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a b s t r a c t

Scientific visualization tools are currently not optimized to create cinematic, production-quality
representations of numerical data for the purpose of science communication. In our pipeline Estra,
we outline a step-by-step process from a raw simulation into a finished render as a way to teach
non-experts in the field of visualization how to achieve production-quality outputs on their own. We
demonstrate feasibility of using the visual effects software Houdini for cinematic astrophysical data
visualization, informed by machine learning clustering algorithms. To demonstrate the capabilities of
this pipeline, we used a post-impact, thermally-equilibrated Moon-forming synestia from Lock et al.,
(2018). Our approach aims to identify ‘‘physically interpretable’’ clusters, where clusters identified
in an appropriate phase space (e.g. here we use a temperature–entropy phase–space) correspond to
physically meaningful structures within the simulation data. Clustering results can then be used to
highlight these structures by informing the color-mapping process in a simplified Houdini software
shading network, where dissimilar phase–space clusters are mapped to different color values for easier
visual identification. Cluster information can also be used in 3D position space, via Houdini’s Scene
View, to aid in physical cluster finding, simulation prototyping, and data exploration. Our clustering-
based renders are compared to those created by the Advanced Visualization Lab (AVL) team for the
full dome show ‘‘Imagine the Moon’’ as proof of concept. With Estra, scientists have a tool to create
their own production-quality, data-driven visualizations.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Data visualization, the graphical display of either spatial or
emporal data, is a wide field used for data analysis and commu-
ication (Borkiewicz et al., 2019a,b; Punzo et al., 2015; Hassan
nd Fluke, 2011; Barnes and Fluke, 2008; Price, 2007, & refer-
nces therein). The style and content of data visualization may
ary (Borkiewicz et al., 2019a; Goodman, 2012), but there are
enerally three distinct paradigms:

1. ‘‘Information visualization’’—typically a two-dimensional
representation of relational/non-spatial data via networks,
graphs, and charts;
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2. ‘‘Traditional scientific visualization’’—imagery created for
three-dimensional spatial data to be analyzed predomi-
nantly by scientists for publications in peer-reviewed jour-
nals;

3. ‘‘Cinematic scientific visualization’’—production quality,
data-driven imagery with aesthetic appeal designed for
mass audiences and large-format screens.

In cinematic scientific visualization, Hollywood techniques of
composition, rendering quality, and camera design are chosen to
bring about visually attractive presentations of the science. There
is supporting evidence such attractive presentations are more ed-
ucational than unattractive ones (Cawthon and Moere, 2007), and
spur interest in scientific topics, even those widely-considered
monotonous or difficult-to-learn (Arroio, 2010; Dubeck et al.,
1994). Because of cinematic scientific visualization’s power to
simultaneously entertain, educate, and provide new insight about
the science in question, it is important that steps be taken to
increase ubiquity and ease of use by non-visualization designers,
like domain scientists.

https://doi.org/10.1016/j.ascom.2020.100424
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2020.100424&domain=pdf
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https://doi.org/10.1016/j.ascom.2020.100424
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By equipping scientists with the means and tools to cre-
ate cinematic-driven visualizations of their own data, scientists
can create new, insightful, broad-reaching imagery for use in
all forms of science communication: from peer-reviewed publi-
cations, conferences, presentations, and simulation prototyping
to public outreach, news media, interviews, and social media
(Borkiewicz et al., 2019a; Shih et al., 2019). In an age of mis-
information (Borkiewicz et al., 2017), it has never been more
important for data-driven visualizations to spearhead scientific
communications directly from scientists themselves, even more
so than popular science communicators. In fact, it has been shown
that user-generated science content via scientists are more pop-
ular on Youtube than those created by professional scientific
communicators (Welbourne and Grant, 2016).

Currently, the niche field of cinematic scientific visualization
is dominated by visualization and visual effects designers who,
in communication with scientists, create accurate representations
of the data. Scientists, particularly astrophysicists for this work,
are largely focused on traditional scientific visualization, designed
to be shared and understood by peers exclusively. According
to Hassan and Fluke (2011), the astronomical community has put
in ‘‘limited effort’’ to develop general purpose, 3D-visualization
tools equipped to handle astronomical data. However, recently
there has been some development in creating tools for such cine-
matic visualization. For example: tools implementing astronomi-
cal Adaptive Mesh Refinement (AMR) (Berger and Oliger, 1984;
Kähler et al., 2002) data into the visual effects software Hou-
dini via ytini2 (Naiman et al., 2017; Borkiewicz et al., 2019b);
generating physically-accurate artistic models of astronomical
objects with 3D modeling software Blender (Kent, 2013, 2015);
combining the analysis tools of yt (Turk et al., 2011) with Blender
via AstroBlend (Naiman, 2016); and applying 3D interactive
visualization software to astronomical FITS files via SlicerAs-
tro (Punzo et al., 2017). However, tools for scientists to de-
velop cinematic visualizations remain limited and their use is
not widespread. With the beginning of the ‘‘Petascale Astronomy
Era’’ (Hassan and Fluke, 2011) of next-generation sky surveys and
supercomputing facilities, such developments have never been
more crucial.

The computational cost of cinematic astrophysical data visual-
ization is decreasing with improving technologies and techniques.
As such, there will be a growing interdisciplinary environment for
collaborations between scientists and digital artists (Cox, 2008).
Visual effects and modeling software like Houdini, Blender, and
Unity can read-in scientific data with plug-ins and packages,
and are waiting to be more widely-used by the astronomical
community. Moreover, some current software is able to pro-
vide near-cinematic, real-time rendering by exploiting GPUs, and
could be utilized to replicate the results we show in this work.
For example, the CUDA implementation of Splotch can visualize
large volumes of astronomical, particle-based computer simu-
lations and observations by leveraging GPUs in modern HPC
infrastructures (Rivi et al., 2014); Unreal Engine 4 has integrated
ray tracing and novel denoising algorithms to achieve cinematic
quality real-time rendering (Liu et al., 2019); and GPU-accelerated
plug-ins like OctaneRender in Unity3 enables cinematic-quality
path-traced rendering. This work will help scientists become their
own storytellers and develop simple, yet effective cinematic as-
trophysical data visualizations using machine learning clustering
algorithms and the visual effects software Houdini.

Machine learning and deep learning techniques and ideas have
become prominent in astronomy because of their innate capa-
bility to process and analyze big data (Ball and Brunner, 2010;

2 http://ytini.com.
3 https://unity.com/products/otoy-octanerender.
 o
Pesenson et al., 2010; Burke et al., 2019; Baron, 2019, & references
therein). With the substantial amount of data generated from
large current and future astronomical surveys and simulations, it
is imperative that the field of cinematic astrophysical visualiza-
tion not be left behind, and take advantage of the cutting edge
software and hardware available.

The application of machine learning in visualization is a rela-
tively new and underdeveloped field (Ma, 2007). As we show in
this work, one application of machine learning that is well suited
for visualization is cluster finding. Machine learning algorithms
can be used to discover interesting features and classify clusters,
and in scientific studies it is up to the researcher to determine
the context. Likewise, a visualization artist has a narrative or
educational insight they wish to convey to an audience, and this
decision informs what features the visualization will highlight.

Often in visualization, only a small subset of all the data
attributes (that is, the span of the n-dimensional dataset) are
chosen for the final render due to computational costs, aes-
thetic quality, and other subjective reasoning such as human
perception. The visualization artist will spend weeks implement-
ing a ‘‘guess and check’’ method to see what ‘‘looks best’’ when
it comes to lighting and coloring (shading) the simulation and
adjusting which variables are mapped to luminance and opac-
ity, etc. However, this can lead to key features or structures
being overlooked or not emphasized with the appropriate im-
portance. Clustering methods can inform/automate visualization
decisions/processes, ensuring that the attributes chosen to be
highlighted best represent the dataset. Automatically-generated
colormaps are created based on the clustering results, and these
features are highlighted in the render. Thus, physical structures
within the dataset are emphasized. Additionally, clusters can
identify small features/substructures that may be easily passed
over otherwise. It is important that the clusters identified by the
clustering algorithms are ‘‘physically interpretable’’ (Milosavlje-
vic et al., 2018), in that each cluster in some 2D phase–space
corresponds to a physical structure in the 3D (spatial) dataset.
This is useful for scientists to better understand relevant physical
processes and enables them to investigate their data in a new
way.

Here we outline a new pipeline for cinematic visualization of
scientific data, Estra, that takes advantage of modern clustering
algorithms and applies it to an example simulation of a Moon-
forming giant impact (Lock et al., 2018). Estra is advantageous
to both visualization designers and domain scientists. It is a good
starting point for a visualization designer because it reduces time
spent on manual data exploration and previsualization. Moreover,
it enables domain scientists to explore their data in new ways,
and easily create high-fidelity scientific visualizations.

Section 2 describes the post-impact synestia from Lock et al.
(2018) used as the example dataset. Section 3 briefly discusses
the Estra Python workflow, with a full step-by-step process
outlined in the accompanying Python notebooks, and gives a the-
oretical overview of the clustering algorithm used in this work.
Section 4 outlines the procedure, from clustering the data and
using its results, and describes simple assumptions that we used
to build and inform a shader4 network. Section 5 displays various
final renders, and demonstrates the quality and validity of the
visualizations. Lastly, we conclude in Section 6. The appendices
include a short mathematical treatment of other popular clus-
tering algorithms, as well as additional renders using the Estra
shader with a perceptually-uniform emissive colormap.

Our code is publicly available at https://github.com/patrickale
o/estra.

4 A program that determines how 3D surface properties (lighting, color, etc.)
f objects are rendered for each pixel.
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2. The Moon-forming terrestrial synestia

As an example dataset to demonstrate our pipeline, we use
the output of a smoothed-particle hydrodynamics (SPH) (Gingold
and Monaghan, 1977; Price, 2007) simulation of a Moon-forming
giant impact from Lock et al. (2018). SPH is a Lagrangian fluid dy-
namics method where the fluid is divided into particles with the
dynamics of each particle governed by interactions with its near-
est neighbors. The output is in the form of the properties (spatial
position, velocity, thermodynamic properties, gravitational po-
tential etc.) for each particle. Before pre-processing, there are
100,989 particles in our example simulation.

Giant impacts are collisions between planet-sized bodies which
are common in the formation of our solar system and exosys-
tems (Raymond et al., 2018), and it is thought that the last
impact the Earth experienced ejected sufficient material into
orbit to form our Moon (Cameron and Ward, 1976; Hartmann
and Davis, 1975). The Moon-forming giant impact was a highly
energetic event and left the post-impact body rotating rapidly
and with a silicate mantle that was substantially supercritical or
vaporized (Lock et al., 2018; Lock and Stewart, 2017; Nakajima
and Stevenson, 2015). Lock and Stewart (2017) recently demon-
strated that a subset of impacts are sufficiently energetic, and
have high enough post-impact angular momentum to produce a
previously unrecognized type of planetary structure: a synestia.
Synestias could provide a new environment for the formation of
the Moon (Lock et al., 2018) and are a topic of ongoing research.

For this work we considered the final time step of an impact
that produced a Moon-forming synestia from Lock et al. (2018).
In this example, the synestia was formed by a 0.1 MEarth body
striking a 0.99 MEarth body spinning with a 2.3 hr period (an
angular momentum of three times the present-day Earth–Moon
angular momentum) at 15 km s−1 and an impact parameter
of 0.4. The simulation was run for 48 h of simulation time,
when the structure was nearly axisymmetric and had reached
a quasi-hydrostatic equilibrium. The output was post-processed
to simulate thermal equilibration after the impact, driven by
processes that are not captured in the code (see supporting infor-
mation of Lock et al. (2018) for more details). The outer regions
of the synestia were thermally equilibrated and a portion of the
outer regions of the body were prescribed to be isentropic. Any
condensed material was removed from the simulation and the
remaining mass of multiphase particles was forced to lie on the
vapor side of the liquid–vapor phase boundary.

The SPH simulation we use has previously been visualized
by the Advanced Visualization Lab (AVL) at the National Center
for Supercomputing Applications (NCSA) to produce part of an
animation for the dome show ‘‘Imagine the Moon’’.5 Using the
same visual effects software Houdini to visualize the dataset, this
work directly compares a machine learning clustering-informed
cinematic visualization to a custom AVL cinematic visualization.

The synestia dataset in .csv format is available on the Estra
Github page,6 for easy replication of our results.

3. Estra and clustering algorithms

In this section we briefly discuss the Estra Python workflow,
with a full step-by-step process outlined in the accompanying
Python notebooks, as well as introduce Gaussian Mixture Model
(GMM) theory.

5 https://www.adlerplanetarium.org/event/imagine-the-moon/; an excerpt
video can be viewed here: https://www.youtube.com/watch?v=7e_6oyROHCU.
6 https://github.com/patrickaleo/estra.
3.1. Outline of Estra integration with visual effects software Hou-
dini

Once the simulation data is fully loaded into Houdini,7 we
can extract all attribute (parameter) values for each particle in
the simulation output as a .csv file using a simple custom script
in a Python Script8 object node. Alternatively, one can extract
ttribute values from the data file directly. This step is necessary
ecause the clustering algorithms that use the attribute data
annot be performed in Houdini itself. We read in the .csv file
nto a Jupyter notebook and performed the clustering algorithms
tilizing the sklearn Python package, and transferred our results
ack into Houdini to inform some visualization decisions, such as
utomating a clustering-based color temperature ramp in the ma-
erial shader. This process is implemented in ‘‘Estra.ipynb’’, and is
lso detailed in the forthcoming sections. See Naiman et al. (2017)

for a simple breakdown of the Houdini graphics user interface
(GUI) and a typical workflow session in an astrophysical context,
as well as more general background and usage of Houdini.

Houdini accepts data formats which includes, but is not lim-
ited to, .geo, .bgeo, .json, .pdb, .obj, and .vdb. Once the simulation
dataset is imported from a local directory and into Houdini via
a File node in the Network View panel (as referenced via its
path-to-file in the ‘‘Geometry File’’ parameter), one can examine
all the attribute data – the different parameters included in the
simulation proper such as temperature, density, position (x, y, z),
etc. – via the ‘‘Geometry Spreadsheet’’ tab. This attribute data will
later be used in the clustering algorithms.

3.2. Clustering algorithms

Because this work is crucially dependent on choosing the
appropriate clustering algorithm, the Gaussian Mixture Model
(GMM)9 used in this work is explained thoroughly below. Other
common clustering algorithms are explained in the Appendix.

A popular and powerful unsupervised learning technique to
cluster data is in the form of mixture models—probabilistic mod-
els for estimating in which subpopulation within an overall pop-
ulation a datum resides. In GMMs, subpopulations are construed
to be Gaussian distributions with unknown parameters, such that
all data (the ‘‘population’’) is thought to be generated from a
finite mixture of these smaller distributions. Thus, for any one
particular data point, there is an inherent probability to which
subpopulation, or cluster, it belongs. In other words, a GMM
is a parametric probability density function (PDF) for which its
components are a sum of weighted Gaussian densities (Reynolds,
2009).

For the algorithm to generate the requisite number of Gaus-
sian mixtures, the user must first assign the number of clusters
M , meaning that the number of clusters are known a priori or
assumed to be known. For GMM clusters to have an ascribed
physical meaning, it has to be a reasonable assumption that
the dataset can be generated from a superposition of Gaussian
distributions.

The GMM mathematical formulation is described below, fol-
lowing the notation of Reynolds (2009). The equation describing
the probability of each point (in our case, a particle) being gen-
erated by each Gaussian component of the population p(x|λ) can
be written as

p(x|λ) =

M∑
i=1

wig(x|µi, Σi), (1)

7 www.sidefx.com.
8 https://www.sidefx.com/docs/houdini/nodes/obj/pythonscript.html.
9 https://scikit-learn.org/stable/modules/mixture.html.

https://www.adlerplanetarium.org/event/imagine-the-moon/
https://www.youtube.com/watch?v=7e_6oyROHCU
https://github.com/patrickaleo/estra
http://www.sidefx.com
https://www.sidefx.com/docs/houdini/nodes/obj/pythonscript.html
https://scikit-learn.org/stable/modules/mixture.html
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where x is some D-dimensional data vector particular to the
dataset, λ is the collection of variables parameterizing the model

λ = (wi, µi, Σi), i = 1...M, (2)

where wi=1...M are the individual weights of M Gaussian compo-
nents (constrained to sum to 1), and g(x|µi, Σi) for i = 1. . .M
are the various Gaussian component densities. These densities are
D-variate Gaussians formulated via

g(x|µi, Σi) =
1

(2π )D/2|Σi|
1/2 exp

(
−

1
2
(x − µi)TΣ−1

i (x − µi)
)

,

(3)

where µi is the mean vector and Σ is the covariance matrix. The
covariance matrices can be of several types: ‘full’, ‘tied’, ‘diagonal’,
and ‘spherical’. In brief, ‘full’ means full rank covariance, where
each component has its own general covariance matrix; ‘tied’
forces all components to share the same covariance matrix; ‘diag’
allows for each component to contain their own diagonal covari-
ance matrix; and ‘spherical’ represents the case where there is a
single variance for each component. A ‘full’ rank covariance was
used for this work.

With the type of covariance selected, GMMs will then estimate
the various parameters (the mixture weights, means, and covari-
ances, all assumed within λ) using the Expectation–Maximization
(EM) algorithm. EM is an iterative algorithm specifically designed
to always converge to a local optimum, where parameter values
of unobserved latent variables (in this case, the Gaussian com-
ponents) are estimated by maximizing the likelihood (Dempster
et al., 1977). As the name suggests, there is an expectation and a
maximization step. After random initialization of the parameters
describing the components, the expectation step establishes a
function representing the log-likelihood of the data based on
those parameters, and by proxy, the latent distribution. In the
case of GMM, a probability will be computed for each point
being generated by each Gaussian component of the population,
p(x|λ). The intermediate goal of EM is to find some new model,
λ∗, for which p(x|λ∗) ≥ p(x|λ). To achieve this, the maximiza-
tion step will subsequently tweak the current estimate of the
parameters to maximize the log-likelihood established from the
expectation step. These same parameters will be used to form the
new distribution of the unobserved latent variables (the Gaussian
components) in preparation for the next E step. This process
continues for a user-specified number of iterations (200 for this
work) until some best guess solution is made. Each of the final
Gaussian components whose parameters ultimately maximize
the log-likelihood, are then defined as the clusters of the dataset.

GMM is best used on flat geometries10 (obeying Euclidean
geometry when measuring distances), and will not inherently
bias the cluster sizes to favor particular structures over others.
However, it is important to ensure that each mixture has a suf-
ficient number of datapoints (in tandem with choosing a reason-
able number of components); otherwise, the covariance matrices
become increasingly difficult to estimate, causing spurious esti-
mates of infinite log-likelihoods. A metric to help determine the
optimal number of components to describe the data is the Akaike
information criterion (AIC) or the Bayesian information criterion
(BIC). The particular number of components that produces the
lowest AIC or BIC score is potentially the best option to use.

In this work, we chose a 5-cluster GMM with ‘full’ covariance
type, initialized by a random seed.

10 An overview of clustering algorithms and general usecases can be found at:
ttps://scikit-learn.org/stable/modules/clustering.html
4. Methods

We now outline the procedure for pre-processing the simu-
lation data, evaluating clustering results, and building a shader
within Houdini informed by clustering results.

4.1. Pre-processing

Cinematic visualization can be computationally expensive.
Here we impose some thresholds on the simulation data to save
computational costs without devaluing the visualization. In this
example, the thresholds were chosen based on a priori knowledge
of simplifying the data in the context of its visualization. This
pre-processing is identical to that done by the AVL team in their
‘‘Imagine the Moon’’ dome show visualization, to allow for a side-
by-side comparison. Their pre-processing criteria was, in part,
motivated by the fact that a large fraction of the simulation vol-
ume had slowly-varying material on the outskirts, whose detailed
behavior was not critical to understanding the evolution of the
synestia’s central regions. Thus, processing widely-spaced SPH
sample points would have dominated the computation needed
for rendering while adding little to the quality of the visualization.

In this work, we threshold two attributes from the simula-
tion: smoothing length (a parameter used to control interactions
between particles in SPH (see e.g. Springel et al. (2001)), and
density. At very high smoothing length values (≳ 100), the sphere
sprites11 of the particles become too large, and subsequently
dominate the visualization. However, such particles mostly reside
on the outer fringes, and do not constitute the key components of
interest. By thresholding to only have particles with smoothLen <

0, we saved on computational costs without compromising the
isualization.
We also imposed an upper-limit density cutoff of < 3.4 g/cm3;

ecause the densest particles are mostly within the metallic core
f the post-impact body and so add no visual difference to the
inal render. Only particles that met the aforementioned smooth-
ng length and density thresholds were used in this work, totaling
o 35,987 from the original 100,989.

The pre-processed dataset when loaded into Houdini appears
s an agglomeration of particles, as shown in Fig. 1.

.2. Importing clustering results into Houdini

We tested several clustering algorithms in an attempt to
ind ‘‘physically-interpretable’’ clusters in the pre-processed data;
hat is, clusters that correspond to significant physical structures
ithin the post-impact body, and not arbitrary, mathematical
uriosities. This is important because non-significant or non-real
tructures emphasized in a final visualization can lead to false
onclusions when interpreting the data.
We scaled our attribute values to be of the same order. This

s necessary because some machine learning algorithms can be
iased towards larger or smaller quantities, as some inherently
ssume that all attributes are centered about zero and have the
ame order variance. Thus, if a particular attribute has a vari-
nce several orders of magnitude larger than another, it might
ominate the objective function and inhibit the estimator. Hav-
ng performed many clustering tests in different phase–space
ermutations, we chose a temperature-specific entropy phase
pace because clusters were easily differentiated and could be
hysically interpreted. Note that temperature and entropy are
onjugate thermodynamic variables and so provide a complete

11 Sprites, or 2D images set in a larger 3D scene, can be attached to particles
such that the sprite image always faces the camera (O’Rourke, 1998).

https://scikit-learn.org/stable/modules/clustering.html
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Fig. 1. The Scene View of the synestia, when data is first loaded into the Houdini
oftware. Each individual gray particle is one of the 35,987 SPH particles after
re-processing (Section 4.1).

hermodynamic description making them well suited for de-
cribing the thermodynamic phase space. In the units of our
xample simulation, temperature (O(103) K) is four orders of
agnitude smaller than the given specific entropy values (O(107)

erg g−1 K−1). We scaled these values so that both variables are
of the same order using the StandardScaler package from
he sklearn.preprocessing module. Now any of the various
lustering algorithms could be used.
Of all the clustering tests we performed, the 5-cluster GMM

odel was the ‘‘best’’ choice, in that each cluster was found to
ave a corresponding physically interpretable meaning. More-
ver, a 5-cluster model is simple and sufficient to describe the
ata. What each cluster represents will be discussed in Section 5.
he 5-cluster GMM result is shown in Fig. 2.
Examples of poor clustering algorithm choices are shown in

igs. 3 and 4. Fig. 3 shows a 5-cluster Kmeans algorithm in
he same temperature–entropy phase space. In this case, data
oints are split seemingly arbitrarily. For instance, a single clus-
er of known significance – the outer material prescribed to be
sotropic – is split into three clusters. This is likely due to a mis-

pplication of the algorithm—Kmeans is designed to work for a
flat geometry (flat manifold) usecase, whereas the data plotted
in this temperature–entropy phase space is non-flat.

A second example of a poor choice for clustering was clus-
tering in a density–entropy phase space. As seen in Fig. 4, the
istribution of SPH particles in this phase–space globally man-
fest as a single ribbon-like stream. It is difficult to determine
here one cluster (and hence an associated physical structure)
nds and another begins with density smoothly decreasing with
ressure. Further, this clustering attempt assigns one cluster (red)
o what we know to be two different structures: an outer vapor
ome region (vertical band) and an isentropic pure-vapor region
horizontal band).

Once a final clustering result was chosen (Fig. 2), the clustering
D results were imported into Houdini to inform the visualization.
o do so, we wrote out the predict method values to a text
ile, and imported these values into Houdini via a ‘‘Table Import’’
ode. Once these cluster ID values are assigned to an attribute
alue of the geometry using an ‘‘Attribute Create’’ node, it be-
omes part of the dataset—all particles in the data are assigned a
ustom attribute value named ‘‘map_id_to_clus’’, with an integer
alue ranging from 1–5 representing their cluster ID.
Next, we created an ‘‘Attribute VOP’’ node to read the newly

reated attribute ‘‘map_id_to_clus’’ as input. With an RGB ramp,
e mapped an ‘‘map_id_to_clus’’ value of 1 (cluster ID of 1) to
old (R,G, B) = (0.9, 0.584, 0), the second point to magenta (0.9,
, 0.911), etc. With this setup, we can display the particles shaded
y their cluster assignment in the Scene View, as seen in Fig. 5.
his view shows the 3D spatial distribution of the clusters which
ad been identified in 2D phase space. This step is imperative
o determine if the particular clustering algorithm used correctly
dentifies clusters representative of physical structures within
he data. Moreover, the Scene View in Houdini is interactive,
uch that the user can easily change the viewing angle (see
igs. 5, 6), zoom in/out, and select certain groups of particles to
ully understand the data for all time steps (if time-evolving), etc.
utliers in the cluster assignment can also be identified, and their
otential impact, if any, on the final render can be determined.
or example, three outliers are evident in Fig. 6. It appears that

these outliers consist of mixed phase material, and lie well below
the liquid–vapor phase boundary in comparison to the rest of the
simulation (see Fig. 13). However, the minimal outliers have no
visible impact on the final render, so we do not consider them
further. It is important to note that we cannot know the ground
truth cluster assignments, so the usage of ‘‘outlier’’ simply refers
to a different cluster assignment from the overwhelming majority
of those around the particle in 3D position space.

Finally, with the clustering results imported into Houdini, we

can build a shader and perform the visualization.
Fig. 2. The results of the 5-cluster GMM algorithm of the 35,987 SPH particles remaining after pre-processing, for a maximum of 200 iterations in a scaled temperature-
pecific entropy phase space. The covariance type was set to ‘full’, with weights initialized by ‘kmeans’ with a random seeding. Each cluster is represented by a
ifferent color with the centroids marked by black circles.
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Fig. 3. The results of a 5-cluster Kmeans algorithm, for a maximum of 300 iterations in a scaled temperature–entropy phase space. The weights were initialized by
k-means++’ in sklearn.cluster.KMeans, with 50 runs set by different centroid seeding. Each cluster is represented by a different color with cluster centroids
marked by black circles. After pre-processing, there are 35,987 SPH particles to be clustered, ran with the same random seed as in the GMM clustering algorithm,
the results of which are shown in Fig. 2. This is an example of a poor clustering algorithm choice in this phase–space because it arbitrarily splits likely physical
clusters (such as a singular isentropic structure) into multiple disparate clusters. Further, Kmeans is designed to be used on flat geometry, but in this phase–space
the data is non-flat.
Fig. 4. As Fig. 3, but with the Kmeans clustering performed in a scaled density–entropy phase–space instead of a scaled temperature–entropy phase–space. This
is also an example of a poor phase–space choice because most of the data is in one streamlined band, and it is difficult to determine where one cluster begins
and another ends. Also, one cluster (red) incorrectly groups together two known significant structures: a vapor dome region (red vertical band), and an isentropic
pure-vapor region (red horizontal band).
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4.3. Algorithmically generating colormaps from clustering results

An advantage of clustering the data is that it allows for the
utomatic creation of transfer functions or color ramps which
re informed by physical structures in the data. Houdini uses
he transfer function (a set of (R,G, B, α) values for a range of
data values for a variable, which here is temperature) in shading
the final image.12 In building a color ramp, the shader requires
‘position’ markers called key points with associated (R,G, B) val-
ues. For instance, although a file with color map data may have
1024 rows of (R,G, B, α) values for an emissive blackbody color
scheme, Houdini requires only a handful of position markers
containing (R,G, B) values, and uses a user-defined interpolation
function (e.g. Linear, B-Spline, Bezier, Catmull) to create the ramp.
Then, once a range of temperatures are defined for that color
ramp, each temperature in that range will be assigned a unique
(R,G, B) value in the shader.

12 While the standard definition of a ‘‘transfer function’’ deals with (R,G, B, α),
oudini splits this into a ‘‘color ramp’’ of (R,G, B) values and a ‘‘spline ramp’’
or α.
For this work, each position marker with its unique (R,G, B)
alue is informed by the clustering results. First, the entire tem-
erature range is rescaled back to physical units (Kelvin) using
he inverse_transform method in sklearn. The range of
emperatures is then normalized to be between 0–1 (as po-
ition markers in Houdini have values [0,1]). The minimum,
ean (represented by the centroid), and maximum tempera-

ure values across all members of each cluster are assigned
‘position’ marker value from [0,1] based on where they lie
n the normalized scale. Lastly, with each key points’ position
alue determined, its corresponding (R,G, B, α) value in the im-
orted color scheme is set.13 In other words, position markers
rom each cluster correspond to Houdini key points on the color
amp.

We used a modified emissive color scheme from the AVL’s
atalog for our final renders. It maps any temperature value to

13 Where in this work a temperature range [0, 14308 K] was normalized to
[0,1], a temperature of 6000 K would have a marker position value of 0.419.
This would correspond to the 429th row of the 1024 row color map.
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Fig. 5. Scene View of the synestia dataset, colored by its clustering ID results from the 5-cluster GMM result of Fig. 2. Thus, the color corresponding to each particle
n 2D phase space can be seen in 3D position space in the Houdini software. The white arrow marks the rotation axis.
Fig. 6. A zoomed-in, rotated view from Fig. 5, where the rotation axis is along
the horizontal extending out from the synestia bulge, as shown by a white
arrow. On this scale, we can see individual particles and their cluster association.
Individual outliers are seen, whereby an outlier is defined as being a particle
with a different association relative to surrounding particles in physical space,
marked by the large black arrows. These outliers are from the left-most grouping
of red and cyan particles at (−3, 2) in Fig. 2, where these few particles are
possibly assigned an incorrect cluster. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

its associated (R,G, B, α) color value using an emissive blackbody
color temperature scale, and is non-perceptually uniform14.

14 If desired, there are other perceptually uniform color maps available
o use from e.g. Moreland (2016) and https://github.com/liamedeiros/ehtplot.
Our final clustering-informed temperature ramp is in Fig. 7(a),
and the AVL’s custom temperature ramp (used in the ‘‘Imagine
the Moon’’ dome show) is in Fig. 7(b).

4.4. Building a custom shader

To create the visualization, Houdini requires a shader to tell
its native renderer, Mantra, how light interacts with each par-
ticle in the scene.15 Once established, the scene can be ren-
dered, where the three-dimensional scene is transformed into
a two-dimensional image. Although there are built-in shaders,
none of them are tailored to emissive, SPH data. In the
‘‘From_Results_to_Render.ipynb’’ notebook, we detailed how we
created a general-use particle sprite shader for emissive material,
with values tailored to our example dataset. Future projects can
simply copy this shader network into their own Houdini scene
files, and modify the values appropriately. We summarize the
process of building our shader below.

Because the material in SPH simulations is, as the name im-
plies, divided into particles, it is best to design the visualization
using particles. Thus, we transformed each data particle into
a sphere sprite with a non-uniform rational B-spline (NURBS)
primitive type.16 To do so, we created a sphere primitive inside
a geometry object,17 and set the sphere’s ‘‘Primitive Type’’ to
NURBS to maintain smooth surface continuity. Later, in an In-
stance node used for our final render, we linked its ‘‘Instance
Object’’ parameter to the geometry object in which the sphere
was embedded, such that each SPH particle was rendered as a
sphere. Also, because each simulated SPH particle has a unique
size or radius, we forced its sphere sprite to retain its smoothing
length value from the data by assigning it to each particles’

Some additional perceptually uniform renders of this dataset are found in the
Appendix.
15 Many other popular renderers such as Renderman will work, but may
involve different steps to create a shader.
16 https://www.sidefx.com/docs/houdini/model/primitives.html#nurbs.
17 https://www.sidefx.com/docs/houdini/nodes/sop/sphere.html.

https://github.com/liamedeiros/ehtplot
https://www.sidefx.com/docs/houdini/model/primitives.html#nurbs
https://www.sidefx.com/docs/houdini/nodes/sop/sphere.html
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Fig. 7. (a): The non-uniform, emissive colormap with markers and associated (R,G, B) values informed by the 5-cluster GMM result. The colormap is over temperatures
[0 K, 14308 K] to match that of the AVL rendering for later comparison, despite the dataset temperatures ranging from [2453 K, 14308 K] (the range [0 K, 14308
K] was chosen for aesthetic reasons). Here, the hottest temperatures map to light blue, moderate temperatures map to orange, and the coolest temperatures map
to dark red/brown. (b): The custom AVL colormap, from [0 K, 14308 K], used in the ‘‘Imagine the Moon’’ dome show. Ten key points are used with a B-Spline
interpolation, and are roughly equally spaced over the length of the colormap. Here the hottest temperatures map to mostly light yellow/white tones instead of a
light blue like in the Estra-generated colormap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Houdini ‘‘pscale’’ value18. Lastly we duplicated our pre-processing
step as described in Section 4 to ensure only the data retained in
the clustering steps (and aligned in the same order) is used in the
final visualization.

To build a custom shader, a Material Shader Builder node19
was modified. Parameter nodes20 and ramps21 were created to
read in the data’s temperature, density, and smoothing length
values, because these control the emission color and opacity
over a range of values. For example, a spline ramp type was
used to adjust the transparency of each particle based on its
smoothing length value. In this simulation, the largest particles
(largest pscale) reside on the outer fringes of the simulation, as
pscale is related to howmany and how close its nearest neighbors
are; the smallest particles/lowest pscale values constitute the
central region of the post-impact body. Mapping large pscale
values to low opacity/high transparency and small pscale values
to high opacity/low transparency allows for the whole simulation
to be seen and visualized; otherwise, the largest particles would
dominate the visualization, and obscure the rest of the data.

In choosing the mapping transfer function for the temperature,
density, and smoothing length opacity ramps, we made simple
assumptions to enable ease of use. We assumed the density
(opacity) ramp to have the form of a cubic Bezier curve, governed
by the parametric equation:

B(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2

+ t3P3, 0 ≤ t ≤ 1,
(4)

with control points P0 = (0, 0), P1 = (0, 0.2), P2 = (0, 1), and
P3 = (1, 1), where t is time (to trace out the full curve, not to
be confused with a physical time associated with our dataset).
These control points define a control polygon from which our

18 While ‘‘smoothing length’’ is a data variable, ‘‘pscale’’ refers to a multiplier
n Houdini on the size of a particle. We assigned the value of smoothing
ength to a particle’s pscale. Conceptually these terms are different, but as far
s implementation in Houdini is concerned, they are the same. We used the
moothing length to drive the size of the particle, by assigning it to pscale, or
‘particle size multiplication factor’’.
19 https://www.sidefx.com/docs/houdini/nodes/vop/materialbuilder.html.
20 https://www.sidefx.com/docs/houdini/nodes/vop/parameter.html.
21 https://www.sidefx.com/docs/houdini/nodes/vop/rampparm.html.
curve is drawn. This resulting curve represents values for the
position and value markers on the density ramp. We chose five
values to define the ramp traced out by the curve: (0, 0), (0.1,
0.53), (0.25, 0.75), (0.5, 0.91), (1, (1), as shown in Fig. 8.22 These
specific control points were chosen because: (1) the rectangular
box of the ramps have domains x ∈ [0, 1], y ∈ [0, 1]; (2) this
choice results in a good balance of opacity as a function of density,
whereby particles of all densities are visible, and are not obscured
due to the extreme values—the densest particles (in the central
region of the body) are visible without drowning out the least
dense particles (on the edges) and vice versa.

When plotting a histogram of the number of particle counts as
a function of binned density, there is a double peak at the lowest
and largest density values (Fig. 9). A cubic Bezier curve is thus a
good starting point to allow a particle to be simultaneously more
opaque and emissive with increasing density (as this density
ramp is connected to both opacity and emission multipliers),
while allowing for the many contained lowest density particles
in the center to be visible and not overpower the visualization.
This cubic Bezier curve will be useful in many applications where
dense objects are embedded in less-dense mediums, e.g. star
formation.

The temperature ramp controls the color as a function of
temperature. Its values are the result of the GMM clustering
algorithm, which is the transfer function shown in Fig. 7(a).

Lastly, the pscale ramp also controls opacity. Its values are the
transposed values of the cubic Bezier curve used in the density
ramp. This way, the largest pscale values (largest key position
marker values on the ramp) have low opacity/high transparency
(low ramp y-values), and vice versa.

Once the temperature and pscale ramps were set, a test image
was rendered, shown in Fig. 10(a). This render has a hot inner
region and a cooler outer region, but the look is clumpy and
the center of the post-impact body is dim. With many of the
interesting features occluded, more work was done.

Because luminance from each sphere sprite is isotropic and its
intensity follows Lambert’s cosine law, the screen–space distance

22 The ramp starts at an arbitrary non-zero y-value (0,0.03) so that the
particle(s) with the lowest densities still contain some opacity, and are not
completely transparent in the render.

https://www.sidefx.com/docs/houdini/nodes/vop/materialbuilder.html
https://www.sidefx.com/docs/houdini/nodes/vop/parameter.html
https://www.sidefx.com/docs/houdini/nodes/vop/rampparm.html
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Fig. 8. The density ramp, mapped to opacity in the shader, where density values increase from left to right from 0 to 3.4—its max value after pre-processing. The
igher the ‘Value’ indicated by the ramp, the more opaque (less transparent) each particle at that particular density will be. Values are determined by a cubic Bezier
urve with the control points P0 = (0, 0), P1 = (0, 0.2), P2 = (0, 1), and P3 = (1, 1). The ‘Interpolation’ between each point is also set to ‘Bezier’. Less dense particles
(typically near the outer edges of the synestia) are less opaque, and more dense particles (typically concentrated in the center of the synestia) are more opaque.
Fig. 9. A histogram of the number of particle counts as a function of binned (pre-processed) density. Most particles are either in the highest density regimes (center
of post-impact body) or the lowest density regimes (out in the outer fringes). For our purposes, the higher density regions of the simulation are most interesting to
visualize, in part to better compare this work’s renders to those from the AVL.
from the viewing center was calculated to inform the intensity
falloff. This falloff is dominated by the Gaussian function and is
known as a Gaussian falloff profile. The screen–space distance
dscreen is

√
1 − (N · I)2, where N is the (normalized) normal vector

from the sprite surface, and I is (normalized) vector for the
incident light. In this manner, the screen–space distance is largest
when N and I are orthogonal, i.e. in the line-of-sight of the
viewing angle, and is smallest when N and I are unidirectional.
A node network was made to perform the screen–space distance
from viewing center calculation. Once completed, its output dscreen
value was used as an input in another node network to calculate a
Gaussian falloff profile for each sphere sprite. This Gaussian falloff
node network use the standard Gaussian function g(x) of the form

g(x) = ae
−(b−x)2

2c2 , (5)

where the parameter a is the height of the curve’s peak, b is the
position of the center of the peak (the dscreen value) and c (the
standard deviation) controls the width of the ‘‘bell’’. A Gaussian
profile is a good approximation for the spectral intensity profile,
because each sphere is a resolved point source. The point spread
function (PSF) that represents the light distribution of such a
point source is approximately Gaussian (Sterken and Manfroid,
1992).

With these new node networks added to our shader, another
test render was created, and is shown in Fig. 10(b).

Finally, the clouds of gas and dust are randomized with noise
to visually suggest sub-grid scale fluctuations, as a result of turbu-
lent motion. These noise values, as well as other parameters such
as the Gaussian profile constants, can be fine-tuned to achieve the
purpose of the visualization.

With final noise values and Gaussian profile constants decided,
our shader is completed and a final render is made, as shown in
Fig. 10(c).
5. Results & discussion

5.1. Comparing Estra and AVL renders

A zoomed-in view of Fig. 10(c), the final Estra render us-
ing GMM clustering which focuses solely on the center of the
synestia structure, is shown in Fig. 11(a). For comparison, the
manually-designed AVL render, which utilizes a more compli-
cated shader and is used in the full dome show ‘‘Imagine the
Moon’’, appears in Fig. 11(b) with the same scale and aspect
ratio. The Estra rendering is qualitatively similar to the AVL
rendering. Both retain the same bright bulge, and have a dusty
ring of material on a plane perpendicular to the rotation axis.
Additionally, both are emissive, and have the same clumping of
gas and dust, with Gaussian falloff, and a similar color palette.
The AVL rendering has more red tones, and less bright white
highlights of the hottest material in the bulge, due to the slight
difference in color maps. Although the color map used for The
Estra rendering (Fig. 11(a)) is a simplified and extended version
of The AVL rendering (Fig. 11(b)), it contains a different transfer
function based on the clustering results. For example, moving the
position markers (which themselves are directly determined from
the minimum, mean, and maximum values of each cluster—see
Section 4.3), changes how temperature is mapped to a particular
color. The spacing width between the position markers on the
ramp controls the rate at which the color changes; the larger
the spacing between the markers, the greater the change in color
space and vice versa. Hence, dissimilar phase–space clusters have
a wider color palette spread for easier visual identification in the
Estra render.

It is important to keep in mind that both renders cannot
produce a fully realistic image; there is not one particular ‘‘right’’

or ‘‘correct’’ render. In fact, the purpose of this work is to enable
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Fig. 10. (a): This test render uses an incomplete shader, after temperature and pscale ramps are created. Visually it is evident from the color mapping that we have
a redder, cooler outer region and a hotter, whiter/bluer inner region. (b): This test render, of the same scale and aspect ratio as (a), also uses an incomplete shader,
but is after a screen space distance dscreen is calculated and used in a Gaussian falloff profile for each sphere sprite. Because there is little clumping of the dust and
as clouds, randomized noise needs to be added to visually suggest sub-grid scale fluctuations. (c): The final render, after random noise is added to complete the
stra shader. Because this view is distant from our areas of interest, a close-up of this same render is found in Fig. 11(a). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. The final renders of the synestia (of the exact view shown in Fig. 1) using (a) the Estra shader—with its colormap informed by the 5-cluster GMM
result (Fig. 7(a))—and (b) the AVL’s more complicated, custom shader not informed by a machine learning algorithm (colormap from Fig. 7(b)). Although choosing
the appropriate clustering algorithm and developing the pipeline took one of us (P. D. Aleo) approximately two months, (a) was created in approximately a day’s
work once the workflow was established. Meanwhile, the timeframe for (b) was similar, but involved the work of three visualization designers (A.J. Christensen, K.
Borkiewicz, R. Patterson). This demonstrates how a scientist can create a simplified visualization of their own work, comparable to the quality of one produced by
a professional visualization team.
a scientist with little to no background in cinematic visualiza-
tion to visualize their own work, and we have shown that with
clustering-informed color-mapping and simple assumptions, one
can create compelling visualizations aesthetically similar to ones
produced by visualization teams for full dome productions.

The Estra pipeline is also potentially useful in the produc-
tion pipelines of visualization teams. They can create clustering-
informed visualizations to reduce time spent on data exploration,
and simply tweak or complicate them as necessary to match their
needs.

Once the shader network is setup and pre-processing is com-
pleted, it is trivial to try any number of clustering algorithms and
import the cluster IDs into Houdini. Building the general purpose
shader network from scratch takes approximately an hour, and
running a clustering algorithm and importing clustering results
takes half that. The only significant time bottleneck is the quality
of the render: a 4096 × 4096 render like Fig. 11 took ∼8 h on an
HP z820 workstation with a single Xeon E5-2670, 2.5 GHz 10-core
processor. If the number of particles used was reduced, or the
pscale threshold and/or image quality was reduced, this render
would be less computationally expensive.

5.2. Finding physically interpretable clusters in the synestia

One of the key aims of this work is to find and visualize ‘‘phys-
ically interpretable’’ clusters, whereby each cluster has a corre-
sponding physical meaning or structure to automate and guide
the visualization. With the color-mapping process designed to
highlight individual clusters, physical interpretability is a require-
ment for the resulting visualizations to be meaningful, and not



P.D. Aleo, S.J. Lock, D.J. Cox et al. / Astronomy and Computing 33 (2020) 100424 11
Fig. 12. A false-colormap render a cut-through of the far half of the synestia to emphasize the physical manifestation of the clustering results. The colors shown
here match to those of temperature–entropy phase space plot (Fig. 2) for easy comparison. The green region is the ‘‘lower mantle’’ of the synestia; yellow is the
‘‘transition region’’ containing a rapid increase in entropy with depth; red is the ‘‘supercritical region’’ of highly shocked silicate material which typically has specific
entropies greater than the critical point entropy and so is either supercritical fluid or high-pressure vapor; cyan is the ‘‘isentropic pure-vapor region’’, because its
constituent particles were forced to be isentropic during post-processing; and magenta is the outer ‘‘vapor dome region’’, where particles lie along the vapor side
of the liquid–vapor phase boundary. This is rendered with the same custom shader as in Fig. 11(a), with the only difference being the temperature ramp, which
here maps by cluster ID and not by assigning color to a temperature transfer function from GMM results. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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arbitrarily representations of the data which cannot be soundly
analyzed.

In order to understand which clusters are physically mean-
ingful, our 2D phase space cluster results were imported into
Houdini’s Scene View. In Estra, every particle is assigned a clus-
ter membership, and this cluster membership ID becomes a new
data attribute. Each particle retains its unique cluster assignment,
and from there the shader can be extended to assign a unique
color to each cluster. To do so, one can either create a new color
ramp or copy an existing one, set its interpolation to ‘Constant’,
and map discernible colors to match the number of clusters. Once
the clustering assignment ID is mapped to a color, each particle
will be colored by its appropriate grouping. With Houdini’s node
network, all one has to do is change the connection to any one of
the color ramps to achieve the desired render.

In this example, each cluster color pairing (Cluster 1–Gold,
Cluster 2–Magenta, etc.) as shown in Fig. 2 is retained in the
shader. Each particle’s 2D phase space cluster assignment man-
ifests in 3D position space, from which the wide array of Houdini
tools can be used for data exploration—rotating about the data,
taking slices, isolating one cluster, etc. Seeing and interacting
with the cluster-colored data in 3D position space, combined with
the knowledge of the simulated data, enables the researcher to
determine if the resultant clustering assignments have physical
meaning, or ‘‘interpretability’’. If the result appears nonsensical
or arbitrary, likely another clustering algorithm should be used
and further explored.
For our example post-impact synestia, the 5-cluster GMM
result is shown in Fig. 12 (with earlier examples already displayed
in Figs. 5, 6). It is rendered in Houdini with a false colormap
dentical to the color scheme used in Fig. 2. This render is oriented
uch that the rotation axis points upwards through the central
egion. Also, to clearly see the physical meaning of the clusters,
his render is a cut-through of the far half of the dataset, such
hat particles on the near side of the camera (our current view) do
ot occlude those on the far side along the line of sight through
he synestia. In other words, only the far-half of the synestia is
endered, enabling us to investigate its inner layers via our line
f sight.
A motivating factor for choosing the 5-cluster GMM result is

hat it best clusters the data into its constituent components: the
reen region is the ‘‘lower mantle’’ of the synestia which experi-
nces only moderate heating during the impact and so is still of
elatively low entropy; red is the ‘‘supercritical region’’ of highly
hocked silicate material which typically has specific entropies
reater than the critical point entropy and so is either supercriti-
al fluid or high-pressure vapor; yellow is the ‘‘transition region’’
etween the supercritical fluid (red) and lower mantle regions
green); cyan is the ‘‘isentropic pure-vapor region’’, because its
onstituent particles were forced to be isentropic during post-
rocessing (see Lock et al. (2018)); and magenta is the region
here particles lie along the vapor side of the liquid–vapor phase
oundary in the outer ‘‘vapor dome’’ region. For the first time,
he different components are easily discernible and can be under-
tood in their proper context. Lastly, it is important to remember
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Fig. 13. Our 5-cluster GMM results plotted in a specific entropy–pressure phase space, where cluster membership is the same as in Fig. 2. In this phase–space, the
liquid–vapor phase boundary is a dome-shaped curve (black line). The black dot on the vapor dome is the critical point for the equation of state used in these
simulations (Scrit = 5.40e7 erg K−1 g−1 , pcrit = 2.55 GPa, Tcrit = 8,810 K, ρcrit = 1.68 g cm−3). Material to the left of the dome is liquid, material to the right of the
dome and below the critical point is vapor, material above and to the right of the critical point is supercritical fluid (SCF), and material within the dome is a mixture
of both liquid and vapor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
that these associations are interpretations by those who created
the simulation.

As an additional check to confirm our structure analysis, we
plotted the 5-cluster GMM results against the liquid–vapor phase
boundary in pressure-specific entropy space, shown in Fig. 13.
The yellow transition region between the green lower mantle and
the red supercritical region contains the critical point. The criti-
cal point marks the transition between liquid and supercritical
fluid/liquid, a distinct change in the thermodynamic properties of
the silicate, and so has been correctly identified by the clustering
algorithm as a key region connecting, yet distinct from, the inner
liquid and supercritical regions. Our clustering interpretation has
also identified the region that constitutes supercritical fluid or
high-pressure vapor as a distinct group, and the magenta outer
vapor dome region neatly incorporates the particles that lie on
the vapor side of the liquid–vapor phase boundary. Additionally,
the cyan isentropic pure-vapor region had been clearly separated
from the rest of the structure and is distinct from the magenta
vapor dome cluster, thus confirming that the Kmeans clustering
algorithm, which combined the pure-vapor and isentropic clus-
ters (see Fig. 4), would indeed have been a poor choice. Our
5-cluster GMM algorithm distinctly separates physically signifi-
cant regions within the synestia.

Retaining the same view as Fig. 12, we can re-render a scene
with both the non-uniform, emissive shader as in Fig. 11(a) and
the same temperature ramp as in Fig. 7(a), shown in Fig. 14. Here,
we can nearly discern the five structures as they appear in their
individually colored cluster assignment. The innermost lower
mantle is slightly cooler (more brown) than the transition region
and supercritical region. This makes sense, as the supercritical
region contains more highly shocked material than that in the
lower mantle, and is of a higher temperature (yellow/white). The
isentropic region contains the hottest material (most blue) on the
outer surface layer perpendicular to the rotation axis material,
which gets colder as the material occupies the outer edges of
the wings. This is evident from the isentropic feature in Fig. 2.
However, because of this temperature change, it is hard to tell to
what extent this isentropic feature is due to this emissive shader,
unless one looks at Fig. 14 for reference.

It is important to note that the stark change in temperature
from the moderate, light yellow transition region to the hot,
blue isentropic region is an artificially enforced boundary due
to the post-processing of data by the scientists who created the
simulation. This post-processing is designed to simulate thermal
equilibrium of the post-impact body by processes not captured
Fig. 14. Same as Fig. 12, but rendered with both the non-uniform, emissive
shader as in Fig. 11(a) and the same temperature ramp as in Fig. 7(a). We
can clearly see some individual physical components of the synestia. From
this, the hottest component of the synestia (light blue) – the isentropic region
– is the outer surface layer perpendicular to the rotation axis, and not the
innermost central region. Similar views can help scientists understand how their
data is structured, and how different parameters map to those structures. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

in the original SPH code but has the unfortunate consequence
of introducing an unrealistically sharp boundary in the structure.
In actuality the transition between these layers will be more
gradiated. An advantage to a scientist visualizing their own work
is that they will know artificialities such as this and can take steps
to reduce their prominence in visualizations.

The coolest material (dark brown) – which also has the highest
specific entropy of silicate material – lies along the vapor-phase
boundary in the outer edges of the bulge and disk. This, too,
makes physical sense, as although the outer layers contain highly
shocked, high-entropy material they are at low pressures where
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Fig. 15. Same as Fig. 11(a), except the colormap is discrete and colored by the
same 5-cluster GMM assignment as in Figs. 2,12.

the temperature on the liquid–vapor phase boundary is relatively
low.

Similarly, we can render the same view as in Fig. 11(a) but
shading with the cluster assignment colors from the GMM, seen
in Fig. 15. From this angle (no slicing involved), it appears that
the dusty ring of material is dominated by material from the su-
percritical region cluster. The brightest bulge material originates
from the hottest isentropic particles. This is most apparent in
Fig. 11(a) as opposed to Fig. 11(b), as intended. The spotty/patchy
appearance of different temperature material in the bulge center
in this line of sight is due to our view containing contributions
from several different layers of the synestia.

5.3. Validating the visualizations

Validating cinematic visualizations is a long-standing problem
in the field, in essence due to its inherent nexus of art (visual
effects) and science. Particularly, it is challenging to accurately
represent the data in a way that is understandable to experts and
non-experts alike (Borkiewicz et al., 2017). Even in the case of this
work, where the purpose of the visualization is tailored towards
experts, how does one quantify a validation metric to ascribe
its ‘‘goodness’’? When is the visualization ‘‘correct’’ enough to
where it can be published in an academic journal or consumed by
a general audience? With a medium that mixes qualitative and
quantitative regimes, there is still no singular answer, but here
we discuss several conventions.

Whilst creating the visualization, visualization teams consult
peers and domain scientists – especially those responsible for
producing the data – frequently for feedback. This includes, but
is not limited to, explaining the purpose of the simulation and
establishing its context in the field at large; checking factual
accuracy on a documentary script; rerunning, fixing, or filling in
gaps of the simulation; and, most importantly, vetting that the
visualization does not convey essential aspects of the simulation
that is objectively wrong (Borkiewicz et al., 2017, 2019a). It is
up to the experts involved in both the visualization and science
communities to agree that the visualization is an accurate (or
accurate as possible) representation of the data. However, what
‘‘accurate’’ is in this context depends on the nature or purpose of
the work. Visualizations are not a complete and holistic depiction
of reality; some aspects are presented at the expense of others.
Thus, the criterion for validity is not an absolute accuracy, but
whether the visualization communicates some points effectively,
or clarifies and reveals relationships between variables or phys-
ical processes, etc. Subsequently, this implies that accuracy or
validity also depends on the purpose of the work.

Despite not being a concretely defined metric, accuracy is
an important requirement because it is impossible to guess in
the future who will see the visualization and in what context,
and subsequently be misinformed. In fact, people psychologically
tend to believe visualizations are true (Borkiewicz et al., 2017,
2019a), and thus if the final visualization conveys a biased or in-
correct message – whether intentionally or unintentionally, even
if based on unbiased data – audiences can fall prey to scientific
misconceptions.23

When the cinematic visualization is designed for consumption
by general audiences, determining its success is harder. Audience
testing involves entrance and exit interviews or questionnaires,
and are meant to document audience reactions as opposed to
learned intuition (Borkiewicz et al., 2017, 2019a). As expected,
assessing the visualizations’ success is not easily quantifiable.
Further complications arise when animations of highly special-
ized dynamic subject matter are visually complex, which can
negatively affect the learning experience (Lowe, 2003).

A third metric is an ‘‘eye test’’, where different representa-
tions/colors/camera positions, etc. of the same dataset are shown
to different audiences, but all of whom are given the same ques-
tionnaire. Although this cannot establish the baseline of how
‘‘good’’ a visualization is, it can inform which visualization is
‘‘better’’ than another in whatever its particular usecase.

In the case of this work, the cinematic synestia visualizations
are for field experts. Further, our clustering-informed visualiza-
tions have a tractable interpretation of its phase–space clusters,
put into proper context of the physical structures and processes
at play, thus completing the goal set by this work. This is as close
to a metric of ‘‘accuracy’’ we can achieve. Future studies would
benefit from some quantitative metric by which one could ascribe
a ‘‘goodness rating’’ to the final visualizations, but that is beyond
the scope of this work.

6. Conclusion

We have demonstrated the feasibility of using the visual ef-
fects software Houdini for cinematic astrophysical data visual-
ization, informed by machine learning clustering algorithms. We
outline a step-by-step process from a raw simulation into a
finished render that can be utilized by non-experts in the field
of visualization to achieve production-quality outputs. We used
machine learning clustering algorithms and simple assumptions
to inform the visualization process via our Python pipeline Estra.
As proof of concept, we used a single timestep of a post-impact,
thermally-equilibrated Moon-forming synestia from (Lock et al.,
2018).

We showed the results of a 5-cluster GMM algorithm, which
clustered the data into five distinct, physically-meaningful or
‘‘interpretable’’ clusters: a lower mantle region, transition region,
supercritical region, isentropic pure-vapor region, and outer va-
por dome region. By having the minimum, mean, and maximum
values of these clusters in temperature–entropy phase space in-
form the colormap, we are able to emphasize these distinct

23 For a holistic overview of how and why people become misinformed about
scientific concepts, see Scheufele and Krause (2019) & references therein.
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structures in the render. Moreover, by assigning each cluster
membership as an attribute and read into Houdini, each 2D
phase–space cluster can be displayed in 3D position space. This
will enable any researcher to better understand their data and
better interpret the clustering results, particularly with Houdini’s
wide array of data-handling tools.

We rendered visualizations of the synestia with a shading
network informed by the 5-cluster GMM result, and compared
this to an identical render with a custom shading network by
the Advanced Visualization Lab at the National Center for Su-
percomputing Applications for ‘‘Imagine the Moon’’. We showed
that with simple assumptions and the clustering result, it is
possible to achieve a render similar in quality to a professional
team of visualization designers. Furthermore, using our clustering
and visualization pipeline, other scientifically-informed renders
(e.g. segment and show distinct, meaningful clusters) can be com-
pared in a fraction of the time. Renders simply of the particles’
clustering assignment can help understand the context of the
different physical structures and inform scientific discovery.

Our results are significant in that they help realize the context
of 2D phase–space information in 3D position space in a relatively
simple manner. Because Houdini is a visual effects software, it
can provide benefits not found in scientific software such as (but
not limited to) excellent camera and animation controls, general-
purpose ability, high-quality renders, robustness from large user
and developer base, etc. Though, Houdini will be best paired in
tandem with scientific software due to their native ability to read
specific data formats, and there have been custom software that
best utilize the two for visualizations such as ytini (Naiman
et al., 2017).

Cinematic astrophysical data visualization is an underdevel-
oped field in the literature, and its practices are not widely
adopted by the astronomical community. By establishing such a
literature, we hope to equip astronomers with the tools, skills,
and knowledge to develop their own visualizations for publica-
tions, public outreach, prototype testing, etc.

We suggest future endeavors focus on developing tools for
multi-timestep data, where cluster assignments are made tempo-
rally. Specifically, tools that track and visualize particles by their
cluster assignment in each time step would allow researchers to
see not only how clusters change and evolve over time, but how
their members do as well. This is invaluable information, and can
lead to a better understanding of physical processes acting on
both small and large scales. Lastly, future work which incorpo-
rates extrinsic audience perceptual metrics can help visualization
designers better understand how factors such as lighting, occlu-
sion, and color influence affect an audience’s perception of the
spatial and scientific reality of a dataset.

Software: Houdini,24 Jupyter (Kluyver et al., 2016), Matplotlib
(Hunter, 2007), NumPy (Oliphant, 2015), pandas (McKinney,
2010; Pandas development team, 2020), scikit-learn (Pedregosa
t al., 2011), SciPy (Virtanen et al., 2020)
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Appendix A. Other clustering algorithms

Because the choice and interpretation of various clustering
algorithms are vital to producing structurally-meaningful results,
we provide a quick overview of several widely-used methods.

A.1. Kmeans

The first of many unsupervised clustering algorithms available
to use in Estra is Kmeans,25 through the sklearn.cluster
module. As a whole, Kmeans is likely the most popular of the
array of the clustering methods, perhaps due to its scalability to
large sample sizes. After specifying a desired number of n-clusters
(which itself is either a known prior, or an estimated one) the data
will be split into n-groups of equal variance by minimizing the
inertia (also known as ‘‘within-cluster sum-of-squares’’) criterion.
More specifically, it is the mean values of each cluster, referred
to as centroids, that minimize the inertia. A minimization of the
inertia is optimizing how internally coherent the clusters are,
such that each member within a particular cluster is most similar
to its members and most dissimilar to members outside that
particular cluster. Thus, generally speaking, Kmeans is useful for
relatively few number of clusters with approximately even cluster
sizes of flat geometry, where no explicit structure relates one
cluster to another.

The Kmeans cost function is given by
n∑

i=0

min
µj∈C

(∥xi − µj∥
2), (6)

where the standard L2 Euclidean distance is minimized between
each ith cluster data point xi and the collection of centroids µj in
the set C . Once the algorithm satisfies some stopping criterion
(say, some maximum number of iterations is completed or no
data points change their cluster assignment between iterations),

25 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.
html.

https://www.sidefx.com/products/houdini/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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the output will be dataset labels of all data points for user-
selected K-clusters. This convergence may be a local optimum,
as some randomized starting centroids will ultimately provide
better results than others. We suggest running this algorithm
multiple times and seeding with different initial guesses.

As with any algorithm, there are downsides to Kmeans and
situations in which other algorithms are better suited. One such
drawback is for data with irregularly shaped manifolds, because
a critical underlying assumption of the inertia criterion is that
the clusters are convex and isotropic. Although the algorithm
will reach a convergence, it is unlikely then that this particular
result will correspond to a physical meaning; it will more likely
be a mathematical artifact. Another case where Kmeans suffers is
in reconciling its Euclidean distance measurements when higher
dimensions are involved—namely the ‘‘curse of dimensionality’’.
When plotting very high dimensional data in a lower dimensional
space, the distances between points start to lose meaning; by
nature of not being able to aptly express the true nature of the
data in all of its dimensionality, some variance is lost. Thus,
as Kmeans utilizes standard Euclidean distance measurements,
these distances become inflated in higher-dimensional space. In
this case, then, we suggest first running some dimensionality
reduction such as Principal Component Analysis (PCA), Random
Forest (RF), t-Distributed Stochastic Neighbor Embedding (t-SNE),
Non-negative Matrix Factorization (NMF), etc.

A.2. DBSCAN

DBSCAN26 (Density-Based Spatial Clustering of Applications
with Noise) is quite different from Kmeans and other cluster-
ing algorithms in that it does not care about the shape of the
clusters (Ester et al., 1996). Instead, the main focus of the al-
gorithm is to separate areas of high density from low density.
DBSCAN achieves this by using two main parameters: ϵ(eps) and
min_samples (MinPts in Ester et al. (1996)). The ϵ parameter is
used to assign a maximum distance for which two points can
be considered to be within the same neighborhood, and the
min_samples parameter is the number of datapoints needed in a
neighborhood for a datapoint to be labeled a ‘‘core point’’. Put
another way, it assigns a core point p if there are ≥ min_samples
points within a given distance ϵ of p itself. Then, if another point
q is contained within a distance ϵ of p, the point q is known to
e ‘‘directly reachable’’ to be p (where ‘‘directly reachable’’ only
pplies to core points). Only points directly reachable to a core
oint, including both non-core and the core points themselves,
ompose a single cluster; all points that fall outside of the range
or which any one core point is directly reachable is deemed
n ‘‘outlier’’ or ‘‘noise point’’, and is not considered part of any
luster. Note that the non-core points directly reachable to only ≤

in_samples core points are called ‘‘edge points’’. However, there
s one more aspect in deciding which points belong to which
luster: ‘‘density connectedness’’. If there is another point o such
hat any two points p, q are both directly reachable from it, the
oints p and q are ‘‘density-connected’’. Thus for any particular
luster, all points contained within it are (1) mutually density-
onnected and (2) directly reachable to at least one core point
making this a region of ‘‘higher density’’).

As a density-based clustering algorithm, DBSCAN offers some
ritical advantages over Kmeans and various traditional clustering
ethods. One such benefit is that the number of clusters is
ot required to be known a priori; instead, a knowledge of the
ataset on how to best set the values for ϵ and min_samples is
uggested, but not required. Further, as aforementioned, it can

26 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.
tml.
find arbitrarily shaped clusters, even those which are not linearly
separable (non-flat geometry), in addition to finding unevenly
sized clusters, as long as they are of the same relative density.
Inherent to its formulation, DBSCAN is robust to outliers as well,
as it factors in noise into its cluster finding process.

The main disadvantage of DBSCAN is in regard to its memory
consumption when large data samples are involved. In fact, the
sklearn.cluster Python package for DBSCAN involves the
worst-case memory storage of O(n2) floats when a full pairwise
similarity matrix is used.27 The pairwise similarity matrix is used
in the case where its default method of kd-trees or ball-trees is
not applicable, such as for sparse matrices; otherwise, the user
can choose their preferred nearest neighbors module to compute
pointwise distances and find nearest neighbors. Another main
disadvantage lies with the curse of dimensionality, as before.
DBSCAN uses kd-trees or ball-trees for its nearest neighbors
search, and in high dimensional space, these methods (partic-
ularly kd-trees) are not well suited for efficiently finding such
nearest neighbors. Often times a simple exhaustive search is as
efficient, and it is better to use more approximate nearest neigh-
bor methods. Further, as pointed out above, higher dimensions
render the Euclidean distance metric for all practical purposes
useless, and DBSCAN uses Euclidean distance as a measure for
determining which points are ‘‘directly reachable’’ to each other.
And lastly, if there is a wide range of densities within the data,
the particular chosen values of ϵ and min_samples may not be
appropriate when scaled to all clusters.

A.3. Variational Bayesian Gaussian mixture model

Variational Bayesian Gaussian Mixture Model is a variant of
GMM that utilizes variational (Bayesian) inference (Jordan et al.,
1999; Wainwright and Jordan, 2008), instead of EM, to fit the
model (Attias, 2000). This is known as variational Bayesian es-
timation of a Gaussian mixture model, a form of approximate
posterior inference.

We desire to know the true posterior of the distribution, which
from Bayes’ Rule is

p(z|x, α) =
p(z, x|α)∫
Z p(z, x|α)

=
p(z)p(x|z)

p(x)
, (7)

where z = z1:m are our hidden, or latent, variables, x = x1:n
are our observations, or data (e.g. the particles of the simulation),
and α are the fixed additional parameters (though, if the param-
eters are lumped into z, then α becomes the hyperparameters).
Computing the posterior distribution is what is known to be an
inference problem.

Finding the true posterior, or, as will be the case, finding
an approximate posterior, is important for predictive distribu-
tion (given the data x, compute the conditional probability of a
new observation x∗, denoted as p(x∗

|x)), finding modes, inves-
tigating the posterior over hidden variables, etc. Unfortunately,
computing the normalization constant of the posterior for many
complex models, including Gaussian mixture, is often analytically
intractable. One could use Markov-Chain Monte Carlo (MCMC)
sampling (Hastings, 1970; Gelfand and Smith, 1990) to find the
true posterior, but with many parameters, convergence can be
prohibitively slow, and it does not scale to large data as well as
variational inference.

A simpler, tractable family of distributions D over the latent
variables z is formed with its own collection of variational pa-
rameters ν, i.e. q(z|ν). These variational parameters are chosen
so that q becomes a proxy for the desired posterior. In essence,

27 See DBSCAN’s user guide in scikit-learn’s documentation.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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p(z|x, α) ≈ q(z|ν, α). To achieve this, one finds the particular fam-
ily member that minimizes the Kullback–Leibler (KL) divergence
with respect to the exact posterior

q∗(z|ν, α) = argmin
q(z|ν,α)∈D

KL(q(z|ν, α)∥p(z|x, α)), (8)

where q∗(·) is the optimized member of each family, and KL is
defined to be

KL(q∥p) =

∫
z
log

q(z)
p(z|x)

= E
[
log

q(z)
p(z|x)

]
. (9)

Because the KL divergence is an asymmetric measure of the
difference between two distributions p and q, its minimization
will ensure that p is most similar to q. Thus, one can use the
approximate conditional q∗(z|ν, α) as a best guess to the pos-
terior p(z|x, α), and subsequently replace the posterior with the
approximation. In all, variational inference rewrites a standard in-
ference problem as an optimization problem. For a more rigorous
mathematical justification and explanation, see Blei et al. (2017).

In the BayesianGaussianMixture class, two types of
weighting schemes are available to be specified by the user: (1)
a finite mixture model using Dirichlet Distribution, and (2) an in-
finite mixture model using Dirichlet Process (DP). The reason for
implementing the Dirichlet distribution may be nebulous, so first
consider the joint distribution p(z, x). From Bayes’ Rule, as shown
in Eq. (7), the posterior is proportional to the product of the prior
of the latent variable (cluster), p(z), with the conditional p(x|z).
In a GMM, zi is drawn independent and identically distributed
(i.d.d.) from the multinomial (or categorical) distribution, and the
conditional xi|zi is drawn from a Gaussian distribution. Because
the Dirichlet distribution is the conjugate prior of the multinomial
(and categorical) distribution, that means if the likelihood – the
generative model – is multinomial (or categorical), then both the
prior and the posterior are Dirichlet distributed. Then, with the
form of the posterior known to be Dirichlet, it is easier to compute
when using the variational Bayesian inference method.

From this point, all that is left is selecting between a finite
mixture model with Dirichlet Distribution and a non-parametric
infinite mixture model using Dirichlet Process (DP). DP (analo-
gous to the Chinese Restaurant Process and Stick-breaking Pro-
cess) is simply an ‘‘infinite-dimensional’’ Dirichlet defined by
an infinite number of clusters and a concentration parameter.
Although an infinite number of clusters are available only a finite
number are used to generate the data. This enables the user to not
have to pre-specify the number of clusters. In fact, this setting
only requires the user to specify the concentration parameter
and the upper-limit on the number of mixture components, and
the value of the weight_concentration_prior will decide to
use either all or only some of the components. The lower the
value, the fewer components (some very close to zero); the higher
the value, the more active mixture components (as well as more
uniform).

Appendix B. Renders with perceptually-uniform temperature
colormaps

One of the decisions a visualization designer has to make when
developing a visualization is what type of color map to use. A
poorly chosen color map can trick human eyes into seeing non-
existent features, mixing features, or missing features altogether.
One such example is a rainbow color map (Borland and Taylor II,
2007; Moreland, 2016). A perceptually-uniform colormap takes
human visual perception knowledge and gives readers a correct
sense on the image intensities regardless of the display. The main
motivating factor is biological; the human eye is more sensitive
to brightness than hue (Borkiewicz et al., 2019a). Thus, any subtle
change in brightness is more readily recognized. For example,
 a
the blackbody colormap from Moreland (2016) has colors which
are based on those from blackbody radiation, but are not exact
according to its wavelength. Instead, they increase in brightness
at a constant rate, and the luminance is perceptually linear (in
CIELAB color space).

Because the synestia is emissive, we rendered the image
seen in Fig. 16 using a perceptually uniform colormap named
afmhot_us from the ehtplot28 library developed for Event Hori-
zon Telescope Collaboration et al. (2019). This specific color map
is symmetrized with linearity in lightness J ′ as defined by the
CAM02-UCS color appearance model introduced by Luo et al.
(2006). A linearity of J ′ values is a good approximation of uniform
colormaps, and is the working definition of Perceptually Uniform
Sequential colormaps by matplotlib.29

As is evident, Figs. 16(a), 16(b) are more gradual in their
color change, and the dust ring appears to blend in more to its
central region than those in Fig. 11. Although interpretation is
subjective, overall it is harder to distinguish here between the
different structures of the synestia as seen in Fig. 15, compared
to Fig. 11(a).

The only appreciable difference between renders in Fig. 16(a)
and 16(b) is the pink appearing highlights in the left side of the
bulge, which marginally differentiates this isentropic component
from the rest of the bulge. This is because in this example, the
perceptually-uniform colormap makes it more difficult to discern
the synestia in Figs. 16(a), 16(b). Because of the linearity in
brightness and a narrower color palette range, the color value
of the bulge is more similar to the image background, making
it more difficult to distinguish the demarcation between source
and background. This is likewise for the dusty ring in the plane
perpendicular to its rotation axis compared to the background.

CIELAB color space, a device-independent model which de-
scribes all colors visible to the human eye, has three related
color spaces: CIE76, CIE94, and CIEDE2000. All three of these
color spaces define a slightly different metric for color difference
called ∆E∗

00 (Luo et al., 2001), which attempts to quantify how
noticeable two colors are based on knowledge that the human
eye is more sensitive to some colors than others. However, in all
formulae of ∆E∗

00, Fig. 11(a) has approximately equal or greater
values for all bulge-background and ring-background compar-
isons than Figs. 16(a), 16(b). Because these formulae are based
on Euclidean distance measurements in color space, the greater
the value between two colors represents the greater the color
difference, and thus the more perceptually different the two
colors are.

For instance, an example pixel in the brightest part of the
bulge (‘‘reference’’) and background (‘‘sample’’) of Fig. 11(a) has
(R,G, B) = (209, 214, 192) and (R,G, B) = (80, 34, 1), respec-
tively30. According to the most recent CIEDE2000 definition31
given by

∆E∗

00 =

√(
∆L′

kLSL

)2

+

(
∆C ′

kCSC

)2

+

(
∆H ′

kHSH

)2

+ RT

(
∆C ′

kCSC

)(
∆H ′

kHSH

)
,

(10)

e find ∆E∗

00 = 68.6. Meanwhile, Fig. 16(b), has (R,G, B) =

246, 208, 142) and (R,G, B) = (136, 46, 12), respectively, which
esults in ∆E∗

00 = 51.7. Hence, it is easier to discern the bulge
nd background in Fig. 11(a) as opposed to in Fig. 16(b).

28 https://github.com/eventhorizontelescope/ehtplot.
29 https://matplotlib.org/tutorials/colors/colormaps.html.
30 Before applying the formula, (R,G, B) is converted to CIE-(L∗, a∗, b∗)
oordinates.
31 See Sharma et al. (2005) for info on the CIEDE2000 color difference formulae
nd explanation.

https://github.com/eventhorizontelescope/ehtplot
https://matplotlib.org/tutorials/colors/colormaps.html


P.D. Aleo, S.J. Lock, D.J. Cox et al. / Astronomy and Computing 33 (2020) 100424 17

H

Fig. 16. Same as Fig. 11, except this applies the same perceptually uniform colormap used in the black hole imaging by the Event Horizon Telescope: afmhot_us (Event
orizon Telescope Collaboration et al., 2019). (a) uses the 5-cluster GMM results with the simplified Estra shader network, and (b) uses the custom AVL shader

without clustering.
Although using the clustering-informed results on a
perceptually-uniform colormap does not appear to be easily dis-
tinguishable in this case, it does in Fig. 11(a) where a non-
perceptually uniform colormap is used.

In deciding the ‘‘best’’ render for this work, we argue that
one which emphasizes by features of the inner regions of the
terrestrial synestia from the extended disk-like regions is optimal.
From the calculation of ∆E∗

00, this is clearly Fig. 11(a). However,
each dataset is different, and a perceptually uniform colormap
can be a quick and useful starting place for visualization teams
or scientists.
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