks the dynamics of individual particles both while they are traveling alone
through the fluid and while they are colliding with other particles [23]. To properly simulate
the agglomeration, particle collisions should be resolved with a time step much smaller than the
Kolmogorov timescale. Moreover, all the possible modes of particle interaction, i.e., normal impact,
sliding, twisting, and rolling, should be taken into account [25,26]. Constructing kernel functions
or stochastic agglomeration models [27,28] based on data from DEM simulations then allows
large-scale simulation of the agglomeration process.

In this work, we perform direct numerical simulations (DNS) to study the agglomeration of non-
coalescing solid particles in homogeneous isotropic turbulence (HIT) with focus on the effect of van
der Waals adhesion. An adhesive DEM is employed to fully resolve the translational and rotational
motions of particles. We report an exponential-form scaling for the size distribution of early-stage
agglomerates as n(A)/ng ~ exp(—A/«), where n(A) is the number density of agglomerates of size
A. This exponential distribution allows one to describe the growth of agglomerates using a single
scale parameter «. Based on the simulation results, we are able to extend the Smoluchowski theory
to describe adhesion-enhanced agglomeration by introducing a turbulence agglomeration kernel
depending on the fractal structure of agglomerates and an adhesion-controlled sticking probability.

II. NUMERICAL METHOD AND SIMULATION CONDITIONS
A. DNS-DEM
1. Fluid phase

In our simulation, the homogeneous isotropic turbulent flow is calculated by DNS on a cubic,
triply periodic domain. A pseudospectral method with second-order Adams-Bashforth time stepping
is applied to solve the continuity and momentum equations of the incompressible flow,

V-u=0, (1a)
du p u »
—=uxo—-V|{—+— | +vVu+fr+ fp. (1b)
ot Pr 2

Here, u and w are the fluid velocity and vorticity, respectively. p is the pressure, oy is the fluid
density, and v is the kinematic viscosity. The small wave-number forcing term f is used to maintain
the turbulence with an approximately constant kinetic energy. As suggested in Refs. [29,30], we
assume the forcing vector to be proportional to the fluid velocity and added to wave numbers with
magnitude k < 5. fp is the particle body force, which is calculated at each Cartesian grid node
i using f,(x;))=— SN FE8,(x;—X ,.,). Here, x; is the location of grid node i, F¥ is the fluid
force on particle n located at X, ,,, and 8,(x;—X ,, ,) is a regularized § function. The influence of
the particle phase on the flow phase has a non-negligible effect on the agglomeration even when
the particle volume fraction ¢ < 0.001. Since we also consider interactions between particles, our
simulation is four-way coupled [5].

It should be noted that all the equations and variables in our simulation have been nondi-
mensionalized by choosing typical length, velocity, and mass scales that are relevant to the
agglomeration of solid microparticles. The typical length scale is set as Ly = 1007, = 0.01 m,
where r, = 10 pum is the particle radius. The typical velocity is Uy = 10 m/s and the typical mass is
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My = ,ofLS = 1077 kg, where pr = 1 kg/m? is the fluid density. The typical timescale is given by
Ty = Ly/U,. Other dimensional input parameters are the fluid viscosity x = 1.0 x 107> Pas, the
particle density p, = 10-320 kg/m?, and the surface energy y = 0.01-5 J/m?. Hereinafter, all the
variables appear in their dimensionless form and, for simplicity, we use the same notations as the
dimensional variables.

Before the particles are added into the domain, a preliminary computation is conducted for
5000 time steps with dfr = 0.005 (dimensionless) to allow the turbulence to reach a statistically
stationary state. The turbulence kinetic energy ¢ and dissipation rate € are obtained from integration
of the power spectrum E (k),

kmax kmax
q= / E(k)dk, €=2v / K’E (k)dk. )
0 0

2. Solid phase: Adhesive discrete element method

We use the discrete element method (DEM) to model the particles’ motion in turbulent flows,
which solves the linear and angular momentum equations of particles

miv; = FF 4+ F€, (3a)
L2 =M+ MC, (3b)

where m; and I; are mass and moment of inertia of particle i and v; and ; are the translational
velocity and the rotation rate of the particle. The forces and torques are induced by both the fluid
flow (F¥ and M¥) and the interparticle contact (F¢ and M€). In this work, the dominant fluid force
is the Stokes drag given by

F = —37ud,(v —uw)f, (4a)
M* = —mpd) (R — jo), (4b)

where u, w, and p are velocity, vorticity, and viscosity of the fluid and v and d,, are the velocity
and the diameter of particles. The friction factor f, given by Ref. [31], is used to correct for the
crowding of particles. For particle Reynolds number in the range 0.01 to 10%, f can be written as

f=0-=¢)""% ¢=37-0.65exp[—1(1.5—1InRe,)*]. (5)

The particle Reynolds number Re,, is defined as Re, = d,|v — u|/v. In addition to the Stokes drag,
we also include the Saffman and Magnus lift forces in F IF [32,33].

When two particles i and j are in contact, the normal force FV, the sliding friction F5, the
twisting torque M7, and the rolling torque M¥ acting on particle i from particle j can be expressed
as

Y = EYE B =R () vy =
Flf = —min _kT /It v;i(7) - EgdT+n7v;5 - &, Fiicritj|, (6b)
Ly
Mg = —min_kT;2 /tt SZiTj(r) . nijdr+nTTaleiTj “ngj, Mi?cmi|, (6¢)
0
MR = —min| 4R / V() - trdt vt -t Mgm]. (6d)
L 10

The normal force Fllj\' contains an elastic term Fl]]VE derived from the Johnson-Kendall-Roberts
(JKR) contact theory. Fi?’E combines the effects of van der Waals attraction and the elastic
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deformation and its scale is set by the critical pull-off force, Fc = 37R;;y, where R;; = (r,, P

r;})’l is the reduced particle radius and y is the surface energy of the particle. The dimensionless
variable @;; is calculated by normalizing the radius of the contact region a;; by its value at
the zero-load equilibrium state a;;, expressed as a;; = (971)/R,-2j/E,4j)1/3 [25], where E;; is the
effective elastic modulus. In DEM, 4;; is calculated inversely from the normal particle overlap, §,
through

) . o 4.,

3 =63|2(a;;) — g(az’j)2 , (7
where 8¢ = al.zjgo /[2(6)!/3R;;] is the critical overlap. The bond between two contacting particles

will break when 8§ < —8¢. The sliding friction FS, twisting torque M7, and rolling torque M~
[Eqgs. (6b)—(6d)] are all calculated using spring-dashpot-slider models, where v;; - &, QlTj and vfj
are the relative sliding, twisting, and rolling velocities. k7 in Eq. (6) is the tangential stiffness.
The second terms of Egs. (6a)—(6d) are the viscoelastic damping forces, which are proportional
to the rate of motions in each of the respective directions, and ny, nr, and ng are the dissipation
coefficients for relative compression, sliding, and rolling motions. The normal dissipation coefficient
ny is calculated as ny = 20,/m;;a;;E;;/3, where m;; = (m; + mj)_l is the effective mass of two
colliding particles with mass m; and m;. For details, see Refs. [25,34].

When these resistances reach their critical limits, Fif‘,crit’ M,S,cm’ or Mf}’cm, a particle will
irreversibly slide, twist, or roll relative to its neighboring particle. The critical limits are expressed
as [25]

Ff o = nFc|a(a — &%) + 2. (82)
37aiF] e

Miﬂlj-',cril = ij9 (8b)

M,-];cm = 4FC&27/ 29crnRij- (8c)

Here 1(=0.3) is the friction coefficient and 6. (=0.01) is the critical rolling angle. We set these
values according to experimental measurements [35]. The adhesive DEM has been validated by a
series of experimental measurements. The details of these validations and the determination of the
value of parameters in DEM can be found in Refs. [34,36].

The scales of the elastic term Fli\' £ in Eq. (6a) and the critical force and torques in Eq. (8) are all
in proportion to the surface energy y, which is the work required to separate two touching surfaces
per unit area. An adhesion parameter Ad, which is defined as the ratio between y and the kinetic
energy of particles (per unit area), can be used to quantify the effect of adhesion. Ad is expressed as
[23,34,37]

14
ppU 2r P .

Ad = 9
In this equation, U is the characteristic velocity scale of particles. For particles transported in
turbulence, we simply set U equal to the root-mean-square turbulent fluctuation velocity «’. An
alternative choice of the velocity scale is discussed in Sec. III E. For large values of the adhesion
parameter, particles tend to stick together upon collision, forming particle agglomerates. In contrast,
colliding particles tend to rebound from each other when Ad is small. This adhesion parameter has
been successfully used to estimate the critical sticking velocity of two colliding particles [38] and
predict the packing structure of adhesive particles [22,39,40].

It is known that the fluid squeeze film between particles near contact significantly reduces the
approach velocity and further influences the collision and agglomeration process. In this work,
viscous damping force derived from the classical lubrication theory is also included, given by

3mury dh
T 2h dt

F =

(10)
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FIG. 1. Snapshot of the simulated system at r = 20. The enlarged view from the middle slice (x = 0)
shows agglomerates and their size A (defined as the number of primary particles contained in the agglomerate,
indicated by the color code).

F; is initiated at surface separation distance h=0.017,, and a minimum value & = 2 x 10~%r, is set
at the instant of particle contact according to experiments [41,42].

3. Multiple-time step framework

Our DNS-DEM computational framework is designed with multiple-time steps [23,25,37].
The flow field is updated using a fluid time step dfr = 0.005. To correctly identify interparticle
collisions, a smaller particle convective time step dtp = 2.5 x 10* is adopted to update the force,
velocity, and position of particles that do not collide with other particles. Such a small dt, ensures
that the distance each particle travels during a time step is only a small fraction of the particle or
the grid size. In addition, we build a local list at each fluid step to record the neighboring particles
that each particle may collide as it is advected over a fluid time step. Once a particle is found to
collide with other particles during a particle time step, we then recover its information (i.e., its force,
velocity, and position) to the start of this particle time step and instead advect it using a collision
time step dfc = 6.25 x 107, The value of dic is small enough to resolve the rapid variation of
contacting forces, velocity, and position of the particles.

B. Simulation conditions

The system studied in this work is illustrated in Fig. 1. We consider N =4 x 10* non-Brownian
solid particles suspended in the homogeneous isotropic turbulent flow in the absence of gravity. The
triply periodic computational domain has a dimension of (27r)* with 128% grid points. The Taylor
Reynolds number is fixed as Re; = 93.0 in this work. Similar values of Re; have also been used
in previous studies involving particle-laden flows [12,43,44]. By setting this value of Re;, we can
easily compare our results with those in literature. Other dimensionless flow parameters, including
the fluctuating velocity u/, the dissipation rate €, the kinematic viscosity v, Kolmogorov length n,
Kolmogorov time 7, and the large-eddy turnover time T, are listed in Table I.

The particle radius is fixed as r,=0.01. We choose the value of particle radius so that the particle
size and the Kolmogorov length scale are comparable. We choose this relatively large value of
particle size to increase the collision rates, which helps ensure good statistics on agglomeration

g . . . . . 4Nmr
within a feasible computing time. The particle volume concentration is ¢ = 3(27;;’; =6.8 x 1074,
which is small so that the system can be regarded as a dilute system. The fluid density py is set as

1 (nondimensional), and five different values (10, 40, 80, 160, and 320) are used as particle density
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TABLE I. Dimensionless parameters of the fluid turbulence, including the fluctuating velocity «’, the
dissipation rate €, the kinematic viscosity v, Taylor-microscale Reynolds number Re;, Kolmogorov length
1, Kolmogorov time t;, and the large-eddy turnover time 7.

u € v Re, n Tx T,

0.28 0.0105 0.001 93.0 0.0175 0.31 74

pp to achieve different values of particle response time. We have neglected the influence of gravity
in the present study since it does not play an important role in the agglomeration of particles with
radius less than 40 pum [45]. For detailed discussions on the effect of gravity on collision rate for
large particles (with size above 40 um), we refer to Refs. [46,47].

One of the most important parameters governing the agglomeration is the Kolmogorov-scale
Stokes number, Sty = 7,/7, where T,=m/(67r,u) is the particle response time and 7, = (v/€)"/?
is the Kolmogorov time. In the classical theory of turbulent collision of nonadhesive particles, Stx
significantly influences the value of the collision kernel. In the presence of adhesion, the adhesion
parameter Ad = y/(p,ur,) is used to quantify the adhesion effect [23]. The particle surface
energy y can be determined according to experimental measurements [35,48] or calculated from
the Hamaker coefficients of the materials [23]. In this work, we systematically vary Ad (by varying
y) in a wide range at five different Sty values (0.72, 2.9, 5.8, 12, and 23) to show the effect of
adhesion on the agglomeration.

C. Smoluchowski’s theory

Before showing the DNS-DEM results, we introduce the Smoluchowski coagulation equation
and discuss how to apply the theory to the agglomeration of noncoalescing adhesive particles. In
Smoluchowski’s theory, the growth of agglomerates can be described using the population balance
equation (PBE) [6]

1 o0
iA) = 5 37 TG pn(n() =n(A)) T A, (11)
i=1

i+j=A

where I'(i, j) is the averaged rate constant (kernel) for agglomerates of size i colliding with
agglomerates of size j and should reflect all the factors affecting agglomeration. It is defined
as I'(d, j) = nc;;/In()n(j)] with n.;; being the collision rate per unit volume and n(i) being the
average number concentration of size group i. The first term on the right-hand side of Eq. (11) is the
source term that accounts for the rate at which agglomerates of size A are created. The second term
is a sink that describes agglomerate disappearance due to its coalescence with other agglomerates.

PBE can be readily used to predict the growth of droplets in clouds with an underlying
assumption—colliding particles coalesce instantaneously to form larger particles [49]. Therefore,
the growth rate of agglomerates is equivalent to the collision rate. The collision between adhesive
noncoalescing microparticles, however, does not ensure the growth of an agglomerate. Both sticking
and rebound could happen as a result of the competition between the particles’ kinetic energy and
the surface energy. Thus, it is natural to introduce a sticking probability, ®, defined as the ratio of
the number of collisions that lead to agglomeration to the total number of collisions. We then have
an agglomeration kernel, which reads

La(i, j) = O, j), Vi, j. (12)

The sticking probability has a minimum value O for nonadhesive particle systems and a maximum
value 1, corresponding to the hit-and-stick case in conventional PBE simulations. We can then
simulate the agglomeration with different adhesion level, by simply replacing I'(7, j) in Eq. (11) by
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2 4 8
A

FIG. 2. (a) Temporal evolution of the collision kernel I'(¢)/TI"y for cases with Sty = 5.8 and Ad = 0.013
(circles), 1.3 (left-pointing triangles), 13 (diamonds), 64 (upward triangles), and 128 (squares). (b) Fraction
of particles, P(A), contained in agglomerates of size A at ¢t = 15 for Ad = 1.3 and 64. (c) Gyration radius of
agglomerates R,(A)/r, as a function of agglomerate size A att = 15 for the cases with Sty = 5.8 and Ad = 13
(diamonds), 64 (triangles), and 128 (squares). The solid line shows Eq. (13) with x = 1.64 and D; = 1.64.
(d) An agglomerate produced in the simulation with St = 5.8 and Ad = 64 with its equivalent sphere with
radius of gyration (shaded region).

I',(i, j). We will show below that such simple modification can well reproduce DNS-DEM results
in a statistical manner.

The structure of agglomerates is another crucial factor affecting the agglomeration rate. For
noncoalescing adhesive particles, the formed agglomerates usually have fractal structures, which
distinguishes our system from those of droplets [26,50]. In systems involving Brownian nanopar-
ticles, theoretical collision kernels can be extended to fractal agglomerates when substituting the
particle radius with the radius of effective collision spheres (ECSs) for an agglomerate [51,52]. We
will show below that the idea of the effective radius can also be applied to non-Brownian inertial
particles.

III. RESULTS AND DISCUSSIONS

A. Collision rate, agglomerate size, and structure

We first measure the temporal evolution of the collision kernel in a system with Sty = 5.8 and
Ad varying from 0.013 to 128. To show the effect of adhesion, here we simply regard the system
as a monodisperse system and count the collisions between every primary particle. The effective
collision kernel is then calculated as I = 2i./n3, where ng is the number density of primary
particles. The temporal evolution of the collision kernel I'(#), normalized by the collision kernel
for zero-inertia particles 'y = (8€/15v)!/2(2r,) [9], is shown in Fig. 2(a). When the adhesion
is extremely weak (Ad = 0.013 and 1.3), the collision kernel rapidly reaches a statistically steady
state with I'(#)/Tg = 11.1. This value is quite close to the previous DNS results for nonadhesive
particles with the same inertia [12]. As Ad increases, the collision kernel is significantly reduced
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and the system is pushed away from equilibrium. Since adhesion number only affects the interaction
between contacting particles, we attribute these phenomena to adhesion-enhanced agglomeration.
When Ad is larger than 64, further increase of Ad does not change the curve of collision kernel
because in this strong-adhesion limit, the sticking probability for colliding particles is essentially
unity and every collision event will lead to agglomeration. The overall collision kernel is determined
by the size distribution of the agglomerates in the system, which is mainly determined by the
turbulent transport and is insensitive to the adhesion in this large Ad limit.

In Fig. 2(b), the agglomeration at # = 15 is clearly displayed in the form of the fraction of particles
P(A) contained in an agglomerate of size A. The agglomerate size A is defined as the number of
primary particles contained in that agglomerate. For small Ad, most particles remain as singlets
(A =1) and only a small number of particles (~4%) are contained in agglomerates of size A > 2.
In contrast, cases with large Ad yield a considerable number of agglomerates with size A up to 20.

To model the agglomeration process in the framework of Smoluchowski’s equation, a measure
of agglomerate structure in the form of the equivalent sphere is necessary. One such quantity is
the radius of gyration, defined for an agglomerate with 3 or more primary particles (A > 3) by
R,(A) = (Ef |X; — X;|>/A)!/2, where X; denotes the position of ith particle within the agglomerate
and X is the center of mass of the agglomerate. For agglomerates with two primary particles, we
use the explicit expression R,(2) = «/Rrp suggested in Ref. [53].

In Fig. 2(d), we show an agglomerate generated from DNS-DEM simulation and its equivalent
sphere with the radius of gyration. We calculate R, for all the agglomerates produced in the
simulations in Fig. 2(a) at =15 and plot the ratio R,/r, as a function of agglomerate size A in
Fig. 2(c) (large size agglomerates with A > 12 only contain 0.2% particles and thus are neglected
here). The results fall onto a power-law curve

R, &) = (i‘)D’, forA > 2, (13)

p X

with the factor x = 1.64 and the fractal dimension Dy = 1.64. The D value measured here is
consistent with experimental measurements of Waldner et al. [53], who measured the radius of
gyration for early-stage agglomerates formed in a stirred tank using small angle static light scattering
[53]. The value of fractal dimension fitted from experimental results is Dy = 1.7 £ 0.1, which is
consistent with results of our simulations. Selomulya et al. adopted the same experimental technique
to measure the shear-induced agglomeration of latex particles and reported values of D, between
1.7 and 2.1 [54]. Their results are close to but slightly larger than the values of Dy measured in our
DNS-DEM results. The possible reason for the deviation is that Selomulya et al. assumed the factor
x to be 1.01 in their measurements. Such a small value of x may give Dy that is larger than the
actual value. It should be noted that we focus on the agglomeration at an early stage in the current
study, when the restructuring and breakage of agglomerates are normally not involved [53]. These
phenomena will lead to a variation of factor x and the fractal dimension D, [55], which is left for
future work.

B. Effect of Stokes number

The temporal evolution of the collision kernel I'(¢)/T"y, the fraction of particles, P(A), contained
in agglomerates of size A, and the gyration radius of agglomerates R,(A)/r, for cases with different
Stokes number Sty and adhesion parameter Ad are plotted in Fig. 3. For particles with small inertia
(Stx = 0.72), the increase of adhesion parameter only has a limited effect on the temporal evolution
of the collision kernel [Fig. 3(a)]. Moreover, there is no obvious statistical steady state for the system
with Sty = 0.72. The reason is that the lubrication force between particles near contact significantly
reduces the collision rate for particles with small inertia [41] and the collision rate is too small
to form a considerable number of agglomerates even if the adhesion is strong. The system thus
behaves as a monodisperse system. This is further displayed in the form of the fraction of particles
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FIG. 3. Left [panels (a), (d), and (g)]: Temporal evolution of the collision kernel I'(z)/I"y. Middle [panels
(b), (e), and (h)]: Fraction of particles, P(A), contained in agglomerates of size A at r = 15 for Ad = 1.3 and
64. Right [panels (c), (f), and (i)]: Gyration radius of agglomerates R,(A)/r, as a function of agglomerate size
A att = 15. The solid lines in panels (c), (f), and (i) are fits to Eq. (13) with (¢) x = 1.80 and D, = 1.54,
(f) x =1.70, Dy = 1.60, and (i) x = 1.49, D; = 1.71. Different rows stand for results for different St: top,
Sty = 0.72; middle, St = 12; and bottom, St = 23.

P(A) contained in an agglomerate of size A [Fig. 3(b)]. In both strong and weak adhesion cases,
most particles remain as singlets.

For particles with higher Stokes number, Sty = 12 or 23, similar results are observed as those for
Sty = 5.8 in Fig. 2. In both cases, a statistical steady state can be identified in the temporal evolution
of the collision kernel I'(¢#)/I"y at the small Ad limit [Figs. 3(d) and 3(g)]. When Ad > 64, further
increase of Ad does not change the I'(¢)/I"g — ¢ curves. The results once again confirm the existence
of the strong adhesion limit. In this limit, one can simply adopt the hit-and-stick assumption—two
particles will stick together once there is a contact between them—to simulate the agglomeration
without performing DEM calculations. In Figs. 3(e) and 3(h), we observe similar results as those
for Sty = 5.8 in Fig. 2(b).

For all the three values of Sty, the radius of gyration for agglomerates of different size can be well
described using the power-law function in Eq. (13) [see Figs. 3(c), 3(f), and 3(i)]. For a given Sty, the
factor x and fractal dimension D/ are insensitive to the value of adhesion parameter Ad. It suggests
that the interparticle adhesion strongly affects the growth rate of early-stage agglomerates but have
no obvious impact on their structures. Interestingly, as we mentioned in the previous subsection,
the agglomerates formed in different experimental conditions also have similar values of D, which
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FIG. 4. (a) Scaled number density n(A)/ny of agglomerates of size A for the case with Sty = 5.8 and
Ad = 64 at t = 5 (circles), 10 (squares), 15 (crosses), and 20 (triangles). The solid lines are fits to Eq. (14).
Inset: scaled number density n(A)/(nof) as a function of A/x for Sty = 5.8 (circles), 12 (triangles), and 23
(squares). For each Sty, results are shown for Ad = 1.3 (black), 13 (blue), and 64 (red), at t = 5, 10, and 15.
The solid line is the exponential scaling y = exp(—x). (b) n(A)/ny vs A calculated from population balance
equations. Legends are the same as in panel (a). In the inset of panel (b), we show the temporal evolution of
the scale parameter « from DNS-DEM result (circles) and from PBE (solid line).

further implies that the influences of flow conditions and interparticle adhesion on the structure of
agglomerates may be significant only if the size of agglomerates is sufficiently large [55].

C. Exponential scaling of early stage agglomerate size

Figure 4(a) shows the distributions of number density of agglomerates as a function of size A
at early stage (tf < 20). These distributions, when scaled by the initial number density of primary
particles ng, follow an exponential equation [solid lines in Fig. 4(a)],

@ = Bexp (—é), (14)

no K

with the coefficients § and « depending on time. Based on the conservation of the total number
of primary particles, £°An(A) = ny, the prefactor B can be expressed as B(k) = 2 cosh (k') — 2.
Therefore, the size distribution of early-stage agglomerates is determined by a single scale parameter
k, which gives a typical value of the size of agglomerates. A larger value of k means that there are
more particles contained in agglomerates with larger size and the growth of early-stage agglomerates
can be characterized by the increase of k. In the inset of Fig. 4(a), the number density distributions
for cases with Sty = 5.8, 12, and 23 and Ad = 1.3, 13, and 64 are plotted in a rescaled form,
n(A)/(noB) ~ A/k. Except for the deviation in tail caused by agglomerates with n(A)/ny < 0.3%,
the results center around the curve y = exp(—x), suggesting that the exponential scaling for early-
stage agglomeration is valid for inertial particles across a wide range of adhesion force magnitudes.

A comparison between the exponential distribution and the well-known self-preserving size
distribution for Brownian nanoparticles [56—58] would be of interest. If the collision kernels are
homogeneous functions of the volume of colliding particles and the degree of homogeneity smaller
than unity, the particle size distribution will reach a self-preserving shape (normally bell-shaped).
In that case, tracking the evolution of the mean agglomerate size is sufficient to describe the growth
of agglomerates. Although both the exponential distribution in Eq. (14) and the self-preserving size
distribution are single-parameter distributions, there is a fundamental difference between them. The
exponential distribution describes the transition behavior at the early stage of the agglomeration
when most particles remain as singlets and is no longer valid when there is a considerable number
of large agglomerates. In contrast, the self-preserving size distribution is an asymptotic limit which
is invariant with time.
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Now we introduce how to construct the agglomeration kernel that can be applied to Smolu-
chowski’s theory based on DNS-DEM results. We first look at the strong adhesion case by assuming
that particles will stick together upon collisions (i.e., ® = 1) and then show how adhesion influences
the sticking probability. For spherical particles, I'(, j) can be modeled by [13]

L, j) = 27 R} {|w,)g(R;)), (15)

where R;; = r,,; + 1), is the collision radius, (|w,|) is the average radial relative velocity and g(R;;)
is the radial distribution function at contact. Explicit expressions of these quantities are summarized
in Ref. [13]. Since turbulence parameters are fixed here, R;;, (w,), and g(R;;) are determined by
particle size and Sti. For collisions between agglomerates, we simply use the radius of gyration in
Eq. (13) with known values of x and D/ instead of the particle radius r, to calculate all the quantities
in Eq. (15) [51,59,60]. For instance, the collision radius for an agglomerate with i primary particles
and that with j primary particles is calculated as R;; = R,(i) + R,(j). The gyration radius R, (i) is
given by Eq. (13) when i > 2 and R,(i) = r), and \/Rr,, for i = 1 and i = 2, respectively. Given
the initial conditions, n(1) = ng and n(i) = 0 fori > 1, PBEs in Eq. (11) are numerically integrated
using a sufficiently small time step with the agglomerate size truncated at ic = 50 (i.e., assuming
n(i) = 0 for i > 50). As a result, we can get the evolution of the number density n(i) for each size
group. PBE calculations are much faster than DNS-DEM, since PBEs only solve for the number
density n(i) at each time step rather than resolve the motion of every particle.

We plot the scaled number density n(A)/ny calculated from PBE in Fig. 4(b). It is shown that
results from PBE well reproduce the results of DNS-DEM in Fig. 4(a) when ¢ < 15. We then fit the
scaled distribution n(A)/ng using the Eq. (14) at each ¢ and get the evolution of the scale parameter
k, which is in good agreement with the DNS results when ¢ < 15 [see the inset of Fig. 4(b)]. It
indicates that the kernel I'(7, j) constructed in the form of gyration radius readily reflects the effect
of the fractal structure of agglomerates on the agglomeration. At¢ = 20, the distribution of n(A)/ng
from PBE still follows the exponential form; however, a non-negligible deviation between PBE
results and those from DNS-DEM is observed. Such deviation may be attributed to two reasons.
First, I'(7, j) does not contain information of breakage or rearrangement, which is expected to be
significant for large-size agglomerates [26]. Moreover, statistics may also get worse when the total
number of agglomerates X{°n(A) reduces.

D. Effect of adhesion on growth of agglomerates

When the adhesion is relatively weak, a collision between two particles or agglomerates does not
ensure the formation of a larger agglomerate. The adhesive DEM approach can capture the effect of
adhesion on the agglomeration without any additional models. However, when designing large-scale
devices, one does not need to know the information of every single particle; instead, knowing
the size distribution is enough. In those cases, solving the population balance equations would be
more feasible. Therefore, it is of significance to check if the complicated effect of particle-particle
contacting interactions on the growth kinetics of agglomerates can be captured by the sticking
probability ® [given in Eq. (12)].

We solve PBE using agglomeration kernel I', (i, j) with ® increasing from O to 1 [see Eq. (12)].
The evolution of the scale parameter « is shown as solid lines in Fig. 5(a). It is evident from the
results that a smaller sticking probability ® leads to a lower growth rate of agglomerates. We also
plot corresponding results from DNS-DEM simulations with different values of adhesion parameter
Ad as data points in Fig. 5(a). For Ad = 0.013, «(¢) is close to the PBE results with sticking
probability ® = 0, indicating that almost no agglomerates are formed given such a weak adhesive
force. As Ad increases beyond ~64, the «(¢) curves converge to the PBE result with sticking
probability ® = 1. This strong adhesion case corresponds to the conventional PBE simulations,
where the hit-and-stick assumption is made. Our results here suggest that PBE can also simulate the
agglomeration process for particles with relatively weak adhesion once the sticking probability ©
is adopted.
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FIG. 5. (a) Temporal evolution of the parameter « for DNS-DEM simulation with Sty = 5.8 and Ad =
0.013 (circles), 1.3 (left-pointing triangles), 13 (diamonds), 64 (upward triangles), 128 (squares), and 256
(axes). The solid lines spanning from light to dark color are results from PBE with the sticking probability
® =0, 0.2, 04, 0.8, and 1. (b) Sticking probability ®, determined from Eq. (16), as a function of adhesion
parameter Ad for Sty = 2.9 (circles), 5.8 (triangles), 12 (diamonds), and 23 (squares). The horizontal dashed
lineis ® = 1.

We then determine the value of the sticking probability ® in a statistical manner based on
our DNS-DEM data. For a given Ad, we extract the instantaneous value of the scaling parameter
k(t, Ad) from DNS-DEM simulations, map this point out on Fig. 5(a), and find the PBE curve
of k (¢, ®) that the point sits on. This procedure instantaneously correlates ®(¢) to Ad. Then time
averaging is performed to get the sticking probability at this given Ad:

T
O(Ad) = %/ O(t)dt. (16)
0

In Fig. 5(b), we plot ®(Ad) for Sty = 2.9, 5.8, 12, and 23. With Ad < 1, the sticking probability
® for any Sty is smaller than ~0.3% and the data points of different Sty are rather scattered. In
contrast, when Ad > 10, there is an adhesion-controlled regime, in which ® is mainly determined
by Ad. Particularly, the probability of unity, ® = 1, which corresponds to the hit-and-stick situation,
is achieved when Ad is larger than ~50.

E. Modeling sticking probability ©

Describing turbulence-induced agglomeration using PBE requires knowledge of the sticking
probability ® a priori . Therefore, it is of significance to relate ® to the particle-level properties.
‘We consider a head-on collision between two primary particles with v, being the relative collision
velocity. For simplicity, only the normal forces in Eq. (6a) are taken into account and the interparticle
overlap § evolves according to

d25 277]\/ ds 81@ 3 3
S IET L T 6) — a2 (8)] =0, 17

with the initial conditions §(0) = 0 and % = v, The contact between the particles is built up when

6 > 0 and is broken when § < —§¢. Normalizing the overlap using its critical value §¢ and the time
using ¢ /v.,, we have the following nondimensional form of Eq. (17):

d*8 dé

~ + Bad'*—

di? +hea di

+3.63B%g(8) = 0. (18)
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Ad,

FIG. 6. Sticking probability ® as a function of the adhesion parameter Ad,, which is defined based on
the averaged normal collision velocity (v.,), for Sty = 2.9 (circles), 5.8 (triangles), 12 (diamonds), and 23
(squares). The solid line is ® = 0.017Ad,, and the horizontal dashed line is ® = 1.

The damping coefficient « is an input parameter and the scaled radius a can be calculated inversely
through Eq. (7). The results of a collision are determined by the parameter B, which is defined as

1 5
E; \ 3 %
B= 2.24( ! ) ( r > . (19)
IOPvcn ppvcan

From Eq. (19) and a simple dimensional analysis, it is obvious that the effect of the adhesion (i.e.,
the surface energy y) on the sticking probability 6 is determined by the dimensionless adhesion
parameter Ad(v.,) = y/( p,,vfnr,,), which is defined based on the normal collision velocity v.,. We
measure the value of v, for every collision event in each simulation run and use the mean value
(ven) as the typical velocity scale. A modified adhesion parameter then is given as

Y
pp(vcn>2rp

Ad, = (20)
In Fig. 6, we replot the data of Fig. 5(b) in the ® — Ad,, plane and all the data points collapse onto
two curves:

® = 0.017Ad,, for 1 < Ad, < 30, and ® = 1 for Ad, > 50. 21

The results in Fig. 6 indicate that the mean relative collision velocity is an appropriate choice to
scale the effect of adhesion and the sticking probability ® can be well estimated once Ad,, is known.
Here, the data points for cases with Ad,, < 1 are neglected, since the sticking probability is less than
1072, which is too small to ensure good statistics. It should be noted that current values of (v,) are
measured from DNS-DEM. To avoid computationally expensive DNS-DEM calculation, one can
also adopt analytical expressions to estimate the value of (v.,) (see Refs. [61-64]).

IV. CONCLUSIONS

In summary, for adhesive inertial particles suspended in turbulence, we measure both the collision
rate, the structure, and the size distribution of early-stage agglomerates with varying adhesion. We
find that the collision rate is significantly reduced due to the adhesion-induced agglomeration. As the
value of adhesion parameter Ad increases, the system reaches a strong-adhesion limit, in which the
sticking probability for colliding particles is unity and further increase of Ad does not affect the dy-
namics of agglomeration. We also find that the size distribution of early-stage agglomerates follows
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an exponential equation n(A)/ny = B(k)exp(—A/k) regardless of the adhesion force magnitude.
The transient dynamics of agglomeration at early stages thus can be characterized using a single
scale parameter «. This finding may help to reduce the computing complexity of the population
balance equation (PBE) to that of monodisperse systems since only one parameter « needs to be
solved [58]. The evolution of x then serves as an indicator for the quantitative comparison between
DNS-DEM and PBE simulations. We show that by introducing an agglomeration kernel constructed
in terms of gyration radius of agglomerates and a sticking probability ®, PBE can well reproduce
the results of DNS-DEM. A relationship between the sticking probability and particle properties is
then proposed based on the scaling analysis of the equation for head-on collisions.

There are several interesting directions for future study. First, the current work focuses on the
early-stage agglomeration, where the breakage and the rearrangement of agglomerates are not
significant. It is unclear to what extent the framework developed here can be extended to situations
with large agglomerates [65]. It requires one to construct kernel functions that contain information
about breakage and restructuring [66,67]. Moreover, we fix the value of Taylor-microscale Reynolds
number Re; in the current work. It is reported that the relative velocity and the collision rate for
inertial particles increase strongly with increasing Re; [12,13,68]. However, a stronger clustering
effect may suppress the agglomeration [69]. For high-Reynolds-number flows, other effects,
including the correlated collision events [70] and multifractal statistics of velocities differences [71],
may dominate the agglomeration. Therefore, a complete picture of agglomeration should include
the role of both the turbulent transport (e.g., vortices and intermittency) and the microphysical
mechanisms (particle-level interactions), which is an interesting direction for future research.

ACKNOWLEDGMENTS

S.Q.L. acknowledges support from the National Natural Science Foundation of China (Grant
No. 51725601) and National Key Research and Development Program of China (Grant No.
2016 YFB0600602). The authors thank Prof. Q. Yao at Tsinghua, Prof. L. Médler at the University
of Bremen, and Dr. W. Liu at University of Surrey for useful suggestions.

[1] E. W. Saw, R. A. Shaw, S. Ayyalasomayajula, P. Y. Chuang, and A. Gylfason, Inertial Clustering of
Particles in High-Reynolds-Number Turbulence, Phys. Rev. Lett. 100, 214501 (2008).

[2] J. Lu, H. Nordsiek, E. W. Saw, and R. A. Shaw, Clustering of Charged Inertial Particles in Turbulence,
Phys. Rev. Lett. 104, 184505 (2010).

[3] J. Bec, H. Homann, and S. S. Ray, Gravity-Driven Enhancement of Heavy Particle Clustering in Turbulent
Flow, Phys. Rev. Lett. 112, 184501 (2014).

[4] K. Gustavsson, S. Vajedi, and B. Mehlig, Clustering of Particles Falling in a Turbulent Flow, Phys. Rev.
Lett. 112, 214501 (2014).

[5] S. Balachandar and J. K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42, 111
(2010).

[6] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen,
Z. Phys. Chem. 92, 129 (1917).

[7] S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics (Oxford University Press,
New York, USA, 2000).

[8] A.Pumir and M. Wilkinson, Collisional aggregation due to turbulence, Annu. Rev. Condens. Matter Phys.
7, 141 (2016).

[9] P. G. F. Saffman and J. S. Turner, On the collision of drops in turbulent clouds, J. Fluid Mech. 1, 16
(1956).

[10] J. Abrahamson, Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci. 30, 1371

(1975).

024304-14


https://doi.org/10.1103/PhysRevLett.100.214501
https://doi.org/10.1103/PhysRevLett.100.214501
https://doi.org/10.1103/PhysRevLett.100.214501
https://doi.org/10.1103/PhysRevLett.100.214501
https://doi.org/10.1103/PhysRevLett.104.184505
https://doi.org/10.1103/PhysRevLett.104.184505
https://doi.org/10.1103/PhysRevLett.104.184505
https://doi.org/10.1103/PhysRevLett.104.184505
https://doi.org/10.1103/PhysRevLett.112.184501
https://doi.org/10.1103/PhysRevLett.112.184501
https://doi.org/10.1103/PhysRevLett.112.184501
https://doi.org/10.1103/PhysRevLett.112.184501
https://doi.org/10.1103/PhysRevLett.112.214501
https://doi.org/10.1103/PhysRevLett.112.214501
https://doi.org/10.1103/PhysRevLett.112.214501
https://doi.org/10.1103/PhysRevLett.112.214501
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1515/zpch-1918-9209
https://doi.org/10.1515/zpch-1918-9209
https://doi.org/10.1515/zpch-1918-9209
https://doi.org/10.1515/zpch-1918-9209
https://doi.org/10.1146/annurev-conmatphys-031115-011538
https://doi.org/10.1146/annurev-conmatphys-031115-011538
https://doi.org/10.1146/annurev-conmatphys-031115-011538
https://doi.org/10.1146/annurev-conmatphys-031115-011538
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1017/S0022112056000020
https://doi.org/10.1016/0009-2509(75)85067-6
https://doi.org/10.1016/0009-2509(75)85067-6
https://doi.org/10.1016/0009-2509(75)85067-6
https://doi.org/10.1016/0009-2509(75)85067-6

EXPONENTIAL SCALING IN EARLY-STAGE ...

[11] S. Sundaram and L. R. Collins, Collision statistics in an isotropic particle-laden turbulent suspension. Part
1. Direct numerical simulations, J. Fluid Mech. 335, 75 (1997).

[12] L. P. Wang, A. S. Wexler, and Y. Zhou, Statistical mechanical description and modelling of turbulent
collision of inertial particles, J. Fluid Mech. 415, 117 (2000).

[13] Y. Zhou, A. S. Wexler, and L. P. Wang, Modelling turbulent collision of bidisperse inertial particles,
J. Fluid Mech. 433, 77 (2001).

[14] K. Gustavsson and B. Mehlig, Statistical model for collisions and recollisions of inertial particles in
mixing flows, Eur. Phys. J. E 39, 55 (2016).

[15] M. Wilkinson and B. Mehlig, Caustics in turbulent aerosols, Europhys. Lett. 71, 186 (2005).

[16] K. Gustavsson and B. Mehlig, Distribution of relative velocities in turbulent aerosols, Phys. Rev. E 84,
045304 (2011).

[17] G. Falkovich and A. Pumir, Sling effect in collisions of water droplets in turbulent clouds, J. Atmos. Sci.
64, 4497 (2007).

[18] A.Jaworek, A. Marchewicz, A. T. Sobczyk, A. Krupa, and T. Czech, Two-stage electrostatic precipitators
for the reduction of PM2.5 particle emission, Prog. Energy Combust. Sci. 67, 206 (2018).

[19] P. Jarvis, B. Jefferson, J. Gregory, and S. A. Parsons, A review of floc strength and breakage, Water Res.
39, 3121 (2005).

[20] J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R.
Schripler et al., Growth and form of Planetary Seedlings: Results from a Microgravity Aggregation
Experiment, Phys. Rev. Lett. 85, 2426 (2000).

[21] C. Tien, C. S. Wang, and D. T. Barot, Chainlike formation of particle deposits in fluid-particle separation,
Science 196, 983 (1977).

[22] S. Chen, W. Liu, and S. Q. Li, Effect of long-range electrostatic repulsion on pore clogging during
microfiltration, Phys. Rev. E 94, 063108 (2016).

[23] J. S. Marshall and S. Q. Li, Adhesive Particle Flow (Cambridge University Press, New York, USA, 2014).

[24] J. Bec, S. Musacchio, and S. S. Ray, Sticky elastic collisions, Phys. Rev. E 87, 063013 (2013).

[25] J. S. Marshall, Discrete-element modeling of particulate aerosol flows, J. Comput. Phys. 228, 1541 (2009).

[26] E. F. Dizaji and J. S. Marshall, On the significance of two-way coupling in simulation of turbulent particle
agglomeration, Powder Technol. 318, 83 (2017).

[27] M. Sommerfeld, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in
homogeneous isotropic turbulence, Int. J. Multiphase Flow 27, 1829 (2001).

[28] N. Almohammed and M. Breuer, Modeling and simulation of agglomeration in turbulent particle-
laden flows: A comparison between energy-based and momentum-based agglomeration models, Powder
Technol. 294, 373 (2016).

[29] T. S. Lundgren, Linearly forced isotropic turbulence, in Annual Research Briefs 2003 (Center for
Turbulence Research, Stanford, CA, 2003), pp. 461-473.

[30] C. Rosales and C. Meneveau, Linear forcing in numerical simulations of isotropic turbulence: Physical
space implementations and convergence properties, Phys. Fluids 17, 095106 (2005).

[31] R. Di Felice, The voidage function for fluid-particle interaction systems, Int. J. Multiphase Flow 20, 153
(1994).

[32] P. G. T. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22, 385 (1965).

[33] S. I. Rubinow and J. B. Keller, The transverse force on a spinning sphere moving in a viscous fluid,
J. Fluid Mech. 11, 447 (1961).

[34] S. Chen, W. Liu, and S. Li, A fast adhesive discrete element method for random packings of fine particles,
Chem. Eng. Sci. 193, 336 (2019).

[35] B. Siimer and M. Sitti, Rolling and spinning friction characterization of fine particles using lateral force
microscopy based contact pushing, J. Adhes. Sci. Technol. 22, 481 (2008).

[36] M. Yang, S. Li, and Q. Yao, Mechanistic studies of initial deposition of fine adhesive particles on a fiber
using discrete-element methods, Powder Technol. 248, 44 (2013).

[37] S. Q. LiandJ. S. Marshall, Discrete element simulation of micro-particle deposition on a cylindrical fiber
in an array, J. Aerosol Sci. 38, 1031 (2007).

024304-15


https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112096004454
https://doi.org/10.1017/S0022112000008661
https://doi.org/10.1017/S0022112000008661
https://doi.org/10.1017/S0022112000008661
https://doi.org/10.1017/S0022112000008661
https://doi.org/10.1017/S0022112000003372
https://doi.org/10.1017/S0022112000003372
https://doi.org/10.1017/S0022112000003372
https://doi.org/10.1017/S0022112000003372
https://doi.org/10.1140/epje/i2016-16055-0
https://doi.org/10.1140/epje/i2016-16055-0
https://doi.org/10.1140/epje/i2016-16055-0
https://doi.org/10.1140/epje/i2016-16055-0
https://doi.org/10.1209/epl/i2004-10532-7
https://doi.org/10.1209/epl/i2004-10532-7
https://doi.org/10.1209/epl/i2004-10532-7
https://doi.org/10.1209/epl/i2004-10532-7
https://doi.org/10.1103/PhysRevE.84.045304
https://doi.org/10.1103/PhysRevE.84.045304
https://doi.org/10.1103/PhysRevE.84.045304
https://doi.org/10.1103/PhysRevE.84.045304
https://doi.org/10.1175/2007JAS2371.1
https://doi.org/10.1175/2007JAS2371.1
https://doi.org/10.1175/2007JAS2371.1
https://doi.org/10.1175/2007JAS2371.1
https://doi.org/10.1016/j.pecs.2018.03.003
https://doi.org/10.1016/j.pecs.2018.03.003
https://doi.org/10.1016/j.pecs.2018.03.003
https://doi.org/10.1016/j.pecs.2018.03.003
https://doi.org/10.1016/j.watres.2005.05.022
https://doi.org/10.1016/j.watres.2005.05.022
https://doi.org/10.1016/j.watres.2005.05.022
https://doi.org/10.1016/j.watres.2005.05.022
https://doi.org/10.1103/PhysRevLett.85.2426
https://doi.org/10.1103/PhysRevLett.85.2426
https://doi.org/10.1103/PhysRevLett.85.2426
https://doi.org/10.1103/PhysRevLett.85.2426
https://doi.org/10.1126/science.196.4293.983
https://doi.org/10.1126/science.196.4293.983
https://doi.org/10.1126/science.196.4293.983
https://doi.org/10.1126/science.196.4293.983
https://doi.org/10.1103/PhysRevE.94.063108
https://doi.org/10.1103/PhysRevE.94.063108
https://doi.org/10.1103/PhysRevE.94.063108
https://doi.org/10.1103/PhysRevE.94.063108
https://doi.org/10.1103/PhysRevE.87.063013
https://doi.org/10.1103/PhysRevE.87.063013
https://doi.org/10.1103/PhysRevE.87.063013
https://doi.org/10.1103/PhysRevE.87.063013
https://doi.org/10.1016/j.jcp.2008.10.035
https://doi.org/10.1016/j.jcp.2008.10.035
https://doi.org/10.1016/j.jcp.2008.10.035
https://doi.org/10.1016/j.jcp.2008.10.035
https://doi.org/10.1016/j.powtec.2017.05.027
https://doi.org/10.1016/j.powtec.2017.05.027
https://doi.org/10.1016/j.powtec.2017.05.027
https://doi.org/10.1016/j.powtec.2017.05.027
https://doi.org/10.1016/S0301-9322(01)00035-0
https://doi.org/10.1016/S0301-9322(01)00035-0
https://doi.org/10.1016/S0301-9322(01)00035-0
https://doi.org/10.1016/S0301-9322(01)00035-0
https://doi.org/10.1016/j.powtec.2015.12.034
https://doi.org/10.1016/j.powtec.2015.12.034
https://doi.org/10.1016/j.powtec.2015.12.034
https://doi.org/10.1016/j.powtec.2015.12.034
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1063/1.2047568
https://doi.org/10.1016/0301-9322(94)90011-6
https://doi.org/10.1016/0301-9322(94)90011-6
https://doi.org/10.1016/0301-9322(94)90011-6
https://doi.org/10.1016/0301-9322(94)90011-6
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112061000640
https://doi.org/10.1017/S0022112061000640
https://doi.org/10.1017/S0022112061000640
https://doi.org/10.1017/S0022112061000640
https://doi.org/10.1016/j.ces.2018.09.026
https://doi.org/10.1016/j.ces.2018.09.026
https://doi.org/10.1016/j.ces.2018.09.026
https://doi.org/10.1016/j.ces.2018.09.026
https://doi.org/10.1163/156856108X295527
https://doi.org/10.1163/156856108X295527
https://doi.org/10.1163/156856108X295527
https://doi.org/10.1163/156856108X295527
https://doi.org/10.1016/j.powtec.2012.12.016
https://doi.org/10.1016/j.powtec.2012.12.016
https://doi.org/10.1016/j.powtec.2012.12.016
https://doi.org/10.1016/j.powtec.2012.12.016
https://doi.org/10.1016/j.jaerosci.2007.08.004
https://doi.org/10.1016/j.jaerosci.2007.08.004
https://doi.org/10.1016/j.jaerosci.2007.08.004
https://doi.org/10.1016/j.jaerosci.2007.08.004

SHENG CHEN, SHUIQING LI, AND JEFFREY S. MARSHALL

[38] S. Chen, S. Q. Li, and M. Yang, Sticking/rebound criterion for collisions of small adhesive particles:
Effects of impact parameter and particle size, Powder Technol. 274, 431 (2015).

[39] W. Liu, S. Q. Li, A. Baule, and H. A. Makse, Adhesive loose packings of small dry particles, Soft Matter
11, 6492 (2015).

[40] W. Liu, Y. Jin, S. Chen, H. A. Makse, and S. Q. Li, Equation of state for random sphere packings with
arbitrary adhesion and friction, Soft Matter 13, 421 (2017).

[41] J. S. Marshall, Viscous damping force during head-on collision of two spherical particles, Phys. Fluids
23, 013305 (2011).

[42] F. L. Yang and M. L. Hunt, Dynamics of particle-particle collisions in a viscous liquid, Phys. Fluids 18,
121506 (2006).

[43] H. E. Fayed and S. A. Ragab, Direct numerical simulation of particles-bubbles collisions kernel in
homogeneous isotropic turbulence, J. Comput. Multiphase Flows 5, 167 (2013).

[44] X. Jin and J. S. Marshall, The role of fluid turbulence on contact electrification of suspended particles,
J. Electrost. 87, 217 (2017).

[45] H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Springer Netherlands,
Heidelberg, 2010).

[46] R. Onishi, K. Takahashi, and S. Komori, Influence of gravity on collisions of monodispersed droplets in
homogeneous isotropic turbulence, Phys. Fluids 21, 125108 (2009).

[47] P. J. Ireland, A. D. Bragg, and L. R. Collins, The effect of Reynolds number on inertial particle dynamics
in isotropic turbulence. Part 2. Simulations with gravitational effects, J. Fluid Mech. 796, 659 (2016).

[48] S. Krijt, C. Giittler, D. Heilelmann, C. Dominik, and A. G. G. M. Tielens, Energy dissipation in head-on
collisions of spheres, J. Phys. D 46, 435303 (2013).

[49] S. Chen, M. K. Yau, and P. Bartello, Turbulence effects of collision efficiency and broadening of droplet
size distribution in cumulus clouds, J. Atmos. Sci. 75, 203 (2018).

[50] F. F. Dizaji and J. S. Marshall, An accelerated stochastic vortex structure method for particle collision and
agglomeration in homogeneous turbulence, Phys. Fluids 28, 113301 (2016).

[51] Q. Jiang and B. E. Logan, Fractal dimensions of aggregates determined from steady-state size distribu-
tions, Environ. Sci. Technol. 25, 2031 (1991).

[52] J. C. Flesch, P. T. Spicer, and S. E. Pratsinis, Laminar and turbulent shear-induced flocculation of fractal
aggregates, AIChE J. 45, 1114 (1999).

[53] M. H. Waldner, J. Sefcik, M. Soos, and M. Morbidelli, Initial growth kinetics and structure of colloidal
aggregates in a turbulent coagulator, Powder Technol. 156, 226 (2005).

[54] C. Selomulya, R. Amal, G. Bushell, and T. D. Waite, Evidence of shear rate dependence on restructuring
and breakup of latex aggregates, J. Colloid Interface Sci. 236, 67 (2001).

[55] D. Liu, W. Zheng, X. Chen, and M. Liu, Simulation of agglomerate breakage and restructuring in shear
flows: Coupled effects of shear gradient, surface energy, and initial structure, Powder Technol. 336, 102
(2018).

[56] S. K. Friedlander and C. S. Wang, The self-preserving particle size distribution for coagulation by
Brownian motion, J. Colloid Interface Sci. 22, 126 (1966).

[57] S. Vemury and S. E. Pratsinis, Self-preserving size distributions of agglomerates, J. Aerosol Sci. 26, 175
(1995).

[58] M. L. Eggersdorfer and S. E. Pratsinis, Agglomerates and aggregates of nanoparticles made in the gas
phase, Adv. Powder Technol. 25, 71 (2014).

[59] R. Jullien and P. Meakin, Simple models for the restructuring of three-dimensional ballistic aggregates,
J. Colloid Interface Sci. 127, 265 (1989).

[60] M. Elimelech, X. Jia, J. Gregory, and R. Williams, Particle Deposition and Aggregation: Measurement,
Modelling and Simulation (Elsevier, Amsterdam, 1998).

[61] L. Pan and P. Padoan, Turbulence-induced relative velocity of dust particles. 1. Identical particles,
Astrophys. J. 776, 12 (2013).

[62] L. Pan and P. Padoan, Relative velocity of inertial particles in turbulent flows, J. Fluid Mech. 661, 73
(2010).

024304-16


https://doi.org/10.1016/j.powtec.2015.01.051
https://doi.org/10.1016/j.powtec.2015.01.051
https://doi.org/10.1016/j.powtec.2015.01.051
https://doi.org/10.1016/j.powtec.2015.01.051
https://doi.org/10.1039/C5SM01169H
https://doi.org/10.1039/C5SM01169H
https://doi.org/10.1039/C5SM01169H
https://doi.org/10.1039/C5SM01169H
https://doi.org/10.1039/C6SM02216B
https://doi.org/10.1039/C6SM02216B
https://doi.org/10.1039/C6SM02216B
https://doi.org/10.1039/C6SM02216B
https://doi.org/10.1063/1.3546094
https://doi.org/10.1063/1.3546094
https://doi.org/10.1063/1.3546094
https://doi.org/10.1063/1.3546094
https://doi.org/10.1063/1.2396925
https://doi.org/10.1063/1.2396925
https://doi.org/10.1063/1.2396925
https://doi.org/10.1063/1.2396925
https://doi.org/10.1260/1757-482X.5.3.167
https://doi.org/10.1260/1757-482X.5.3.167
https://doi.org/10.1260/1757-482X.5.3.167
https://doi.org/10.1260/1757-482X.5.3.167
https://doi.org/10.1016/j.elstat.2017.04.011
https://doi.org/10.1016/j.elstat.2017.04.011
https://doi.org/10.1016/j.elstat.2017.04.011
https://doi.org/10.1016/j.elstat.2017.04.011
https://doi.org/10.1063/1.3276906
https://doi.org/10.1063/1.3276906
https://doi.org/10.1063/1.3276906
https://doi.org/10.1063/1.3276906
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1088/0022-3727/46/43/435303
https://doi.org/10.1088/0022-3727/46/43/435303
https://doi.org/10.1088/0022-3727/46/43/435303
https://doi.org/10.1088/0022-3727/46/43/435303
https://doi.org/10.1175/JAS-D-17-0123.1
https://doi.org/10.1175/JAS-D-17-0123.1
https://doi.org/10.1175/JAS-D-17-0123.1
https://doi.org/10.1175/JAS-D-17-0123.1
https://doi.org/10.1063/1.4966684
https://doi.org/10.1063/1.4966684
https://doi.org/10.1063/1.4966684
https://doi.org/10.1063/1.4966684
https://doi.org/10.1021/es00024a007
https://doi.org/10.1021/es00024a007
https://doi.org/10.1021/es00024a007
https://doi.org/10.1021/es00024a007
https://doi.org/10.1002/aic.690450518
https://doi.org/10.1002/aic.690450518
https://doi.org/10.1002/aic.690450518
https://doi.org/10.1002/aic.690450518
https://doi.org/10.1016/j.powtec.2005.04.014
https://doi.org/10.1016/j.powtec.2005.04.014
https://doi.org/10.1016/j.powtec.2005.04.014
https://doi.org/10.1016/j.powtec.2005.04.014
https://doi.org/10.1006/jcis.2000.7372
https://doi.org/10.1006/jcis.2000.7372
https://doi.org/10.1006/jcis.2000.7372
https://doi.org/10.1006/jcis.2000.7372
https://doi.org/10.1016/j.powtec.2018.05.051
https://doi.org/10.1016/j.powtec.2018.05.051
https://doi.org/10.1016/j.powtec.2018.05.051
https://doi.org/10.1016/j.powtec.2018.05.051
https://doi.org/10.1016/0021-9797(66)90073-7
https://doi.org/10.1016/0021-9797(66)90073-7
https://doi.org/10.1016/0021-9797(66)90073-7
https://doi.org/10.1016/0021-9797(66)90073-7
https://doi.org/10.1016/0021-8502(94)00103-6
https://doi.org/10.1016/0021-8502(94)00103-6
https://doi.org/10.1016/0021-8502(94)00103-6
https://doi.org/10.1016/0021-8502(94)00103-6
https://doi.org/10.1016/j.apt.2013.10.010
https://doi.org/10.1016/j.apt.2013.10.010
https://doi.org/10.1016/j.apt.2013.10.010
https://doi.org/10.1016/j.apt.2013.10.010
https://doi.org/10.1016/0021-9797(89)90027-1
https://doi.org/10.1016/0021-9797(89)90027-1
https://doi.org/10.1016/0021-9797(89)90027-1
https://doi.org/10.1016/0021-9797(89)90027-1
https://doi.org/10.1088/0004-637X/776/1/12
https://doi.org/10.1088/0004-637X/776/1/12
https://doi.org/10.1088/0004-637X/776/1/12
https://doi.org/10.1088/0004-637X/776/1/12
https://doi.org/10.1017/S0022112010002855
https://doi.org/10.1017/S0022112010002855
https://doi.org/10.1017/S0022112010002855
https://doi.org/10.1017/S0022112010002855

EXPONENTIAL SCALING IN EARLY-STAGE ...

[63] O. Ayala, B. Rosa, and L.-P. Wang, Effects of turbulence on the geometric collision rate of sedimenting
droplets. Part 2. Theory and parameterization, New J. Phys. 10, 075016 (2008).

[64] S.L.Rani, R. Dhariwal, and D. L. Koch, A stochastic model for the relative motion of high Stokes number
particles in isotropic turbulence, J. Fluid Mech. 756, 870 (2014).

[65] F. F. Dizaji, J. S. Marshall, and J. R. Grant, Collision and breakup of fractal particle agglomerates in a
shear flow, J. Fluid Mech. 862, 592 (2019).

[66] M. U. Babler, L. Biferale, L. Brandt, U. Feudel, K. Guseva, A. S. Lanotte, C. Marchioli, F. Picano,
G. Sardina, A. Soldati, and F. Toschi, Numerical simulations of aggregate breakup in bounded and
unbounded turbulent flows, J. Fluid Mech. 766, 104 (2015).

[67] J. De Bona, A. S. Lanotte, and M. Vanni, Internal stresses and breakup of rigid isostatic aggregates in
homogeneous and isotropic turbulence, J. Fluid Mech. 755, 365 (2014).

[68] P. J. Ireland, A. D. Bragg, and L. R. Collins, The effect of Reynolds number on inertial particle dynamics
in isotropic turbulence. Part 1. Simulations without gravitational effects, J. Fluid Mech. 796, 617 (2016).

[69] P. Liu and C. M. Hrenya, Cluster-Induced Deagglomeration in Dilute Gravity-Driven Gas-Solid Flows of
Cohesive Grains, Phys. Rev. Lett. 121, 238001 (2018).

[70] J. Bec, S. S. Ray, E. W. Saw, and H. Homann, Abrupt growth of large aggregates by correlated
coalescences in turbulent flow, Phys. Rev. E 93, 031102 (2016).

[71] E. W. Saw, G. P. Bewley, E. Bodenschatz, S. S. Ray, and J. Bec, Extreme fluctuations of the relative
velocities between droplets in turbulent airflow, Phys. Fluids 26, 111702 (2014).

024304-17


https://doi.org/10.1088/1367-2630/10/7/075016
https://doi.org/10.1088/1367-2630/10/7/075016
https://doi.org/10.1088/1367-2630/10/7/075016
https://doi.org/10.1088/1367-2630/10/7/075016
https://doi.org/10.1017/jfm.2014.461
https://doi.org/10.1017/jfm.2014.461
https://doi.org/10.1017/jfm.2014.461
https://doi.org/10.1017/jfm.2014.461
https://doi.org/10.1017/jfm.2018.959
https://doi.org/10.1017/jfm.2018.959
https://doi.org/10.1017/jfm.2018.959
https://doi.org/10.1017/jfm.2018.959
https://doi.org/10.1017/jfm.2015.13
https://doi.org/10.1017/jfm.2015.13
https://doi.org/10.1017/jfm.2015.13
https://doi.org/10.1017/jfm.2015.13
https://doi.org/10.1017/jfm.2014.421
https://doi.org/10.1017/jfm.2014.421
https://doi.org/10.1017/jfm.2014.421
https://doi.org/10.1017/jfm.2014.421
https://doi.org/10.1017/jfm.2016.238
https://doi.org/10.1017/jfm.2016.238
https://doi.org/10.1017/jfm.2016.238
https://doi.org/10.1017/jfm.2016.238
https://doi.org/10.1103/PhysRevLett.121.238001
https://doi.org/10.1103/PhysRevLett.121.238001
https://doi.org/10.1103/PhysRevLett.121.238001
https://doi.org/10.1103/PhysRevLett.121.238001
https://doi.org/10.1103/PhysRevE.93.031102
https://doi.org/10.1103/PhysRevE.93.031102
https://doi.org/10.1103/PhysRevE.93.031102
https://doi.org/10.1103/PhysRevE.93.031102
https://doi.org/10.1063/1.4900848
https://doi.org/10.1063/1.4900848
https://doi.org/10.1063/1.4900848
https://doi.org/10.1063/1.4900848

