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Sweep and ejection events in turbulent boundary layer flows have been explored for half a century
now to describe eddies impacting turbulent stresses. Yet, moving these studies from their current
diagnostic phase to a prognostic form remains a formidable challenge. Here, a cumulant expansion is
used to derive a link between the transport of shear stress and the balance of local sweep and ejection
events. Cumulant expansion is further used to connect this transport to a metric of asymmetry in the
streamwise velocity distribution. These relations are employed to develop two so-called structural
models for predicting the turbulent stress transport, which is traditionally neglected in first-order
closure of the shear stress budget. Several datasets collected in rough-wall conditions are used
to show the importance of the transport term in the roughness sublayer and to demonstrate the
predictive skill of the two structural models. The model parameters are invariant to the tested
range of Reynolds number and surface roughness, indicating the structural similarity between the
velocity asymmetry, sweep/ejection balance, and stress transport may be universal and independent
of roughness. Finally, the implementation of the structural models for improved closure schemes of
the shear stress budget in modeling applications and wall-modeling in large-eddy simulations are
discussed.

I. INTRODUCTION

In turbulent boundary layers, the turbulent motions transporting momentum [1] are classified as one of two types
of events: “ejections” and “sweeps” [2]. These events are commonly detected by conditional sampling using quadrant
analysis, which partitions the instantaneous turbulent momentum flux into ejections, sweeps, inward interactions, and
outward interactions [3–7]. Ejection/sweep statistics along with their contribution to the time-averaged turbulent
momentum flux have been extensively measured for a multitude of flow conditions: canonical smooth- and rough-wall
boundary layers [8–11]; stratified atmospheric flows over vegetated surfaces [12, 13] and complex terrain covered by
vegetation [14–16]; various canopy covers [17–26] including peatlands [27], urban roughness sublayers [28, 29], and
street canyons [30]; convective boundary layers [31–33]; marine boundary layers [34]; air-water exchanges [35]; and
even flow below ice-sheets [36], to list a few examples. A review of the history, development, usage, and extensions of
quadrant analysis and conditional sampling in turbulence is presented elsewhere [7, 37].

Such quadrant analyses revealed that sweep events contribute more than ejections to the overall turbulent shear
stress in the buffer region of smooth-wall turbulent boundary layers [3, 8]. Specifically, the contribution of sweeps is
greater for z+ = zuτ/ν / 15, where z is the wall-normal distance from the surface, uτ is the friction velocity, ν is
the kinematic viscosity, and the transition point z+ = 15 is also the location of the turbulence intensity peak [38].
Likewise, analyses of rough-wall flows demonstrated unequivocally that sweeps are the primary contributor to the
shear stress close to rough surfaces (including vegetation cover), and that the relative contribution of the sweep events
increases both with increased surface roughness and with proximity to the surface [9, 11, 39–41]. In analogy to the
smooth-wall buffer region, a number of studies have proposed that the extent of the roughness sublayer (hereafter
referred to as the RSL) [9] as well as the canopy sublayer (hereafter the CSL) [15, 21] are closely related to the region
where sweep events are statistically more significant than ejections in their contribution to the shear stress. Within
the RSL and CSL, flow statistics are directly dependent on the surface roughness or canopy properties.

Moving above the buffer region, RSL, or CSL, the contributions of sweep and ejection events to the turbulent shear
stress are approximately equal in the overlap or logarithmic (log) region where the turbulent shear stress is constant
[42]. In the outermost wake region of turbulent boundary layers, ejection events dominate the transport of momentum
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[3, 8, 9]. While this emerging picture has elucidated some aspects of the role of surface roughness and coherent
motions in the transport of momentum, it has not been exploited effectively in conventional turbulence modeling or
wall-modeling in large-eddy simulations (LES). Establishing links between quadrant analysis and Reynolds-averaged
turbulence modeling has been, to say the least, fraught with challenges that partly motivate the present work.

A promising way forward from quadrant analysis is to model the probability density function (pdf) of flow variables
using a cumulant expansion method (CEM) such as Gram-Charlier expansions [5, 43, 44]. Gram-Charlier expansions
represent the pdf as a Gaussian distribution shaped with a series of adjustments arising from higher-order cumulants.
For instance, the third-order cumulant accounts for the distribution asymmetry in terms of the skewness and the
fourth-order cumulant accounts for the intermittency or flatness in terms of the excess kurtosis. The CEM can
be extended to additional dimensions to model joint probability density functions (jpdfs) of two or more variables.
Previous efforts used cumulant expansions of jpdfs to link the contributions of sweep and ejection events to budget
equations of turbulent statistics [8, 9]. To illustrate, the turbulent kinetic energy (TKE) budget equation for stationary
and planar homogeneous conditions is considered. This budget is given by

∂e

∂t
= 0 = −u′w′ ∂U

∂z
− ∂

∂z

[
FTKE + p′w′

]
− ε, (1)

where t is time, e = 1
2 (u′

2
+ v′

2
+w′

2
) is the instantaneous TKE, u′, v′, and w′ are the turbulent velocity components

in the streamwise (x), spanwise (y), and wall-normal (z) directions, respectively, p′ is the turbulent pressure, primed
quantities are fluctuations around the time-averaged state, ε is the TKE dissipation rate, U is the mean velocity, and

FTKE = 1
2 (u′2w′ + v′2w′ + w′3) is the wall-normal transport of TKE by turbulence. In addition to the pressure and

dissipation terms, FTKE requires a closure model in a second-order closure framework. Using a CEM to model the
velocity probabilities in terms of third-order cumulants [5], Raupach [9] related the TKE transport to sweeping and
ejecting motions as

FTKE = a1∆So
(
a2σ

2
uσw + a3σ

3
w

)
, (2)

where ∆So ∈ [−1, 1] signifies the relative fractional contributions of ejections and sweeps to the turbulent momentum
flux u′w′, σi is the root-mean-square (rms) of the specified velocity component, and a1,2,3 are constants determined
from experiments.

The value of the fractional stress contribution ∆So indicates whether sweeps are favored (∆So > 0), ejections are
favored (∆So < 0), or the two are balanced (∆So ≈ 0). The balance of ejections and sweeps therefore determines the
sign of FTKE in Eq. (2) and dictates whether turbulent kinetic energy at a given wall-normal position is transported
to or from the surface. The influence of ejections and sweeps on net transport is a consideration that cannot be
ignored in studies of the TKE budget [8], especially in the RSL and CSL. In fact, the increasingly dominant role of
sweeps in the RSL with increasing roughness has already been pointed out by the pioneering work of Nakagawa and
Nezu [8], but translating this result to wall modeling has remained elusive.

Eq. (2) also deviates from classical gradient-diffusion schemes conventionally used to close third-order statistics
through gradients in second-order moments [45]. Such gradient-diffusion closure of third-order statistics (FTKE ∝
∂e/∂z) remain the cornerstone of many operational atmospheric meso-scale models such as the Weather Research and
Forecasting Model (WRF) [46] despite well-known limitations within the canopy sublayer [22, 47]. Eq. (2) has been
referred to as a “structural model” for FTKE as discussed elsewhere [48]. In essence, structural models assume that
the structure of turbulent eddies dominating ejections and sweeps are similar in all wall-bounded flows (i.e. a form of
structural similarity where a1,2,3 do not vary with roughness).

While ejection/sweep statistics and their contribution to the TKE budget have been closely studied [8, 9], their role
in the momentum flux budget and corresponding closure model approximations have not been considered to the same
degree, which is the compass of the work here. Note that the terminology momentum flux and turbulent shear stress
are used interchangeably in this study to describe the covariance term u′w′. In classical gradient diffusion closure for
the turbulent shear stress (referred to as K-theory),

u′w′ = −KT
∂U

∂z
, (3)

where KT is the eddy diffusivity. A large corpus of experiments and theories support (3) in the log region but K-theory
is known to be insufficient in the RSL and CSL [22, 49–52].

The present study uses cumulant expansions to seek a connection between the deviations from gradient diffusion
closure in Eq. (3), the turbulent transport term in the shear stress budget (analogous to FTKE), and the imbalance
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in the contributions of ejections and sweeps to u′w′. An outcome of this approach is a “structural” closure model to
estimate the transport term that is traditionally neglected in gradient-diffusion methods. A variant on the proposed
structural model is then formulated based on a simpler measure of asymmetry in the streamwise velocity, thereby
bridging the imbalance of ejection and sweep motions to the basic shape of the velocity probability distributions. The
purpose of the two models is to circumvent the failures of gradient-diffusion methods by providing an additional closure
based on CEM to account for the transport term, which is particularly relevant in the RSL and CSL. The general
applicability of these two formulations of the structural model is then analyzed using wind tunnel measurements
and a publicly available direct numerical simulation (DNS). Whether third-order CEM applies in such flows and to
what extent the structural model parameters (analogous to a1,2,3 in FTKE) are independent of surface roughness is
discussed.

II. THEORY

A. Definitions and general considerations

In a neutrally-stratified stationary and planar-homogeneous flow, the budget for the turbulent momentum flux u′w′

is

∂u′w′

∂t
= 0 = −w′w′ ∂U

∂z
− ∂u′w′w′

∂z
+ p′

(
∂u′

∂z
+
∂w′

∂x

)
− εuw, (4)

where εuw is molecular destruction of u′w′. The terms on the right-hand side of Eq. (4) are, respectively, covariance
production by the mean velocity gradient, vertical gradient of the turbulent flux transport term (to be analyzed here),
pressure-velocity decorrelation, and decorrelation by viscous effects. The viscous decorrelation εuw can be ignored at
high Reynolds numbers when compared to the pressure-velocity decorrelation [50].

A linear Rotta model, revised to include isotropization of the production term [45, 53], is now used to close the
pressure decorrelation term and is given as

p′
(
∂u′

∂z
+
∂w′

∂x

)
= −CR

u′w′

τ
+ CIw′w′

∂U

∂z
, (5)

where CR is the Rotta constant and CI is the isotropization of the production constant predicted from rapid distortion
theory to be 3

5 [53]. The closure in Eq. (5), in combination with Eq. (4), yields an expression for u′w′ given by

u′w′ = − τ

CR

[
(1− CI)σ2

w

∂U

∂z
+
∂u′w′w′

∂z

]
, (6)

where τ = e/ε is a relaxation time scale estimating the time it takes for u′ to de-correlate from w′. K-theory in Eq.
(3) is now recovered when the flux-transport term ∂u′w′w′/∂z is neglected relative to the production term, resulting
in an eddy diffusivity KT = [(1− CI)/CR]σ2

wτ . This finding resembles predictions of KT from Lagrangian structure
function analysis that yield KT = 2σ2

wTL, where TL is the Lagrangian time scale as discussed elsewhere [53]. That is,
KT scales with σw(σwTL) or σw(σwτ) as characteristic velocity and length scales instead of the mixing length closure
KT = [`m(∂U/∂z)]`m [54], where `m is a generic mixing length proportional to z in the logarithmic region of boundary
layers [55, 56]. The connection between sweeps and ejections and u′w′w′, which is the ‘parent term’ responsible for
the failure of gradient-diffusion theory across many flows [57, 58], is now considered using Gram-Charlier expansion
and structural models.

B. Structural models for the turbulent momentum flux transport term

1. Model 1: fractional stress contributions

As noted earlier, a measure to characterize the relative importance of ejections and sweeps (i.e. ∆So) on momentum
fluxes is defined as [9]
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∆So =
〈u′w′〉|4 − 〈u′w′〉|2

u′w′
, (7)

where 〈u′w′〉|i is a conditional average of events in quadrant i, with quadrant 2 corresponding to ejections (u′ <
0, w′ > 0) and quadrant 4 to sweeps (u′ > 0, w′ < 0). Explicitly, ∆So quantifies the fractional difference between the
contributions of ejection and sweep events to the overall time-averaged flux u′w′, where the sign indicates whether
sweeps (∆So > 0) or ejections (∆So < 0) are favored. No threshold on the instantaneous values of u′w′ is used
to compute ∆So, and hence the subscript “o” is given to ∆S. Raupach [9] used a third-order CEM of the joint
probability jpdf(u′, w′) to link ∆So with the key statistical moments to be employed in closure modeling of the flow:

∆So =
M11 + 1

M11

√
2π

[
2C1

(1 +M11)2
+

C2

1 +M11

]
, (8)

where C1 and C2 are given by

C1 =

(
1 +M11

)[
1

6
(M03 −M30) +

1

2
(M21 −M12)

]
C2 = −

[
1

6
(2−M11)(M03 −M30) +

1

2
(M21 −M12)

]
, (9)

and the notation Mij is used here to describe different statistical (mixed) moments of u′ and w′ as

Mij =
u′iw′j

σiuσ
j
w

. (10)

That is, M11 defines the correlation coefficient u′w′/(σuσw), M30 and M03 define individual skewnesses of u′ and
w′, respectively, and M12 (associated with wall-normal turbulent transport of flux) and M21 (associated with wall-
normal turbulent transport of longitudinal velocity variance) define third-order mixed moments. By substituting the
constants in Eq. (9) into the CEM in Eq. (8) and rearranging the terms, the final form is reached for the CEM linking
∆So to the statistical moments:

∆So =
1

M112
√

2π

[
M11

3
(M03 −M30) + (M21 −M12)

]
. (11)

In Eq. (11), the mixed moments (M21 −M21) have been shown to contribute more to ∆So than the skewnesses
1
3M11(M03 −M30) [59, 60], allowing for the latter term to be neglected in favor of a simpler, ‘incomplete’ CEM.
However, the skewness terms are retained here for completeness. As a bridge to the failure of K-theory, a large corpus
of experiments on momentum transport over smooth surfaces and differing types of roughness elements suggest a linear
relation between each of the third-order moments. Specifically, M30 = buM12, M03 = bwM12, and M21 = buwM12

where the respective constant values bu ≈ 2, bw ≈ −1.16, and buw ≈ −1 were presented elsewhere [9]. The value buw ≈
−0.6 was also reported for flows within and just above dense canopies across a wide range of thermal stratification
conditions [24, 27]. The validity of the linear relation and the values for the constants bu,w,uw are evaluated in Sec.
IV. Inserting these linear relations into Eq. (11) yields

M12 ≈
2
√

2π
1
3M11(bw − bu) + (buw − 1)

M11∆So. (12)

For bu ≈ 2, bw ≈ −1.16, buw ≈ −1, and M11 ≈ −0.45 which is typical in turbulent boundary layers, Eq. (12) yields
a value M12 ≈ −1.5∆So consistent with prior wind tunnel experiments over various roughness types [9]. Using the
definitions for Mij , Eq. (12) is given in dimensional form as

u′w′w′ ≈ 2
√

2π
1
3M11(bw − bu) + (buw − 1)

u′w′σw∆So, (13)
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which is a structural closure model for the flux transport term resembling FTKE in Eq. (2). As noted above, the direct
contribution from the skewnesses 1

3M11(bw − bu) ≈ 0.45 is smaller than that of the mixed moments (buw − 1) ≈ −2.

The form of Eq. (13) suggests that u′w′w′ is proportional to σwu′w′, not the stress gradient as assumed in conventional
gradient-diffusion closure arguments expressed as [45]

u′w′w′ ∝ −`m(e)1/2
∂u′w′

∂z
. (14)

When ejections and sweep contribute equally to momentum transport, ∆So = 0 and u′w′w′ = 0. That is, symmetry
in momentum flux transport and validity of K-theory appear to be ‘entangled’.

2. Model 2: streamwise velocity asymmetry

In a separate approach, the Gram-Charlier expansions can also be used to establish a link between the stress
transport and asymmetry in the streamwise velocity distribution pdf(u). Because of the connection between the
streamwise velocity distribution and u′w′w′ through the relation M30 = buM12, the structural model can be cast with
respect to the fraction of time with u′ < 0 (slow flow) or u′ > 0 (fast flow) instead of with respect to the entire stress
fraction. To illustrate, the fraction of time the flow resides in a faster-than-average phase (u′ > 0) is

Γ+ =

∫ ∞
0

pdf(û)dû, (15)

where pdf(û) is the probability density function of the standardized velocity û = u′/σu, i.e. where σû = 1. The
parameter Γ+ quantifies the distribution asymmetry, with Γ+ > 0.5 indicating more weak fast phases (u′ > 0) which
are balanced by a longer low-velocity tail than the symmetric case, yielding negative skewness. Oppositely, Γ+ < 0.5
corresponds to a longer high-velocity tail and positive skewness. To solve for Γ+, a third-order Gram-Charlier cumulant
expansion is used to describe pdf(û) as

pdf(û) = G(û)

[
1 +

1

6
M30(û3 − 3û)

]
; G(û) =

1√
2π

exp

[
−1

2
û2
]
, (16)

where G(û) is a standard Gaussian distribution. Evaluating the integral in Eq. (15) using the expansion in Eq. (16)
leads to the relation [59, 61]

Γ+ = 0.5− 1

12

√
2

π
M30. (17)

With M30 = buM12 and bu independent of roughness [9], Eq. (17) can be rearranged as

M12 = (0.5− Γ+)
12

bu

√
π

2
, (18)

so that the simplified structural model is cast in fast-slow phases of u′ instead of an ejection-sweep imbalance as

u′w′w′ ≈ 6
√

2π

bu
σuσ

2
w(0.5− Γ+). (19)

Eqs. (17), (18) and (19) remain unchanged even when a fourth-order Gram-Charlier cumulant expansion is adopted
for pdf(û). The experiments described next in Sec. III evaluate the applicability of these two structural models given
in Eqs. (13) and (19) and assess to what degree the parameters depend on surface roughness and Reynolds number.
The choice of using u′ instead of w′ for Γ+ will be elaborated upon when discussing the validity of CEM. Briefly,
it will be shown that the probability distribution of w′ is more symmetric than the u′ counterpart, but with higher
excess kurtosis. Hence, measures of asymmetry are better captured by u′ instead of w′.
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TABLE I. Overview of smooth- and rough-wall boundary layer experiments used in the present analysis. The cases span a
range of friction Reynolds number Reτ = δuτ/ν and roughness Reynolds number k+s = ksuτ/ν, where δ is the boundary layer
thickness, uτ is the friction velocity, ν is the kinematic viscosity, and ks is the equivalent sandgrain roughness.

Dataset Symbol Reτ k+s ks/δ k/δ Source

smooth wall DNS — 2 000 – – – Sillero et al. [62]

smooth wall 1 × 3 800 – – – Heisel et al. [56]

smooth wall 2 + 4 700 – – – Heisel et al. [56]

cylinders 1 © 8 200 710 0.087 0.050 Raupach et al. [63]

cylinders 2 ♦ 9 000 840 0.094 0.048 Raupach et al. [63]

woven mesh 1 4 10 100 430 0.043 0.015 Heisel et al. [56]

woven mesh 2 5 13 900 620 0.045 0.015 Heisel et al. [56]

sandpaper 1 C 12 100 64 0.0053 0.0025 Squire et al. [64]

sandpaper 2 B 18 400 104 0.0056 0.0026 Squire et al. [64]

III. EXPERIMENTS

A. Flow measurements

The present analysis was conducted on previously published numerical and experimental datasets summarized
in Table I. The collection of turbulent boundary layer measurements span approximately one order of magnitude
in Reynolds number across multiple surface geometries, thus providing a range in parameter space to evaluate the
structural models introduced in Sec. II B. The friction Reynolds number in Table I is defined as Reτ = δuτ/ν, where
δ is the boundary layer thickness. The thickness δ is taken to be the height where the mean velocity is 99% of the
free-stream value, i.e. δ = z(U = 0.99U∞). For rough-wall conditions, the surface roughness is parameterized using
the equivalent sandgrain roughness ks and the roughness height k. Determination of the flow and surface parameters
is detailed in the referenced source for each case.

The lowest Reynolds number case in smooth-wall conditions is the direct numerical simulation (DNS) of Sillero et al.
[62]. The DNS case is included to validate the profiles obtained from experiments. The two additional smooth-wall
cases and the woven wire mesh cases were collected in the boundary layer wind tunnel at St. Anthony Falls Laboratory
(SAFL), University of Minnesota. The SAFL experiments include cross-hotwire anemometry measurements of u and
w across the full boundary layer thickness, and complementary particle image velocimetry (PIV) measurements in
the lowest 10 cm (25% of δ in the mesh cases) [56]. The hotwire measurements are featured in later figures showing
wall-normal profiles of the boundary layer, while the PIV results are used for direct comparison of model parameters
due to a greater number of data points within the RSL. The rough-wall hotwire and PIV measurements were taken at
multiple positions within the woven mesh pattern to provide a representative horizontal spatial average in the RSL.

The two cylinder roughness cases are from previous experiments in the University of Edinburgh wind tunnel. These
cases were digitized from results presented in both Raupach et al. [63] and Raupach [9]. The cylinder roughness results
are limited to the statistics presented in the original studies; some cases were excluded from later figures because the
published data were not available.

Finally, flow above sandpaper surface roughness was measured using PIV in the High Reynolds Number Boundary
Layer Wind Tunnel at the University of Melbourne. These measurements used a high-spatial-resolution tower PIV
configuration and were introduced in Squire et al. [64]. Detailed parameterization of the sandpaper roughness geometry
is given in a separate study [65].

While all of the rough-wall cases evaluated here are considered fully rough, the sandpaper cases are closest to the
upper limit of transitional roughness in terms of k+s . The roughness length k is given here by the approximate total
height of the roughness geometry. Dimensionally, the heights are k = 6 mm (cylinders and woven mesh) and k = 0.9
mm (sandpaper). For rough-wall and canopy flows, the zero-displacement position (z−d) is commonly used to account
for the shift in the boundary layer away from the wall due to the surface asperities. For the woven mesh cases, d was
assumed to correspond to the average roughness height across the mesh geometry. For the sandpaper cases, d was
taken as half the roughness height [65]. The d for the cylinder cases was reported directly in Raupach et al. [63].
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(a) (b)

(c) (d)

FIG. 1. Wall-normal profiles of first- and second-order velocity statistics normalized by the friction velocity uτ and boundary

layer thickness δ: (a) deficit of the mean velocity U from the free-stream U∞; (b) streamwise variance u′2; (c) wall-normal

variance w′2; (d) Turbulent shear stress u′w′. The data symbols, shown with logarithmic spacing for clarity, correspond to the
cases in Table I. Colors here and in later figures correspond to the buffer or roughness sublayer (orange), logarithmic region
(blue), transition from logarithmic to wake region (purple), and outer wake region (black).

B. Flow statistics

Wall-normal profiles of the first- and second-order velocity statistics are featured in Fig. 1. The normalization of
the profiles, i.e. by uτ and δ, reflects the relevant turbulent scaling parameters in the outer layer above the RSL and
buffer layer. In this work, the superscript “+” for velocity statistics indicates normalization by uτ . There is generally
good agreement in the outer layer velocity statistics across flow cases, with the exception noted below.

The primary discrepancy observed in Fig. 1 is lower measured values of w′2 and u′w′ for the smooth-wall experiments
(×,+). These values may be underestimated due to the spatial sampling volume of the Dantec hotwire X-probe used
for the smooth-wall and woven mesh experimental cases. The “X” shape of the two wires and their separation distance
yield a sampling volume that is O(1 mm) (≈25 viscous units) in each direction. The underestimated w statistics may
be attributed to undetected turbulent motions smaller than the sampling volume. The underestimate is lesser for the
streamwise statistics for which a greater proportion of energy resides in the larger scales. The sampling volume is also
less limiting for the mesh cases due to the near-wall behavior being governed by the roughness geometry rather than
the relatively smaller viscous units.

Based on later results, the measurement resolution does not affect the model performance. This suggests the model
outcome and inputs have similar scale dependence and are limited by resolution to the same extent. In other words,
underestimates in the measured u′w′w′ model output may be balanced by likewise underestimates in the inputs w′2

and u′w′.

In Fig. 1 and throughout, the following color-coded convention of the four main regions of the turbulent boundary
layer is adopted: (1) RSL and viscous buffer layer below the log region (orange); (2) The log region up to 0.2δ (blue);
(3) The lower portion of the wake region where there is a slow departure from inertial behavior and z scaling of the
flow statistics, up to 0.4δ (purple); (4) The outer portion of the wake region (black). The extent of the buffer layer in

smooth-wall conditions was taken to be approximately 3
√
δν/uτ [66]. The RSL was assumed to end where inertial

dynamics and the log region began in the Fig. 1 velocity statistics and third-order moments introduced later. Previous
studies have shown third-order statistics to be a good indicator for the extent of roughness and canopy effects [21].
Based on trends in these higher-order statistics, the RSL height for the cylinder cases is approximately zRSL ≈ 0.25δ.
Thus, there is no canonical log region for the cylinder cases. This absence has no bearing on the evaluation of the
structural models.

The delineation of the wake region into two portions is due to the turbulent/non-turbulent interface (TNTI)
separating boundary layer turbulence from the free-stream condition. In instantaneous flow fields, the TNTI can
reach positions as low as the selected division point z/δ = 0.4 in high-Reynolds-number conditions [67]. A strong
decrease in the turbulent statistics in the outer wake is apparent in Fig. 1. The effect of the free-stream condition
on higher-order statistics (e.g. Mij) and the structural model introduced above is not the main focus of the present
work. We purposely exclude the outer wake from later figures, except for wall-normal profiles where the outer wake
is easily distinguished from the other regions.
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(a) (b)

(c) (d)

FIG. 2. Wall-normal profiles of third-order statistical moments Mij of the velocity fluctuations, where i corresponds to the
order of u′ and j corresponds to w′ as defined in Eq. (10). The data symbols, shown with logarithmic spacing for clarity,
correspond to the cases in Table I.

FIG. 3. Wall-normal profile of ∆So defined in Eq. (7) by the fractional contribution of ejections (u′ < 0, w′ > 0) and sweeps
(u′ > 0, w′ < 0) to the turbulent shear stress u′w′. Data symbols correspond to the cases in table I.

Fig. 2 features the measured wall-normal profiles of M30 (streamwise velocity skewness), M03 (wall-normal velocity
skewness), M12 (momentum flux transport), and M21 (streamwise variance transport) using the same color-coding
as Fig. 1 for the regions. There is close agreement between the DNS results and the experimental cases throughout
the boundary layer, except for the RSL where a deviation is to be expected. Each Mij profile exhibits the same
trend: the moment is close to zero and relatively constant in the log region, the value increases significantly in the
low-turbulence outer wake, and there is a switch in asymmetry direction (i.e. sign) in the RSL. The change in sign
is not observed for M03 for the sandpaper cases in Fig. 2(d). This discrepancy is discussed further with respect to a
later figure.

The extensive RSL for the cylinder roughness (©,♦) is visually apparent in Fig. 2, where close agreement with the
remaining cases is observed only above 0.25δ. The Mij profiles transition directly from the RSL trend to the wake
region behavior, and no log region is apparent as noted previously. There is likely insufficient scale separation, i.e.
large k/δ in Table I, for a canonical overlap layer (log region) to develop [68].

The measured ∆So profile derived from quadrant analysis for all cases is presented in Fig. 3. The ∆So profile
shows remarkable collapse in the outer layer, consistent with other studies [8, 9]. The collapse is also consistent with
Townsend’s outer layer similarity [52, 69], where the surface conditions have negligible effect on the stress contributions
in the log and wake regions.

As expected from the previously discussed literature, sweep events are the majority contributor to u′w′ in the RSL
(∆So > 0), and ejections are dominant in the wake (∆So < 0). The constant value in the log region (∆So ≈ −0.1)
indicates ejections contribute more than sweeps, but the magnitude of both contributions is roughly comparable.
There is no Reynolds number trend in the fractional stress contribution ∆So. The result suggests a composite profile
for ∆So(z) is possible, however a wider range of rough-wall experiments is required to parameterize the profile behavior
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FIG. 4. Ratio of the transport and production terms contributing to the momentum flux in Eq. (6). Gradient-diffusion
closure (K-theory), which neglects transport, is valid when the ratio is small. The left vertical axis is based on CI = 0 (no
isotropization) and the right CI = 3/5 (isotropization predicted by rapid distortion theory).

in the RSL.
The wall-normal trend in ∆So closely mirrors the Mij trends in the RSL, log region, and wake region. The

qualitatively similarity in the profiles is consistent with the dependence of ∆So on the moments Mij described in the
CEM of Eq. (11), and suggests asymmetry in u and w is closely related to the stress contributions quantified by ∆So.
In the following section, the Mij and ∆So statistics are analyzed in closer detail to assess the structural models for

u′w′w′.

IV. RESULTS

The results are presented in four sub-sections: the relative importance of transport to the shear stress budget is
first considered in the various regions to illustrate where the flux-transport can be significant. The third-order CEM
approximation and its utility in estimating ∆So is then evaluated. The assumptions employed in the derivation of the
model as well as the dependence (or lack thereof) of the coefficients bu,w,uw on Reynolds number and roughness are
then featured. Last, the structural models are evaluated by comparing the model estimates against measurements of
u′w′w′ for each flow case.

A. Significance of turbulent stress transport

A central consideration of the present work is the relative contributions of the production and transport terms
to the shear stress in Eq. (6). Gradient-diffusion closure models and K-theory are only valid when the transport
∂u′w′w′/∂z is small relative to the production (1 − CI)σ2

w∂U/∂z. Rather than calculate the full expression in Eq.
(6), which requires an estimate of the relaxation time, Fig. 4 shows a ratio of the measured transport and production
terms to evaluate their relative contributions. The vertical axes are scaled using two values for CI . The values provide
approximate bounds for the production term estimate, where CI = 0 indicates no isotropization of the production
and CI = 3/5 is the value predicted by rapid distortion theory [53].

As expected, the ratio is small, i.e. less than 10%, within the logarithmic region where K-theory applies [50, 52,
53, 70]. Transport is non-negligible in the RSL, however, where its contribution is 10–25% of the production for the
woven mesh depending on choices made about CI . These estimates are close to values reported for a rod canopy
at very high Reynolds numbers [22]. Note that ratios larger than 25% may be observed closer to (and within) the
roughness canopy or for other roughness geometries.

Fig. 4 confirms turbulent transport cannot be discarded in the closure of the stress budget within the RSL and
also in the outer wake. A useful analogy can be drawn to the much-studied TKE budget: the log region is a form of
equilibrium layer where there is negligible net wall-normal transport of energy, referred to as non-local transport in
atmospheric applications. Outside the log region, the non-equilibrium is marked by net transport of TKE and also
shear stress as seen in Fig. 4. In this sense, the roughness sublayer extent may be defined as the wall-normal distance
required to distribute (through transport) the stress imparted by the roughness before equilibrium conditions can be
reached. This definition has been used to delineate the CSL in flow over rod canopies situated on hilly terrain [15].
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FIG. 5. Example probability density functions (pdfs) of velocity fluctuations from the Reτ = 13 900 rough-wall case at three
wall-normal positions: (a) û = u′/σu and (b) ŵ = w′/σw. The measured distribution is compared with a Gaussian distribution
(· · · ), third-order CEM (- - -) and fourth-order CEM (—) based on the measured statistical moments used in the calculations
of cumulants.

B. Validity of the third-order CEM

Example probability distributions of û and ŵ are shown in Fig. 5 for the RSL (left), log region (middle), and wake
region (right). The measured probabilities are compared with a Gaussian distribution, third-order CEM (used in the
later analysis), and fourth-order CEM. The distribution asymmetry is clearly apparent in the streamwise component
û in Fig. 5(a). The asymmetry is reflected by the listed Γ+ values and is accounted for by the third-order CEM. The
wall-normal velocity ŵ in Fig. 5(b) is roughly symmetric and does not deviate appreciably from Gaussian, except
in the thickness of the probability tails that is accounted for by the fourth-order CEM. While the fourth-order CEM
modestly improves agreement with the measured pdf, the third-order CEM is sufficient for describing asymmetry
trends (e.g. as discussed for Figs. 2 and 3) and linking ∆So with u′w′w′ in the structural model. Specifically, the
fourth-order cumulant terms, in addition to any other even-order cumulants, cancel out from the expression for Γ+

in Eq. (17) as earlier noted.
Instead of evaluating the CEM for joint pdfs of u′ and w′, Fig. 6 directly compares the prediction of ∆So from Eq.

(11) with measurements of ∆So from Fig. 3. Given the high coefficient of determination R2 = 0.96, the CEM in Eq.
(11) closely predicts the observed ∆So value. The agreement between the measurements and the third-order cumulant
expansion demonstrates the ability of the CEM to capture the essential features in the joint pdf of u′ and w′ needed
to predict ∆So. These features are quantified through the third-order moments Mij , which are further evaluated in
the following sub-section. The success of the third-order CEM in Fig. 6 is consistent with prior studies that showed
the CEM prediction of ∆So to agree well with measurements for canopy flows on flat and complex terrain, stratified
atmospheric surface layer flows, and even flow below ice sheets [15, 16, 22, 24, 36, 60].

C. Links between Mij, ∆So, and Γ+

One of the key results of Raupach [9] was the observed linear relations between all the third-order mixed moments
Mij related to u′ and w′. Raupach [9] additionally suggested a linear relation between Mij and ∆So, consistent with
the CEM prediction in Eq. (11) if M11 is constant. Fig. 7 evaluates the relations between the third-order moments
Mij , including for two cylinder cases (©,♦) from the original study [9]. The figure confirms the linear relations
between Mij for a wider range of roughness geometry and Reynolds numbers.

The 95% statistical confidence intervals for each Mij statistic are represented by the example error bars in Fig.
7. The intervals were estimated from the mesh PIV cases using a bootstrap resampling method [71]. The statistical
uncertainty is due primarily to the number of independent samples, i.e. PIV frames, and varies minimally with wall-
normal distance or between the mesh and smooth-wall cases. The intervals demonstrate the mixed products M21 and
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FIG. 6. Comparison of the measured stress fraction ∆So with predictions by the third-order cumulant expansion in Eq. (11).
The dashed line (- - -) is a 1:1 relation indicating a correct prediction. Data symbols correspond to the cases in table I, where
the outer wake region is excluded.

FIG. 7. Linear relations between the third-order moments Mij in the roughness sublayer and logarithmic regions. Dashed lines
(- - -) represent the linear relations given by Raupach [9]. The error bars are estimated 95% confidence intervals for the mesh
PIV cases. Data symbols correspond to the cases in table I.

M12 have less uncertainty and are more converged statistically than the skewnesses. Moderate scatter is observed for
M03 across cases, where the wall-normal skewness remains positive for the sandpaper data in the RSL as previously
noted. However, this scatter is comparable to the confidence intervals and is not interpreted here as a physical effect
of the roughness.

Aside from this scatter, the consistency of the trends in Fig. 7 for a range of Reynolds number and surface properties
(i.e. smooth, cylinders, woven mesh, sandpaper) suggests the slope parameters bu,w,uw are invariant and there is a
generic similarity in the third-order moment relations. While the roughness properties influence the magnitude of Mij

within the RSL as seen in Fig. 2, the same relation between the statistics is maintained. The results therefore support
the structural model simplification in Eq. (12), where the linear relations are used to express the model in terms of
∆So and M21. The observed similarity may in part be due to similar coherent eddy structure in high-Reynolds-number
roughness sublayers; recent simulations found the sublayer to be populated by diffuse larger-scale roller structures
which are prominent in the inertial layer [72].

Linear regression fits were used to prescribe parameters bu,w,uw. However, the resulting values depended on which
regions of the boundary layer were included in the fit and whether the separate fits were conducted on each dataset
(due to small non-zero intercepts for certain cases). At this time it is unknown whether the intercepts are a physical
result or an artifact of the experiments. For M21 = buM30 and M12 = buwM21 there was no statistically significant
difference from bu ≈ 2 and buw ≈ −1 [9]. A larger difference was observed for the fitted value bw ≈ −0.9 compared
to the original finding bw = −1.16. The most likely reason for the difference is the outer wake region behavior as
discussed in Sec. III B. There is a shift in the linear trends between Mij in the outer wake region, which we attribute
to the influence of the free-stream condition on the flow statistics and is the reason this region is excluded from the
results. In contrast, the fitted relations in Raupach [9] included points throughout a majority of the boundary layer
thickness, such that these previous relations may be affected somewhat by the distinct outer wake behavior.

In addition to the parameters bu,w,uw, the structural model for M12 in Eq. (12) includes the correlation M11 and

stress fraction ∆So that are evaluated in Fig. 8. Wall-normal profiles of M11 = u′w′/σuσw are shown in Fig. 8(a). If

outer layer similarity applies to u′2
+

, w′2
+

, and u′w′
+

, then similarity should also extend to M11 in the outer layer.
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(a) (b)

FIG. 8. Behavior of the parameters M11 and ∆So in Eq. (12). (a) Wall-normal profile of the correlation coefficient M11 for
(u′,w′). (b) Approximate linear relation between M12 and ∆So where the the dashed line (- - -) is M12 = −1.05∆So. Data
symbols correspond to the cases in table I, where the outer wake region is excluded from (b).

(a) (b)

FIG. 9. Relation between Γ+ and the skewness of velocity fluctuations. (a) Comparison of Γ+(u) and streamwise skewness
M30. (a) Comparison of Γ+(w) and wall-normal skewness M03. The dashed lines (- - -) are the expression in Eq. (17). Data
symbols correspond to the cases in table I, where the outer wake region is excluded.

The values in Fig. 8(a) are in good agreement with the previous cylindrical cases with M11 ≈ −0.45 [9], and the
observed differences between cases may be due to experimental uncertainties. The DNS profile suggests M11 decreases
moderately from -0.35 to -0.4 across the log region. This trend is consistent with theoretical velocity profiles, i.e.
streamwise variance decreasing logarithmically, constant wall-normal variance and turbulent shear stress [69]. Due to
the z-dependent trend in the log region, in addition to possible geometry-specific decorrelating effects in the RSL, the
M11 profile is an input for the structural model and is not assumed to be a constant parameter except where noted.

If M11 is assumed to be constant, a linear relation between M12 and ∆So emerges from Eq. (12). A comparison of
M12 and ∆So is shown in Fig. 8(b). The approximation of the simplified linear relation appears valid, which follows
from the relatively constant M11 profile in Fig. 8(a). The slope of the dashed line in Fig. 8(b) results from Eq. (12)
with the bu,w,uw values listed in Fig. 7 and the approximate coefficient M11 ≈ −0.35. The estimate aligns well with
the observed comparison, and the model prediction is further evaluated in the next section.

The central parameter of the second structural model is the asymmetry metric Γ+ shown in Fig. 9. The figure
compares the relation between Γ+ and the velocity skewnesses with the CEM prediction in Eq. (17). As expected,
the agreement is better for the u component in Fig. 9(a) when compared to the w component in 9(b) given that the
pdf of u experiences greater asymmetry. The agreement between the third-order CEM and measurements of M30 and
Γ+ is encouraging and suggests that roughness geometry may not impact the relation between Γ+ and M30. Taking
this result together with the relation between M12 and M30 in Fig. 7, the coefficient bu = 2 is also deemed insensitive
to surface roughness as it applies to the second structural model in Eq. (18).
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(a) (b) (c)

FIG. 10. Comparison between modeled and measured momentum flux transport term u′w′w′. For the two proposed structural
models, the constants are bu = −2, bw = −0.9, and buw = −1. (a) ∆So model in Eq. (13); (b) Γ+ model in Eq. (19); (c)
traditional gradient-diffusion model in Eq. (14) is added for reference. Each axis is normalized by u3

τ . The dashed lines (- -
-) are 1:1 relations indicating a correct prediction, except for (c) where the dashed line is a linear regression. Data symbols
correspond to the cases in table I, where the outer wake region is excluded.

D. Evaluating the two structural models

The evidence thus far suggests the linear relations between Mij , ∆So, and Γ+ are robust, and the model coefficients
bu,w,uw appear independent of the Reynolds number and roughness geometry, even within the RSL. Having evaluated
the individual parameters, the present section compares the two proposed structural models against direct measure-
ments of u′w′w′. Recall the first structural model in Eq. (13) is based on ∆So while the second in Eq. (19) is based
on Γ+ (derived from the streamwise velocity component u′ only). Rather than evaluating the models in terms of the
statistical moments, e.g. M12, we normalize both the structural models and the measurements of u′w′w′ by u3τ . With
this normalization, the structural models are expressed as

u′w′w′
+ ≈ 2

√
2π

1
3M11(bw − bu) + (buw − 1)

u′w′
+
σ+
w∆So ≈

6
√

2π

bu
σ+
u w
′w′

+
(0.5− Γ+). (20)

The performance of the two structural models is shown in Fig. 10(a,b). There is close agreement between the model
prediction and the measurements as indicated by the high coefficient of determination (R2) values of the comparison.
A majority of the model error appears to be due to a small offset between the model and the measurements. The
offset may be related to the small non-zero intercept observed in previous linear relations such as in Fig. 7. Note that
the offset has no effect on the gradient ∂u′w′w′/∂z, which is ultimately the term of interest in the momentum flux
budget. Visually, the ∆So structural model appears more accurate in the RSL, though the R2 value is comparable
for both models.

In the log region, the profiles of u′w′
+

(z) ≈ −1 and σ+
w (z) ≈ 1.1 are relatively constant both in theory and in the Fig.

1 measurements. Taking these values with M11 ≈ 0.35 and the fitted bu,w,uw values, further model approximations
yield the simplified expressions

u′w′w′
+ ≈ 2.36∆So ≈ 9.1σ+

u (0.5− Γ+) . (21)

That is, the transport term ∂u′w′w′/∂z is primarily driven by changes in asymmetry quantified by ∂∆So/∂z or
∂Γ+/∂z. These gradients are small in the log region, as seen in Figs. 3 and 10(a), but can be large within the RSL or

even the viscous buffer region, which was studied here in less detail. While the approximated constants u′w′
+ ≈ −1

and σ+
w ≈ 1.1 appear to match RSL measurements for the present rough-wall cases, the near-wall behavior of u′w′

and σw is likely modified by the roughness, especially closer to the roughness canopy, which was not measured here.
These constants in Eq. (21) provide a simpler form of the structural models than in Eq. (20), but the simplification
is likely at the expense of predictive accuracy in the RSL.

To emphasize the skill of the proposed structural models, the traditional gradient-diffusion closure in Eq. (14)
is evaluated for comparison in Fig. 10(c). The comparison uses the mixing length `m = κz in the log region and
`m = κzRSL (a constant) in the RSL, where zRSL is the height of the roughness layer. The average TKE was estimated

as e = 1
2×

3
2 (u′

2
+w′

2
) for the experimental cases where the spanwise velocity component v was not measured. Due to
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the proportional relation in Eq. (14), the prediction was evaluated using a linear regression to data points in the log

region rather than a direct comparison against u′w′w′
+

. A finite bias is apparent in the gradient-diffusion closure: the
measured u′w′w′ is non-zero where ∂u′w′/∂z ≈ 0, leading to a non-zero intercept. This bias is accounted for in the
structural models that correctly predict the location for u′w′w′ = 0 in Fig. 10(a,b). Whereas the structural models
predict u′w′w′ within the RSL, the gradient-diffusion closure for u′w′w′ deviates appreciably from measurements,
likely in part due to the need for a more realistic estimate of `m(z) in this region. Unlike `m(z), the structural model
parameters bu,w,uw appear independent of both z and roughness properties such that “tuning” model parameters is
not necessary to predict stress transport in the roughness layer. However, roughness types spanning a wide range
of statistical properties [73, 74] including fragmented or ‘patchy’ roughness [75, 76] and porous surfaces such as
gravel beds [77] are needed to confirm the invariance of the model parameters. We additionally note the present
measurements do not include canopy roughness.

V. DISCUSSION

The utility of structural models for u′w′w′ as closure of the turbulent shear stress budget is now discussed. The
budget is simplified by first assuming M11 = u′w′/σuσw is constant as earlier discussed. Using the first structural
model from Eq. (13), the simplified momentum flux budget in Eq. (6) reduces to a linear first-order non-homogeneous
ordinary differential equation (ODE) with variable coefficients for the shear stress given as

A1(z)
du′w′

dz
+ u′w′

[
A2(z)− CR

τ(z)

]
= (1− CI)σ2

w

dU

dz
, (22)

where the last term on the right-hand side is the non-homogeneous (or source) term (mechanical production in this
case), and coefficients A1(z) and A2(z) are related to ∆So as

A1(z) =
2
√

2π
1
3M11(bw − bu) + (buw − 1)

σw∆So

A2(z) =
2
√

2π
1
3M11(bw − bu) + (buw − 1)

d(σw∆So)

dz
. (23)

When A1(z) 6= 0, the mathematical form of Eqs. (22) and (23) can then be compactly represented as

du′w′

dz
+ u′w′P (z) = Q(z),

P (z) =
1

A1(z)

[
A2(z)− CR

τ(z)

]
,

Q(z) =
1

A1(z)

[
(1− CI)σ2

w

dU

dz

]
. (24)

The general solution can be derived using the integrating factor method µ(z) to yield the shear stress at an arbitrary
wall-normal position z = zr

u′w′(zr)µ(zr) = u′w′(0)µ(0) +

∫ zr

0

Q(z)µ(z)dz, µ(z) = exp

(∫
P (z)dz

)
. (25)

The non-locality of the relation between dU/dz and u′w′ is now evident. Specifically, to compute the turbulent stress
at one arbitrary position zr necessitates depth integration of Q(z) and P (z) from z = 0 to z = zr, and thus information
on the turbulent state at other (i.e. non-local) positions. The determination of the precise shapes of Q(z) and P (z)
necessitate knowledge of σw, τ(z), and ∆So even when M11 is assumed to not vary appreciably with z. The focus
here is on the shape of ∆So, especially in the roughness sublayer, which is the least understood term in the list of
variables impacting Q(z) and P (z). Before discussing a possible generic shape for ∆So, a number of points can be
made. Eqs. (22) and (23) suggest that u′w′ is linearly related to dU/dz only when d(u′w′σw∆So)/dz = 0. Otherwise,
the connection between u′w′ and dU/dz is non-local. In contrast, K-theory predicts u′w′ = 0 for dU/dz = 0 as in Eq.
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FIG. 11. Profiles of ∆So in the sublayer of the rough-wall flow cases, where the position is relative to the RSL extent zRSL.
Data symbols correspond to the cases in table I.

(3). Returning to the ∆So profile, its shape appears to be robust in canonical turbulent boundary layers as shown in
Fig. 3, where the value ∆So ≈ −0.1 is relatively constant within the log region. In the viscous buffer region, ∆So
changes sign consistently at z+ ≈ 15 in both previous studies [3, 8] and the present DNS case, suggesting the ∆So(z

+)
profile may be universal for the inner layer of smooth-wall flows.

While σ+
w does not vary appreciably in the RSL, the behavior of ∆So within the RSL is more difficult to parameterize.

Fig. 11 shows the ∆So profile in the RSL, where position z is fixed relative to the top of the RSL, zRSL. The position
zRSL was determined based on the start of the inertial dynamics, and the cylinder roughness cases are based on
the third-order Mij profiles as previously discussed. The increasing importance of sweep events due to roughness –
reflected by ∂∆So/∂z – is related closely with the roughness and canopy sublayer extent as suggested in the literature
[9, 15, 21, 78]. From Fig. 11, it is inconclusive as to whether the ∆So profile is invariant in the upper portion of
the RSL, or if the amplitude of ∆So is a function of the roughness. Additional experiments are necessary to assess
the sublayer trends in greater detail. A collapse of the curves within the RSL could not be achieved using a single
roughness parameter such as k instead of the diagnostic parameter zRSL. Similar to the extent of the RSL, it is
likely that multiple roughness parameters, e.g. geometric roughness density in addition to height, are necessary to
fully describe ∆So [52]. Nonetheless, Fig. 11 establishes ∆So as a function of the roughness and distance above the
roughness in the RSL, demonstrating the relevance of the structural model in rough-wall flows as an alternative to
neglecting transport entirely. While the present evidence does not provide a means to determine ∆So a priori in the
RSL, direct measurements of ∆So can be used to predict stress transport through the structural model in Eq. (13).
In short, the robust character of ∆So can offer an extra closure constraint that may be exploited in Eq.(22), though
a complete characterization of the ∆So(z) profile is a topic better kept for a future inquiry. Such a characterization
of ∆So, in addition to general expressions for σw(z) and τ(z), is required to further advance the general solution in
Eq. (25).

The present results can be used as a blue-print to inform wall modeling in large-eddy simulations or WRF. A
common equilibrium wall model employed in simulations estimates the surface shear stress using the closest grid
point and a log-law formulation based on the gradient diffusion relation in Eq. (3). It has been demonstrated here
that this relation is insufficient if the first simulated point is within the RSL or CSL, in which case a correction for the
stress transport is warranted. Further, Fig. 10 suggests the closure models for u′w′w′ based on ∆So and Γ+ require
less customization in the RSL than existing gradient-diffusion stress models using a mixing length. The derived
structural models therefore provide a viable means to improve wall modeling within the sublayer. However, specific
challenges must be addressed prior to practical implementation of the structural models in simulations. Foremost,
the ∆So profile shape and amplitude must be defined parametrically using k or ks to characterize the RSL behavior
and the transition to the inertial log layer. Fig. 11 indicates such parameterization may be possible, at least for
idealized ‘k-type’ roughness geometries (i.e. roughness types where no re-circulation exists within the spaces between
the elements). The second challenge is to then solve for the stress, which is not straight forward as evidenced by the
non-local connection between ∆So and u′w′ in Eq. (25).

The key stated advantage of the ∆So and Γ+ structural models is the possible universality in the model parameters,
as opposed to the gradient-diffusion closure in Eq. (14) that requires tuning of the mixing length `m(z) within the
RSL. While not ideal, the assumed dependency u′w′w′ ∝ ∂u′w′/∂z of the second-order gradient-diffusion closure may
be deemed acceptable in Fig. 10(c) for specific applications. Specifically, second-order gradient diffusion accounts for
the general trend of u′w′w′(z), despite error in the amplitude introduced by the choice of `m. The result suggests
that the connections explored here between surface roughness, velocity asymmetry, and the sweep/ejection imbalance
can be further related to gradients in the second-order statistics. For instance, the CEM for ∆So in Eq. (11) can
be simplified using gradient-diffusion closures for the third-order moments rather than the linear relations employed
earlier [22]. In this alternate simplification, there is a direct connection between the behavior of sweeps and ejections
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and gradients in the turbulent energy and shear stress.

VI. CONCLUSIONS

When analyzing the momentum turbulent flux budget, it is shown that K-theory is valid when gradients in the
transport terms ∂u′w′w′/∂z are small relative to the production term. This condition is met in the logarithmic or
equilibrium layer of the boundary layer, but transport is increasingly important within the viscous buffer and roughness
sublayer regions. To provide a means for predicting stress transport in these regions, a link between the transport
term u′w′w′ and asymmetry in the velocity statistics was established here using third-order cumulant expansion. One
of the main assumptions in deriving this link is a proportionality between the third-order statistical moments Mij

that does not vary with roughness values (i.e. bu,w,uw are universal constants). The asymmetry manifests itself in
a finite imbalance ∆So between the contributions of sweeps and ejections to the momentum flux. The derived link
between the turbulent flux transport term and ∆So is shown to be analogous to other structural models representing
the much studied transport of TKE (FTKE) near rough and smooth walls.

The coefficients bu,w,uw in the derived structural model are shown here to be invariable with surface roughness for
the limited number of roughness geometries tested, implying that the effect of roughness is entirely absorbed by ∆So.
The roughness effect can alternatively be quantified using a simpler metric of asymmetry based on the fraction of time
where u′ > 0 (Γ+). The invariance of the model relations within the RSL also implies a form of ‘structural similarity’
where the turbulent eddies maintain the same relations between u′w′w′, ∆So, Γ+, and Mij regardless of roughness
and Reynolds number. The two structural models proposed have been compared against wind tunnel experiments
and DNS for smooth and rough walls including two roughness geometries and one decade range in Reynolds number.
The agreement between measured and modeled u′w′w′ is quite acceptable despite the numerous simplifications made.

While the structural model employing ∆So was discussed here in more detail due to its physical implications, the
diagnostic metric Γ+ is simpler to measure than ∆So and the third order moments Mij . Thus, the second model
may be convenient to employ in practice to assess the significance of the transport term. From a broader perspective,
the link between Γ+ and the flux transport term may invite the use of telegraphic approximation and clustering
properties in future work. Telegraphic approximation has received some attention in the boundary layer meteorology
and turbulence literature [61, 79–87] so as to establish analogies to concepts such as self-organized critically and
intermittency. However, no connection to classical turbulence closure modelling has been offered. The work here may
be viewed as an embryonic step in this direction.
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