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Abstract—This paper proposes a smart charging/discharging-
based method to evaluate the expected maximum hosting capacity
(EMHC) of power systems to electric vehicles (EVs), The rapid
growth in the use of EVs increases the challenges to satisfy their
charging demand using existing power system resources. There-
fore, a method to quantify the EMHC of power systems to EVs is
required to plan for system improvements and ensure maximum
utilization of resources. In this work, a method to calculate the
EMHC of power systems to EVs is developed based on variable
charging/discharging rates. The EMHC is calculated for charging
stations at both homes and workplaces. The charging/discharging
rates are varied based on daily energy demand and parking
durations of EVs and network constraints. The parking duration
is calculated based on probability distribution functions (PDFs)
of arrival and departure times. The energy required to travel
each mile and PDF of daily travel distances are used to calculate
the daily energy demand of EVs. The optimization problem to
maximize the hosting capacity is formulated using a linearized
AC power flow model. The Monte Carlo simulation is used to
calculate the EMHC. The proposed method is demonstrated on
the modified IEEE 33-bus system. The results show that the daily
EMHC of the modified IEEE 33-bus system varies between 20-41
cars for selected nodes.

Index Terms—Electric vehicles, grid-to-vehicle, hosting capac-
ity, power systems, smart charging/discharging, vehicle-to-grid.

I. INTRODUCTION

The sharp increase in the amount of electricity consumption
due to rapid growth in the use of electric vehicles (EVs) has led
to increasing the challenges of satisfying electricity demand
using existing power system infrastructure. For example, from
2013 to 2018, electricity consumption by plug-in EVs in the
United States has been increased from (.3 terawatt-hours to
2.8 terawatt-hours [1]. This high increase reshapes existing
load profiles of power systems that requires appropriate coun-
termeasures or allocation of new resources to satisfy network
constraints. Also, charging periods of EVs change dynamically
due to variation in the daily driving distance, departure time,
and arrival time. This dynamic change unevenly reshapes
power system load profiles which limits the hosting capacity
(HC) of power systems to EVs. Therefore, developing a
method to quantify the maximum HC of power systems to
EVs is indispensable for system expansion and ensure efficient
utilization of resources.

Several charging/discharging strategies are proposed in the
literature to reduce negative impacts of EVs on power system
operation. In [2], a cooperative strategy is introduced to

stimulate EV owners to charge their vehicles during valley
load and discharge during peak load, which balances electric
loads, reduces power loss, and increases profits of EV owners.
In [3], a smart charging/discharging strategy is developed
for public charging stations to provide voltage and frequency
support to grids. An optimal charging/discharging strategy is
proposed in [4] to reduce the impacts of voltage drop due
to cloud shade over photovoltaic panels on microgrids. In
[5], an online charging/discharging strategy is introduced to
consider temporal and spatial coordination of EVs to improve
power utilization and avoid overloading. In [6], a two-stage
interactive charging/discharging strategy is proposed in which
the minimum charging demands of EVs are satisfied first,
and then the remaining state of charge (SOC) levels con-
tribute to reducing load fluctuation. In [7], an optimal charg-
ing/discharging strategy is developed based on reinforcement-
learning to improve power quality. Although the proposed
strategies in [2]-[7] are beneficial to increase the penetration
levels of EVs, a method to quantify the EMHC still needs to be
developed for system planners to handle high EV penetration.

Smart charging/discharging strategies are proposed in [8]—
[12] to increase financial benefits of EV charging/discharging
process. In [8], a smart charging/discharging strategy is pro-
posed to maximize the number of EVs that are charged up to
desired levels as well as financial benefits of both commercial
stations and EV owners. An intelligent charging/discharging
strategy is proposed in [9] to determine optimal charg-
ing/discharging times and rates over 24 hours to maximize
the overall profits of an EV parking deck. A game-theory-
based smart charging/discharging strategy is proposed in [10]
to maximize the financial benefits of commercial buildings
through optimizing energy consumption profiles. In [11], an
hourly electricity price-based optimal charging/discharging
scheme is proposed to maximize the profits of parking lots. An
optimal charging/discharging strategy is developed in [12] to
charge specific number of EVs at charging stations based on
economical benefits. The strategies in [8]-[12] are developed
mainly to increase financial benefits of EV owners and charg-
ing stations without providing much attention on quantifying
the HC of power grids. A voltage constrained-based method
to calculate the maximum HC of distribution systems to
EVs for both fully controlled and uncontrolled charging is
developed in [13]. In [14], the maximum permissible number
of EVs that can be penetrated at transmission system buses



are quantified using the extra hourly loading capacities. The
developed methods in [13], [14] are aimed to determine the
maximum HC considering only charging capability of EVs.
However, a method to maximize the HC for both charging
and discharging is required to ensure maximum utilization of
existing resources as well as to determine appropriate times
for the allocation of new resources.

This paper proposes a smart charging/discharging-based
method to calculate the EMHC of power systems to EVs.
A smart charging/discharging strategy for EVs and a system
architecture to implement the strategy are also proposed. The
smart charging/discharging strategy is developed based on the
daily energy demand and parking duration of EVs. Probability
distribution functions (PDFs) of arrival and departure times
are used to calculate the parking duration. The daily energy
demand is calculated based on the energy required to travel
each mile and PDF of daily travel distances. An optimization
problem to maximize the HC is formulated based on network
constraints (e.g., voltage limits, generation and line capacities,
and loads), charging/discharging limits of smart chargers,
and daily energy demand and parking durations of EVs. To
relieve the computational burden, a linearized AC power flow
model is leveraged to capture the nonlinear characteristics of
network constraints. The EMHC for charging stations at both
homes and workplaces are calculated using the Monte Carlo
simulation.

The rest of the paper is organized as follows. Section II
provides a description of smart charging/discharging strategy
and explains the problem formulation. Section III provides
the algorithm to calculate the EMHC. Numerical results based
on a modified IEEE 33-bus system are given in section IV.
Section V provides several concluding remarks.

II. SMART CHARGING/DISCHARGING STRATEGY TO
MAXIMIZE THE HOSTING CAPACITY

In the proposed smart charging/discharging strategy, the
rates are controlled by a central controller based on net-
work constraints and provided inputs (e.g., departure time,
next travel distance, and type of vehicle) to smart chargers.
This section illustrates the overall system architecture for the
proposed framework and describes the formulation of the
optimization problem to maximize the HC of power systems
to EVs.

A. System Architecture

We introduce a smart charging/discharging architecture
which is composed of smart chargers, a communication layer,
and a central controller. The smart chargers have input panels
in which EV owners provide their departure time, next travel
distance, and type of vehicle. Also, it is assumed that the
EV owners plug in their vehicles immediately after arrival.
The smart chargers can read arrival times and initial SOCs of
EVs and calculate parking duration by taking the difference
between arrival and departure times. Different types of EVs
(e.g., sedan, mid-sedan, SUV, and mid-SUV) have different
energy consumption per mile. The smart chargers are also

capable of determining the energy required to travel each mile
based on vehicle type. Moreover, the smart chargers calculate
the required charging energy as follows,

E=Dxng, 1)

where D is the expected travel distance by an EV; 7¢ is the
required energy for the EV to travel each mile; and £ is the
total energy demand of the EV.

The departure time, calculated parking duration, and energy
demand are fed as inputs to the central controller by smart
chargers using a communication channel. Also, the central
controller gathers network information such as voltage levels,
hourly generation capacities, line capacities, and loads. These
information are used to control charging/discharging rates
without violating network constraints. Each day of a year is
divided into 24 time-intervals to control charging/discharging
rates. However, the time-intervals can be adjusted based on the
requirements. The total number of intervals that are suitable for
charging and discharging depends on the arrival and departure
times. The charging and discharging of an EV cannot occur
simultaneously within a time interval and charging/discharging
power during a time interval remain unchanged.
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Fig. 1. Charging/discharging period

Fig. 1 shows an example for the timeline of charging and
discharging periods. From Fig. 1, we can see that the arrival
time, t7, departure time, t}L, and parking duration of the
nth EV are 8, 19, and 11 respectively. Therefore, the total
number of time intervals for charging/discharging is 11. The
initial and desired final energy levels are E7,; and E%; .,
respectively. The value of £, ; has to be less than or equal
to the maximum energy limit of the EV battery. If the network
has additional capacity after satisfying its existing demand
(without EV), then the EV is charged. On the other hand, if the
network fails to satisfy its existing demand (without EV), then
the EV is discharged. The charging/discharging rate during an
entire interval remains constant which is determined by the
optimization model described in Section II-B and Section II-C,
respectively. This procedure is repeated for all possible time
intervals. Also, in the proposed smart charging/discharging
strategy, it is ensured that the EV battery will achieve the
desired final energy level at the time of departure. A schematic
diagram of the proposed smart charging/discharging strategy
for a microgrid is shown in Fig. 2.

B. Objective Function

The objective employed in this paper maximizes the HC of
power systems to EVs, which is expressed as follows.
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Fig. 2. Smart charging/discharging architecture for a microgrid

where d is the index for days of a year, running from 1 to 365;
N is the set for all candidate EVs to be charged/discharged;
&4 is the required energy of the n® EV on the d** day; and
Hev:mex js the maximum HC of a power system to EVs.

C. Network Constraints

We leverage the linearized AC power flow model proposed
in [15] to describe the network constraints.

Power balance equations,
Btdghd _ grdytd 4 phd 4 pld — phd 4 pb i, vd
Glt,dat,d . Bt,dvt,d + Qz,d _ Q;’d, Vt,Vd

where ¢ is the index for hours of a day, running from 1 to 24;
B'% and G'? are the modified susceptance and conductance
matrices [15] at time ¢ on day d, respectively; B%¢ and G4
are the conventional susceptance and conductance matrices at
time t on day d, respectively; #5¢ and V%9 are the vectors
of nodal voltage angles and magnitudes at time ¢ on day d,
respectively; Pt 4 and Qt -4 are the vectors of real and reactive
power generations at time ¢ on day d, respectively; P‘L‘: and
Pcthd are the vectors for discharging and chargmg power of
EVs at time ¢ on day d, respectively; and P 4 and Ql

the vectors of real and reactive power demand (without EVs)
at time ¢ on day d, respectively.
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EV energy level at each hour for charging/discharging,
1
Ndis

where At is the duration of each time interval; 7., and 74;s
are the efficiency coefficients of charging and discharging, re-
spectively; P? and P7"? are the discharging and charging
power of n** EV at time interval ¢ on day d, respectively; and

gntd  — PRbIAL — nop PR AL = £, Vi Vd (4)

gn,t—l,d and gn,t,d

are the energy level of n** EV at time
t—1 and ¢ on day d, respectively.
Daily EV energy demand constraints,

n,d
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gn,min < gn,d < g'n,ma.x, Vd

where t™¢ and t}"d are the arrival and departure times of the
nt* EV on the d** day, respectively; £%™® and £™™>* are
the minimum and maximum battery capacity of the n*” EV,
respectively.

Charging/discharging constraints,
0< P < PR Vit Vd

6)
0< PRti< Vi, Vd L

max
dis

where P;® and PJ2* are the maximum charging and dis-

charging rates of smart chargers, respectively.

Real and reactive power generations constraints,
Prin < phd < PR Wt Vd
QF® < Qyt <QF™, Vvt,vd

where P‘fnm and P"®* are the vectors of minimum and

max1mum real power generation, respectively; and Qm“1 and

Qg®* are the vectors of minimum and maximum reactive
power generation, respectively.

)

Feeder capacity constraints,
She < Smax vt Vd
— 8kt < gmax vt Vd
where S7** and SE** are the vectors of maximum forward
and reverse feeder flow capacities, respectively; and St 4 and

St ¢ are the vectors of forward and reverse feeder ﬂows at
time ¢ on day d, respectively.

®

Voltage constraints,

ymin £ yhd < ymax -y g 9)

where V™" and V™ are the vectors of minimum and
maximum bus voltage magnitudes, respectively.

Angle constraints,

—r <o, <7 Vi,vd ao

III. CALCULATION OF THE EMHC

The proposed algorithm to calculate the EMHC of power
systems to EVs follows an iterative process, which starts
with computing the maximum HC at each day of a year.
To determine the HC at each day, we assume that there are
enough number of smart chargers deployed at both homes and
workplaces to plug in EVs immediately after arrival. Then,
the arrival times, departure times, and next travel distances
on the first day of a year for an initial number of EVs for



both homes and workplaces are determined. The arrival and
departure times are determined based on the PDFs provided
in Fig. 3 and Fig. 4. The PDFs for arrival and departure times
at homes are developed using the survey data for conventional
cars provided in [16], [17]. The PDFs for arrival and departure
times at workplaces are developed using the survey data [18].
The next travel distances are calculated based on the PDF of
daily travel distances for conventional cars shown in Fig. 5,
which is developed using the survey data provided in [17].
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Fig. 3. PDFs of (a) arrival times at homes and (b) departure
times from homes.
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Fig. 4. PDFs of (a) arrival times at workplaces and (b)
departure times from workplaces.
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Fig. 5. PDF of daily travel distances of EVs

In the next step, parking duration, required charging energy,
and initial SOC level for each EV are determined. The parking
duration is calculated by taking the difference between arrival
and departure times. The required charging energy is calcu-
lated using (1). The initial SOC level is determined randomly

between 10% to 30% of the maximum battery capacity. The
hourly demand for existing loads (without EVs) is calculated
using data tables provided in [19]. Then, the optimization
problem described in Section II is solved by using linear
programming (LP) solver. The number of EVs is updated
until the obtained solution for the optimization problem is
infeasible. The final number of EVs is the maximum HC on
first day of the year. The above procedure is repeated 365
times to calculate the maximum HC for each day of a year.
A flowchart to calculate the maximum HC at each day is

provided in Fig. 6.
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Fig. 6. Algorithm to calculate the daily maximum HC

To calculate the EMHC capacity, the above procedure is
repeated for N, years. Then, the expected maximum hosting
capacity at each day of a year is calculated as follows.

d 1 ot d
é-mzﬁzgy

Y y=1

11)



where N, is the number of simulated years; 53 is the maxi-
mum HC of power systems to EVs on the d** day of 4** year;
and ¢4, is the EMHC on the d** day of a year.

Finally, the EMHC of the power system to EVs is calculated
by taking the minimum value of daily EMHC. Following the
stopping criterion provided in [20] to evaluate power system
reliability using the Monte Carlo simulation, we introduce
a stopping criterion based on the coefficient of variance of

EMHC as follows.

V)

ém

where &, is the EMHC of power systems to EVs; V(&)
is the variance of the EMHC of power systems to EVs; and
o is the coefficient of variance. Typically, the value for o to
calculate the reliability indices is < 0.2, which is adopted for
the proposed algorithm. The variance of EMHC, V' (£,y,), is
calculated as follows,

Vi(6m) = Niy(gm &)

IV. NUMERICAL EXAMPLES

To validate the proposed method, simulations are carried
out on the modified IEEE 33-bus distribution system. The 33-
bus test system is characterized by 33 nodes, 32 branches, 5
tie-lines, 3 laterals, and operating voltage of 12.66 kV [21]. In
the modified IEEE 33-bus system, locations of the generating
units and ratings of the photovoltaic (PV) units are selected
based on the provided modification in [22]. The total peak
demand of the modified 33-bus test system is 2972 kW [22].
The limits of hourly generation amount of the PV units are
calculated using PVWatts calculator developed by the National
Renewable Energy Laboratory [23].

A specific node of a distribution system may have only
home charging stations or only workplace charging stations
or both types of charging stations. In this work, we consider
that a node contains either only home charging stations or
only workplace charging stations. Also, the charging stations
can be installed in all or several selected nodes of distribution
systems. In this work, we randomly select 10 nodes to install
charging stations. The locations of the generating units and
charging stations in the modified IEEE 33-bus distribution
system are shown in Fig. 7. The ratings of all the generating
units are given in Table 1.

TABLE I. Ratings of Generators of the Modified IEEE-33 Bus

12)

13)

Types of Locations | Rating Types of | Locations | Rating

Generators | (Node No.) (kW) Generators | (nod No.) kW)
DG 6 1200 PV 12 50
DG 8 400 PV 16 50
DG 14 400 PV 18 100
DG 24 800 PV 24 300
DG 25 800 PV 25 250
DG 30 400 PV 29 100
DG 32 400 PV 30 200
PV 7 100 PV 31 150
PV 10 100 PV 32 50

Typically, two types of chargers—Level 1: charging rate
of 1 kW/h and Level 2: charging rate of 6 kW/h—are used
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Fig. 7. Modified IEEE 33-bus

at home and work places [24]. Therefore, in this work, we
assume that charging/discharging rates of smart chargers vary
from 0-6 kW/h.

The U.S. Department of Energy is welcoming employers to
sign the pledge for workplace charging challenges to increase
the percentage of charging at workplaces [25]. Also, the
employers usually provide free charging to their employees
to increase employee satisfaction. Therefore, in this work,
we consider that the employees fulfill their entire charging
demand at workplaces. The employment rates in the United
States at each month of 2019 varied between 60-61% [26].
Thus, the distribution of EVs between homes and workplaces
are considered as 40% and 60%, respectively. The distribution
ratios of EVs between nodes are same as the distribution ratios
of existing loads.

The EMHC at each day of a year is calculated using the
algorithm described in section III. The voltage limits to calcu-
late the EMHS are maintained within 5% of base voltage [27].
The value for o is considered as 0.2. The energy consumption
to travel each mile by various types of EVs are provided
in [28], which are as follow: full-SUV 0.5075 kWh/mile,
mid-SUV 0.4375 kWh/mile, mid-sedan 0.3605 kWh/mile and
sedan 0.3225 kWh/mile. In this paper, we assume an average
(0.407 kWh/mile) of these energy consumptions per mile as
the energy required to travel each mile by an EV. The required
number of simulation years to achieve the convergence is 27
years. The calculated daily EMHC of the modified IEEE 33-
Bus system is shown in Fig. 8.

From Fig. 8, we can see that the calculated daily EMHC
varies between 2041 cars. Thus, the EMHC of the modified
IEEE 33-Bus system is 20 cars. Therefore, it can be deduced
that the power system planners can use the proposed method
to calculate the EMHC of power systems to EVs for the
allocation of resources.

V. CONCLUSION

This paper has proposed a smart charging/discharging-based
method to calculate the EMHC of power systems to EVs.
In the proposed method, the charging/discharging rates are
controlled based on network constraints, charging/discharging
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limits of smart chargers, and daily energy demand and parking
durations of EVs. The parking durations are calculated based
on the PDFs of arrival and departure times. The daily energy
demand is calculated based on energy required to travel each
mile and PDF of daily travel distances. The optimization
problem to maximize the HC is formulated using linearized
AC power flow and solved by LP solver. The EMHC is
calculated for charging stations at both homes and workplaces.
The proposed method was demonstrated on the modified IEEE
33-bus system as a power system. The results showed that the
daily EMHC of modified IEEE 33-bus system varied between
20-41 cars for selected nodes.
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