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ABSTRACT
Various plasma waves and instabilities are abundantly present in the solar wind plasma, as evidenced by spacecraft observations.
Among these, propagating modes and instabilities driven by temperature anisotropies are known to play a significant role in
the solar wind dynamics. In situ measurements reveal that the threshold conditions for these instabilities adequately explain
the solar wind conditions at large heliocentric distances. This paper pays attention to the combined effects of electron firehose
instability driven by excessive parallel electron temperature anisotropy (T⊥e < T�e) at high beta conditions, and electromagnetic
ion cyclotron instability driven by excessive perpendicular proton temperature anisotropy (T⊥i > T�i). By employing quasilinear
kinetic theory based upon the assumption of bi-Maxwellian velocity distribution functions for protons and electrons, the
dynamical evolution of the combined instabilities and their mutual interactions mediated by the particles is explored in depth.
It is found that while in some cases, the two unstable modes are excited and saturated at distinct spatial and temporal scales, in
other cases, the two unstable modes are intermingled such that a straightforward interpretation is not so easy. This shows that
when the dynamics of protons and electrons are mutually coupled and when multiple unstable modes are excited in the system,
the dynamical consequences can be quite complex.

Key words: instabilities – plasmas – methods: analytical – solar wind.

1 INTRODUCTION

Charged particles in the solar wind are detected to possess non-
thermal features in their distributions, e.g. temperature anisotropies.
Persistent observations made with spacecrafts such as Helios,
Ulysses, and Cluster show the anisotropic behaviour of ions (Marsch
et al. 1982; Marsch, Ao & Tu 2004; Marsch, Zhao & Tu 2006)
and electrons (Štverák et al. 2008) for radial distances up to 5
au (astronomical unit). Under the dilute space plasma condition
and in the absence of any significant heat flux, the kinetic insta-
bilities play a key role in order to limit the unchecked increase
in temperature anisotropies. Indeed, investigations report that the
temperature anisotropies are partially bounded by marginal stability
conditions of various plasma instabilities, which shows that simple
fluid theory is not completely adequate for the description of solar
wind dynamics (Chew, Goldberger & Low 1956). Note, however,
that more sophisticated fluid approach may partially account for
the observed temperature anisotropy boundaries (Hunana & Zank
2017). In general, kinetic theory, which incorporates wave–particle
interactions, are more preferable for the complete description of
quasi-isotropic state of solar wind particles subject to various
instability criteria.

A useful practice adopted in the community is to plot the solar wind
data in two-dimensional histogram in phase space formed by param-
eter β�a and T⊥a/T�a, for species a = i, e, where i and e stand for ions
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(protons) and electrons, respectively. Here, β‖a = 8πn0T‖/B2
0 is the

parallel plasma beta and T⊥a/T�a is temperature ratio for each species;
T�a and T⊥a represent parallel and perpendicular temperatures with
respect to the ambient magnetic field, respectively; B0 and n0 are
intensity of magnetic field and total density of particles, respectively.
Such plots consistently demonstrate that the solar wind plasma is
partially bounded by marginal stability conditions for various insta-
bilities. For excessive perpendicular electron temperature anisotropy,
T⊥e > T�e, the observed data are bounded by marginal stability curve
for electromagnetic electron-cyclotron instability. For the opposite
case of T�e > T⊥e, the same data coincide with parallel or oblique
electron firehose instability threshold conditions. Similarly in case of
ions, electromagnetic ion cyclotron (EMIC) or mirror instabilities are
responsible for the bounded data under the higher ion perpendicular
temperature condition T⊥i > T�i, and marginal parallel or oblique
proton firehose instability corresponds with bounded proton data at
condition T�i > T⊥i. Detailed descriptions of these micro-instabilities
can be found in (Hasegawa 1975; Yoon 1992; Gary 1993; Yoon et
al. 1993; Hellinger & Matsumoto 2000; Baumjohann & Treumann
2004; Hellinger et al. 2006, 2014; Yoon 2017).

The EMIC mode is left-handed (LH) circularly polarized mode,
which is driven unstable by ion temperature anisotropy T⊥i > T�i

and manifest maximum growth rate at k × B0 = 0 condition. While
the observed solar wind data distribution at 1 au can be partially
explained in terms of marginal EMIC instability condition, noticeable
discrepancies also exist, especially for low beta regime for which, the
mirror mode condition better explains the anisotropy upper bound.
Significant attempts to improve the EMIC threshold condition have
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been made, which includes the introduction of different plasma com-
positions such as existence of alpha particles, including non-linear
effects, improved modelling of proton distribution that modifies
the shape of the distribution function as compared to simple bi-
Maxwellian form, considering the presence of field aligned beams,
and adopting non-thermal (supra-thermal) populations (Isenberg,
Maruca & Kasper 2012; Maruca, Kasper & Gary 2012; Matteini et al.
2012). In pioneering works, Harris (1961) and Sagdeev & Shafranov
(1961) studied the role of cyclotron instabilities in constraining the
temperature anisotropies. Subsequently, such an idea was further
extended to a wide variety of plasma environments (Schlickeiser &
Skoda 2010; Maruca et al. 2012; Zhou et al. 2013; Chen et al. 2014;
Gary et al. 2014; Omidi et al. 2014; Vinas et al. 2015). Furthermore,
Shaaban et al. (2015, 2017) investigated the influence of electrons
on the EMIC instability threshold condition on the basis of linear
theory. These authors find that the interplay between anisotropic solar
wind ions and electrons can significantly alter the EMIC marginal
condition, a finding that is highly relevant to the present study.

In the literature, marginal EMIC instability condition is empiri-
cally modelled by a simple formula T⊥i/T‖i = 1 + Sβ−α

‖i , where (S,
α) are empirically determined parameters. In order to determine these
parameters, Gary et al. (1994) employed linear kinetic theory and
suggested (0.42, 0.43). On the other hand, by employing the hybrid
simulation analysis, the same authors determined (0.41, 0.44). On
the basis of observations, Anderson et al. (1996) deduced the values
(0.85, 0.48), while Phan et al. (1994) arrived at somewhat different
values of (0.58, 0.53).

Electron firehose (EFH) mode is also a left-handed circularly
polarized mode, which is driven unstable by higher electron parallel
temperature than perpendicular temperature, T�e > T⊥e, under high
beta conditions. In the literature, the EFH instability has been
extensively studied employing bi-Maxwellian model distributions,
e.g. (Hollweg 1974), anisotropic supra-thermal distributions such as
bi-kappa model, e.g. (Lazar & Poedts 2009a; Lazar et al. 2017),
etc. A comparative study of EFH instability with Weibel (Lazar &
Poedts 2009b) and ordinary mode (Lazar et al. 2014) instability
is also a significant part of the literature. The electron firehose
instability operative in oblique propagation direction has also been
investigated in the literature (Paesold & Benz 1999; Li & Habbal
2000; Gary & Nishimura 2003; Camporeale & Burgess 2008;
Hellinger et al. 2014). In this paper, we restrict ourselves to the
parallel EFH instability, but unlike some previous works, we go
beyond linear analysis and employ quasilinear method. We leave
the similar quasilinear analysis of obliquely propagating firehose
mode as a future research task. It should be mentioned that in all
the aforementioned works on parallel or oblique firehose instability,
the role of ions are minimized by assuming them to be thermally
isotropic. Under such an assumption, the marginal stability condition
for EFH instability depends only on T⊥e/T�e and β�e. As a result,
the threshold condition can be empirically determined again by a
simple formula, T⊥e/T‖e = 1 − Sβ−α

‖e , where S and α are the fitting
parameters (Lazar et al. 2014).

In earlier studies, the influence of electrons on the dispersion
characteristics of EMIC mode was ignored assuming them as non-
resonant and thermally isotropic. In reality, the electrons under the
condition, T�e �= T⊥e, can alter the stability characteristics of EMIC
mode. Similarly, ions are assumed thermally isotropic in highlighting
the wave-spectrum of EFH instability, most notable exception being
the works by Shaaban et al. (2015) and Shaaban et al. (2017),
as already mentioned. However, anisotropic ions may impact the
stability characteristics of EFH mode, as shown by Shaaban et al.
(2015, 2017). The dynamically coupled electrons and ions via mutual

influence on EMIC and EFH mode excitations may be important for
the solar wind dynamics. In this regard, Yoon & Sarfraz (2017) and
Yoon et al. (2019) investigated the importance of such a dynamical
coupling between the electrons and protons in the global evolution of
solar wind, and demonstrated that such a coupling may significantly
contribute towards explaining the near isotropic conditions of the
solar wind protons and electrons near 1 au. Since the analyses by
Yoon & Sarfraz (2017) and Yoon et al. (2019) are global, for which
the impacts of radial expansion, collisions as well as the instabilities
are all incorporated, the individual properties of each process are
obscured and difficult to separate.

In the present analysis, we revisit the issue of detailed dynamics
associated with the combined EFH and EMIC instabilities. This is
important since the two instabilities operate on different temporal
and spatial scales. Global calculations such as those carried out by
Yoon & Sarfraz (2017) and Yoon et al. (2019) generally assume a
fixed spatial scale for the wave modes and fixed temporal time-steps
in numerically advancing the global model equations. However, since
the fast growing EFH mode involves short spatial scales while EMIC
mode operates on long spatial scales, one may easily miss some
important unstable wavenumber domain unless a care is exercised.
Moreover, since EFH mode grows and saturates rapidly, the temporal
discretization associated with any numerical global modelling effort
may easily miss the most important small time scale phenomena
associated with EFH instability. Note that Yoon & Sarfraz (2017) and
Yoon et al. (2019) adopted a reduced model of the solar wind such
that problems associated with multiscales are minimized. However,
if one attempts to extend the scaled solar wind model to a realistic
one, then one must exercise caution.

This has motivated us to re-examine the combined EFH/EMIC
instability development by means of velocity moment-based quasi-
linear analysis under the assumption of bi-Maxwellian velocity
distribution functions for the particles. The present study is further
motivated by the proton and electron data taken with spacecraft
near 1 au (Lin et al. 1995; Ogilvie et al. 1995; Maruca & Kasper
2013; Wilson et al. 2018), which show that anisotropic proton
and temperatures with varying degree of parallel beta conditions
characterize the solar wind near 1 au. See also, Hellinger et al.
(2006) and Štverák et al. (2008). In particular, according to Wilson
et al. (2018) a long duration (∼10 yr) statistical analysis indicates
that the electrons on average show higher temperature (thus, beta)
than the protons, a condition favourable for combined EMIC and
EFH instability excitation. Note also that the quasilinear scheme
similar to our has already been successfully employed for a number
of problems, including the proton-driven temperature anisotropy
instabilities (Seough & Yoon 2012; Yoon & Seough 2012, 2014;
Seough et al. 2013) and electron anisotropy-driven instabilities (Yoon
et al. 2011; Sarfraz et al. 2016, 2017), and verified against particle-
in-cell simulations. Such preliminary studies provide justifications
for employing the velocity moment-based quasilinear methodology.
Further, quasilinear method has been successfully employed for the
single mode excitation cumulatively by two distinct populations of
solar wind electrons e.g. thermal and suprathermal, considering their
anisotropic temperatures (Lazar et al. 2018; Shaaban et al. 2019a) and
combining with their relative drifts (Shaaban et al. 2019b; Shaaban &
Lazar 2020). As noted, interplay of EMIC and EFH modes has been
inherently considered within the reduced model of the global solar
wind, without collisions (Yoon & Sarfraz 2017) and with collision
effects (Yoon et al. 2019), but the details are obscured. This paper
aims to re-examine this issue more carefully.

The structure of this paper is as follows: In Section 2, we will
briefly discuss the linear and quasilinear theory of combined EMIC
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and EFH instability. Section 3 will present the numerical solutions.
A brief summary and discussion are given in Section 4.

2 MACROSCOPIC KINETIC MODEL OF THE
SOLAR WIND BULK PARAMETERS

For a homogeneous plasma immersed in a uniform static magnetic
field, we assume that the velocity distribution functions for electrons
(a = e) and protons (a = i) are given by bi-Maxwellian forms, which
are presumed to represent the plasma state for all time,

fa = 1

π3/2α2
⊥a(t)α‖a(t)

exp

(
− v2

⊥
α2

⊥a(t)
− v2

‖
α2

‖a(t)

)
, (1)

except that perpendicular and parallel temperatures may evolve in
time t. In equation (1), α⊥a and α�a stand for perpendicular and
parallel thermal speeds of species labelled a, and are defined via

T⊥a = ma

2

∫
dvv2

⊥fa = maα
2
⊥a

2
,

T‖a = ma

∫
dvv2

‖fa = maα
2
‖a

2
. (2)

In the present definitions of temperature, the customary Boltzmann
constant is omitted since we adopt eV for thermal energy unit. The
analytical model distribution defined for proton–electron plasma is
assumed for the solar wind conditions for which energetic events
such as solar mass ejections are absent. We also assume that field-
aligned streaming components, which are common for fast wind, are
also absent. Specifically, we ignore any net relative drift between
plasma components, which may be an additional free energy source
for drift related instabilities, e.g. whistler heat flux instability and
beam electron firehose instability (Gary 1993).

Note that our assumption of bi-Maxwellian model distribution is
an approximation. Actual simulation results such as those by Gary,
Vazquez & Winske (1996), Matteini et al. (2006), and Hellinger et al.
(2014) depict the deviation of distribution from strict bi-Maxwellian
form in the non-linear regime. Such a discrepancy notwithstanding,
we maintain that the assumption of bi-Maxwellian model is a fairly
reasonable representation as we are particularly interested in the
temperature anisotropy-driven instabilities for which, during the
instability development, the bulk of ions and electrons take part in
resonant wave–particle interactions. Consequently, small deviations
from strict bi-Maxwellian form do not seem to affect the dynamics in
a fundamental manner. Indeed, a number of simulations performed
previously (Seough, Yoon & Hwang 2014, 2015a; Seough et al.
2015b; Yoon et al. 2015, 2017) support our assumption regarding the
particle distributions.

3 TRANSVERSE MODES: PARALLEL
PROPAGATION

The present section details the mathematical background for dis-
persion characteristics of EMIC and EFH mode and adiabatic time
evolution of initial distributions of protons and electrons in response
to the instability development. We are particularly interested in the
branch of ion cyclotron and electron firehose modes that are prop-
agating strictly parallel (or antiparallel) to the static magnetic field.
General non-relativistic dispersion relation can be found in standard
literature, e.g. (Gary 1993; Schlickeiser 2002). For a homogeneous
and dilute space plasmas (non-collisional) the dispersion relation of

interest reads as follows:

c2k2

ω2
= 1 +

∑
a=i,e

ω2
pa

ω2

∫
dv

v⊥/2

ω − kv‖ ± �a

×
((

ω − kv‖
) ∂fa

∂v⊥
+ kv⊥

∂fa

∂v‖

)
, (3)

where ω and k are, respectively, the angular frequency and wavenum-
ber of the mode; v⊥ and v� are representations of velocity components
perpendicular and parallel to the external magnetic field, respectively;
ωpa = (4πn0e2/ma)1/2 is the plasma frequency and �a = eB0/mac
represents the cyclotron frequency of species of sort a; ma is the
mass of species of labelled as a; e is unit electric charge; c represents
the speed of light in vacuo; n0 stands for the total number density;
B0 denotes the intensity of ambient magnetic field; ± designate
the right-handed (RH) versus left-handed (LH) circularly polarized
electromagnetic modes, for upper and lower signs, respectively.
Many authors have utilized dispersion relation (3) to analyse the
parallel-propagating instabilities driven by excessive parallel (T�

> T⊥) or perpendicular (T⊥ > T�) temperature anisotropy (Dum,
Marsch & Pilipp 1980; Wu, Yoon & Freund 1989; Lazar & Poedts
2009b; Schlickeiser, Lazar & Skoda 2011; Vinas et al. 2014; Lazar
et al. 2015; Shaaban et al. 2016).

Making an allowance for adiabatic bi-Maxwellian distribution
function (1) for ions (protons) and electrons, the following instanta-
neous dispersion relation for left-hand circularly polarized transverse
electromagnetic mode emerges:

0 = c2k2

ω2
pi

− Ai − (Ai + 1) ω − Ai�i

kα‖i
Z

(
ω − �i

kα‖i

)

−mi

me

[
Ae + (Ae + 1) ω + Ae�e

kα‖e
Z

(
ω + �e

kα‖e

)]
,

Ai = T⊥i

T‖i
− 1, Ae = T⊥e

T‖e
− 1, (4)

where the plasma dispersion function (Fried 1961) is defined by,
Z(ζ ) = ∫ ∞

−∞(x − ζ )−1e−x2
dx, for Im(ζ ) > 0. For Im(ζ ) < 0 it is

understood that analytic continuation is to be employed. In (4), we
have ignored the displacement current as we are not interested in
fast transverse modes. The dispersion relation applies adiabatically
to all time as the temporal variations enter through the temperatures
of ions and electrons.

The modifications in initial distributions are studied with the aid
of particle kinetic equation. Under the diffusion approximation and
strictly parallel propagation condition, the form of particle kinetic
equation subject to excitation of EMIC and EFH modes is

∂fa

∂t
= ie2

4m2
ac

2

1

v⊥

∫ ∞

−∞

dk

k2
L∗ v⊥δB2(k)

ω − kv‖ − �a

Lfa,

L = (
ω − kv‖

) ∂

∂v⊥
+ kv⊥

∂

∂v‖
, (5)

where the asterisk denotes the complex conjugate, ω = ωk + iγ k is
the complex root of equation (3) – or (4) for that matter, and δB2(k)
is the spectral wave energy density associated with magnetic field
perturbations. The rigorous quasilinear theory comprises of directly
solving the particle kinetic equation (5). In what follows, to reduce
theory into macroscopic quasilinear approach, we take the velocity
moments of (5). Specifically, velocity moments of interest are those
that define perpendicular and parallel temperatures a la (2). Making
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use of (5), and for bi-Maxwellian fa, i.e. (1), we arrive at

dT⊥a

dt
= − e2

2mac2

∫
dk

k2
δB2(k)

{
(2Aa + 1) γk

+ Im
2iγ − (±)σ �a

kα‖a

× [
(Aa + 1) ω − (±)σ Aa�a

]
Z(ζa)

}
,

dT‖a
dt

= e2

mac2

∫
dk

k2
δB2(k)

{
(Aa + 1) γk

+ Im
ω − (±)σ �a

kα‖a

× [
(Aa + 1) ω − (±)σ Aa�a

]
Z(ζa)

}
,

Aa = T⊥a

T‖a
− 1, ζa = ω − (±)σ �a

kα‖a
, (6)

where σ = +1 corresponds to ions and σ = −1 is for electrons.
The wave kinetic equation is given by the standard quasilinear form,
namely, ∂δB2(k)/∂t = 2γk δB2(k).

4 NUMERICAL ANALYSIS

Numerical analysis starts with the introduction of following dimen-
sionless (or normalized) quantities:

z = ω

�i

, q = ck

ωpi

= kvA

�i

, τ = �it, M = mi

me

,

β⊥i = 8πn0T⊥i

B2
0

= α2
⊥i

v2
A

, β‖i = 8πn0T‖i
B2

0

= α2
‖i

v2
A

,

β⊥e = 8πn0T⊥e

B2
0

= α2
⊥e

v2
A

1

M
, β‖e = 8πn0T‖e

B2
0

= α2
‖e

v2
A

1

M
,

Ai = T⊥i

T‖i
− 1 = β⊥i

β‖i
− 1,

Ae = T⊥e

T‖e
− 1 = β⊥e

β‖e
− 1,

ζi = z − 1

qβ
1/2
‖i

, ζe = z + M

q(Mβ‖e)1/2
,

ηi = (Ai + 1)z − Ai

qβ
1/2
‖i

, ηe = M1/2 [(Ae + 1)z + MAe]

qβ
1/2
‖e

,

W (q) = δB2(q)

B2
0

. (7)

The normalized equations that form the basis of numerical analysis
are then given by

0 = q2 − Ai − MAe − ηiZ(ζi) − ηeZ(ζe),
dβ⊥e

dτ
= −

∫
dq

q2
W (q) {M (2Ae + 1) zi

+Im (2izi + M) ηeZ(ζe)} ,

dβ‖e
dτ

= 2
∫

dq

q2
W (q) {M (Ae + 1) zi

+Im (z + M) ηeZ(ζe)} ,

dβ⊥i

dτ
= −

∫
dq

q2
W (q) {(2Ai + 1) zi

+Im (2izi − 1) ηiZ(ζi)} ,

Figure 1. Sample results for EFH instability: Upper three panels display
the time variation of electron betas, β⊥e and β�e, proton betas, β⊥i and β�i,
and wave magnetic field energy density δB2/B2

0 , versus normalized time
�it. Bottom duel panels plot the adiabatic variation in frequency, ω/�i, and
growth rate, γ /�i, versus normalized wavenumber in various intermediate
time-steps (indicated in the first three panels by vertical lines).

dβ‖i
dτ

= 2
∫

dq

q2
W (q) {(Ai + 1) zi

+Im (z − 1) ηiZ(ζi)} ,

∂W (q)

∂τ
= 2ziW (q). (8)

4.1 Electron firehose instability: solar wind electrons with T⊥e

< T�e

Fig. 1 plots the numerical result of a sample case in which the
EFH instability is initially excited by an excessive parallel electron
temperature anisotropy (T⊥e < T�e), while the protons are initially
isotropic (T⊥i = T�i). The initial conditions are specified by

β⊥e(0)/β‖e(0) = 0.25, β‖e(0) = 4.5,

β⊥i(0)/β‖i(0) = 1, β‖i(0) = 1. (9)

In all the numerical analyses discussed in this paper, we take the initial
wave intensity level as W (k, 0) = δB2(k, 0)/B2

0 = 10−5. The time
evolution of beta’s (dimensionless temperatures) is depicted in the
top two panels. The top panel shows that the initial parallel electron
temperature, or parallel beta β�e, is reduced as time progresses,
while the perpendicular electron beta β⊥e increases in response to
the excitation and subsequent saturation of the EFH instability. The
second panel from top shows changes in the initially isotropic proton
betas, β⊥i and β�i. The changes in these quantities are rather minimal
(note the vertical scale). It is shown that the protons undergo weak
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heating in both perpendicular and parallel directions, but slightly
more along the parallel direction. The overall changes are less than
10 per cent of their initial values. The third panel from top shows
the net wave magnetic field energy density, δB2/B2

0 = ∫
dqW (q),

corresponding to EFH mode. It is seen that the wave energy first
undergoes exponential rise followed by saturation. Subsequently,
the wave energy is reabsorbed by the particles, presumably by
the protons, as the protons resonantly interact with the left-hand
mode, but also judging from the proton heating, such that the
total wave energy density falls back down to the level of initial
noise.

In the bottom dual panels, we plot the instantaneous dispersion
relations, including the initial dispersion relation, shown with blue
curves. The left- and right-hand panels depict the normalized real
frequency zr and normalized growth/damping rate zi versus dimen-
sionless wavenumber q = ck/ωpi, respectively. The instantaneous (or
adiabatic) dispersion relations at three different intermediate time-
steps after the initial time, namely, τ = �it = 6, 7, 14, are plotted
with thin black curves. The dispersion relation corresponding to the
final state, that is, at the end of the computation, τ = 40, is depicted
with red curves. In the top three panels, we have indicated with
vertical lines the intermediate time-steps for which these adiabatic
dispersion curves are plotted. As the adiabatic dispersion relation
shows, the dispersion properties do not change much from the initial
state τ = 0 until τ = 6 or so. From τ = 6 to 7, the change is
sudden and quite drastic. Further changes can be seen until τ = 15,
at which point, the wave energy density begins to be reabsorbed by
the particles.

Note that in Fig. 1, the protons are heated in both directions but
slightly higher along parallel direction. This is somewhat different
from other known results, e.g. Messmer (2002), who show that
oblique electron firehose instability leads to perpendicular proton
heating. Our quasilinear calculation is restricted to parallel propaga-
tion so that a direct comparison with Messmer (2002) is not feasible,
but related works (Sarfraz et al. 2017; Yoon et al. 2017) carried out
quasilinear analysis of parallel electron firehose instability, which
also show perpendicular proton heating. However, the parameter
range adopted in in (Sarfraz et al. 2017; Yoon et al. 2017) is different
from the present input (9). In order to understand this behaviour,
we have ran two other cases besides the reference case, which
is Fig. 1. That is, we have fixed all other input parameters as in
(9), except that we have considered low initial parallel proton beta,
β�i(0) = 0.5 and another case with higher initial proton parallel
beta, β�i(0) = 4. That is, for the low proton beta case, we chose
β⊥e(0)/β�e(0) = 0.25, β�e(0) = 4.5, β⊥i(0)/β�i(0) = 1, and β�i(0) =
0.5. The reference case, of course, is specified by (9). The high
electron beta case refers to the input parameters β⊥e(0)/β�e(0) =
0.25, β�e(0) = 4.5, β⊥i(0)/β�i(0) = 1, and β�i(0) = 4. Fig. 2 shows
that perpendicular proton heating takes place for the low proton beta
case (left-most columns), but the standard case, which is already
shown in Fig. 1 and the high electron beta case correspond to
predominant parallel proton heating. This shows that the conse-
quence of EFH instability excitation on the protons is far from being
unilateral.

We have also plotted instantaneous dispersion relations for the
three cases, that is, lower initial proton beta [β�i(0) = 0.5], the
standard case [β�i(0) = 1], and higher initial proton parallel beta
[β�i(0) = 4], at normalized times �it = 0, 7, 15, and 40. The
result is displayed in Fig. 3. The results are reminiscent of the
bottom double panels in Fig. 1. Of course, the standard case [middle
columns] is identical to that of Fig. 1 bottom dual panels. We have
shown the instantaneous dispersion relations for the other two cases,

Figure 2. Quasilinear development of EFH instability with lower initial
proton beta [β�i(0) = 0.5], shown on the left three columns: The standard
case [β�i(0) = 1], shown in the middle three columns: and higher initial proton
parallel beta [β�i(0) = 4], shown on the right three columns. Perpendicular
proton heating is observed for the low proton beta case (left-most panels),
but for the reference case (middle columns) as well as for the high beta case
(right-most case), parallel proton heating is dominant.

Figure 3. Instantaneous dispersion relations for unstable EFH mode for (left)
lower initial proton beta [β�i(0) = 0.5]; (middle) the standard case [β�i(0) =
1]; and (right) and higher initial proton parallel beta [β�i(0) = 4].

namely, low and high initial proton parallel beta cases, for the sake
of completeness.

The purpose of Figs 1–3 is to highlight the salient features
related to the unstable EFH mode and its dynamical properties,
further details of which can be found in Sarfraz et al. (2017)
and Yoon et al. (2017). These features are that EFH instability is
excited rather quickly and saturated early. After saturation the wave
energy density is reabsorbed by the particles, presumably by the
protons. The dispersion relation for EFH instability features real
frequency that shows broad frequency range that exceeds the proton
cyclotron frequency and above. This case will be used in identifying
the characteristics associated with EFH instability, which is to be
distinguished from EMIC instability.
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664 Z. Ali, M. Sarfraz and P. H. Yoon

Figure 4. Sample results for EMIC instability: The format is the same as
that of Fig. 1.

4.2 Electromagnetic ion cyclotron instability: solar wind ions
with T⊥i > T�i

Fig. 4 displays a sample case representing EMIC instability driven
by an excessive perpendicular proton temperature anisotropy (T⊥i

> T�i). The electrons are initially assumed to be isotropic (T⊥e =
T�e). Quasilinear development of EMIC is well known, see e.g.
Davidson & Ogden (1975), Seough & Yoon (2012) and Yoon &
Seough (2012), but we replicate the known result here for the sake
of later reference when both EFH and EMIC instabilities are excited
simultaneously. Specifically, for Fig. 4, we adopt the following initial
parameters:

β⊥e(0)/β‖e(0) = 1, β‖e(0) = 4.5,

β⊥i(0)/β‖i(0) = 4, β‖i(0) = 1. (10)

The top panel shows that the electrons undergo a mild perpendicular
heating and parallel cooling, with the heating/cooling rates that are
approximately 20 per cent of the initial temperatures. Note that in
the customary quasilinear treatment of EMIC instability the electron
dynamics is often ignored (Davidson & Ogden 1975; Seough & Yoon
2012; Yoon & Seough 2012). The second panel from top shows the
expected result of gradual decrease in the initial proton temperature
anisotropy by way of reduction of β⊥i and increase of β�i. The wave
magnetic field energy density associated with EMIC instability shows
an initial exponential increase followed by an eventual saturation
in the time interval between �it = 20 and �it = 30. Note that
the reabsorption of wave energy by the particle in the late stage
after the saturation does not take place for EMIC instability (or
at least it is not apparent). The bottom left- and right- panels plot
the instantaneous dispersion relation at five different time-steps, at
initial time t = 0, two intermediate times, �it = 20, 25, and at
final time �it = 60. The initial dispersion relation is plotted with

Figure 5. Sample results for combined EFH and EMIC instabilities: The
format is the same as that of Fig. 1.

blue colour, while the final result is plotted by making use of red
curves. The intermediate times are marked with vertical lines in
the upper three panels. The distinguishing feature associated with
EMIC instability is that the time scale is significantly longer than
that of EFH instability so that when the two instabilities are initially
operative one should be able to delineate one mode versus another.
Another notable feature is that the real frequency associated with
the instantaneous EMIC mode dispersion relation never exceeds the
proton cyclotron frequency. The fact that the saturate wave energy
density does not show any apparent reabsorption behaviour is already
noted. Together with Fig. 1, the present quasilinear analysis of EMIC
instability will be useful in interpreting the combined EFH and EMIC
instabilities.

4.3 Combined EFH and EMIC instability: solar wind electrons
with T⊥e < T�e and ions with T⊥i > T�i

We present in Fig. 5 the quasilinear analysis of combined EFH (elec-
tron firehose) and EMIC (electromagnetic ion cyclotron) instabilities.
We take the following initial parameters:

β⊥e(0)/β‖e(0) = 0.25, β‖e(0) = 4.5,

β⊥i(0)/β‖i(0) = 4, β‖i(0) = 1. (11)

In this case, both electrons and protons carry free energy sources as
their initial temperatures are unequal. For electrons, the excessive
parallel temperature anisotropy (T⊥e < T�e) should drive EFH in-
stability, while for protons, the excessive perpendicular temperature
anisotropy (T⊥i > T�i) should drive EMIC instability. These instabil-
ities should proceed at different rates so that in principle one should
be able to identify the developments of these two separate modes
at different times. However, the matter is not as straightforward as
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the dynamical properties of electrons and protons will be subject
to influences from both unstable modes. Consequently, clear and
unmistakable delineation of the two unstable mode may not always
be so easy. The case shown in Fig. 4, however, falls into a category
where the delineation is possible.

As indicated in the top two panels by rectangular boxes, the two
distinct phases of EFH and EMIC instability developments can be
identifiable. In specific, the top panel shows the rapid reduction
of β�e and a mild increase of β⊥e, followed by saturation, which is
similar to that shown in the top panel of Fig. 1. From the behaviour of
electron temperature evolution and the associated time-scale, we thus
conclude that the relatively early phase of the dynamics is dictated
by EFH instability. In the second panel from top, the protons are seen
to respond to the excitation of EFH instability during the relatively
early phase, but only just so slightly, as not much appreciable changes
can be detected in β⊥i and β�i during the time range over which
the electrons beta’s undergo sudden changes. However, once the
EMIC instability proper kicks in at a later time, the reduction of β⊥i

and an increase in β�i, which are characteristic of EMIC quasilinear
behaviour, are clearly seen. The dynamical phase of EMIC instability
is indicated by the rectangular box. The electrons undergo some small
yet noticeable dynamical changes during the EMIC instability phase.
Specifically, it can be seen that β�e undergoes a slight increase, albeit,
the change is not so easy to detect visually. The wave energy density
evolves in a manner consistent with EFH instability early on, but
instead of the wave energy density being reabsorbed by the particles,
the subsequent excitation of EMIC instability maintains the finite
level of wave magnetic field energy density. The bottom two panels
depict the snapshot of instantaneous dispersion relation. The time
intervals are indicated by vertical lines in the third panel from top.
These are initial time t= 0, intermediate times, �it= 3, 5, 10, 60, and
final time �it = 60. From t = 0 and 3, the wave dispersion relation is
dominated by EFH mode properties, but the dispersive characteristics
gradually changes until the system is largely characterized by EMIC
mode property by the time the system evolved to �it = 5 and 10,
or so. Specifically, going from �it = 3 to 4, it can be seen that the
real frequency changes from the EFH mode to that of EMIC mode in
that the real frequency for the unstable range of wave numbers drops
below the proton cyclotron frequency.

For this case, we thus conclude that a combined EFH and EMIC
instabilities affect the properties of electrons and protons in different
time-scales, and that the temporal profile of the wave energy density
rather convincingly demonstrates the time evolution of two separate
modes operating at distinct time scales. As it will be discussed
subsequently, however, such a clear distinction is not always evident
when the input parameters are changed. As one will see, quasilinear
development of the combined EFH and EMIC instabilities can
become quite complex such that linear theory alone cannot predict
the outcome. Before we discuss such a complex case, however, let
us discuss another case in which a clear distinction can arguably be
made.

We thus consider the initial input parameters specified by

β⊥e(0)/β‖e(0) = 0.25, β‖e(0) = 4.5,

β⊥i(0)/β‖i(0) = 4, β‖i(0) = 10. (12)

In this case, other parameters are the same as those of Fig. 4 but the
initial proton parallel beta is 10 times higher. In this case, obviously
proton thermal energy is much higher so that EMIC instability will
lead to a higher level of wave spectrum and also, EMIC instability
proceeds faster. This makes the distinction between EFH and EMIC
a bit difficult as the time scales between the two modes are not too

Figure 6. The same as Fig. 5, except that the proton beta’s are initially 10
times higher.

different and as such, there is a certain overlap between the two
modes as they progress in time. Indeed, numerical results reflect this
expectation. This is shown in Fig. 6, where we plot the solutions
in the same format as before. In the top panel early excitation of
EFH mode and saturation leads to a reduction of parallel electron
beta and a mild increase of perpendicular electron beta, thereby
reducing the excessive parallel electron thermal anisotropy. As the
second panel shows, protons do not undergo much changes during
the early-time range. The third panel shows a trademark signature
of early excitation and saturation of EFH mode. The instantaneous
dispersion relations for �it = 0 (initial state), 2, 2.25, bear clear
signature of EFH mode. Between �it= 2.25 and 3, however, the real
frequency structure undergoes a significant change as the system
takes on the characteristics of EMIC mode. From this point on, the
system is governed by EMIC instability.

The characteristic EMIC development is reflected in the dynamical
profiles of β⊥i and β�i, which are indicated by the rectangular box. An
interesting feature associated with Fig. 6 is that the electrons respond
to the later excitation of EMIC mode in a much more drastic way
when compared to the previous case in which the proton parallel beta
was initially given by β�i(0) = 1. In the present case with β�i(0) =
10, the electrons respond more appreciably, as can be seen in the
top panel. The third panel shows that the wave magnetic field energy
density increases in accordance with the dynamical changes in the
particles. In this case, however, it can be seen that the EMIC wave
energy is partially reabsorbed by the particles in late times, which is,
of course, somewhat different than that of Fig. 5. In the present case
of Fig. 6, because of the vastly different time-scales associated with
EFH and EMIC instabilities, we adopted a logarithmic time axis.

The next case presented in Fig. 7 highlights the complexity
associated with the combined instabilities and difficulties involved in
their interpretation. For this case, we consider the input parameters
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Figure 7. The same as Fig. 5 or Fig. 6, except that the initial proton beta’s
are 10 times lower than that of Fig. 5 and two orders of magnitude lower than
that considered in Fig. 6.

specified by

β⊥e(0)/β‖e(0) = 0.25, β‖e(0) = 4.5,

β⊥i(0)/β‖i(0) = 4, β‖i(0) = 0.1. (13)

As is apparent, this choice of parameters is the same as in Fig. 5
(and also that of Fig. 6) except that we consider β�i(0) = 0.1.
Recall that in Fig. 5, the same was chosen as β�i(0) = 1, while
for Fig. 6, we considered β�i(0) = 10. Thus, the present case
represents protons beta’s ten times lower than that of Fig. 5 and
a hundredfold lower than that of Fig. 6. In this case we again choose
to plot the result making use of logarithmic time axis. Top panels
show the typical dynamical profile for electron betas associated with
EFH instability. This is no surprise. However, the second panel,
which plots proton beta’s, exhibit unexpectedly complex dynamical
profile. During the time-scale associated with EFH excitation and
saturation the protons undergo heating in both directions, which
is somewhat expected. However, the subsequent evolution does not
show any easily identifiable characteristics associated with the EMIC
instability development. In fact, the proton beta’s undergo a slight
cooling, followed by saturation behaviour, then a slight reheating.
Subsequently, the gradual decrease for β⊥i and increase in β�i appear
to represent a typical behaviour related to EMIC instability. For this
reason, we have placed a rectangular box in the late-time domain,
but this only represents an eyeball estimation rather than a rigorous
identification.

The complex nature of the present case is even more highlighted by
the behaviour associated with time evolution of wave energy density.
The third panel from top shows that for early time, the system is
indeed governed by the expected linear exponential growth phase of
EFH instability, but instead of transitioning to a gradual and smooth

saturated wave intensity, there is kink in the slope of the time profile
for δB2/B2

0 . This kink is reflected in the dynamical profiles of the
particle beta’s as well. The time at which this happens is roughly
�it = 5, which is indicated by a vertical line. The instantaneous
dispersion relations, shown in the bottom dual panels, imply that the
real frequency and growth rate do not change much, but around �it=
5, an abrupt change takes place. The instantaneous real frequency
and growth rate at �it = 5 are thus plotted. The wave energy density
undergoes a somewhat sudden increase between �it = 5 and �it =
10, during which time the real frequency and growth rate continue to
evolve. The snapshots of real frequency and growth rate at �it = 10
are plotted in the bottom panels. Then between �it= 10 and �it= 50
the wave energy density undergoes a small increase, then somewhat
steep reduction in intensity, followed by a gradual and monotonic
decrease. The instantaneous dispersion relation at �it = 50 and at
the final time of �it = 100 are plotted in the bottom panel. As one
can see from the wave intensity profile, the excitation and saturation
of EMIC instability are not clearly identifiable, as the early phase of
EMIC instability development is intermingled with late phase of EFH
instability evolution. This show the complex nature of the problem.

5 SUMMARY AND DISCUSSION

The solar wind is characterized by non-Maxwellian features as-
sociated with charged particles. Among such is the temperature
anisotropy associated with ions (protons) and electrons. In situ
measurements near 1 au reveal that the upper and lower bounds of
the measured temperature ratios for these charged particles, T⊥i/T�i

and T⊥e/T�e, are bounded from above and below by various plasma
instability threshold conditions. Consequently, many studies have
been devoted to understanding various aspects of the temperature
anisotropy-driven instabilities in the literature. Among these are
electromagnetic ion cyclotron (or EMIC for short) and electron
firehose (EFH) instabilities. It is customary to ignore the impacts
of electrons in the study of EMIC instability, and also is the usual
practice to assume isotropic protons in the study of EFH instability.
However, as these two modes operate on the same branch of left-hand
circularly polarized transverse electromagnetic dispersion relation,
it is imperative that one treats both species equally. Moreover, it was
shown (Yoon & Sarfraz 2017; Yoon et al. 2019) that the dynamically
protons and electrons via excitations of these two modes play an
important role in explaining the near isotropy of the solar wind
plasma particles near 1 au. However, as the two unstable modes
have distinct spatio-temporal scales, it is important to investigate
their characteristics carefully. This could be an important issue if
one wishes to generalize the scaled solar wind model considered by
Yoon & Sarfraz (2017) and Yoon et al. (2019) to a realistic one.

This has prompted us to revisit the problem of dynamically coupled
protons and electrons via excitation of combined EMIC and EFH
instabilities, but in order to simplify the matter, we have restricted
ourselves to uniform plasma. According to this paper, we found
that for some parameter regime, EFH and EMIC operate on distinct
time scales, which can be delineated clearly based upon the time
profile of macroscopic quantities, that is, proton and electron betas
as well as the wave magnetic field energy density. On the other hand,
some other parameter regimes prevent such a clearcut distinction.
In all the cases, however, the two instabilities operate on different
spatio-temporal scales although they operate on the same left-hand
circularly polarized dispersion curve. The findings from this paper
may be useful in properly designing the realistic global model of the
solar wind. This work can also be extended to include effects such
as non-Maxwellian features, e.g. bi-kappa models (Lazar et al. 2017;
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López et al. 2019), and in principle, to include obliquely propagating
unstable modes (Paesold & Benz 1999; Li & Habbal 2000; López
et al. 2019).

ACKNOWLEDGEMENTS

PHY acknowledges NASA Grant NNH18ZDA001N-HSR and NSF
Grant 1842643 to the University of Maryland.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Anderson B. J., Denton R. E., Ho G., Hamilton D. C., Fuselier S. A.,
Strangeway R. J., 1996, J. Geophys. Res., 101, 21527

Baumjohann W., Treumann R. A., 2004, Basic Space Plasma Physics.
Imperial College Press, London

Camporeale E., Burgess D., 2008, J. Geophys. Res., 113, A07107
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