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Effects of illumination on the categorization of shiny materials
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The present research was designed to examine how
patterns of illumination influence the perceptual
categorization of metal, shiny black, and shiny white
materials. The stimuli depicted three possible objects
that were illuminated by five possible
high-dynamic-range imaging light maps, which varied in
their overall distributions of illuminant directions and
intensities. The surfaces included a low roughness
chrome material, a shiny black material, and a shiny
white material with both diffuse and specular
components. Observers rated each stimulus by adjusting
four sliders to indicate their confidence that the
depicted material was metal, shiny black, shiny white, or
something else, and these adjustments were constrained
so that the sum of all four settings was always 100%. The
results revealed that the metal and shiny black
categories are easily confused. For example, metal
materials with low intensity light maps or a narrow
range of illuminant directions are often judged as shiny
black, whereas shiny black materials with high intensity
light maps or a wide range of illuminant directions are
often judged as metal. To discover the visual information
on which these judgements are based, we measured
several possible image statistics, and we found two that
were highly correlated with the observers’ confidence
ratings in appropriate contexts. We also performed a
spherical harmonic analysis on the different light maps
to quantitatively predict how they would bias observers’
judgments of metal and shiny black surfaces.

During the past decade, there has been a growing
amount of interest in the ability of observers to
perceptually identify different types of surface
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materials. For example, Sharan, Rosenholtz, and
Adelson (2009, 2014) have shown that observers can
rapidly identify material categories, such as metal,
glass, or fabric, from briefly presented photographs of
objects in natural settings (see also Wiebel, Valsecchi, &
Gegenfurtner, 2013). Their results reveal that observers
can achieve 80% accuracy with presentation times as
low as 40 msec.

Although these findings provide clear evidence that
observers can identify surface materials, they do not
reveal the specific sources of information on which
these judgments are based. There is some evidence to
suggest that the perception of material properties may
involve heuristic processes that can sometimes produce
systematic errors. Much of this research has focused on
the perception of gloss (Adams et al., 2018; Doerschner
et al., 2010; Marlow & Anderson, 2013, Marlow &
Anderson, 2015; Mooney & Anderson, 2014; Nishida
& Shinya, 1998; Olkkonen & Brainard, 2010, Olkkonen
& Brainard, 2011; Pont & te Pas, 2006; Zhang et al.,
2015) and the perception of translucency (Fleming &
Bilthoff, 2005; Marlow, Kim, & Anderson, 2017; Xiao
et al, 2014). The results show clearly that observers’
judgments of these properties can be influenced by
factors that are physically independent of an object’s
material composition, such as its three-dimensional
(3D) shape or its pattern of illumination.

Todd and Norman (2018) have recently reported
that the pattern of illumination can also influence
the perceptual distinction between shiny metal and
shiny black dielectric materials, such as obsidian. It
is important to recognize that the reflection of light
from both of these material classes is entirely specular,
so that there is only a tiny range of incident angles
for each local surface region that will reflect any light
toward the point of observation. To better understand
the differences between these materials, it is useful to
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Figure 1. Specular reflectance as a function of the incident
angle for silver, chromium, and obsidian in unpolarized light.
The numbers in parentheses show the real and complex
coefficients of the IOR.

consider how reflectance varies as a function of the
incident angle of illumination based on the Fresnel
equations. Figure 1 shows the reflectance functions
for silver, chrome, and obsidian (i.e., volcanic glass).
Note that silver reflects almost 100% of the incident
illumination at all incident angles, whereas obsidian
(or shiny black plastic) reflects close to 0% except
at relatively high incident angles. Chrome is roughly
midway between those two extremes.

The perceptual distinction between metal and
obsidian is similar in some respects to the classic
problem of lightness constancy, in that the luminance
of any given surface patch is determined by the product
of its reflectance and illumination. By analogy, this
suggests that metal and shiny black materials could
potentially be confused by selectively manipulating
the intensity of illumination. Consider, for example,
the two images of a boy’s bust in the top row of
Figure 2. Both objects are illuminated by an high-
dynamic-range imaging (HDRI) light probe of an
esplanade, and they both have the same magnitude of
illumination and the same camera exposure. The one on
the left depicts a low roughness chrome material that is
perceived as metal. The image on the right depicts a low
roughness obsidian material that is perceived as shiny
black. It is important to keep in mind that variations in
reflectance can be offset by variations in the magnitude
of illumination or camera exposure. The bottom left
panel of Figure 2 shows a low roughness chrome
material with a five-fold reduction in illumination that
is perceived as shiny black, and the bottom right panel
shows a low roughness obsidian material with a five-fold
increase in illumination that is perceived as metal.

It is interesting to note that there is a possible
source of information that could potentially be used
to perceptually distinguish the metal surface from
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the shiny black one with high illumination. Because
of the Fresnel effect, the peak specular reflections on
metal surfaces tend to be in surface regions that face
toward the point of observation, whereas the peak
specular reflections of shiny black surfaces tend to be
in peripheral regions near smooth occlusion boundaries
that face away from the point of observation (see
Todd & Norman, 2018). With careful inspection, this
can be observed in Figure 2. Note that the shiny black
object in the lower right panel has a distinct brightening
along much of its occlusion contour, which is not
present in the metal object in the upper left panel. This
effect is rather subtle, however, and does not seem to
have much impact on how these objects are perceived.

Another important factor that can influence the
perceptual distinction between metal and shiny black
materials is the distribution of illuminant directions.
Whenever that distribution is relatively broad, the
specular reflections on shiny black materials will be
sparser than those that occur on metal. This is because
shiny black materials have a wide range of incident
angles from 0° to 60° for which only a tiny portion of the
incident illumination is reflected (Figure 1). Although
this is a potentially useful source of information, a
similar sparse pattern of specular reflections can also
occur on metal surfaces that are illuminated from a
sparse set of directions. Consider the three images of
a metal object that are shown in Figure 3. The object
in the left panel is illuminated by an HDRI light map
of an exhibit hall with a sparse pattern of lights in an
otherwise dark environment. It is perceived as a shiny
black material. The object depicted in the middle panel
is illuminated by a light map of an esplanade, which
has an intermediate range of directions. The depicted
material in that case is perceived as metal. Finally, the
image in the right panel is illuminated by a light map
of a snowfield on a cloudy day, which is similar to a
Ganzfeld because there is incident light from almost
all directions. When that image is shown to human
observers, they express uncertainty about whether it is
metal, shiny white, or something else. Note that these
perceptual distinctions are based entirely on the pattern
of illumination because all of the depicted objects are
composed of the same metal material, and they all have
exactly the same 3D shape.

The research described in the present article was
designed to provide a more rigorous exploration
of the effects demonstrated in Figures 2 and 3.
Observers made material category confidence ratings
for objects composed of metal, shiny black, or shiny
white materials over a wide range of illuminations.
The results reveal that the perceptual categorization
of these materials is only loosely coupled to the
ground truth because observers’ judgments are also
heavily influenced by the pattern and intensity of
illumination.
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Figure 2. Four images of a boy’s bust made with chromium and shiny black materials. All of the objects are illuminated by the same
HDRI light map, although the overall intensity was varied as shown in the caption below each image.

Figure 3. Three images of a chromium object illuminated by three different HDRI light maps. The one on the left has a narrow range of
illuminant directions and is perceived as shiny black; the one in the middle has an intermediate range and is perceived as metal; and
one on the right has a very broad range of directions, and is perceptually ambiguous between metal, shiny white, and something else.
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Figure 4. Five HDRI light maps used in the present experiment with variable distributions of illuminant directions and intensities.

Material simulations

All of the rendered images presented in this article
were created using the Maxwell Renderer developed by
Next Limit Technologies (Madrid, Spain). Maxwell is
an unbiased renderer in that it does not use heuristics
to speed up rendering times at the cost of physical
accuracy. The depicted scenes were illuminated by
the five desaturated HDRI light maps shown in
Figure 4. They depict an empty exhibit hall, an atrium,
an esplanade, an empty white room, and a snowfield on
a cloudy day. These light maps were chosen specifically
to vary the distributions of illuminant directions. For
example, the exhibit hall light map has a very sparse set
of illuminant directions; the atrium and the esplanade
light maps have an intermediate range of illuminant
directions; and the white room and snowfield light maps
have a broad range of illuminant directions.

To appear metallic or shiny, it is important for a
material to have a low level of roughness (Todd &
Norman, 2018), but there are very few objects in the
natural environment that are perfectly smooth with a
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roughness of zero. Thus the materials in the present
study were modeled using a relatively low roughness
of 15. These included a chromium material, whose real
and imaginary components of the index of refraction
(IOR) were 3.21 and 3.30, respectively. A shiny black
material was also included with an IOR of (1.51, 0).
Finally, a shiny white material was simulated with a
specular reflectance that was identical to the shiny black
material, combined with an equal proportion of diffuse
reflectance with a roughness of 95 and an IOR of (3,
0). Figure 5 shows examples of these three materials
for a single object illuminated by the atrium light map.
A more detailed discussion of how the complex IOR
influences reflections is provided in the Appendix.

Apparatus

The experimental stimulus images were displayed
by an Apple Mac Pro computer (Dual Quad-Core
processors, with ATI Radeon HD 5770 hardware-
accelerated graphics; Apple Inc., Cupertino, California,
United States) using an Apple 27-in. LED Cinema
Display (2560 x 1440 pixel resolution). The monitor
was located at a 100-cm viewing distance. The luminous
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Figure 5. Images of shiny black (left), metal (middle), and shiny white (right) materials, with the same 3D shape and pattern of

illumination.

intensity of the monitor, measured over an area of 25°,
had a minimum intensity (for black) of 1 cd/m” and a
maximum intensity (for white) of 136 cd/m>.

Procedure

The stimuli depicted three different 3D objects,
including the bust of a young boy, a circular disk with
seven small bumps, and a randomly deformed sphere
(Figures 2, 3, and 5). The material composition of these
objects could be metal, shiny black, or shiny white,
and they were illuminated by the five possible HDRI
light maps shown in Figure 4. The relative intensities of
the light maps were adjusted so that the metal objects
would all have approximately the same maximum
luminance that was just below the maximum image
intensity of 255. This was done to ensure that there was
no saturation in the depicted specular highlights. These
same intensities were employed for the shiny black
and shiny white stimuli. However, we also included
additional images of metal surfaces for which the base
illumination intensity was decreased by a factor of five,
and shiny black surfaces for which the base illumination
intensity was increased by a factor of five (Figure 2).
We made small downward adjustments to the high
illuminations when necessary to avoid saturation of the
specular highlights.

The rendered images were globally tone mapped
for the Apple monitor into the sSRGB 2.1 color space
with a D65 white-point and a y of 2.2. No other
global histogram adjustments (e.g., tint or burn) or
local sharpening or contrast enhancement operators
were used. Because the intensity of the light maps
were adjusted to prevent saturation of the specular
highlights, and we did not compress the dynamic
range of intensities, this likely caused some loss of
information at lower intensities that might have been
visible on a display device with a higher dynamic range.
All of the depicted stimulus objects were presented
against a uniform gray background (with an intensity
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of 100), which was created using an environment map.
Although the background intensity can have a large
effect on lightness judgments, it is not currently known
whether similar effects may occur for the categorization
of shiny materials. Thus the backgrounds were held
constant in the present experiment to prevent any
possible interactions with the other manipulated display
variables.

On each trial, observers were presented with a single
image, and were required to categorize the depicted
material by adjusting four sliders with a hand-held
mouse. Each of the sliders represented a different
category labeled metal, shiny black, shiny white, or
something else, and a digital readout was also provided
for each one. Observers were instructed to adjust the
sliders to indicate their confidence rating for each of the
four possible categories. These confidence ratings were
constrained by the program so that the four different
ratings would always sum to 100%.

Observers

The 75 stimulus images were judged by one of the
authors (JFN), and seven other observers who were
completely naive about the purpose of the experiment
or how the displays were generated. All observers
possessed normal or corrected-to-normal visual acuity.
During each experimental session, observers made
judgments for all of the 75 stimuli. At the beginning
of each session, the details of the response task were
explained, and observers were shown real physical
examples of metal, shiny black, and shiny white
materials. All observers participated in two sessions on
separate days.

Figure 6 shows the average confidence rating
for each of the four possible response categories
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Figure 6. The average confidence rating for each of the four possible response categories for all of the different illumination and
material conditions, collapsed over objects and observers. Error bars show the standard error of the mean for each condition.

collapsed over objects and observers. Each of the finding suggests that the categorization of shiny white
individual bar graphs shows the average data for materials is only minimally influenced by the pattern of
a single light map for all possible combinations of illumination.

materials and illumination intensities. Let us first There was much more confusion between the
consider the results for the shiny white material. Note in metal and shiny black materials, and the pattern
Figure 6 that these were categorized as shiny white with of illumination had a much larger influence on the

a high confidence rating for all five light maps. This perception of those materials. For example, when
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images were rendered using the exhibit hall light map
with a sparse distribution of illuminant directions, all
of the metal objects were categorized as shiny black
with a high confidence rating. A quite different pattern
of results was obtained with the atrium and esplanade
light maps, which had intermediate distributions

of illuminant directions: the metal material with a
base illumination intensity was rated primarily as
metal, and the shiny black material with the base
illumination intensity was rated primarily as shiny
black. However, when the metal objects were presented
with an illumination intensity that was five times lower,
they were rated primarily as shiny black, and when the
shiny black objects were presented with an illumination
intensity that was five times higher, they were rated
primarily as metal. These effects are all demonstrated in
Figure 2, which was rendered using the esplanade light
map.

When the images were rendered with the snowfield or
white room light maps, which had broad distributions
of illuminant directions, the results were the opposite
of those obtained with the exhibit hall. That is to
say there was a general bias to judge all of the shiny
black materials as metal. Observers’ judgments for
the snowfield light map stand out from the others
in several respects. First, the primary confusion for
the base illumination metal objects was shiny white
rather than shiny black. Second, the combined metal
and shiny black confidence ratings were lower than
in the other conditions; and third, that was the only
light map for which the depicted materials were
categorized as “something else” with a rating that
was significantly above zero. It is important to note
that the distribution of illuminant directions for the
snowfield light map is close to a Ganzfeld. Images
of objects that are illuminated in that manner can
look a bit weird (e.g., see right panel of Figure 3)
because they have so little contrast. These findings
highlight an interesting problem of how observers can
distinguish between diffuse and specular reflections
when they both have the same color. The problem
arises because specular reflections from a Ganzfeld
are quite similar to diffuse reflections, although they
may sometimes be distinguishable due to specular
inter-reflections in concave regions (e.g., see right panel
of Figure 3).

To provide a simple quantitative measure of how
each light map biased the observers’ judgments, we
calculated the average metal confidence rating for all
of the metal and shiny black materials, as well as the
average shiny black confidence rating. The ratio of these
two averages provides a bias index for any particular
light map. For the five light maps used in the present
study, the bias index was 0.13 for the exhibit hall, 1.63
for the atrium, 1.66 for the esplanade, 4.16 for the white
room, and 4.51 for the snowfield. These values indicate
that the exhibit hall produces a strong bias to perceive
purely specular surfaces as shiny black. The atrium and
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the esplanade produce small biases to perceive purely
specular surfaces as metal, whereas the white room and
snowfield produce much stronger biases to perceive
those surfaces as metal.

Marlow and Anderson (2013) have argued that
visual information for the perception of gloss has three
component dimensions. One of these, called specular
contrast, refers to perceived differences between the
diffuse and specular components of reflection. Note for
example that images of shiny black materials typically
have much higher specular contrast than those that
depict shiny white materials. The second component,
called specular sharpness, refers to the perceived
steepness of the luminance gradients along the edges
of highlights. The third component of their model is
called specular coverage, and it refers to the proportion
of an object’s surface that is perceived to be covered
by specular reflections. This is the component that is
most affected by the pattern of illumination, and we
suspect it may be an important source of information
for distinguishing different types of shiny materials,
such as metal or obsidian.

It is important to keep in mind that the three
components of gloss proposed by Marlow and
Anderson (2013) are all perceptual properties, and they
cannot be measured in visual images without obtaining
perceptual judgments. Although their analysis was an
important inspiration for the one described here, we
have focused instead on physical measures of image
structure rather than perceptual ones. One of these
that we refer to as the percentage of bright pixels
(PBP) is designed as a physical analog to the Marlow
and Anderson concept of coverage. The logic of this
measure for the categorization of shiny materials is
based on the relative reflectance curves of metals
and dielectric materials shown in Figure 1. Note that
dielectric materials (e.g., obsidian) produce negligible
amounts of specular reflection except at high incidence
angles, whereas metals produce substantial specular
reflections at all incidence angles. It is important to keep
in mind that there is only a tiny range of incident angles
for each local surface region that will produce specular
reflections toward the point of observation. This occurs
when the surface normal comes close to bisecting the
angle between the direction of illumination and the
viewing direction. If the light field has a reasonably
broad range of illumination directions, then most local
regions on metal surfaces will contain visible specular
reflections. However, that is not the case for dielectric
materials. Because of the Fresnel effect, specular
reflections on those surfaces will be primarily located
in peripheral regions near smooth occlusion contours,
where there is a sufficiently high angle between the
surface normal and the viewing direction.

Our specific method for measuring the PBP involves
setting a threshold intensity value and counting the
number of pixels with an intensity above that threshold,
excluding the background. To test the perceptual
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Figure 7. The metal and shiny black confidence ratings plotted as a function of the PBP for each of the five light maps used in the

present experiment.

relevance of this measure, we calculated the PBP for
each of the shiny black and metal stimulus images
used in the experiment. The shiny white stimuli were
excluded from this analysis because they contained
both diffuse and specular reflections. After some trial
and error, we found that a threshold of 50 produced the
best fits to the empirical data. The left panel of Figure 7
shows the shiny black confidence ratings as a function
of the PBP, and a similar plot for the metal ratings is
shown in the right panel. For the shiny black judgments,
there was a strong linear correlation with the PBP (R?
= 0.84). This relation was more complex for the metal
judgments, producing an R? of 0.69. The outliers in
that case included all the stimulus objects illuminated
by the snowfield light map. These all had PBP values in
excess of 90%, yet the average metal confidence rating
in those conditions was only 54%.

We also performed a similar analysis using the mean
intensity of the images rather than PBP. Although these
measures covary to some extent, the PBP measure
counts all pixels with an intensity above 50 as equal,
whereas the mean intensity weights the brighter pixels
more heavily. The linear correlations of mean intensity
with the shiny black and metal confidence ratings
produced R? values of 0.61 and 0.50, respectively.
Thus the mean intensity accounts for substantially less
variance than the PBP measure.

Although the PBP measure does a reasonable job
of distinguishing shiny black and metal materials in
four of the five lighting environments we employed, it
cannot predict observers’ responses to metal surfaces
illuminated by the snowfield light map, and it cannot
distinguish metal and shiny white surfaces. To better
understand those conditions, we identified all the
displays with a PBP above 75%, and carefully observed
them to see how they differ from one another. The
upper row of Figure 8 shows three examples that depict
a metal and shiny white material illuminated by the
esplanade light map, and a metal material illuminated
by the snowfield light map. Note that these images have
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very different contrasts. We first tried to measure that
by calculating the standard deviations of the image
intensity distributions, but this did not provide a good
account of the observers’ judgments.

We then considered whether local contrast (as
opposed to global) may be more perceptually relevant.
To do that we applied an edge filter to all the displays
with a PBP of 75% or higher to identify the regions
with high local contrast. The bottom row of Figure 8
shows the results of that filtering for three images in the
top row. Note that the metal (esplanade) one has the
highest percentage of high contrast regions; the shiny
white one has the lowest; and the metal (snowfield)
one is somewhere in the middle. To formalize that
we measured the percentage of high contrast regions
for all of the images with a PBP greater than 75%,
and correlated those measures with the observers
judgments. This was achieved by setting an intensity
threshold of 220 on the edge filtered images, and
counting the percentage of pixels below that value
(excluding the background). It was immediately clear
from this analysis that the three objects employed in the
experiment produced noticeably different results, so we
analyzed each object separately. The results are shown
in Figure 9. The solid curves in that figure show the best
fits to the data using logistic regression, which produced
R? values of 0.88 for the cobblestone object, 0.82 for the
boy’s bust, and 0.95 for the distorted sphere. Note that
these objects differ from one another in terms of local
surface curvature, which can also affect local image
contrast. It appears that observers may have considered
that in making their judgments so that objects with
many high curvature regions (like the cobblestones)
require a greater percentage of high contrast regions to
be perceived as metal.

It is best to be cautious about drawing any strong
conclusions with respect to the specific analyses shown
in Figures 7 and 9. There are many possible measures
that are conceptually similar to the ones we adopted,
and it is likely that one of these may eventually provide
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Figure 8. A cobblestone surface with different materials and patterns of illumination. These include a metal material with the
esplanade light map (left), a metal material with the snowfield light map (middle), and a shiny white material with the esplanade light
map (right). The bottom row shows edge filtered versions of the images in the top row.

a better account of the perceptual categorization of
shiny materials. One interesting distinction between our
approach and others that have been proposed in the
literature (e.g., Marlow & Anderson, 2013) concerns the
need to separate the diffuse and specular components
of reflection to make judgments about glossy materials.
Our strategy has been to avoid that issue by analyzing
diffuse and specular components as a single underlying
pattern of luminance. Evaluating the success of that
strategy will remain as an interesting issue for future
research.

It is important to keep in mind that for any local
neighborhood of a purely specular surface, there is only
a tiny range of incident angles that will reflect any light
toward the point of observation. Thus the PBP for these
materials is significantly influenced by the distribution
of illuminant directions. The present experiment was
designed to measure the perceptual significance of this
effect by manipulating the patterns of illumination to
produce systematic variations in the PBP. The results
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reveal that the pattern of illumination can influence the
categorization of shiny materials almost as much as
variations in the actual depicted material.

The statistical structure of illumination

The light maps employed in the present experiment
were selected based on a subjective evaluation of
the overall distribution of illuminant directions, but
it would be useful if these distributions could be
quantified in some way. One possible method to achieve
this is to decompose the spherical function of the
illumination environment by the sum of its spherical
harmonics (Doerschner, Boyaci, & Maloney, 2007;
Mury. Pont, & Koenderink, 2007), which is analogous
to a Fourier analysis of planar patterns. The power of
the spherical harmonics at each order characterizes the
angular distributions of the illumination at that order.
The zero order component of a spherical harmonic
series has a single coefficient that represents the
intensity of spherically diffuse ambient light. The first
order has three coefficients, each of which represents a
light dipole with a source in one direction and a sink
in the opposite direction. The relative directions of
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3 60 - the present experiment. Each point on these curves
5 represents the root mean squared power for all the
(8] . .
T a0l coefficients at a given order. Note that the energy
® Deformed Sphere drops off quickly with increasing order and that it
® mostly levels out near zero by the seventh order. Zhang
o 20 . . :
o et al. (2019) have described two possible metrics for
z ] describing these distributions: A diffuseness metric
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Percentage of pixels with high local contrast

Figure 9. The average confidence rating for all the images with
high PBPs as a function of the percentage of pixels with high
local contrast. The solid curves in each graph show the best fits
to the data using logistic regression.

the three dipoles are all orthogonal to one another.
Each subsequent order in the series adds two additional
coefficients that represent larger and larger groupings
of sources and sinks at finer and finer scales.

Figure 10 shows the relative power of the different
components of a spherical harmonic series (up to the
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(Xia, Pont, & Heynderickx, 2017) is defined as the
ratio of the power of the first order harmonic relative
to the power of the zero order; and a brilliance metric
is defined as the ratio between the sum of the higher
harmonics greater than or equal to the third order,
relative to the sum of all orders. The values of these
metrics (computed to the 30th order for brilliance) for
each of the five light maps used in the present study are
shown in Table 1, together with the bias index for each
map that was computed from the observers’ confidence
ratings. This table also shows that there is a relatively
small correlation between each of these metrics and
the bias index, resulting in R? values of 0.18 and 0.40,
respectively.

A closer examination of Figure 10 reveals that most
of the variance among these particular light maps
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Figure 11. High pass (left) and low pass (right) versions of the atrium (top) and esplanade (bottom) light maps from Figure 4.

occurs at orders zero and two. Could the relation
between those orders provide a better account of the
observers’ biases? The fourth column in Table 1 shows
another possible metric labeled diffuseness2. Whereas
diffuseness is the first order component divided by the
zero order, diffuseness? is the second order component
divided by the zero order. Note that the correlation

of that measure with the bias index produced an R
of 0.88, more than twice the values obtained for the
brilliance or diffuseness metrics. Because we have no
theoretical explanation to justify this particular metric,
it is possible that its high correlation with the bias index
could be an accidental property of these particular
light maps. Nevertheless, among the wide variety of
measures we have considered, this is the only one that
provides a good fit to the empirical data.

Todd and Norman (2018) have recently demonstrated
that it is possible to alter the apparent material of an
object between metal and shiny white by selectively
filtering the pattern of illumination. To follow
up on their observations, we created a new set of
light maps by filtering some of the ones shown in
Figure 4, each of which had a spatial resolution of
4800 x 2400 pixels. Four of these new maps are shown
in Figure 11. The ones in the right column were created
in HDRshop using an 800 pixel wide Gaussian blur
filter on the images of the atrium (top) and esplanade
(bottom). This produces low pass filtered images that
only contain the lower frequency components of the
original light maps shown in Figure 4. The images
in the left column of Figure 11 were created using a
10-pixel-wide Gaussian blur filter on the images of
the atrium (top) and esplanade (bottom), and then
subtracting the blurred images from the originals. This
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produces high pass filtered images that only contain the
higher frequency components of the original light maps
shown in Figure 4.

Figure 12 shows three images of a boy’s bust made of
polished chrome with different patterns of illumination.
The image in the middle panel was created with the
atrium light map shown in Figure 4. The one on the
right was created using the low pass filtered version of
the atrium, and the one on the left was created using the
high pass filtered version. Note how these variations in
illumination have a huge effect on the appearance of
the surface materials. The one created with the original
atrium light map appears as metal. The one created
with the low pass version appears as shiny white (see
also Todd & Norman, 2018), and the one created with
the high pass version is perceived as shiny black. It is
important to point out that the relative intensity of the
three light maps were adjusted so that the maximum
luminance would be the same in all three images. It is
also important to note, however, that the images all
have different percentages of bright pixels. From left
to right the PBP measures are 17%, 81%, and 99%,
respectively.

These examples provide some anecdotal evidence that
the higher frequency components of the illumination
field are a possible factor that biases metallic surfaces
to appear shiny black, shiny white, or metallic, but a
closer examination reveals that is an oversimplification.
Consider the three images in Figure 13 of a boy’s bust
made of polished chrome illuminated with different
versions of the esplanade light map (see Figures 4
and 11). As in Figure 12, when the object is illuminated
by the unfiltered light map (middle panel), it appears
metallic (PBP = 79%), and when it is illuminated by
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Figure 12. Images of a boy’s bust made of polished chrome illuminated using the atrium light map (center), a high pass filtered version
of that map (left), and a low pass filtered version (right).

Figure 13. Images of a boy’s bust made of polished chrome illuminated using the esplanade light map (center), a high pass filtered
version of that map (left), and a low pass filtered version (right).

the low pass version (right panel), it appears as shiny The high pass versions of the atrium and the
white (PBP = 99%). However, when it is illuminated esplanade were created using exactly the same filtering
by a high pass version of the esplanade (left panel), it process, but they have quite different effects on
appears arguably even more metallic (PBP = 85%) than the perceptual appearance of the depicted chrome
the image produced with the unfiltered original. material. It is interesting to note in the left column of

Figure 14. Images of a red dielectric material (left) and a red metal material (right).
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Shiny black

Figure 15. Images of a rough metal material (left) and a rough shiny black material (right) illuminated by the exhibit hall and

esplanade light maps.

Figure 11, that the high frequency energy in the atrium
light map is primarily localized in a limited arc of
directions near the top, whereas the high frequency
energy in the esplanade light map is more broadly
distributed over a wider range of directions. If the
distinctions between metal, shiny black, and shiny
white are based on the PBP (and local contrast) then
it is the distribution of illumination directions rather
than spatial frequency per se that is the most important
aspect of the illumination field for influencing the
appearance of shiny materials.

It turns out that these distributional differences are
also captured by the diffuseness2 metric. The value
obtained for the high pass version of the atrium light
map is 0.90, nearly double the value of 0.47 obtained for
the unfiltered version. In contrast, the value obtained
for the high pass version of the esplanade light map
is only 0.48, which is slightly less than the value of
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0.53 that was obtained for the unfiltered version. If
high values of the diffuseness2 metric bias observers to
perceive specular materials as shiny black rather than
metal, this could explain why the high pass atrium light
map produces images that appear shiny black (see left
panel of Figure 12), whereas the high pass esplanade
light map produces images that appear as metal (see left
panel of Figure 13).

Effects of color, roughness, and background
surfaces

Color

There are several other issues that deserve to be
considered involving the generality of these findings. It
is important to keep in mind that all of the stimuli in this



Journal of Vision (2020) 20(5):2, 1-16

Norman, Todd, & Phillips 14

Figure 16. Three images of a distorted sphere illuminated by the exhibit hall (left), the atrium (middle), and the snowfield (right), with
a visible background to provide more contextual information about each scene.

experiment were achromatic, but that is not typically
the case for real objects in the natural environment. For
example, consider the red dielectric material depicted in
the left panel of Figure 14. This type of material has
two distinct types of reflection: part of the illumination
is transmitted a very short distance into the material,
where some of it is scattered back toward the point of
observation. This is referred to as diffuse reflection,
and its color is determined primarily by the material.
Another part of the illumination reflects directly off
the object’s surface. This is referred to as specular
reflection, and its color is determined exclusively by
the color of the illumination. The presence of these
two different components in combination provides a
potentially powerful source of information to indicate
that one is looking at a shiny dielectric material. Note
that shiny black materials constitute a special case, in
which that information is unavailable, and the identity
of a material as a dielectric must be determined by
other means.

The right panel of Figure 14 shows a red metallic
material with the same base color as the one in the
left panel. For metals, 100% of the transmitted light is
absorbed, so there are no diffuse reflections. However,
unlike dielectrics, the color of the material can influence
the colors of its specular reflections. That is why the
color of the object in the right panel appears red, even
though the illumination is completely desaturated. This
likely provides useful information for the identification
of colored metals, such as copper or gold, but there
are other common metals, such as silver, aluminum,
or chrome, whose colors are mostly desaturated. The
identification of those materials as metal must depend
on other factors, like the PBP and local contrast.

Roughness

In a previous experiment by Todd and Norman
(2018) we examined how the appearance of metal
and shininess of chrome objects is influenced by
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variations of surface roughness. When the illumination
had a broad range of directions, observers’ metal

and shininess ratings dropped rapidly with increasing
roughness. For roughness values of 60 or higher, the
material no longer appeared metallic or shiny, and was
perceived instead as matte. Figure 15 shows images of
a chrome material (left column) and a purely specular
black dielectric material (right column), both with a
roughness of 60. Note that the appearance of metal
and shiny black have been completely eliminated. Both
materials appear matte, although the metal one appears
lighter than the black dielectric. The objects in the top
row were illuminated using the exhibit hall light map,
whereas the ones in the bottom row were illuminated by
the esplanade light map. Note that there were significant
differences in the metal and shiny black confidence
ratings for these light maps when the materials were
depicted with low roughness (see Figure 6), but that
effect appears to be eliminated when the objects are
depicted with high roughness.

Background surfaces

Adams et al. (2018) have recently demonstrated that
constancy of gloss perception over variations of tone
mapping is significantly improved if depicted objects
are presented against a background of a natural scene,
as opposed to a neutral gray background as in the
present experiment. We were curious if contextual
information about the lighting might also improve the
categorization of metal and shiny black materials, so we
created a set of images of a polished metal deformed
sphere with the exhibit hall, atrium, and snowfield
light maps, in which the same maps also provided a
background scene. The resulting images are shown
in Figure 16. To our eyes, the one on the left appears as
shiny black, the one in the middle appears as metal, and
the one on the right is ambiguous between metal and
shiny white. These examples suggest that scene context
may not noticeably improve the material constancy of
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purely specular surfaces. However, it is possible that
the visual structure of a surrounding scene might be
more informative for material constancy if the observer
is embedded in the scene, rather than viewing it in a
picture. That is an issue that will remain to be addressed
in future research.

This research has examined how the pattern and
intensity of illumination can influence the perceptual
categorization of shiny materials. The results reveal that
metal and shiny black dielectric materials are easily
confused. With broad distributions of illumination
from multiple directions and higher illumination
intensities, observers are biased to perceive shiny black
surfaces as metal. Conversely, with narrow distributions
of illumination from a small number of directions and
lower illumination intensities, observers are biased to
perceive metal surfaces as shiny black. Analyses of
the image structure of the experimental stimuli reveal
several possible measures that are highly correlated with
observers’ categorization judgments, and an analysis of
the illumination fields reveals other measures that could
potentially predict how much they bias the perceptual
distinction between metal and shiny black materials.
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Appendix

The parameterization of surface reflectance

The manner in which a material interacts with light
is determined by its IOR, which is a complex number
(n - ki). The imaginary coefficient (k) is also known as
the extinction coefficient. For most of the materials
encountered in nature (i.e., dielectrics), the value of k is
vanishingly small, but that is not the case for metals. To
better appreciate how n and k can influence reflections
on metal surfaces it is useful to consider the three
images shown in Figure A1. The left panel of this figure
depicts an aluminum material with an IOR of (1.2,
7.0), which is perceived as a shiny metal. The image in
the middle panel was generated with exactly the same
parameters as the one on the left, except that the value
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of k was set to zero. This changes the appearance to a
black dielectric material. However, by raising the value
of n to 50, and keeping k at zero, the appearance of a
shiny metal can be restored, as shown in the right panel.
The pattern of shading in that case is similar (but not
identical) to the image in the left panel.

The complex IOR is used by the Fresnel equations
to compute the surface reflectance at all possible
incident angles and directions of polarization. Some
renderers, such as Maxwell, Renderman, or Arnold,
allow the user to input values of n and k to characterize
a material. This is the best way to achieve physical
accuracy because the appropriate values can be
obtained from a material handbook or at the web site
https://refractiveindex.info/. Other renderers employ a
different approach. By specifying the reflectance and
color at incident angles of 0° and 90° (also referred to
as facing and grazing angles), it is possible to compute
the values of n and k from that information. This is just
a reparameterization of the same space, which some
users find more intuitive because it focuses on the end
result of the computation.

Still other renderers only allow the user to specify
the real coefficient (n) of the IOR, or a facing angle
reflectance, and the value of k i1s assumed to be
zero. This approach allows the program to use an
approximation of the Fresnel equations, which can
greatly reduce the required computations. Metals
can only be simulated in these renderers by using an
unnaturally high value of n, as shown in the right panel
of Figure Al. Another variation of this approach is
to incorporate a metalness parameter. Although the
term metalness does not occur in physics, it is used in
renderers to make the user interface more intuitive. The
metalness parameter acts as a switch between metal and
dielectric materials. When set to zero, a low value of n is
used that is typical of dielectric materials, and the color
of the specular reflections is exclusively determined by
the color of the illumination. When set to one, a high
value of n is used, and the material color is allowed to
influence the specular reflections. The IOR parameter
in these renderers may only be used for refractions.

Figure Al. Three images of a distorted sphere with different complex IORs. From left to right the IORs are (1.2, 7.0), (1.2, 0),

and (50, 0).

Downloaded from jov.arvojournals.org on 02/02/2021


https://doi.org/10.1117/12.2085021
https://doi.org/10.1167/19.4.11
https://refractiveindex.info/

