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Abstract. Boltzmann-Gibbs (BG) entropy has additive and extensive
properties, but for certain physical systems, such as those governed
by long-range interactions – plasma or fully ionized gas being an
example – it is speculated that the entropy must be non-additive
and non-extensive. Because of the fact that Tsallis entropy possesses
such characteristics, many spacecraft observations of charged particle
distributions in space are interpreted with the conceptual framework
based upon Tsallis statistical principles. This paper formulates the non-
equilibrium statistical theory of space plasma, and it is shown that
the steady state electrostatic turbulence in plasma coincides with the
formation of non-Maxwellian electron distribution function known as
the kappa distribution. The kappa distribution is equivalent to the q-
Gaussian distribution in the Tsallis statistical theory, which represents
the most probable state subject to Tsallis entropy. This finding repre-
sents an independent confirmation that the space plasma may indeed
be governed by the Tsallis statistical principle.

1 Introduction

It is well known that Boltzmann-Gibbs (BG) entropy SBG = kB logW , where W
represents the number of all possible micro states of a system and kB is the Boltzmann
constant kB = 1.3806503× 10−23 m2 kg s−2 K−1, is additive and extensive. That is, if
A and B represent two subsystems and A+B the total system, then SBG(A+B) =
kB ln(WAWB) = kB lnWA + kB lnWB = SBG(A) + SBG(B), which is the additive
property. If we consider that the number of possible states behaves as W (N) ∝ wN

(w > 1), where N represents the total number of particles, then we have SBG =
NkB lnw ∝ N , which represents the extensive nature of BG entropy. Boltzmann-
Gibbs entropy governs ideal gas or systems governed by short-range interactions,
but for systems dictated by long-ranged interactions, such as (fully) ionized gas,
or plasma, whose dynamics is governed by long-ranged electromagnetic force, it is
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reasonable to expect that non-additive and non-extensive thermo-statistical principle
may characterize their macroscopic behavior.

Among possible generalizations of BG entropy is the model put forth by Tsallis

[1,2], namely, Sq = −kB
(

1−
∑W
i=1 p

q
i

)
/(1 − q), where pi is the probability of the

system being at a particular micro state, satisfying
∑W
i=1 pi = 1. For equal probability,

of course, pi = 1/W . Tsallis entropy is non-additive in that the entropy of total
system differs from the sum of entropies for subsystems, k−1B Sq(A+B) = k−1B Sq(A) +

k−1B Sq(B) + (1− q)k−2B Sq(A)Sq(B). For q = 1 one recovers the additive property. It

is also non-extensive. If we suppose that W (N) = wN , then one has k−1B Sq(N) =

(q − 1)−1
[
1− w−N(q−1)], which is not proportional to N , hence, non-extensive.

For continuous systems, Tsallis entropy is expressed as

Sq = − kB
1− q

(
1−

∫
dx

∫
dv[f(v)]q

)
. (1)

Upon minimizing the free energy, F = U − TSq, where U =
∫
dx
∫
dv (mv2/2) f(v),

is the total energy, that is, by solving for f that satisfies δF/δf = 0, we find that the
most probably state is given by

fq(v) ∼
(

1 +
(1− q) v2

v2T

)−1/(1−q)
≡ expq

(
− v

2

v2T

)
, (2)

where vT = (2kBT/m)1/2 is the Maxwellian thermal speed, T and m being the tem-
perature and mass of the charged particles. The mathematical function expq(x) ≡
[1 + (1− q)x]

1−q
is known as the q-Gaussian or q-exponential function. It is a straight-

forward exercise to show that the most probable state subject to the continuous ver-
sion of Boltzmann-Gibbs (BG) entropy, namely, SBG = −kB

∫
dx
∫
dv f(v) ln f(v),

is the Gaussian (or Maxwell-Boltzmann) distribution, f(v) ∼ exp
(
−v2/v2T

)
.

In the space physical context, spacecraft measurements of charged particle distri-
butions near Earth orbit, which began in the 1960s, showed that the typical electron
distribution function features a Gaussian distribution for low energy range while dis-
playing non-Maxwellian supra-thermal “tail” component in the high energy domain
[3–5]. Vasyliunas [6] introduced an empirical model distribution in order to fit the
measurement,

fκ(v) ∼
(

1 +
v2

κv2T

)−(κ+1)

. (3)

The phenomenological model is known as the kappa distribution in space physics
literature.

An example is shown in Figure 1, where typical electron velocity distribution
function measured in the near-Earth space environment is showed. The measurement
is a result of composite data taken from spacecraft WIND and STEREO [7]. Obser-
vations are indicated with dots. The panel on the left represents a theoretical fitting
where the measured solar wind electron velocity distribution is modeled with two
Maxwellian functions and a kappa function. Specifically, the low energy component,
known as the “core”, is fitted with a Maxwellian model, fcore(v) ∼ exp(−v2/v2Tc),
the intermediate energy portion is fitted with another Maxwellian, called the “halo”,
namely, fhalo(v) ∼ exp(−v2/v2Th), with higher temperature and lower density, and
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Fig. 1. Typical solar wind electron velocity distribution measured in the near-Earth region.
The measurement is made by WIND spacecraft as well as by STEREO spacecraft. Obser-
vation is indicated with dots. Solid curves represent theoretical fittings. Left: Fitting with
three-component, core, halo, and superhalo models. Right: Fitting with a single kappa model.

the highest energy velocity spectrum, known as the “superhalo”, is fitted with a pop-
ulation of kappa distribution, fsuperhalo(v) ∼ [1 + v2/(κv2Th)]−κ−1. On the right-hand
panel, in contrast to the three population model, the measured distribution is fitted
with a single kappa distribution.

The phenomenological kappa model thus proved to be quite useful in interpreting
the data, but otherwise, it enjoyed no justification on the basis of first physical prin-
ciples. However, later it was realized that fκ is equivalent to the q-Gaussian. That is,
if one simply interprets

κ =
1

1− q
, or κ =

q

1− q
, (4)

then Vasyliunas’ kappa model is equivalent to the most probable distribution accord-
ing to Tsallis’ theory. Note, however, that the first choice, namely, κ = 1/(1 − q),
leads to f ∼

[
1 + v2/(κv2T )

]−κ
, while the second identification κ = q/(1− q) leads to

f ∼
{

1 + v2/[(κ+ 1)v2T ]
}−κ+1

, neither of which is exactly equivalent to the kappa

model introduced by Vasyliunas, namely, f ∼
[
1 + v2/(κv2T )

]−κ+1
, which is defined

with both κ and κ + 1. Such a minor discrepancy withstanding, the importance
is that the success of kappa distribution could be understood in the framework of
non-extensive statistical concept, and this realization has prompted an explosion of
interest in the space physics community [8–11].

Perhaps it is appropriate to note before we move on to the main discussion that
the non-extensive statistical framework is not the only conceptual justification for
non-Maxwellian distribution in space. Models based upon the combined collisional
relaxation and wave-particle interaction had been put forth in the literature, e.g., see
references [12–14]. In many respects, however, these works can be viewed as belonging
to a class of models, namely, formation of non-Maxwellian distribution by means of
wave-particle interaction, which will be presented in the main body of this paper.

In the model presented in references [15,16], which has received critical re-
examination in the literature [17–19], the origin of non-Maxwellian distribution is
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explained by invoking the pervasively observed compressible low frequency turbu-
lence in the solar wind. Reference [20], on the other hand, put forth a mechanism
that involves superposition of stochastic processes in order to explain the pervasive
non-Maxwellian distribution in the heliosphere. Their idea is essentially the same as
the superstatistics model put forth by Beck and Cohen [21].

The superstatistics theory deserves an in-depth look. The non-Maxwellian distri-
bution may emerge when a collection of charged particles undergo random walk in
the background of varying temperature field. An example may be that of solar source
region from which energetic charged particles emerge. In a layer below solar source
the particles may survey many regions of differing temperatures. The temperature
profile may be modeled by a power law, (T/T0)1−k/2. We may temper the strict power
law behavior with an exponential factor in order to avoid divergences for infinitely
large or small T ,

(
T

T0

)1−k/2

e−T0/(2T ). (5)

This results in the chi-square distribution for the inverse temperature, β = 1/(kBT ).
If we convolve or superpose the Gaussian velocity distribution exp(−mv2/2T ) with
the above temperature distribution, hence, the superstatistics, then the result is the
kappa distribution [21],

∫ ∞
0

dβ F (β)e−βε =

(
1 +

β0ε

κ

)−κ
,

F (β) =
1

(1/κ)κβ0Γ(κ)

(
β

β0

)κ−1
exp

(
−κβ
β0

)
, (6)

where ε = mv2/2. Energetic charged particles traveling through a vast region within
the heliosphere may also survey differing regions of temperature, hence, exhibit
superstatistics behavior [20].

The focus of the main body of the present paper is to deal with quasi steady state
electrostatic turbulence generated by a weak electron beam propagating in the back-
ground plasma with uniform temperature field. In such a situation non-Maxwellian
distribution emerges from nonlinear wave-particle interaction. The kinetic approach
to the formation of non-Maxwellian distribution, or the approach based upon the
non-equilibrium statistical mechanics, is an alternative way of understanding how
such distributions may form. The method may be complimentary to the conceptual
approach based upon non-extensive statistical mechanics, since the time asymptotic
state of a turbulent plasma may correspond to the non-extensive statistical equilib-
rium state. However, the formalism to be discussed subsequently assumes uniform
background temperature field so that the superstatistical mechanism is an additional
process.

In the Appendix we will overview the non-equilibrium statistical mechanics of
plasmas, or equivalently, the plasma kinetic theory. However, the discussion will be
brief. More detailed in-depth formalism may be found in the present author’s recent
monograph [22]. The theory overviewed in the present paper deals with electrostatic
turbulence generated in the plasma, which when fully developed, leads to the forma-
tion of non-Maxwellian electron distribution function. In the subsequent sections, we
will begin the discussion with basic equations whose derivation is briefly overviewed
in the Appendix.
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2 Plasma turbulence and non-Maxwellian electron distribution

In plasma physics the problem of energetic electron beam interacting with a back-
ground plasma is well known. Such a wave-particle interaction process leads to what
is known as the “bump-in-tail” instability, which excites electrostatic turbulence that
involves Langmuir waves. Theoretical and numerical analyses of the bump-in-tail
instability in the quasi linear regime are well known in the plasma physics litera-
ture [23–27]. In references [28–31] numerical studies of bump-in-tail instability were
extended beyond the quasi linear regime, to weak turbulence regime, where the basic
equations derived in the Appendix are solved. These equations are the particle kinetic
equation that governs the time evolution of electron distribution function fe(v, t),

∂fe
∂t

=
πe2

m2
e

∫
dk

k

k2
· ∂
∂v

∑
σ=±1

δ(σωLk − k · v)

(
me

4π2
σωLk fe + IσLk k · ∂fe

∂v

)
, (7)

which is taken from (A.33), where contribution from binary collisional processes are
omitted. For bump-in-tail instability, collective modes dominate the electric field
perturbation. Consequently, non-collective fluctuations, which are intimately related
to the collisional process, become unimportant. In the above e and me stand for
unit electric charge and electron mass, respectively, ωLk = ωpe

(
1 + 3

2 k
2λ2De

)
repre-

sents the dispersion relation satisfied by high frequency electrostatic wave in the

plasma known as the Langmuir wave, λDe = T
1/2
e /(4πne2)1/2 being the Debye length,

ωpe = (4πne2/me)
1/2 being the plasma oscillation frequency, Te being the electron

temperature, and IσLk denotes the spectral electric field intensity associated with the
Langmuir wave, E2

k,ω =
∑
σ=±1 I

σL
k δ(ω−σωLk ). The symbol σ = ±1 denotes the sign

of the wave phase and group velocities.
The wave kinetic equations for Langmuir and ion-sound wave intensities are also

derived in the Appendix – see (A.27)–(A.31),

∂IσLk
∂t

=
πσωLk ω

2
pe

k2

∫
dv δ(σωLk − k · v)

(
me

4π2
σωLk fe + IσLk k · ∂fe

∂v

)
+ 2σωLk

∑
σ′,σ′′=±1

∫
dk′ V σLk,k′

[
σωLk I

σ′L
k′ Iσ

′′S
k−k′

−
(
σ′ωLk′ Iσ

′′S
k−k′ + σ′′ωLk−k′ Iσ

′L
k′

)
IσLk

]
+
πσωLk e

2

m2
eω

2
pe

∑
σ′=±1

∫
dk′
∫
dv

(k · k′)2

k2 k′2
δ[σωLk − σ′ωLk′ − (k− k′) · v]

×
[
me

mi
Iσ

′L
k′ IσLk (k− k′) · ∂fi

∂v
+

ne2

πω2
pe

(
σωLk I

σ′L
k′ − σ′ωLk′ IσLk

)
(fe + fi)

]
,

∂IσSk
∂t

=
πµkσω

L
kω

2
pe

k2

∫
dv δ(σωSk − k · v)

[me

4π2
σωLk (fe + fi)

+ IσSk k · ∂
∂v

(
fe +

me

mi
fi

)]
+ σωLk

∑
σ′,σ′′=±1

∫
dk′ V σSk,k′

×
[
σωLk I

σ′L
k′ Iσ

′′L
k−k′ −

(
σ′ωLk′ Iσ

′′L
k−k′ + σ′′ωLk−k′ Iσ

′L
k′

)
IσSk

]
. (8)

For L mode wave equation the first term on the right-hand side represents linear
wave-particle interaction between the electrons and Langmuir wave; the second term
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Fig. 2. Nonlinear progression of Langmuir wave [left] and ion-sound wave [right] turbulence
in the dynamic spectral representation, that is, intensity (Ik) versus wave number (k) and
time (t) space.

describes nonlinear wave-wave processes; the third term describes nonlinear wave-
particle interactions. Here, fi represents the Maxwellian ion distribution function.
The ion sound mode, whose dispersion relation is given by ωSk = kcS , obeys a similar
wave kinetic equation as that of L mode. Various objects which appear in the wave
kinetic equations (8) are defined by (A.28) and (A.30).

Among the findings according to numerical studies, particularly those of references
[28,30], is that the long time evolution of the electron distribution function, initially
modeled by a Maxwellian plus a shifted Maxwellian,

fe(v, 0) =

(
1− nb

n0

)
exp

(
− v2

v2T0

)
+
nb
n0

exp

(
− (v −Vb)

2

v2Tb

)
, (9)

where nb and n0 denote the beam and the background number densities, respec-
tively; vT0 =

√
2T0/me and vTb =

√
2Tb/me are their respective thermal spreads,

T0 and Tb their temperatures, respectively; and Vb represents the initial velocity for
the beaming electrons, is such that the asymptotic distribution involves the gener-
ation of suprathermal tail population, which is superficially reminiscent of observed
distribution in space.

An example is shown in the next couple of figures. In obtaining the numerical
result, we assumed nb/n0 = 10−2, Tb = T0, Vb/vT0 = 4, and the dimensionless plasma
parameter of g = n(λDe)

−1 = 10−3 is adopted for one dimensional system. Note that
this is a one dimensional plasma parameter. The three dimensional value should be
roughly g3D = nλ−3De ∝ 10−9, which is typical of the solar wind near Earth orbit. The
normalization of Langmuir wave spectral energy density is gIσLk /(8mev

2
Te). Figure 2

shows the time development of wave intensities. The left-hand panel plots the dynamic
spectrum of Langmuir wave intensity, where positive k region corresponds to the
forward propagating Langmuir wave (σ = 1), while the negative k region designates
the backward propagating L mode (σ = −1). We combined the two modes into a

single figure, plotting I+Lk over positive k range, and I−Lk in k < 0 space. Actual

numerical computation was done over k > 0 space for both I+Lk and I−Lk . For early
time periods between t = 0 and ωpet = 200, or so, the Langmuir wave dynamics is
simply dictated by the exponential growth and subsequent quasilinear saturation in
the positive k range, which corresponds to the quasi linear development of bump-in-
tail instability [23–27]. During this stage we begin to see the growth associated with
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Fig. 3. Development of energetic tail during the nonlinear mode-coupling stage.

the backward Langmuir waves (k < 0 region). This is the result of combined three-
wave decay process and scattering of forward L mode off thermal ions [28,29]. It is
also seen that Langmuir waves near k ∼ 0 slowly but steadily grow in intensity. This
is known as the Langmuir condensation effect. Nonlinear mode coupling processes
involve multiple back-and-forth mode coupling interactions, which continue on well
beyond the quasi linear saturation phase.

The right-hand panel of Figure 2 corresponds to the dynamic spectrum of ion-
sound mode turbulence. In the early stage, between t = 0 and ωpet = 200 or so,
no ion-sound mode is apparent above the initial noise level. However, around the
time when the backward Langmuir wave begins to appear, it can be see that, first,
the forward-propagating S mode wave becomes slightly enhanced, followed by the
backward (k < 0) ion-sound mode waves. The production of S mode turbulence is
owing to the decay process. It is important to note that the ion-sound turbulence is
a transient phenomenon, since over long time period, it is seen that the S mode wave
intensity gradually settles down back toward the initial noise level.

The Langmuir condensation is responsible for the acceleration of small amount
of electrons to form an energetic tail population. This is because for long wavelength
mode the resonant velocity vres ≈ ωpe/k, can become very high. This is the origin
of suprathermal electron population. Figure 3 displays the long-time evolution of
electron distribution function. Observe the formation of energetic tail population in
the suprathermal energy range. Reference [32] confirmed this findings by means of
particle-in-cell (PIC) simulation. This has led the present author to seek the time
asymptotic solution of the equations of weak turbulence theory (7) and (8), in order
to prove that Vasyliunas’ kappa distribution indeed characterizes the asymptotic state
of the Langmuir turbulence [33].

In the steady-state we ignore contributions from S mode. This is because the
generation of S mode is a transient phenomenon, as seen in Figure 2. Reference [33]
also shows that the three-wave processes are largely ignorable, which can be under-
stood from intuition as well. The time-asymptotic state represents a situation where
electrons and Langmuir waves exchange momenta and energies but wave-wave inter-
action only involves momentum and energy exchanges among the waves themselves.
Hence, they do not contribute to the steady-state turbulence. From (7) and (8) it is
seen that the right-hand side of the particle equation and linear wave-particle term
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in the L mode equation share a common factor,(
me

4π2
σωLk fe + IσLk k · ∂fe

∂v

)
.

This means that a suitable choice of Langmuir wave intensity IσLk will lead to a steady-
state electron distribution fe, which together will make the above factor vanish.
Conversely, a judicious model for fe will lead to a steady-state spectrum of Langmuir
turbulence IσLk , which together will satisfy the condition for vanishing factor specified
above.

In short, there is an infinite class of solutions (fe, I
σL
k ) that satisfy the steady-state

particle and linear wave equations. Of such an infinite class of solutions, reference [33]
chose the kappa electron velocity distribution and its associated Langmuir fluctuation
spectral intensity,

fe(v) =
m

3/2
e

(2πTe)3/2
Γ(κ+ 1)(

κ− 3
2

) 3
2 Γ
(
κ− 1

2

)
(

1 +
mev

2

2
(
κ− 3

2

)
Te

)−κ−1
,

IL(k) =
Te
4π2

κ− 3
2

κ+ 1

(
1 +

meω
2
pe

2
(
κ− 3

2

)
k2Te

)
. (10)

However, it is obvious that while this choice is convenient, it is by no means unique.
In order to address the uniqueness, one must consider the nonlinear wave-particle
interaction between the electrons and Langmuir turbulence. As discussed in reference
[33], the nonlinear part of the wave kinetic equation is given by the following under

the assumption of isotropic Langmuir turbulence intensity, I+Lk = I−Lk ≡ IL(k):

∂IL(k)

∂t

∣∣∣∣
nl

= − π

ω2
pe

e2

m2
e

∫
dk′
∫
dv

(k · k′)2

k2k′2
δ[ωLk − ωLk′ − (k− k′) · v]

×
(
ne2

πωpe

[
ωLk′IL(k)− ωLk IL(k′)

]
fi

−me

mi
ωpeIL(k′)IL(k)(k− k′) · ∂fi

∂v

)
. (11)

Then reference [33] proceeded to show that the steady-state solution is given by

IL(k) =
Ti

4π2

(
1 +

meω
2
pe

2(κ− 3
2 )k2Te

)
, (12)

which can be reconciled with IL(k) defined in (10) if we identify

κ =
9

4
= 2.25, Ti = Te

κ− 3
2

κ+ 1
. (13)

Such a reconciliation would not have been possible if we chose any other electron
distribution fe than the kappa distribution. Consequently, this proves that the kappa
model defined in (10) is the only solution for steady state Langmuir turbulence.

This finding strongly implies that the space plasma may be ruled by non-extensive
thermostatics. Recall that the kappa distribution is equivalent to the q-Gaussian,
which corresponds to the most probable state in Tsallis thermostatics theory. The
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steady-state Langmuir turbulence and its associated kappa distribution are consis-
tent with actual observations made by artificial spacecraft. For suprathermal velocity
range, v � vTe, the kappa electron distribution (10) behaves as an inverse power law
distribution, fe ∼ v−6.5 since κ ≈ 9/4 = 2.25. Recall that the solar wind electrons
are customarily modeled by a combination of Maxwellian core, suprathermal halo,
and superhalo – see Figure 1. Observation made in the near Earth space shows that
superhalo electrons behave as fe ∼ v−5.0 to v−8.7 with average behavior fobse ∼ v−6.69
[7], which agrees quite well with theoretical prediction of fe ∼ v−6.5. Reference [34]
investigated the properties of solar wind halo electrons by modeling them with the
kappa distribution. They analyzed Helios, Cluster, and Ulysses spacecraft data, and
found that the κ parameter decreases from ∼9 near 0.3 AU (1 AU or an Astronomical
Unit being the distance between Sun and Earth) to ∼4 near 1 AU (near Earth), to
∼2.25 near ∼5 AU (near Jovian orbit). This seems to imply that the radially expand-
ing solar wind evolves into the quasi equilibrium state, where the distinction between
halo and superhalo electrons disappears, and the κ index approaches closer and closer
to the theoretically predicted value.

3 Alternative approach to dynamic equilibrium for space plasma

Thus far, we have largely reviewed the recent findings regarding the steady-state
electrostatic turbulence that generates non-Maxwellian (or to be specific, kappa) dis-
tribution of electrons in space. Such a state, however, may not be in true equilibrium,
since for long time scale, non-collective oscillations (or fluctuations) that naturally
arise in thermal plasma may not be ignored. Such fluctuations lead to collisional
relaxation, such that the governing equation for the particles must include the influ-
ence of collisions. In Appendix, we have derived the particle kinetic equation (A.33)
that includes both collective and non-collective fluctuations. Consequently, the gen-
uine steady state electron velocity distribution must be discussed on the basis of
(A.33) rather than (7). Upon expressing (A.33) in spherical velocity coordinate and
assuming a priori that fe is isotropic, we obtain

∂fe
∂t

=
1

v2
∂

∂v

[
v2 (Av +Acv) fe

]
+

1

v2
∂

∂v

(
v2 (Dvv +Dc

vv)
∂fe
∂v

)
, (14)

where

Av =
e2ω2

pe

mev2

∫ ∞
ωpe/v

dk

k
,

Dvv =
4π2e2ω2

pe

m2
ev

3

∫ ∞
ωpe/v

dk

k
IL(k),

Acv =
4πne4 ln Λ

m2
e

2

v2Te

(
G(xe) +

Te
Ti
G(xi)

)
,

Dc
vv =

4πne4 ln Λ

m2
e

G(xe) +G(xi)

v
,

xe =
v

vTe
, xi =

v

vTi
, Λ = 4πnλ3De,

G(x) =
erf(x)− (2/

√
π)x e−x

2

2x2
. (15)
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In the above we took the approach of treating the collisional processes via Rosenbluth
potential approximation [35].

The steady-state solution can be obtained as follows:

fe = const exp

(
−
∫
dv

Av +Acv
Dvv +Dc

vv

)

= C exp

−
∫

dv

v

∫ ∞
ωpe/v

dk

k
+
mev

3

Te
ln Λ

(
G(xe) +

Te
Ti
G(xi)

)
4π2

me

∫ ∞
ωpe/v

dk

k
IL(k) + v2 ln Λ [G(xe) +G(xi)]

 , (16)

where C represents the normalization constant. If we ignore the contribution from
collective fluctuations, that is, the k integral terms in the numerator and denominator,
then we have

fe = C exp

−me

Te

∫
dvv

G(xe) +
Te
Ti
G(xi)

G(xe) +G(xi)

 = C exp

(
−mev

2

2T

)
, (17)

where we have assumed Te = Ti = T in the second equality, which is true for thermal
equilibrium.

On the other hand, if we ignore the collisional part dictated by ln Λ, then we have

fe = C exp

−me

4π2

∫
dvv

∫ ∞
ωpe/v

dk

k∫ ∞
ωpe/v

dk

k
IL(k)

 . (18)

If we take the form of IL(k) given by (12), and formally define the divergent integral
quantity,

H ≡
∫ ∞
ωpe/v

dk

k
, (19)

as a quasi constant, which was what was done in reference [33], then we have the
desired kappa distribution defined in (10). However, the quantity H is not only
divergent in a formal sense, but also is a function of v. We thus re-examine the
steady state particle distribution (18) in more detail in this section.

Let us consider the intensity IL(k), which is conveniently re-expressed as

IL(k) =
Te
4π2

a

(
1 +

k20
k2

)
,

a =
κ− 3

2

κ+ 1
, κ =

meω
2
pe

k20Te
H +

3

2
. (20)
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Then inserting this to (18), we arrive at

fe = C exp

−me

aTe

∫
dvv

1

1 +
1

H (v)

k20v
2

2ω2
pe

 ,

H (v) =

∫ ∞
ωpe/v

dk

k
→

 0, v → 0∫∞
0
dk/k, v →∞

. (21)

In the limit of small v, since H (v) approaches zero, fe becomes quasi constant. For
large v one may replace H (v) by

∫ kmax

kmin

dk

k
= ln

kmax

kmin
≡ r, (22)

and thus we have a kappa like behavior. Here, r may be equivalent to ln(4πnλ3De),
or it may be defined in a more general way. For the moment, we treat it as a free
parameter. In between v ∼ 0 and large v, the matter becomes somewhat complex.
One way to treat H (v) is to approximate it by r except for small v, by introducing
a cutoff function that approaches 0 as v approaches 0,

H (v)→ S(v) r, (23)

where S(v) → 0 for v → 0 and S(v) → 1 for finite v. If we take this approach then
we have

fe = C exp

−me

aTe

∫
dvv

S(v) r

S(v) r +
k20v

2

2ω2
pe

 . (24)

As a specific example of the factor S(v), let us model it by

S(v) = tanh2 mev
2

2Te
. (25)

This function preserves the required behavior S(v)→ 0 for v → 0 and S(v)→ 1 for
finite v. In general, the formal solution (24) does not enjoy closed form manipulation
of indefinite velocity integral. However, one may proceed to construct the solution by
means of numerical integration.

Plotted in Figure 4 is the numerically computed distribution function, which may
be considered as the generalized kappa model, as a function of normalized velocity
u = v/vTe, for various values of input parameter r. For relatively high values of r, such
as r = 5 and higher, the model resembles Maxwellian distribution (the Maxwellian
model, fMax is plotted with blue dotted curve as a reference). For r = 1, the model
becomes virtually identical to the kappa distribution, fκ, shown with red dots. For
low value of r, the velocity power law spectrum becomes harder. We have shown one
particular case of r = 0.5.
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Fig. 4. Generalized kappa distribution (24) as a function of normalized velocity u = v/vTe.

Returning to (16), we expect the general solution to behave as follows:

fe =



C exp

−me

Te

∫
dvv

G(xe) + (Te/Ti)G(xi)

G(xe) +G(xi)

 , v < vT ,

C exp

−me

4π2

∫
dvv

H∫
∞

ωpe/v

dk

k
IL(k)

 , v > vT .

(26)

In short, we expect the collisional processes to dominate the core part of the electron
distribution, while the suprathermal range will be dominated by collective processes.
This may offer a natural explanation for why the solar wind electron distribution
appears to be composed of the Maxwellian “core” plus non-Maxwellian “tail”.

4 Conclusions

To conclude the present paper in which we overviewed the theory of origin of non-
Maxwellian electron distribution in space plasma, we have approached the problem
from the perspective of non equilibrium statistical mechanics. Energetic charged par-
ticles are constantly spewed out from the Sun into interplanetary space. The steady
stream of energetic electrons interact with the pre-existing population of background
electrons in space, which leads to the excitation of collective instability. The high fre-
quency electrostatic turbulence thus generated is called the Langmuir turbulence. As
the expanding solar plasma reaches the near Earth region in space and even farther
out, the Langmuir turbulence reaches the steady state. The electron velocity distribu-
tion function corresponding to such a quasi stationary turbulent state is characterized
by a non-Maxwellian feature, including the kappa distribution.
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The kinetic theory of plasma turbulence, which is systematically formulated from
the non equilibrium statistical method is overviewed in the Appendix. According to
such a theory, the formation of non-Maxwellian (or kappa) electron distribution func-
tion can be discussed on a rigorous basis. The finding that the quasi stationary state
of Langmuir turbulence coincides with the formation of kappa distribution strongly
implies the existence of an inter relationship between the non-extensive statistical
description of plasma and the steady state theory of Langmuir turbulence. Both
descriptions share a common feature in that the equilibrium distribution function
corresponds to the kappa distribution, or equivalently, the q-Gaussian distribution.
On this basis, it is reasonable to assume that the underlying statistical principle that
governs the space plasma is none other than Tsallis statistical theory.
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1842643 to the University of Maryland. Part of this work was carried out while P.H.Y. was
visiting Ruhr University Bochum, Germany, which was made possible by the support from
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(DFG GSC 98/3), and by a Mercator fellowship awarded by the Deutsche Forschungsgemein-
schaft through the grant Schl 201/31-1. This paper results from the ISSI project: “Kappa
Distributions: From Observational Evidences via Controversial Predictions to a Consistent
Theory of Suprathermal Space Plasmas.”

Appendix A: Overview of non-equilibrium statistical mechanics
of plasmas

A.1 General formulation

The kinetic theory for plasmas can be found in the standard literature, which includes
the present author’s recent monograph [22], so the overview will be brief, see e.g., [36–
39]. The plasma is a collection of fully ionized gas governed by classical Newtonian
dynamics. It is convenient to consider an N -body probability distribution function
in phase space (r,p), called the Klimontovich function, Na(r,p, t), defined by [36]

Na(r,p, t) =

N∑
j=1

δ
[
r− raj (t)

]
δ
[
p− paj (t)

]
, (A.1)

where raj (t) and paj (t) are exact particle orbits for the jth particle of species a (ea =
−e for electrons and ea = e for ions), vaj (t) = ṙaj (t), ṗaj (t) = eaE(r, t) + (ea/c)v ×
B(r, t). Here, ea = −e for the electrons and e for the protons, e being the unit electric
charge, and c is the speed of light in vacuo. The electric and magnetic field vectors,
E and B, satisfy Maxwell’s equation. The kinetic equation for the Klimontovich
function is equivalent to the Liouville equation. The one-particle distribution function,
fa(r,p, t), is the ensemble averaged Klimontovich function, fa(r,p, t) = 〈Na(r,p, t)〉.
If we assume field-free environment and impose electrostatic approximation, then the
basic equations are (

∂

∂t
+ v ·∇+ eaE · ∂

∂p

)
Na = 0,

∇ ·E− 4π
∑
a

ea

∫
dpNa = 0. (A.2)
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It is useful to consider the Klimontovich function describing the phase space
evolution of free particles (ideal gas) that do not interact with each other,

N0
a (r,p, t) =

N∑
j=1

δ
[
r− ra0j (t)

]
δ
[
p− pa0j (t)

]
, (A.3)

where ra0j (t) = ra0 + vai t and pa0j (t) = pai are exact orbits of free streaming particles

satisfying, ṗa0j (t) = 0 and va0j (t) = ṙa0j (t). The corresponding Klimontovich equation
for free particles is (

∂

∂t
+ v ·∇

)
N0
a = 0. (A.4)

The plasma is a fully ionized gas in which collective interaction dominates the
dynamics. As such, it is preferable to remove effects that arise from purely non-
interacting particle behavior. Consequently, let us subtract (A.4) from (A.2), which
results in (

∂

∂t
+ v ·∇

)(
Na −N0

a

)
+ eaE · ∂Na

∂p
= 0,

∇ ·E− 4π
∑
a

ea

∫
dpNa = 0. (A.5)

We denote the deviation of the Klimontovich functions Na and N0
a from their

averages fa = 〈Na〉 = 〈N0
a 〉 (here, we have made an assumption that the ensemble

average of Na and N0
a are approximately equal) by δNa = Na − 〈Na〉 and δN0

a =
N0
a − 〈N0

a 〉, that is, δNa and δN0
a denote the fluctuations. We assume random phases

so that ensemble averages of δNa and δN0
a are zero. Since the medium is free of

average field the electric field is only made of fluctuations, E(r, t) = δE(r, t). Then
(A.5) can be re-expressed as (

∂

∂t
+ v ·∇

)
= −ea

∂

∂p
· 〈δEδNa〉,(

∂

∂t
+ v ·∇

)(
δNa − δN0

a

)
+ eaδE · ∂fa

∂p
= −ea

∂

∂p
· (δEδNa − 〈δEδNa〉) ,

∇ · δE = 4π
∑
a

ea

∫
dp δNa. (A.6)

In this equation δN0
a represents the “source” term for the inhomogeneous nonlinear

differential equation for δNa. We are not interested in δN0
a per se, but rather in the

ensemble average of the product 〈δN0
a (r,p, t)δN0

a (r′,p′, t′)〉, that is, the two-body
correlation function for the fluctuations of free-streaming Klimontovich functions.
We may compute this quantity directly from definition (A.3),

〈δN0
a (r,p, t)δN0

b (r′,p′, t′)〉 = δabδ[r− r′ − v(t− t′)]δ(p− p′)fa(r,p, t). (A.7)

Upon writing the electrostatic field in terms of the potential, δEk,ω = ikδφk,ω,
under the assumption of spatially uniform average background, we may express the
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relevant equations in terms of spectral representation,

∂fa(v)

∂t
= iea

∫
dq k · ∂

∂p
〈φ−qNa

q (p)〉,

Na
q (p) = Na0

q (p) + k · gqfa(p)φq +

∫
dq′ k′ · gq

(
φq′N

a
q−q′(p)− 〈φq′Na

q−q′(p)〉
)
,

φq =
∑
a

4πea
k2

∫
dpNa

q (p), (A.8)

where we have introduced short hand notations,

q ≡ (k, ω),

gq = gak,ω = − ea
ω − k · v + i0

∂

∂p
, (A.9)

and have omitted δ for the perturbed quantities. The spectral representation of the
source fluctuation (A.7) is given by

〈δN0
a (p)δN0

b (p′)〉q = (2π)−3δabδ(p− p′)δ(ω − k · v)fa(p). (A.10)

We solve the nonlinear equation for Na
a by iterative means, Na

q = N
a(1)
q +N

a(2)
q +

N
a(3)
q + · · · , where each order in the perturbative expansion is of the similar magni-

tude with the electric field perturbation of the same order, O
(
N
a(n)
q

)
∝ O

(
φnq
)
. It

is straightforward to show that the iterative solution is given order by order,

Na(1)
q = Na0

q + k · gaqfaφq,

Na(2)
q =

∫
dq′k′ · gaq (k− k′) · gaq−q′fa [φq′φq−q′ − 〈φq′φq−q′〉] ,

Na(3)
q =

∫
dq′
∫
dq′′k′ · gaqk′′ · gaq−q′(k− k′ − k′′) · gaq−q′−q′′fa

× [φq′φq′′φq−q′−q′′ − φq′〈φq′′φq−q′−q′′〉 − 〈φq′φq′′φq−q′−q′′〉] , (A.11)

where we have kept the effects of source fluctuation only in the leading order term.
Inserting the net solution to the wave equation while symmetrizing various terms

with respect to the dummy integral variable, we have

ε(q)φq =
∑
a

4πea
k2

∫
dpNa0

q (p)

+
∑
q1

∑
q2

(q1+q2=q)

ik1k2
k

χ(2)(q1|q2) [φq1φq2 − 〈φq1φq2〉] (A.12)

+
∑
q1

∑
q2

∑
q3

(q1+q2+q3=q)

k1k2k3
k

χ̄(3)(q1|q2|q3) [φq1φq2φq3− φq1〈φq2φq3〉 − 〈φq1φq2φq3〉],
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where we have defined various response functions,

ε(q) = 1 + χ(q) = 1 +
∑
a

χa(q) =
∑
a

4πe2a
k2

∫
dp

k · ∂fa/∂p
ω − k · v + i0

, (A.13)

χ(2)(q1|q2) =
∑
a

χ(2)
a (q1|q2) =

∑
a

−iea
2

4πe2a
k1k2|k1 + k2|

×
∫
dp

1

ω1 + ω2 − (k1 + k2) · v + i0
(A.14)

×
[
k1 ·

∂

∂p

(
k2 · ∂fa/∂p

ω2 − k2 · v + i0

)
+ k2 ·

∂

∂p

(
k1 · ∂fa/∂p

ω1 − k1 · v + i0

)]
,

χ̄(3)(q1|q2|q3) =
∑
a

χ̄(3)
a (q1|q2|q3) =

∑
a

(−i)2e2a
2

4πe2a
k1k2k3|k1 + k2 + k3|

×
∫
dp

1

ω1 + ω2 + ω3 − (k1 + k2 + k3) · v + i0
(A.15)

×k1 ·
∂

∂p

{
1

ω2 + ω3 − (k2 + k3) · v + i0

×
[
k2 ·

∂

∂p

(
k3 · ∂fa/∂p

ω3 − k3 · v + i0

)
+ k3 ·

∂

∂p

(
k2 · ∂fa/∂p

ω2 − k2 · v + i0

)]}
.

The definitions and notations of the various dielectric susceptibilities are consistent
with [37].

From (A.12) it is possible to obtain the equation for the spectral electric field
energy density fluctuation 〈E2〉q = 〈k2φ2〉q. This is done by first multiplying φ−q to
(A.12) and taking the ensemble average. Then replacing q by −q in (A.12), we may
also multiply Na0

−q(p) and taking the average. The result is

0 = ε(q)〈E2〉q − i
∫
dq′χ(2)(q′|q − q′)kk′|k− k′|〈φq′φq−q′φ−q〉

−2

∫
dq′χ̄(3)(q′| − q′|q)〈E2〉q′〈E2〉q

−
∑
a

∫
dp

(4πea)2

(2π)3k2ε∗(q)
δ(ω − k · v)fa(p) (A.16)

+i
∑
a

∫
dq′
∫
dp

(4πea)χ(2)∗(q′|q − q′)
kε∗(q)

k′|k− k′|〈φ−q′φ−q+q′Na0
q (p)〉.

Note that we use summation and integral over q = (k, ω) interchangeably in the
present paper, that is,

∑
q =

∫
dq =

∫
dk
∫
dω.

Equation (22) is not closed since it contains third-order cumulants, 〈φq′φq−q′φ−q〉
and 〈φ−q′φ−q+q′Na0

q (p)〉. These quantities may be constructed from (A.12) by ignor-
ing the third-order nonlinearity at the outset. The three-body cumulants are zero if
nonlinear terms are neglected, since the linear solutions are plane waves, hence, all odd
moments vanish upon taking the ensemble average. Thus, if we write the perturbed

field as the sum of plane-wave solution plus nonlinear correction, φq = φ
(0)
q + φ

(1)
q ,
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where φ
(0)
q satisfies ε(q)φ

(0)
q = 0, then we obtain

φ(1)q1 =
1

k21ε(q1)

∑
q′′

ik1k
′′|k1 − k′′|χ(2)(q′′|q1 − q′′)

[
φ
(0)
q′′ φ

(0)
q1−q′′ − 〈φ

(0)
q′′ φ

(0)
q1−q′′〉

]
+

1

k21ε(q1)

∑
a

4πea

∫
dvNa0

q1 (p). (A.17)

The quantity 〈φq′φq−q′φ−q〉, can be constructed by successively making use of (A.17)

for each of φq′ , φq−q′ , and φ−q, 〈φq′φq−q′φ−q〉 = 〈φ(1)q′ φ
(0)
q−q′φ

(0)
−q〉 + 〈φ(0)q′ φ

(1)
q−q′φ

(0)
−q〉 +

〈φ(0)q′ φ
(0)
q−q′φ

(1)
−q〉+ · · · . Then we omit the superscript (0) on the right-hand side at the

end. We also make use of the symmetry property, χ(2)(−q1| − q2) = −χ(2)∗(q1|q2), in
order to simplify various coupling coefficients, and decompose the four-body cumu-
lants as products of two-body cumulants while ignoring irreducible components,
thereby closing the hierarchy of correlations,

〈φq1φq2φq3φq4〉 = δ(q1 + q2 + q3 + q4) [〈φq1φq2〉〈φq3φq4〉δ(q1 + q2)

+〈φq1φq3〉〈φq2φq4〉δ(q1 + q3)

+〈φq1φq4〉〈φq2φq3〉δ(q1 + q4)] . (A.18)

This closure scheme is the simplest, which in the theory of neutral fluid turbulence,
is known as the quasi-normal closure.

After some tedious but otherwise straightforward algebraic manipulations, we
obtain

〈φq′φq−q′φ−q〉 = 2ikk′|k− k′|
(
χ(2)(q| − q + q′)

k′2ε(q′)
〈φ2〉q−q′〈φ2〉q

+
χ(2)(q| − q′)

|k− k′|2ε(q − q′)
〈φ2〉q′〈φ2〉q −

χ(2)∗(q′|q − q′)
k2ε∗(q)

〈φ2〉q′〈φ2〉q−q′
)

+
∑
a

4πea

∫
dp

(
〈φq−q′φ−qNa0

q′ (p)〉
k′2 ε(q′)

+
〈φq′ φ−q Na0

q−q′(p)〉
|k− k′|2 ε(q − q′)

+
〈φq′ φq−q′ Na0

−q(p)〉
k2 ε∗(q)

)
. (A.19)

It is evident that we need to further evaluate the remaining third-order cumulants
〈φq−q′φ−qNa0

q′ (p)〉, 〈φq′φ−qNa0
q−q′(p)〉, 〈φq′φq−q′Na0

−q(p)〉, and 〈φ−q′φ−q+q′Na0
q (p)〉.

These quantities are but special cases of a generic form 〈φq1φ−q1+q2Na0
−q2(p)〉. We

proceed to evaluate this quantity by making use of (A.12) in order to evaluate φq1
and φ−q1+q2 successively. The result is

〈φq1φ−q1+q2Na0
−q2(p)〉 =

8πeai

(2π)3k1k2|k1 − k2|ε(q2)

(
χ(2)(q2|q1 − q2)

ε(q1)
〈E2〉q1−q2

+
χ(2)(−q1|q2)

ε(−q1 + q2)
〈E2〉q1

)
δ(ω2 − k2 · v)fa(p). (A.20)

Identifying q1 = q − q′ and q2 = −q′, we may obtain the expression for
〈φq−q′φ−qNa0

q′ (p)〉. Making the identification for q1 = q′ and q2 = −q + q′,
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we have 〈φq′φ−qNa0
q−q′(v)〉. Likewise, setting q1 = q′ and q2 = q leads to

〈φq′φq−q′Na0
−q(v)〉. Finally, identifying q1 = −q′ and q2 = −q yields the expression for

〈φ−q′φ−q+q′Na0
q (v)〉. In this way, the contributions from all the necessary third-order

cumulants to (A.19) can be obtained. The result is the nonlinear spectral balance
equation,

0 = ε(q)〈E2〉q −
∑
a

(4πea)2

(2π)3k2ε∗(q)

∫
dp δ(ω − k · v)fa(p)

− 2

∫
dq′
|χ(2)(q′|q − q′)|2

ε∗(q)
〈E2〉q′〈E2〉q−q′

+ 2

∫
dq′
[
{χ(2)(q′|q − q′)}2

(
〈E2〉q−q′
ε(q′)

+
〈E2〉q′
ε(q − q′)

)
− χ̄(3)(q′| − q′|q)〈E2〉q′

]
〈E2〉q

+
∑
a

∫
dq′

2(4πea)2

(2π)3k′2|ε(q′)|2

(
{χ(2)(q′|q − q′)}2

ε(q − q′)
〈E2〉q −

|χ(2)(q′|q − q′)|2

ε∗(q)
〈E2〉q−q′

)
×
∫
dp δ(ω′ − k′ · v)fa(p)

+
∑
a

∫
dq′

2(4πea)2

(2π)3|k− k′|2|ε(q − q′)|2

(
{χ(2)(q′|q − q′)}2

ε(q′)
〈E2〉q

−|χ
(2)(q′|q − q′)|2

ε∗(q)
〈E2〉q′

)∫
dp δ[ω − ω′ − (k− k′) · v]fa(p). (A.21)

For more detailed discussions on the derivation of this result, the readers are referred
to the author’s recent monograph [22].

If we take the real part of this equation while ignoring nonlinear terms, then we
obtain the dispersion relation, Reε(q) = 0. By taking the imaginary part we obtain
the evolution equation for wave amplitude, that is, wave kinetic equation. However,
in order to complete the formulation for wave kinetic equation, we must introduce the
slow-time derivative associated with the angular frequency, which is implicit in the
present formalism. In short, we apply the following prescription to the linear response
function leads to the formal wave kinetic equation:

ε(q)〈E2〉q →
(
ε(q) +

i

2

∂ε(q)

∂ω

∂

∂t

)
〈E2〉q. (A.22)

Formal particle kinetic equation in (A.8) can be easily obtained if make use of the

first order perturbed distribution N
q(1)
q in (A.11),

∂fa
∂t

= πe2a

∫
dk

∫
dω

(
k

k
· ∂

∂p

)
δ(ω − k · v)

×
[
Im

1

2π3kε∗(k, ω)
fa + 〈δE2〉k,ω

(
k

k
· ∂fa
∂p

)]
. (A.23)

A.2 Wave kinetic equation for collective eigenmodes

The linear dispersion relation Re ε(k, ω)〈δE2〉k,ω = 0 determines the relation between
ω and k, that is, ω = ωαk . This means that we may express the electric field fluctuation
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corresponding to the eigenmode intensity by

〈δE2〉kω =
∑
σ=±1

∑
α=L,S

Iσαk δ(ω − σωαk ), (A.24)

where Iσαk is the intensity for each eigenmode, α = L, S denoting the Langmuir (L)
and ion-sound S (or ion-acoustic) modes, respectively. Here, σ = ±1 signifies the
wave propagation direction, forward and backward, with respect to some reference
axis. The wave dispersive properties for Langmuir and ion acoustic waves are well
known, ωLk = ωpe

(
1 + 3

2 k
2λ2De

)
and ωSk = kcS , respectively, where ω2

pe = 4πnee
2/me

is the square of plasma frequency, λ2De = Te/(4πnee
2) is the square of Debye length.

Ion thermal speed is defined by vTi = (2Ti/mi)
1/2.

Substituting (A.24) to the spectral balance equation (A.21), taking the imaginary
part with the prescription for including the slow time derivative – see (A.22), it is
possible to derive the wave kinetic equation for collective eignmodes excited in a
plasma [22,37–39]. The result is given by

∂Iσαk
∂t

= 2γσαk Iσαk + Sσαk −
∫
dk′
(
Nσα

k,k′ I
σ′β
k′ Iσαk + Pσαk,k′

)
(A.25)

−
∫
dk′

Mσα
k,k′

ε′(k, σωαk )

(
Iσ

′′γ
k−k′Iσαk

ε′(k′, σ′ωβk′)
+

Iσ
′β

k′ Iσαk
ε′(k− k′, σ′′ωγk−k′)

−
Iσ

′β
k′ Iσ

′′γ
k−k′

ε′(k, σωαk )

)
,

where

γσαk = − Im ε(k, σωαk )

ε′(k, σωαk )
, ε′(k, σωαk ) =

∂Re ε(k, σωαk )

∂σωαk
,

Sσαk =
∑
a=e,i

4e2a
k2[ε′(k, σωαk )]2

∫
dp δ(σωαk − k · v)fa(p),

Mσα
k,k′ = 4π

∑
σ′,σ′′=±1

∑
β,γ=L,S

χ(2)(k′, σ′ωβk′ |k− k′, σ′′ωγk−k′)|2

× δ(σωαk − σ′ω
β
k′ − σ′′ωγk−k′),

Nσα
k,k′ =

4Im

ε′(k, σωαk )

∑
σ′=±1

∑
β=L,S

(
P

2{χ(2)(k′, σ′ωβk′ |k− k′, σωαk − σ′ω
β
k′)}2

ε(k− k′, σωαk − σ′ω
β
k′)

−χ̄(3)(k′, σ′ωβk′ | − k′,−σ′ωβk′ |k, σωαk )

)
, (A.26)

Pσαk,k′ =
∑
a=e,i

16e2a
ε′(k, σωαk )

∑
σ′=±1

∑
β=L,S

|χ(2)(k′, σ′ωβk′ |k− k′, σωαk − σ′ω
β
k′)|2

|k− k′|2|ε(k− k′, σωαk − σ′ω
β
k′)|2

×

(
Iσαk

ε(k′, σ′ωβk′)
−

Iσ
′β

k′

ε′(k, σωαk )

)∫
dp δ[σωαk − σ′ω

β
k′ − (k− k′) · v]fa(p).

References [22,38,39] further discuss the reduction of formal wave kinetic equa-
tion (A.26) by approximately calculating the various response functions in explicit
forms that lend themselves to either numerical or analytical treatment. The result is
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summarized as follows:

∂IσLk
∂t

=

(
∂

∂t

∣∣∣∣
em.

+
∂

∂t

∣∣∣∣
decay

+
∂

∂t

∣∣∣∣
sc.

)
IσLk ,

∂IσSk
∂t

=

(
∂

∂t

∣∣∣∣
em.

+
∂

∂t

∣∣∣∣
decay

)
IσSk , (A.27)

where “em.”, “decay”, and “sc.” denote linear wave-particle (or spontaneous and
induced emissions), nonlinear wave-wave (or three-wave decay), and nonlinear
wave-particle (or spontaneous and induced scattering) processes. Each process is
defined explicitly as follows: The spontaneous and induced emissions processes are
specified by

∂IσLk
∂t

∣∣∣∣
em.

=
4πe2

mek2

∫
dv δ(σωLk − k · v)

(
n2ee

2 fe + πσωLk k · ∂fe
∂v

IσLk

)
,

∂IσSk
∂t

∣∣∣∣
em.

=
µk4πe2

mek2

∫
dv δ(σωSk − k · v)

×
[
µkn

2
ee

2(fe + fi) + πσωLk k · ∂

∂v

(
fe +

me

mi
fi

)
IσSk

]
,

µk = k3λ3De

√
me

mi

(
1 +

3Ti
Te

)1/2

. (A.28)

The induced and spontaneous decay processes are described by

∂IσLk
∂t

∣∣∣∣
decay

= σωLk

∫
dk′ V σLk,k′

(
σωLk I

σ′L
k′ Iσ

′′S
k−k′

−σ′ωLk′Iσ
′′S

k−k′IσLk − σ′′µk−k′ωLk−k′Iσ
′L

k′ IσLk

)
,

∂IσSk
∂t

∣∣∣∣
decay

= σµkω
L
k

∫
dk′ V σSk,k′

(
σµk ω

L
k I

σ′L
k′ Iσ

′′L
k−k′

−σ′ωLk′Iσ
′′L

k−k′IσSk − σ′′ωLk−k′Iσ
′L

k′ IσSk

)
, (A.29)

where

V σLk,k′ =
π

2

e2

T 2
e

∑
σ′,σ′′=±1

(k · k′)2

k2k′2|k− k′|2
δ(σωLk − σ′ωLk′ − σ′′ωSk−k′),

V σSk,k′ =
π

4

e2

T 2
e

∑
σ′,σ′′=±1

[k′ · (k− k′)]2

k2k′2|k− k′|2
δ(σωSk − σ′ωLk′ − σ′′ωLk−k′). (A.30)

Finally, the induced and spontaneous scattering processes, which only affects L mode,
is given by

∂IσLk

∂t

∣∣∣∣
sc.

= σωLk
∑
σ′=±1

∫
dk′

∫
dv

(k · k′)2

k2k′2
δ[σωLk − σ′ωLk′ − (k− k′) · v]

×
[

1

4n2
emi

(k− k′) · ∂fi
∂v

Iσ
′L

k′ IσLk − e4λ4
De

T 2
e

(
σ′ωLk′IσLk − σωLk I

σ′L
k′

)
(fe + fi)

]
.

(A.31)
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A.3 Particle kinetic equation

In the particle kinetic equation both collective eigenmodes and non collective fluctu-
ations contribute. Non collective fluctuations are spontaneously emitted by thermal
plasma. Consequently, the electric field spectrum (A.24) that enters the formal
particle equation (A.23) must be given by

〈δE2〉kω =
∑
σ=±1

∑
α=L,S

Iσαk δ(ω − σωαk )

+
2

π

1

k2|ε(k, ω)|2
∑
a

nae
2
a

∫
dv δ(ω − k · v)fa(v). (A.32)

The resulting equation, which was discussed in reference [40], is given by

∂fa(v)

∂t
=
∑
b

2nbe
2
ae

2
b

m2
a

∫
dk

∫
dv′

kikj
k4

δ(k · v − k · v′)
|ε(k,k · v)|2

×

(
∂

∂vj
− ma

mb

∂

∂v′j

)
fa(v)fb(v

′)

+
πe2a
m2
a

∑
σ=±1

∑
α=L,S

∫
dk

(
k

k
· ∂
∂v

)
δ(σωαk − k · v)

×
[

πmafa(v)

2π3kε′(k, σωαk )
+ Iσαk

(
k

k
· ∂fa(v)

∂v

)]
. (A.33)
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