Visualizing Neural
Networks with the
Grand Tour

Digit

e0

o1

e 2

e3

e 4

®5

®6

o'] .;
e’ ®9

i M U

Epoch: 93/99

e n

The Grand Tour [in action. This visualization shows the behavior of the final 10-
dimensional layer of a neural network as it is trained on the MNIST dataset. With
this technique, it is possible to see interesting training behavior. For example, the
network appears to learn to classify digits @ 1and @ 7 in an almost discontinuous
manner, after training epochs 14 and 21 respectively.

AUTHORS AFFILIATIONS PUBLISHED Dol
Mingwei Li University of March 16, 2020 10.23915/distill.00025
Arizona

Zhenge Zhao University of

Arizona
Carlos University of
Scheidegger Arizona

The Grand Tour [1] is a classic visualization technique for high-
dimensional point clouds that projects a high-dimensional
dataset into two dimensions. Over time, the Grand Tour smoothly
animates its projection so that every possible view of the dataset
is (eventually) presented to the viewer. Unlike modern nonlinear
projection methods such as t-SNE [2] and UMAP (3], the Grand
Tour is fundamentally a /linear method. In this article, we show
how to leverage the linearity of the Grand Tour to enable a
number of capabilities that are uniquely useful to visualize the
behavior of neural networks. Concretely, we present three use
cases of interest: visualizing the training process as the network
weights change, visualizing the layer-to-layer behavior as the
data goes through the network and visualizing both how
adversarial examples [4] are crafted and how they fool a neural
network.

Introduction

Deep neural networks often achieve best-in-class performance
in supervised learning contests such as the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [5]. Unfortunately,
their decision process is notoriously hard to interpret (6], and

their training process is often hard to debug[7]. In this article, we
present a method to visualize the responses of a neural network
which leverages properties of deep neural networks and
properties of the Grand Tour. Notably, our method enables us to
more directly reason about the relationship between changes in
the data and changes in the resulting visualization[8]. As we will
show, this data-visual correspondence is central to the method
we present, especially when compared to other non-linear
projection methods like UMAP and t-SNE.

To understand a neural network, we often try to observe its
action on input examples (both real and synthesized) [9]. These
kinds of visualizations are useful to elucidate the activation
patterns of a neural network for a single example, but they might
offer less insight about the relationship between different
examples, different states of the network as it's being trained, or
how the data in the example flows through the different layers of
a single network. Therefore, we instead aim to enable
visualizations of the context around our objects of interest: what
is the difference between the present training epoch and the
next one? How does the classification of a network converge (or
diverge) as the image is fed through the network? Linear
methods are attractive because they are particularly easy to
reason about. The Grand Tour works by generating a random,
smoothly changing rotation of the dataset, and then projecting
the data to the two-dimensional screen: both are linear
processes. Although deep neural networks are clearly not linear
processes, they often confine their nonlinearity to a small set of
operations, enabling us to still reason about their behavior. Our
proposed method better preserves context by providing more
consistency: it should be possible to know how the visualization
would change, if the data had been different in a particular way.

Working Examples

To illustrate the technique we will present, we trained deep
neural network models (DNNs) with 3 common image
classification datasets: MNIST ', fashion-MNIST 2 and CIFAR-10
3. While our architecture is simpler and smaller than current
DNNs, it’s still indicative of modern networks, and is complex
enough to demonstrate both our proposed techniques and
shortcomings of typical approaches.

The following figure presents a simple functional diagram of the
neural network we will use throughout the article. The neural
network is a sequence of linear (both convolutional 4 and fully-
connected °), max-pooling, and ReLU € layers, culminating in a
softmax ’ layer.

72/

o4

4aq

706

70|

597 =l s
247 L . B
6b5 R 283
409 2 £ 2 £
40\ : 8
313

Lz72

712

t 2

e

linear(320->50)

RelU

epoch: 44/9!

Neural network opened. The colored blocks are building-block functions (i.e. neural
network layers), the gray-scale heatmaps are either the input image or
intermediate activation vectors after some layers.

Even though neural networks are capable of incredible feats of
classification, deep down, they really are just pipelines of
relatively simple functions. For images, the input is a 2D array of
scalar values for gray scale images or RGB triples for colored
images. When needed, one can always flatten the 2D array into
an equivalent (w - h - ¢) -dimensional vector. Similarly, the
intermediate values after any one of the functions in
composition, or activations of neurons after a layer, can also be
seen as vectors in R", where n is the number of neurons in the
layer. The softmax, for example, can be seen as a 10-vector
whose values are positive real numbers that sum up to 1. This
vector view of data in neural network not only allows us
represent complex data in a mathematically compact form, but
also hints us on how to visualize them in a better way.

Most of the simple functions fall into two categories: they are
either linear transformations of their inputs (like fully-connected
layers or convolutional layers), or relatively simple non-linear
functions that work component-wise (like sigmoid activations &
or ReLU activations). Some operations, notably max-pooling °
and softmax, do not fall into either categories. We will come back
to this later.

The above figure helps us look at a single image at a time;
however, it does not provide much context to understand the
relationship between layers, between different examples, or
between different class labels. For that, researchers often turn to
more sophisticated visualizations.

Using Visualization to Understand DNNs

Let’s start by considering the problem of visualizing the training
process of a DNN. When training neural networks, we optimize
parameters in the function to minimize a scalar-valued loss
function, typically through some form of gradient descent. We
want the loss to keep decreasing, so we monitor the whole
history of training and testing losses over rounds of training (or
"epochs”), to make sure that the loss decreases over time. The
following figure shows a line plot of the training loss for the
MNIST classifier.

Loss
|

1 1 1 1
0 14 21 50

Training Epoch
Although its general trend meets our expectation as the loss
steadily decreases, we see something strange around epochs 14
and 21: the curve goes almost flat before starting to drop again.
What happened? What caused that?

Training Epoch

If we separate input examples by their true labels/classes and
plot the per-class loss like above, we see that the two drops
were caused by the classses 1 and 7; the model learns different
classes at very different times in the training process. Although
the network learns to recognize digits 0, 2, 3, 4, 5, 6, 8 and 9
early on, it is not until epoch 14 that it starts successfully
recognizing digit 1, or until epoch 21 that it recognizes digit 7. If
we knew ahead of time to be looking for class-specific error
rates, then this chart works well. But what if we didn’t really know
what to look for?

In that case, we could consider visualizations of neuron
activations (e.g. in the last softmax layer) for all examples at
once, looking to find patterns like class-specific behavior, and
other patterns besides. Should there be only two neurons in that
layer, a simple two-dimensional scatter plot would work.
However, the points in the softmax layer for our example
datasets are 10 dimensional (and in larger-scale classification
problems this number can be much larger). We need to either
show two dimensions at a time (which does not scale well as the
number of possible charts grows quadratically), or we can use
dimensionality reduction to map the data into a two dimensional
space and show them in a single plot.

The State-of-the-art Dimensionality Reduction is Non-
linear

Modern dimensionality reduction techniques such as t-SNE and
UMAP are capable of impressive feats of summarization,
providing two-dimensional images where similar points tend to
be clustered together very effectively. However, these methods
are not particularly good to understand the behavior of neuron
activations at a fine scale. Consider the aforementioned
intriguing feature about the different learning rate that the MNIST
classifier has on digit 1 and 7: the network did not learn to
recognize digit 1 until epoch 14, digit 7 until epoch 21. We
compute t-SNE, Dynamic t-SNE [14], and UMAP projections of
the epochs where the phenomenon we described happens.
Consider now the task of identifying this class-specific behavior
during training. As a reminder, in this case, the strange behavior
happens with digits 1 and 7, around epochs 14 and 21
respectively. While the behavior is not particularly
subtle&emdash;digit goes from misclassified to correctly
classified&emdash; it is quite hard to notice it in any of the plots
below. Only on careful inspection we can notice that (for
example) in the UMAP plot, the digit 1 which clustered in the
bottom in epoch 13 becomes a new tentacle-like feature in
epoch 14.

Softmax activations of the MNIST classifier with non-linear dimensionality
reduction. Use the buttons on the right to highlight digits 1 and 7 in the plot, or
drag rectangles around the charts to select particular point subsets to highlight in
the other charts.

One reason that non-linear embeddings fail in elucidating this
phenomenon is that, for the particular change in the data, the fail
the principle of data-visual correspondence [81. More concretely,
the principle states that specific visualization tasks should be
modeled as functions that change the data; the visualization
sends this change from data to visuals, and we can study the
extent to which the visualization changes are easily perceptible.
Ideally, we want the changes in data and visualization to match in
magnitude: a barely noticeable change in visualization should be
due to the smallest possible change in data, and a salient change
in visualization should reflect a significant one in data. Here, a
significant change happened in only a subset of data (e.g. all
points of digit 1 from epoch 13 to 14), but all points in the
visualization move dramatically. For both UMAP and t-SNE, the
position of each single point depends non-trivially on the whole
data distribution in such embedding algorithms. This property is
not ideal for visualization because it fails the data-visual
correspondence, making it hard to infer the underlying change in
data from the change in the visualization.

Non-linear embeddings that have non-convex objectives also
tend to be sensitive to initial conditions. For example, in MNIST,
although the neural network starts to stabilize on epoch 30, t-
SNE and UMAP still generate quite different projections between
epochs 30, 31 and 32 (in fact, all the way to 99). Temporal
regularization techniques (such as Dynamic t-SNE) mitigate
these consistency issues, but still suffer from other
interpretability issues [15].

Now, let's consider another task, that of identifying classes
which the neural network tends to confuse. For this example, we
will use the Fashion-MNIST dataset and classifier, and consider
the confusion among sandals, sneakers and ankle boots. If we
know ahead of time that these three classes are likely to confuse
the classifier, then we can directly design an appropriate linear
projection, as can be seen in the last row of the following figure
(we found this particular projection using both the Grand Tour
and the direct manipulation technique we later describe). The
pattern in this case is quite salient, forming a triangle. T-SNE, in
contrast, incorrectly separates the class clusters (possibly
because of an inappropriately-chosen hyperparameter). UMAP
successfully isolates the three classes, but even in this case it's
not possible to distinguish between three-way confusion for the
classifier in epochs 5 and 10 (portrayed in a linear method by the
presence of points near the center of the triangle), and multiple
two-way confusions in later epochs (evidences by an “empty”
center).

Three-way confusion in fashion-MNIST. Notice that in contrast to non-linear
methods, a carefully-constructed linear projection can offer a better visualization
of the classifier behavior.

Linear Methods to the Rescue

When given the chance, then, we should prefer methods for
which changes in the data produce predictable, visually salient
changes in the result, and linear dimensionality reductions often
have this property. Here, we revisit the linear projections
described above in an interface where the user can easily
navigate between different training epochs. In addition, we
introduce another useful capability which is only available to
linear methods, that of direct manipulation. Each linear projection
from n dimensions to 2 dimensions can be represented by n 2-
dimensional vectors which have an intuitive interpretation: they
are the vectors that the n canonical basis vector in the n-
dimensional space will be projected to. In the context of
projecting the final classification layer, this is especially simple to
interpret: they are the destinations of an input that is classified
with 100% confidence to any one particular class. If we provide
the user with the ability to change these vectors by dragging
around user-interface handles, then users can intuitively set up
new linear projections.

This setup provides additional nice properties that explain the
salient patterns in the previous illustrations. For example,
because projections are linear and the coefficients of vectors in
the classification layer sum to one, classification outputs that are
halfway confident between two classes are projected to vectors
that are halfway between the class handles.

From this linear projection, we can easily identify the learning of @ digit 1 on
epoch 14 and @ digit 7 on epoch 21.

This particular property is illustrated clearly in the Fashion-
MNIST example below. The model confuses sandals, sneakers
and ankle boots, as data points form a triangular shape in the
softmax layer.

This linear projection clearly shows model’s confusion among @ sandals,

@ sneakers, and @ ankle boots. Similarly, this projection shows the true three-
way confusion about @ pullovers, @ coats, and @ shirts. (The @ shirts are also
get confused with @ t-shirts/tops.) Both projections are found by direct
manipulations.

Examples falling between classes indicate that the model has
trouble distinguishing the two, such as sandals vs. sneakers, and
sneakers vs. ankle boot classes. Note, however, that this does
not happen as much for sandals vs. ankle boots: not many
examples fall between these two classes. Moreover, most data
points are projected close to the edge of the triangle. This tells
us that most confusions happen between two out of the three
classes, they are really two-way confusions. Within the same
dataset, we can also see pullovers, coats and shirts filling a
triangular plane. This is different from the sandal-sneaker-ankle-
boot case, as examples not only fall on the boundary of a
triangle, but also in its interior: a true three-way confusion.
Similarly, in the CIFAR-10 dataset we can see confusion between
dogs and cats, airplanes and ships. The mixing pattern in CIFAR-
10 is not as clear as in fashion-MNIST, because many more
examples are misclassified.

This linear projection clearly shows model’s confusion between @ cats and
@ dogs. Similarly, this projection shows the confusion about @ airplanes and
@ ships. Both projections are found by direct manipulations.

The Grand Tour

In the previous section, we took advantage of the fact that we
knew which classes to visualize. That meant it was easy to
design linear projections for the particular tasks at hand. But
what if we don’t know ahead of time which projection to choose
from, because we don't quite know what to look for? Principal
Component Analysis (PCA) is the quintessential linear
dimensionality reduction method, choosing to project the data so
as to preserve the most variance possible. However, the
distribution of data in softmax layers often has similar variance
along many axis directions, because each axis concentrates a
similar number of examples around the class vector. "0 As a
result, even though PCA projections are interpretable and
consistent through training epochs, the first two principal
components of softmax activations are not substantially better

than the third. So which of them should we choose? Instead of
PCA, we propose to visualize this data by smoothly animating
random projections, using a technique called the Grand Tour [1].

Starting with a random velocity, it smoothly rotates data points
around the origin in high dimensional space, and then projects it
down to 2D for display. Here are some examples of how Grand
Tour acts on some (low-dimensional) objects:

¢ On a square, the Grand Tour rotates it with a constant angular
velocity.

¢ On acube, the Grand Tour rotates it in 3D, and its 2D
projection let us see every facet of the cube.

¢ Ona 4D cube (a tesseract), the rotation happens in 4D and
the 2D view shows every possible projection.

Grand tours of a square, a cube and a tesseract

The Grand Tour of the Softmax Layer

We first look at the Grand Tour of the softmax layer. The softmax
layer is relatively easy to understand because its axes have
strong semantics. As we described earlier, the 2-th axis
corresponds to network’s confidence about predicting that the
given input belongs to the i-th class.

The Grand Tour of softmax layer in the last (99th) epoch, with MNIST, fashion-
MNIST or CIFAR-10 dataset.

The Grand Tour of the softmax layer lets us qualitatively assess
the performance of our model. In the particular case of this
article, since we used comparable architectures for three
datasets, this also allows us to gauge the relative difficulty of
classifying each dataset. We can see that data points are most
confidently classified for the MNIST dataset, where the digits are
close to one of the ten corners of the softmax space. For
Fashion-MNIST or CIFAR-10, the separation is not as clean, and
more points appear inside the volume.

The Grand Tour of Training Dynamics

Linear projection methods naturally give a formulation that is
independent of the input points, allowing us to keep the
projection fixed while the data changes. To recap our working
example, we trained each of the neural networks for 99 epochs
and recorded the entire history of neuron activations on a subset
of training and testing examples. We can use the Grand Tour,
then, to visualize the actual training process of these networks.

In the beginning when the neural networks are randomly
initialized, all examples are placed around the center of the
softmax space, with equal weights to each class. Through
training, examples move to class vectors in the softmax space.
The Grand Tour also lets us compare visualizations of the
training and testing data, giving us a qualitative assessment of
over-fitting. In the MNIST dataset, the trajectory of testing
images through training is consistent with the training set. Data
points went directly toward the corner of its true class and all
classes are stabilized after about 50 epochs. On the other hand,
in CIFAR-10 there is an inconsistency between the training and
testing sets. Images from the testing set keep oscillating while
most images from training converges to the corresponding class
corner. In epoch 99, we can clearly see a difference in
distribution between these two sets. This signals that the model
overfits the training set and thus does not generalize well to the
testing set.

With this view of CIFAR-10 , the color of points are more mixed in testing (right)
than training (left) set, showing an over-fitting in the training process. Compare
CIFAR-10 with MNIST or fashion-MNIST, where there is less difference between
training and testing sets.

The Grand Tour of Layer Dynamics

Given the presented techniques of the Grand Tour and direct
manipulations on the axes, we can in theory visualize and
manipulate any intermediate layer of a neural network by itself.
Nevertheless, this is not a very satisfying approach, for two
reasons:

¢ In the same way that we've kept the projection fixed as the
training data changed, we would like to "keep the projection
fixed", as the data moves through the layers in the neural
network. However, this is not straightforward. For example,
different lavers in a neural network have different dimensions.

How do we connect rotations of one layer to rotations of the
other?

¢ The class "axis handles"” in the softmax layer convenient, but
that’s only practical when the dimensionality of the layer is
relatively small. With hundreds of dimensions, for example,
there would be too many axis handles to naturally interact
with. In addition, hidden layers do not have as clear semantics
as the softmax layer, so manipulating them would not be as
intuitive.

To address the first problem, we will need to pay closer attention
to the way in which layers transform the data that they are given.
To see how a linear transformation can be visualized in a
particularly ineffective way, consider the following (very simple)
weights (represented by a matrix A) which take a 2-dimensional
hidden layer k and produce activations in another 2-dimensional
layer k + 1. The weights simply negate two activations in 2D:

A— —-1,0
0,—1
Imagine that we wish to visualize the behavior of network as the
data moves from layer to layer. One way to interpolate the source

xy and destination z; = A(zg) = —z of this action A is by a
simple linear interpolation

zp=(1—t) - xg+t-ax=(1-2t)

fort € [0, 1]. Effectively, this strategy reuses the linear
projection coefficients from one layer to the next. This is a
natural thought, since they have the same dimension. However,
notice the following: the transformation given by A is a simple
rotation of the data. Every linear transformation of the layer

k + 1 could be encoded simply as a linear transformation of the
layer k, if only that transformation operated on the negative
values of the entries. In addition, since the Grand Tour has a

rotation itself built-in, for every configuration that gives a certain
picture of the layer k, there exists a different configuration that
would yield the same picture for layer k£ + 1, by taking the action
of A into account. In effect, the naive interpolation fails the
principle of data-visual correspondence: a simple change in data
(negation in 2D/180 degree rotation) results in a drastic change
in visualization (all points cross the origin).

This observation points to a more general strategy: when
designing a visualization, we should be as explicit as possible
about which parts of the input (or process) we seek to capture in
our visualizations. We should seek to explicitly articulate what
are purely representational artifacts that we should discard, and
what are the real features a visualization we should distill from
the representation. Here, we claim that rotational factors in linear
transformations of neural networks are significantly less
important than other factors such as scalings and nonlinearities.
As we will show, the Grand Tour is particularly attractive in this
case because it is can be made to be invariant to rotations in
data. As a result, the rotational components in the linear
transformations of a neural network will be explicitly made
invisible.

Concretely, we achieve this by taking advantage of a central
theorem of linear algebra. The Singular Value Decomposition
(SVD) theorem shows that any linear transformation can be
decomposed into a sequence of very simple operations: a

rotation, a scaling, and another rotation [16]. Applying a matrix A
to a vector z is then equivalent to applying those simple
operations: zA = 2UX V7. But remember that the Grand Tour
works by rotating the dataset and then projecting it to 2D.
Combined, these two facts mean that as far as the Grand Tour is
concerned, visualizing a vector x is the same as visualizing zU,
and visualizing a vector zU XV is the same as visualizing U
. This means that any linear transformation seen by the Grand
Tour is equivalent to the transition between U and zUX - a
simple (coordinate-wise) scaling. This is explicitly saying that any
linear operation (whose matrix is represented in standard bases)
is a scaling operation with appropriately chosen orthonormal
bases on both sides. So the Grand Tour provides a natural,
elegant and computationally efficient way to align visualizations
of activations separated by fully-connected (linear) layers. !

(For the following portion, we reduce the number of data points
to 500 and epochs to 50, in order to reduce the amount of data
transmitted in a web-based demonstration.) With the linear
algebra structure at hand, now we are able to trace behaviors
and patterns from the softmax back to previous layers. In
fashion-MNIST, for example, we observe a separation of shoes
(sandals, sneakers and ankle boots as a group) from all other
classes in the softmax layer. Tracing it back to earlier layers, we
can see that this separation happened as early as layer 5:

With layers aligned, it is easy to see the early separation of shoes from this view.

The Grand Tour of Adversarial Dynamics

As a final application scenario, we show how the Grand Tour can
also elucidate the behavior of adversarial examples[4] as they
are processed by a neural network. For this illustration, we use
the MNIST dataset, and we adversarially add perturbations to 89
digit 8s to fool the network into thinking they are Os. Previously,
we either animated the training dynamics or the layer dynamics.
We fix a well-trained neural network, and visualize the training
process of adversarial examples, since they are often themselves
generated by an optimization process. Here, we used the Fast
Gradient Sign method. [18] Again, because the Grand Tour is a
linear method, the change in the positions of the adversarial
examples over time can be faithfully attributed to changes in how
the neural network perceives the images, rather than potential
artifacts of the visualization. Let us examine how adversarial
examples evolved to fool the network:

From this view of softmax, we can see how @) adversarial examples evolved from
@ 8s into @ Os. In the corresponding pre-softmax however, these adversarial
examples stop around the decision boundary of two classes. Show data as images
to see the actual images generated in each step, or dots colored by labels.

Through this adversarial training, the network eventually claims,
with high confidence, that the inputs given are all Os. If we stay in
the softmax layer and slide though the adversarial training steps
in the plot, we can see adversarial examples move from a high
score for class 8 to a high score for class 0. Although all
adversarial examples are classified as the target class (digit 0s)
eventually, some of them detoured somewhere close to the
centroid of the space (around the 25th epoch) and then moved
towards the target. Comparing the actual images of the two
groups, we see those that those "detouring” images tend to be
noisier.

More interesting, however, is what happens in the intermediate
layers. In pre-softmax, for example, we see that these fake Os
behave differently from the genuine Os: they live closer to the
decision boundary of two classes and form a plane by
themselves.

Discussion

Limitations of the Grand Tour

Early on, we compared several state-of-the-art dimensionality
reduction techniques with the Grand Tour, showing that non-
linear methods do not have as many desirable properties as the
Grand Tour for understanding the behavior of neural networks.
However, the state-of-the-art non-linear methods come with
their own strength. Whenever geometry is concerned, like the
case of understanding multi-way confusions in the softmax layer,
linear methods are more interpretable because they preserve
certain geometrical structures of data in the projection. When
topology is the main focus, such as when we want to cluster the
data or we need dimensionality reduction for downstream
models that are less sensitive to geometry, we might choose
non-linear methods such as UMAP or t-SNE for they have more
freedom in projecting the data, and will generally make better
use of the fewer dimensions available.

Ihe Power oT Animation and birect Manipuiation

When comparing linear projections with non-linear
dimensionality reductions, we used small multiples to contrast
training epochs and dimensionality reduction methods. The
Grand Tour, on the other hand, uses a single animated view.
When comparing small multiples and animations, there is no
general consensus on which one is better than the other in the
literature, aside. from specific settings such as dynamic graph
drawing [191, or concerns about incomparable contents [20]
between small multiples and animated plots. Regardless of these
concerns, in our scenarios, the use of animation comes naturally
from the direct manipulation and the existence of a continuum of
rotations for the Grand Tour to operate in.

Non-sequential Models

In our work we have used models that are purely “sequential” in
the sense that the layers can be put in numerical ordering, and
that the activations for the n + 1-th layer are a function
exclusively of the activations at the n-th layer. In recent DNN
architectures, however, it is common to have non-sequential
parts such as highway [21] branches or dedicated branches for
different tasks [22]. With our technique, one can visualize neuron
activations on each such branch, but additional research is
required to incorporate multiple branches directly.

Scaling to Larger Models

Modern architectures are also wide. Especially when
convolutional layers are concerned, one could run into issues
with scalability if we see such layers as a large sparse matrix
acting on flattened multi-channel images. For the sake of
simplicity, in this article we brute-forced the computation of the
alignment of such convolutional layers by writing out their explicit
matrix representation. However, the singular value
decomposition of multi-channel 2D convolutions can be
computed efficiently [171, which can be then be directly used for
alignment, as we described above.

+ Technical Details

Conclusion

As powerful as t-SNE and UMAP are, they often fail to offer the
correspondences we need, and such correspondences can
come, surprisingly, from relatively simple methods like the Grand
Tour. The Grand Tour method we presented is particularly useful
when direct manipulation from the user is available or desirable.
We believe that it might be possible to design methods that
highlight the best of both worlds, using non-linear dimensionality
reduction to create intermediate, relatively low-dimensional
representations of the activation layers, and using the Grand
Tour and direct manipulation to compute the final projection.

Acknowledgments

The utility code for WebGL under js/lib/webgl_utils/ are adapted from Angel's
computer graphics book supplementary here.

Discussion
and
Review

Review 1 - Anonymous

Review 2 - Anonymous
Review 3 - Anonymous

Footnotes

1. MNIST [10] contains grayscale images of 10 handwritten digits

0000006029000 2 000
rvYyN v s /202001 N 7
2229327222122 %22A
3333333933333 333
H# a9 Yyq ssdqd s N4y
5955853 S$S 585758554575
b6 bblbcbbbecedsdbtecodlb
T 7977711707920 12%777
¥ 7983 P 7 YPTTT LB
?7199999%949%4%344999

Image credit to https://en.wikipedia.org/wiki/File:MnistExamples.png

2. Fashion-MNIST 1] contains grayscale images of 10 types of fashion items:

Label Description Examples

0 T-Shir/Top 2
14 Y |
1 Trouser f 1 H
i H]
2 Pullover i) i
fiamemn
3 Dress [i 20
a
¥ i
4 cou [LY
[} am
5 Sandals etz
.9
6 Shirt Iy
7 Sneaker
8 Bag
9 Ankle boots

ZRPYY SV RN PIPPFIEPEIVY

Image credit to https://towardsdatascience.com/multi-label-classification-and-

class-activation-map-on-fashion-mnist-1454f09f5925

3. CIFAR-10[12] contains RGB images of 10 classes of objects
airplane
automobile
bird
cat
deer
dog
frog
horse
ship

truck

Image credit to https://www.cs.toronto.edu/~kriz/cifar.html

4. A convolution calculates weighted sums of regions in the input. In neural
networks, the learnable weights in convolutional layers are referred to as the

kernel. For example

Stridéd

Kernel Feature Map

Image credit to https://towardsdatascience.com/gentle-dive-into-math-

behind-convolutional-neural-networks-79a07dd44cf9.

See also Convolution arithmetic.

5. A fully-connected layer computes output neurons as weighted sum of input
neurons. In matrix form, it is a matrix that linearly transforms the input vector

into the output vector.

6. First introduced by Nair and Hinton 131, ReLU calculates f(z) = max(0, z) for

each entry in a vector input. Graphically, it is a hinge at the origin:

ReLU activation function

output
°

-6 -4 -2 2 4 6

0
Input

Image credit to https://pytorch.org/docs/stable/nn.html#relu

7. Softmax function calculates S(yi) = ﬁ for each entry (y;) in a vector
J=1"

input (y). For example,
Input pixels, x Feedforward output, y; Softmax output, S(y;)

cat dog horse cat dog horse

i 5 4 2 0.71 | 0.26 | 0.04
Forward Softmax

propagation function
—| 4 2 8 |——| 0.02|0.00 | 0.98

- 4 4 1 0.49 | 0.49 | 0.02

Shape: (3, 32, 32) Shape: (3,) Shape: (3,)
Image credit to https://livmiranda921.github.io/notebook/2017/08/13/softmax-

and-the-negative-log-likelihood

8. Sigmoid calculates S(z) = Hf;l for each entry () in a vector input.

Graphically, it is an S-shaped curve.

0.5

L | | |)
-6 -4 -2 0 2 4 6

Image credit to https://en.wikipedia.org/wiki/Sigmoid_function

9. Max-pooling calculates maximum of a region in the input. For example

Max Pooling

Example

Output

Image credit to https://towardsdatascience.com/gentle-dive-into-math-
behind-convolutional-neural-networks-79a07dd44cf9

10. We are assuming a class-balanced training dataset. Nevertheless, if the
training dataset is not balanced, PCA will prefer dimensions with more

examples, which might not be help much either.

N

N

w

o

(2]

~N

oo

©

. Convolutional layers are also linear. One can instantly see that by forming the

linear transformations between flattened feature maps, or by taking the
circulant structure of convolutional layers directly into account 171 []

. Rows have to be reordered such that the " row is considered first in the

Gram-Schmidt procedure. [.]

. Recall that the convention is that vectors are in row form and linear

transformations are matrices that are multiplied on the right. So e; is a row
vector whose i-th entry is 1 (and Os elsewhere) and €; := e; - GT is the i-th
row of GT [-]

. However, for any A, the norm of the difference is bounded above by HAH, as

the following figure proves.

]

AO =BO
= :ACO < 90°

= :BAC < 90°, :ACB > 90°,
= By sine law in AABC, AB > BC

[&]

. Simple rotations are rotations with only one plane of rotation. []

. A max-pooling layer is piece-wise linear []

References

. The grand tour: a tool for viewing multidimensional data [link]

Asimov, D., 1985. SIAM journal on scientific and statistical computing, Vol 6(1),
pp. 128--143. SIAM.

. Visualizing data using t-SNE [PDF]

Maaten, L.v.d. and Hinton, G., 2008. Journal of machine learning research, Vol
9(Nov), pp. 2579--2605.

. Umap: Uniform manifold approximation and projection for dimension

reduction [PDF]
Mclnnes, L. and Healy, J., 2018. arXiv preprint arXiv:1802.03426.

. Intriguing properties of neural networks

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and
Fergus, R., 2013. arXiv preprint arXiv:1312.6199.

. ImageNet Large Scale Visual Recognition Challenge

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C. and Fei-Fei, L., 2015.
International Journal of Computer Vision (IJCV), Vol 115(3), pp. 211-252. DOI:
10.1007/s11263-015-0816-y

. The mythos of model interpretability

Lipton, Z.C., 2016. arXiv preprint arXiv:1606.03490.

. Visualizing dataflow graphs of deep learning models in tensorflow

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mane, D., Fritz, D.,
Krishnan, D., Viegas, F.B. and Wattenberg, M., 2018. IEEE transactions on
visualization and computer graphics, Vol 24(1), pp. 1--12. IEEE.

. An algebraic process for visualization design

Kindlmann, G. and Scheidegger, C., 2014. IEEE transactions on visualization
and computer graphics, Vol 20(12), pp. 2181--2190. IEEE.

. Feature visualization [link]

Olah, C., Mordvintsev, A. and Schubert, L., 2017. Distill, Vol 2(11), pp. e7.

. MNIST handwritten digit database [link]

LeCun, Y. and Cortes, C., 2010.

. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning

Algorithms [link]

20.

21.

22.

Xiao, H., Rasul, K. and Vollgraf, R., 2017.

. Learning multiple layers of features from tiny images [HTML]

Krizhevsky, A., Hinton, G. and others,, 2009.

. Rectified linear units improve restricted boltzmann machines [PDF]

Nair, V. and Hinton, G.E., 2010. Proceedings of the 27th international
conference on machine learning (ICML-10), pp. 807--814.

. Visualizing time-dependent data using dynamic t-SNE [PDF]

Rauber, P.E., Falcao, A.X. and Telea, A.C., 2016. Proc. EuroVis Short Papers, Vol
2(5).

. How to use t-sne effectively [link]

Wattenberg, M., Viegas, F. and Johnson, I., 2016. Distill, Vol 1(10), pp. e2.

. We Recommend a Singular Value Decomposition [link]

Austin, D., 2009.

. The singular values of convolutional layers [PDF]

Sedghi, H., Gupta, V. and Long, P.M., 2018. arXiv preprint arXiv:1805.10408.

. Explaining and harnessing adversarial examples

Goodfellow, I.J., Shlens, J. and Szegedy, C., 2014. arXiv preprint
arXiv:1412.6572.

. Animation, small multiples, and the effect of mental map preservation in

dynamic graphs
Archambault, D., Purchase, H. and Pinaud, B., 2010. IEEE Transactions on
Visualization and Computer Graphics, Vol 17(4), pp. 539--552. |IEEE.

Animation: can it facilitate?
Tversky, B., Morrison, J.B. and Betrancourt, M., 2002. International journal of
human-computer studies, Vol 57(4), pp. 247--262. Elsevier.

Highway networks [PDF]
Srivastava, R.K., Greff, K. and Schmidhuber, J., 2015. arXiv preprint
arXiv:1505.00387.

Going deeper with convolutions [PDF]

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A., 2015. Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1--9.

Updates
and
Corrections

If you see mistakes or want to suggest changes, please create an issue on
GitHub.

Reuse

Diagrams and text are licensed under Creative Commons Attribution CC-BY
4.0 with the source available on GitHub, unless noted otherwise. The figures

that have been reused from other sources don't fall under this license and can
be recognized by a note in their caption: “Figure from ...".

Citation
For attribution in academic contexts, please cite this work as

Li, et al., "Visualizing Neural Networks with the Grand Tour",
Distill, 2020.

BibTeX citation

@article{li2020visualizing,

author = {Li, Mingwei and Zhao, Zhenge and Scheidegger,
Carlos},

title = {Visualizing Neural Networks with the Grand Tour},

journal = {Distill},

year = {2020},

note = {https://distill.pub/2020/grand-tour},

doi = {10.23915/distill.00025}

Distill is dedicated to clear explanations of machine learning

About Submit Prize Archive RSS GitHub Twitter ISSN 2476-
0757

