
 

Quantum algorithms for jet clustering

Annie Y. Wei,
1,*

Preksha Naik ,
1,†

Aram W. Harrow ,
1,‡

and Jesse Thaler
1,2,§

1
Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
2
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 10 September 2019; revised manuscript received 28 February 2020; accepted 15 April 2020; published 14 May 2020)

Identifying jets formed in high-energy particle collisions requires solving optimization problems over

potentially large numbers of final-state particles. In this work, we consider the possibility of using quantum

computers to speed up jet clustering algorithms. Focusing on the case of electron-positron collisions, we

consider a well-known event shape called thrust whose optimum corresponds to the most jetlike separating

plane among a set of particles, thereby defining two hemisphere jets. We show how to formulate thrust both

as a quantum annealing problem and as a Grover search problem. A key component of our analysis is the

consideration of realistic models for interfacing classical data with a quantum algorithm. With a sequential

computing model, we show how to speed up the well-known OðN3Þ classical algorithm to an OðN2Þ
quantum algorithm, including the OðNÞ overhead of loading classical data from N final-state particles.

Along the way, we also identify a way to speed up the classical algorithm to OðN2 logNÞ using a sorting

strategy inspired by the SISCone jet algorithm, which has no natural quantum counterpart. With a parallel

computing model, we achieve OðN logNÞ scaling in both the classical and quantum cases. Finally, we

consider the generalization of these quantum methods to other jet algorithms more closely related to those

used for proton-proton collisions at the Large Hadron Collider.

DOI: 10.1103/PhysRevD.101.094015

I. INTRODUCTION

Jets are collections of collimated, energetic hadrons

formed in high-energy particle collisions. With an appro-

priate choice of jet clustering algorithm [1], jets are a robust

probe of quantum chromodynamics and a useful proxy for

determining the kinematics of the underlying hard scatter-

ing process. The problem of identifying jets from collision

data is a nontrivial task, however, since the jet clustering

algorithm must be matched to the physics question of

interest. Moreover, it is a computationally intensive task, as

it often involves performing optimizations over potentially

large numbers of final-state particles.

In this paper, we consider the possibility of using quantum

computers to speed up jet identification. We focus on the

well-known problem of partitioning an electron-positron

collision event into two hemisphere jets, though our

results are relevant for other optimization problems beyond

high-energy physics. Our main results are summarized in

Table I, where the computational scaling is given for N
particles in the final state.We show how to improve thewell-

known OðN3Þ classical algorithm [2] to an OðN2Þ quantum
algorithm, which includes the cost of loading the classical

data into a sequential quantum computing architecture.

On the other hand, we also show how to speed up the

classical algorithm to OðN2 logNÞ, using a clever sorting

strategy from Ref. [3], which matches the quantum perfor-

mance up to logN factors. Finally, using parallel computing

architectures, we achieve OðN logNÞ scaling in both the

classical and quantum cases, albeit for very different com-

putational reasons.

Quantum algorithms have been shown to achieve speed-

ups over classical algorithms [4], resulting, in theory, in

time savings which are even more pronounced over large

datasets. That said, many proposed quantum algorithms for

machine learning tasks often omit considerations that

would be needed to actually implement them in practice,

such as a strategy to interface classical data with a quantum

computing architecture. One solution is to assume the

availability of qRAM [5], which would let our quantum

computer access a classical dataset in superposition;

however, this additional hardware requirement may not

be easy to implement in practice. Here, we consider

realistic applications of both quantum annealing [6–8]

and Grover search [9–11] to jet finding, including the

*
anniewei@mit.edu

†
prekshan@mit.edu

‡
aram@mit.edu

§
jthaler@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 101, 094015 (2020)

2470-0010=2020=101(9)=094015(20) 094015-1 Published by the American Physical Society



OðNÞ overhead of loading classical collision data into the

quantum computer.

The specific jet finding algorithm we use is based on

thrust [12–14]. Thrust is an event shape widely measured in

electron-positron collisions [15–27]. The optimum value of

thrust defines the most jetlike separating plane among a set

of final-state particles, thereby partitioning the event into

two hemisphere jets. Algorithmically, it poses an interest-

ing problem because it can be viewed in various equivalent

ways—such as a partitioning problem or as an axis-finding

problem—which in turn lead to different algorithmic

strategies.

We note that practical thrust computations typically

involve only 10–1000 particles per event, so the current

OðN3Þ classical algorithm [2] is certainly adequate to the

task. That said, more efficient jet algorithms are of general

interest, for example, in the context of active area calcu-

lations [28], which can involve up to millions of ghost

particles. We also note that the current default jet algorithm

at the Large Hadron Collider (LHC) is anti-kt [29], which
already runs in OðN logNÞ time [30,31], and it is unlikely

that any quantum algorithm can yield a sublinear improve-

ment. On the other hand, anti-kt is a hierarchical clustering
algorithm (i.e., a heuristic), whereas thrust is a global

optimization problem, and there are phenomenological

contexts where global jet optimization could potentially

yield superior physics performance [32,33]; see also

Refs. [34–47]. Jet finding via global optimization has

not seen widespread adoption, in part because of the

computational overhead, and we hope the quantum and

improved classical algorithms developed here spur more

research on alternative jet finding strategies.

Beyond the specific applications to jet finding, we

believe that the broader question of identifying realistic

quantum algorithms for optimization problems should be of

interest to both the particle physics and quantum computing

communities. Indeed, we regard thrust as a warm-up

problem for the more general development of quantum

algorithms for collider data analysis. (For other quantum

algorithms for collider physics, see Refs. [48,49] for Higgs

boson identification, Refs. [50,51] for parton shower

generation, and Refs. [52–54] for track reconstruction.)

Because collider data are classical (and will likely remain

so for the foreseeable future), understanding the limitations

imposed by data loading is essential to evaluate the

potential of quantum algorithms to speed up or improve

data analysis pipelines. At the same time, it is important to

assess potential classical improvements to existing collider

algorithms, and the sorting strategy of Ref. [3] is an

important example of how new classical strategies can

sometimes match the gains from quantum computation.

Turning now to an extended outline of this paper, our

quantum algorithms build on existing classical strategies to

compute thrust. In Sec. II, we define thrust in its various

equivalent manifestations, as both a partitioning problem

and an axis-finding problem. Then, in Sec. III, we review

classical algorithms for computing thrust based on a search

over reference axes. As already mentioned, the best known

result in the literature requires OðN3Þ time [2]. We show

how to improve it to OðN2 logNÞ using a sorting strategy

inspired by SISCone [3], which appears to have no quantum

analog (see Sec. V D).

The first quantum method we consider in Sec. IV

involves formulating thrust as a quadratic unconstrained

binary optimization (QUBO) problem, which can then be

solved via quantum annealing [6,7]. This comes from

viewing thrust as a partitioning problem and then consid-

ering the brute force enumeration of all candidate parti-

tions. See Refs. [55,56] for other studies of quantum

annealing for clustering with unique assignment.

The core results of this paper are in Sec. V, where we

describe quantum algorithms for computing thrust based on

Grover search [9]. Although naively Grover search offers a

square root speedup over any classical search algorithm, in

practice Grover search cannot yield sublinear algorithms.

The reason is that data loading over a classical database of

size N requires OðNÞ time, which limits the achievable

gains. That said, if the classical search space scales like

OðNαÞ, we can still use the Grover strategy to reduce the

search loop to OðNα=2Þ, though there will be an additional

additive (multiplicative) factor of OðNÞ if data loading has

to happen outside (inside) of the loop. Using the formu-

lation of thrust as a search over reference axes, we show

that α ¼ 2 in the thrust case. Thus, we can attribute our

TABLE I. Summary of classical and quantum thrust algorithms, where the asymptotic scaling is for a single

collision event with N particles. All strategies have a classical space overhead of OðNÞ bits for read access to the

classical data. The classical sorting strategies also require write access to OðN logNÞ bits. For ease of exposition
throughout, we treat each real number as being specified to a constant Oð1Þ bits of precision.

Implementation Time usage Qubit usage Sections

Classical [2] OðN3Þ … Sec. III A

Classical with sort (using [3]) OðN2 logNÞ … Sec. III C

Classical with parallel sort OðN logNÞ … Sec. III D

Quantum annealing Gap Dependent OðNÞ Sec. IV

Quantum search: sequential model OðN2Þ OðlogNÞ Sec. V C

Quantum search: parallel model OðN logNÞ OðN logNÞ Sec. V E

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-2



speedup to the fact that data loading is performed in

superposition, which means that it still requires only

OðNÞ time despite working over a search space of

size OðN2Þ.
The precise speedup achievable in our Grover search

strategy depends on the assumed quantum computing

paradigm. We implement two models for retrieving and

processing the classical data, based on the abstract oper-

ations LOOKUP and SUM. The sequential computing

model requires Õð1Þ qubits and results in an OðN2Þ thrust
algorithm. Here we use Õð·Þ to mean that we neglect factors

that are polylog in N. The parallel computing model

requires ÕðNÞ qubits and results in an OðN logNÞ thrust
algorithm. Both computing models are applicable to any

general problem where the size of the search space scales

like OðNαÞ with α ≥ 2, which are precisely the problems

that can typically be sped up with a realistic application of

Grover search.

In Sec. VI, we assess whether or not there is any

quantum advantage for hemisphere jet finding. Formally,

if one has read access to OðNÞ classical bits but only write

access to OðlogNÞ bits, then one cannot implement the

classical sorting strategy in Sec, III C. In that case, there is a

quantum advantage for both sequential and parallel com-

puting models. With write access to OðN logNÞ classical
bits, though, classical sorting is possible, and the asymp-

totic performance of our classical and quantum algorithms

is identical (up to logN factors) in both the sequential and

parallel cases. This equivalence appears to be special to

algorithms like thrust where the search space scales like

OðN2Þ, and we speculate that larger search spaces might

benefit from Grover speedups even if classical sorting is

possible.

Finally, in Sec. VII, we briefly consider generalizations

of our results to jet algorithms more closely related to those

used at the LHC. We consider jet function maximization

[43–45], showing that, with suitable modifications, it can

be written in QUBO form for quantum annealing. We

consider stable cone finding in the spirit of SISCone [3],

showing how a single-jet variant we dub SINGLECONE is

amenable to quantum search. We also comment on quan-

tum multijet finding motivated by the XCone algorithm

[32,33]. We conclude in Sec. VIII with some broader

lessons about quantum algorithms for collider physics.

II. DEFINITION OF THRUST

We start by defining thrust [12–14], noting that it has

multiple equivalent definitions that suggest different algo-

rithmic strategies, as shown in Fig. 1. Thrust can be viewed

as a partitioning problem, which lends itself naturally to

quantum annealing. Thrust can alternatively be viewed as

an axis-finding problem, which we can frame as a quantum

search problem. Both definitions of thrust can be stated in

terms of operator norms, and through this lens, they are in

fact dual to each other.

A. Thrust as a partitioning problem

Consider a set of N three-momenta fp⃗ig in their center-

of-momentum frame, where p⃗i ¼ fpx
i ; p

y
i ; p

z
ig,

X

N

i¼1

p⃗i ¼ 0: ð1Þ

An intuitive formulation of thrust (though not exactly the

original one [12,13]) is to separate the particles into a

partition HL ∪ HR such that momenta on each side are as

“pencil-like" as possible. That is, we seek to maximize the

quantity

TðHLÞ ¼
2j
P

i∈HL
p⃗ij

P

N
i¼1 jp⃗ij

¼
2j
P

i∈HR
p⃗ij

P

N
i¼1 jp⃗ij

; ð2Þ

where the second equality follows from momentum con-

servation. The quantity known as “thrust” corresponds to

the maximum obtainable value,

T ¼ max
HL

TðHLÞ: ð3Þ

The factor of 2 in Eq. (2) is conventional such that

1=2 ≤ T ≤ 1, where T ¼ 1 corresponds to a perfectly

pencillike back-to-back configuration and T ¼ 1=2 is an

isotropic event.

FIG. 1. Two equivalent definitions of thrust as (left) a partitioning problem and (right) an axis-finding problem. The best known

classical algorithm is based on plane partitioning via a reference axis r̂ (which in general differs from the thrust axis).

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-3



There is an equivalent geometric formulation of Eq. (2)

due to Ref. [57]. Consider sequentially summing the three-

momenta fp⃗ig to form a closed polygon. Each sequence

yields a different polygon, and computing thrust is equiv-

alent to maximizing twice the diagonal of the polygon over

all possible polygons, normalized by the circumference of

the polygon. The diagonal splits the polygon into two

halves, which yield the partition HL ∪ HR. The particles in

HL are said to be in the “left hemisphere jet" and the

particles in HR are said to be in the “right hemisphere jet.”

This definition immediately suggests a naive, brute-force

classical strategy for computing thrust. We can enumerate

all Oð2NÞ possible partitions (which can be reduced to

Oð2N−1Þ using momentum conservation), and then we sum

the momenta in each to determine the maximum, resulting

in an OðN2NÞ algorithm. This is the version of thrust we

will use for the quantum annealing formulation in Sec. IV,

which corresponds to attacking the problem using quantum

brute force.

B. Thrust as an axis-finding problem

An alternative definition of thrust is as an axis-finding

problem, which is a bit closer to the historical definition

[12,13]. Let n̂ be a unit norm vector and define

Tðn̂Þ ¼
P

N
i¼1 jn̂ · p⃗ij
P

N
i¼1 jp⃗ij

: ð4Þ

Thrust can then be determined by the maximum value of

Tðn̂Þ over n̂,

T ¼ max
jn̂j¼1

Tðn̂Þ: ð5Þ

The optimal n̂ is known as the thrust axis,

n̂opt ≡ argmax
jn̂j¼1

Tðn̂Þ: ð6Þ

To gain some intuition for why Eqs. (3) and (5) are

equivalent, note that once we find the thrust axis n̂opt, we
can partition the particles into those with n̂opt · p⃗i > 0 and

those with n̂opt · p⃗i < 0. (It is an interesting bit of computa-

tional geometry to show that n̂opt · p⃗i can never be exactly

zero for a finite number of particles.) Said another way, the

plane normal to n̂opt partitions the event into left and right

hemispheres. Starting from a nonhemisphere partition, it is

always possible to increase the value of thrust in Eq. (2) by

flipping a particle from one side to the other, so the optimal

partition will be defined by a plane. Because of this

equivalence between axis finding and plane partitioning,

the thrust objective is sometimes written as

Tðn̂Þ ¼ 2
P

N
i¼1Θðn̂ · p⃗iÞðn̂ · p⃗iÞ

P

N
i¼1 jp⃗ij

; ð7Þ

where the Heaviside theta function picks out particles in

just one hemisphere.

Note that the optimal partitioning plane is not unique,

since there can be multiple planes that yield the same

partition. We can exploit this fact to find a computationally

convenient partitioning plane, defined by a normal refer-

ence axis r̂. This reference axis will in general be different

from the thrust axis n̂opt but nevertheless yield the same

value of thrust via Eq. (2). Specifically, once the optimal

partition is known via a reference axis, the thrust axis can be

determined from the total three-momentum in the left

hemisphere,

n̂opt ¼
P

i∈HL
p⃗i

j
P

i∈HL
p⃗ij

: ð8Þ

We will use this reference axis approach for the classical

thrust algorithms in Sec. III and for the quantum search

strategies in Sec. V.

C. Duality of thrust definitions

Using the formalism of operator norms, we can show that

these two definitions of thrust are in fact dual to each other.

LetM∶V →W be a map from V ¼ R
m with norm k · kα

to W ¼ R
n with norm k · kβ. The operator norm of M,

known as the induced α-to-β norm, is defined as

kMkα→β ≡ max
kvkα¼1

kMvkβ: ð9Þ

That is, we search over all vectors v in V with norm 1 and

find the maximum norm for the vector Mv in W. The case

when α and β are both the usual L2 norm corresponds to the

largest singular value of M, but in general kMkα→β can be

NP hard to estimate [58]. (Here NP is the class of problems

whose solution can be verified in polynomial time, so an

NP hard problem is one that is at least as difficult as the

hardest problem in NP.) By duality, we can rewrite this as

max
kvkα¼1

kMvkβ ¼ max
kykβ�¼1

kMTykα ¼ kMTkβ�→α; ð10Þ

where y is in W�, the vector space dual to W, defined as

W
� ¼ R

n with dual norm k · kβ�. Thus, the α-to-β norm of

M is the same as the β�-to-α norm of MT .

In the context of thrust, we are interested in the following

norms for a vector v ∈ R
n:

kvk1 ¼
X

i

jvij; ð11Þ

kvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

X

i

v2i

r

; ð12Þ

kvk∞ ¼ max
i
jvij: ð13Þ

These are known, respectively, as the one-norm, two-norm,

and sup-norm. By Hölder’s inequality, the space of vectors

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-4



endowed with the p norm is dual to the space of vectors

endowed with the q norm, where 1
p
þ 1

q
¼ 1. In particular,

the one-norm is dual to the sup-norm, and the two-norm is

dual to itself.

Now consider the matrix Mij ¼ ðp⃗iÞj, whose rows are

the N three-momenta and whose columns are the px, py,

and pz components. This is a map from R
3 to R

N . Letting

α ¼ 2 and β ¼ 1, the induced 2-to-1 norm of M is

kMk2→1 ¼ max
kn̂k2¼1

kMn̂k1 ¼ max
n̂2¼1

X

N

i¼1

jn̂ · p⃗ij: ð14Þ

We recognize the last term as the numerator of Tðn̂Þ in

Eq. (4). Since the denominator of Tðn̂Þ is independent of n̂,
this is equivalent to the definition of thrust via axis finding

in Sec. II B. Thus, thrust takes the form of an induced 2-to-1

norm problem.

By duality, with β� ¼ ∞, thrust can alternatively be

viewed as a sup-to-2 norm problem,

kMTk∞→2 ¼ max
ksk∞¼1

ksMk2 ¼ max
si∈f−1;þ1g

�

�

�

�

X

N

i¼1

sip⃗i

�

�

�

�

2

: ð15Þ

This corresponds to the definition of thrust via partitioning

in Sec. II A, since setting si ¼ −1 denotes flipping the

orientation of vector p⃗i relative to the partitioning plane,

while setting si ¼ 1 retains the orientation of p⃗i.

Therefore, we see that the problem of computing thrust

in particle physics is in fact a special instance of the more

general problem of computing induced matrix norms.

While there exist choices of α and β for which efficient

algorithms for computing kMkα→β exist for arbitrary M, it

is believed that the general problem of computing the

induced 2-to-1 norm and that of computing the induced

∞-to-2 norm are both NP hard [59–61]. This suggests that

thrust is an excellent test bed to explore possible gains from

quantum computation.

D. Alternative duality derivation

There is alternative language to understand this thrust

duality that will be useful for the generalizations in

Sec. VII. This approach is based on Ref. [62], which

showed that different jet finding strategies can sometimes

be derived from a common metaoptimization problem.

Consider a partition H (not necessarily defined by a

plane) with total three-momentum,

P⃗ ¼
X

i∈H

p⃗i: ð16Þ

Our analysis is based on the following objective function

that depends on both a choice of partition and a choice

of axis:

OðP⃗; n̂Þ ¼ n̂ · P⃗þ λðn̂2 − 1Þ; ð17Þ

where λ is a Lagrange multiplier to enforce that the axis n̂

has unit norm. At this point, P⃗ and n̂ are completely

independent entities, and n̂ does not play any role in

determining the partition H.

For fixed P⃗, we can optimize OðP⃗; n̂Þ over n̂,

n̂opt ¼
P⃗

jP⃗j
: ð18Þ

Plugging this into Eq. (17) yields

OðP⃗Þ≡OðP⃗; n̂optÞ ¼ jP⃗j; ð19Þ

which is (half) of the thrust numerator in Eq. (2).

For fixed n̂, we can optimize OðP⃗; n̂Þ over P⃗ (or

equivalently, over the partition H),

P⃗opt ¼
X

N

i¼1

Θðn̂ · p⃗iÞp⃗i: ð20Þ

Plugging this into Eq. (17) yields

Oðn̂Þ≡OðP⃗opt; n̂Þ ¼
X

N

i¼1

Θðn̂ · p⃗iÞðn̂ · p⃗iÞ; ð21Þ

which is (half) of the thrust numerator in Eq. (7).

Since the order of optimization is irrelevant to the final

optimum, this again shows that the two thrust definitions

are dual. Either way, the maximum value of the objective

function will be

OðP⃗opt; n̂optÞ ¼ jP⃗optj; ð22Þ
which, following Ref. [57], is just the maximum achievable

polygon diagonal.

III. CLASSICAL ALGORITHMS

We now describe the best known classical algorithm

for thrust in the literature, which requires OðN3Þ time, and

then show how it can be improved to OðN2 logNÞ using a

sorting technique from Ref. [3]. We start by assuming a

sequential classical computing model in this section and

end with a brief discussion of parallel classical computing.

A. Plane partitioning via a reference axis

The best known classical thrust algorithm [2] uses the

reference axis approach discussed at the end of Sec. II B.
1

This is the thrust algorithm implemented in PYTHIA as of

1
Strangely, Ref. [2] claims OðN2Þ usage, which only includes

the number of partitions to check, not the computation of
thrust itself.

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-5



version 8 [63].
2
The key realization is that, because of

Eq. (8), one only needs to search over inequivalent plane

partitions. Two particles are sufficient to determine a

separating plane, so there are OðN2Þ inequivalent plane

partitions to consider. For each partition, determining

TðHLÞ takes OðNÞ, leading to an OðN3Þ algorithm.
More specifically, for each pair of particles p⃗i and p⃗j,

one determines a reference axis r̂ij normal to the plane

spanned by them,

r̂ij ≡
p⃗i × p⃗j

jp⃗i × p⃗jj
: ð23Þ

Then, each particle p⃗k is either assigned to the hemisphere

Hij if r̂ij · p⃗k > 0 or ignored if r̂ij · p⃗k < 0. Cases where

r̂ij · p⃗k ¼ 0 are ambiguous, and we provide a general

strategy to deal with this in Sec. III B below. At minimum,

we have to treat the cases where k ¼ i or j, which requires

testing 2 × 2 ¼ 4 possibilities for whether or not p⃗i and/or

p⃗j should be included in Hij, for a total of 4NðN − 1Þ
partitions. (This can be reduced by a factor of 2 using

momentum conservation, since r̂ij and r̂ji define the same

hemispheres.) The final hemisphere jets are determined by

the partition that maximizes

Tij ≡ TðHijÞ: ð24Þ

Note that, in general, none of the OðN2Þ reference axes
considered will align with the actual thrust axis.

Nevertheless, the partitions defined by r̂opt and n̂opt will

be identical. (In the idealized case of infinitesimal radiation

everywhere in the event, all possible separating planes

would be considered, so r̂opt would then equal n̂opt.) Once

the optimal partition is known, the thrust axis itself is

determined by Eq. (8).

In terms of computational complexity, for a fixed hemi-

sphere Hij, it takes OðNÞ time to compute the hemisphere

three-momentum in Eq. (16). The thrust denominator

Tdenom ¼
P

N
i¼1 jp⃗ij also takes OðNÞ time, but it can be

precomputed since it is independent of the partition. Once

P⃗ij and Tdenom are known, though, it only takes Oð1Þ time

to determine the value of Tij,

Tij ¼
2jP⃗ijj
Tdenom

; ð25Þ

where we used Eq. (8) to derive this expression. For the best

known classical algorithm, there are OðN2Þ partitions, and
we have to do an OðNÞ computation of TðHijÞ for each

partition, leading to theOðN3Þ scaling. In Sec. III C, we can
improve on this runtime by iteratively updating P⃗ij in a

special order.

B. Doubling trick

To simplify the thrust algorithm, it is convenient to

artificially double the number of particles. Starting from N
three-momenta, we create a list of length 2N by including

both p⃗k and its negative −p⃗k. Because p⃗k and −p⃗k can

never be in the same hemisphere, and because of the

momentum conservation relation in Eq. (2), this doubling

trick has no effect on the value of thrust. It does, however,

provide us with a convenient way to deal with the fourfold

ambiguity above, since we can now define the hemisphere

Hij to always include particle i and particle j.

To deal with cases where r̂ij · p⃗k ¼ 0 (i.e., any time three

or more particles are coplanar), we offset the reference

axis by

r̂ij → r̂ij þ ϵq⃗ij; q⃗ij ≡
p⃗i

jp⃗ij
þ p⃗j

jp⃗jj
; ð26Þ

and then take the formal ϵ → 0 limit. Specifically, if

r̂ij · p⃗k¼0, then particle p⃗k is included in Hij if q⃗ij · p⃗k>0

and ignored otherwise.

Crucially, Eq. (26) ensures that p⃗i and p⃗j are always in the

hemisphere Hij, but −p⃗i and −p⃗j are not. (One has to be

mindful of the pathological situation where p⃗i and p⃗j are

exactly antiparallel, though in this case, thrust is determined

by one of the other hemisphere partitions.) The hemisphere

three-momentum is now

P⃗ij ¼
1

2

X

k∈Hij

p⃗k; ð27Þ

where the factor of 1
2
compensates for the artificial doubling.

We will use this doubling trick repeatedly in this paper,

though not for quantum annealing in Sec. IV where it is

counterproductive. To simplify the description of the

algorithms, we will leave implicit the treatment of all

r̂ij · p⃗k ¼ 0 cases via Eq. (26). It is worth mentioning that

an alternative way to deal with coplanar configurations is to

offset the momenta by a small random amount, but we find

the doubling trick to be more convenient in practice since it

avoids the fourfold ambiguity automatically.

C. Improvements via sort

The OðN3Þ algorithm can be further improved to run in

time OðN2 logNÞ.3 This can be achieved using a strategy

from SISCone [3] which uses a clever choice of traversal

order. Note that SISCone is intended for proton-proton

2
Version 6 of PYTHIA [64] uses a heuristic to approximate

thrust, via an iterative procedure that updates the partition starting
from seed axes. While this method converges very quickly, it only
finds a local maximum, not the global one [57], though this may
be sufficient for practical applications. See related discussion in
Ref. [32].

3
We thank Gregory Soyez for discussions related to this point.

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-6



collisions, whereas our interest here is in electron-positron

collisions, but the same basic strategy still applies.

The goal of SISCone is to find conical jet configurations J
where the enclosed particles are within a distance R from

the cone axis n̂J. Moreover, these cone jets must be stable,

meaning that the jet three-momentum P⃗J ¼
P

i∈J p⃗i is

aligned with the cone axis n̂J. Like thrust, SISCone involves
solving a partitioning problem where the naive brute-force

approach requires OðN2NÞ time. Like for thrust, one can

reduce the naive runtime for SISCone toOðN3Þ using the fact
that two points lying on the circumference of a circle are

sufficient to determine the cone constituents. There is an

eightfold ambiguity in the cone assignments, which we

discuss further in Sec. VII C.

The key insight of Ref. [3] is that one need not

recompute P⃗J for all OðN2Þ candidate cones. Ignoring

the eightfold ambiguity, let the candidate cones be labeled

by i and j. For fixed i, one can define a special traversal

order for j such that only one particle enters or leaves the

cone at a time. There are N particles labeled by i, and for

fixed i, sorting over j takes OðN logNÞ time. After the

initial OðNÞ determination of P⃗J for the first j values in the

sorted list, updating the value of P⃗J for each j iteration only
requires Oð1Þ time, since you need to only add the

momentum of a point entering the cone or subtract the

momentum of a point leaving the cone. Thus, the final

algorithm is OðN2 logNÞ.
We can apply exactly the same sorting strategy to the

computation of thrust, as shown in Fig. 2. The reason is that

the reference axis r̂ij depends only on the cross product

p⃗i × p⃗j. This means that for fixed p⃗i, we can choose an

ordering of the p⃗j such that the partitions induced by

fr̂i1;…; r̂iNg are specified by a single sortable parameter.

To see this, it is convenient to transform to a coordinate

system where p⃗i points in the z direction, i.e., p⃗i ¼
jp⃗ijð0; 0; 1Þ. For any j ≠ i, we can write p⃗j in spherical

coordinates as p⃗j ¼ jp⃗jjðsin θj cosϕj; sin θj sinϕj; cos θjÞ,
where θj is the polar angle and ϕj is the azimuthal angle.

Then r̂ij ¼ ð− sinϕj; cosϕj; 0Þ, so the partition is indeed

determined by the single parameter ϕj, independent of θj.

Specifically, particle k is in hemisphere Hij if

r̂ij · p̂k ¼ sin θk sinðϕk − ϕjÞ ð28Þ

is positive. This implies that 0 < ϕk − ϕj < π, where azi-

muthal angle differences are calculated modulo 2π.

Furthermore, because of the doubling trick, there is a

simple way to determine which particles are in the partition.

With the doubling, there are 2N possible choices for i, and
by Eq. (26) we know that the doubler −p⃗i cannot be in the

same partition as p⃗i. Using the above coordinate system,

we can sort the remaining 2N − 2 vectors according to their

ϕ coordinates, so that 0 ≤ ϕj1
≤ ϕj2

≤ � � � ≤ ϕj2N−2
< 2π.

(In cases where two particles happen to have identical

values of ϕj, their relative ordering does not matter for the

argument below, as long as the doublers are also put in the

same order.) Crucially, for a particle at position a in this

sorted list, its doubler (which is π away in azimuth) must be

at position aþ N − 1. To see why, note that a hemisphere

either contains a particle or contains its doubler, so there

must be exactly N particles in each hemisphere. Particle i is
already accounted for, meaning that any candidate partition

must contain N − 1 entries from the sorted list. Since the

sorted list is ordered by azimuth, and since the partitioning

is determined by azimuth alone via Eq. (28), the N − 1

elements from position a to position aþ N − 2 inclusive

must be in a common partition, and the doubler must be the

next one on the list. Therefore, candidate thrust partitions

always take the form

Hi;ja
¼ fi; ja; jaþ1;…; jaþN−2g: ð29Þ

(Note that, as in Eq. (26), both particle i and particle ja are
always contained in Hi;ja

.)

These observations allow us to construct an OðN2 logNÞ
algorithm for thrust. The outer loop involves iterating over all

2N choices for i. The inner loop involves the following

OðN logNÞ algorithm. We perform the sorting procedure

above for fixed i, which takesOðN logNÞ time. For the first

element in the sorted list, we determine the partition Hi;j1

using Eq. (29) with a ¼ 1. We can readily compute P⃗i;j1
via

Eq. (27) in timeOðNÞ and then compute the associated thrust

value via Eq. (25) in Oð1Þ. For the subsequent 2N − 3

elements of the sorted list, we step through them one by one,

updating the partition from Hi;ja
¼ fi; ja; jaþ1;…; jaþN−2g

toHi;jaþ1
¼ fi; jaþ1; jaþ2;…; jaþN−1g. In doing so, we need

FIG. 2. Illustration of the sorting algorithm around the p⃗i axis

(seen from the top down). The dashed vectors correspond to the

doubling trick. As the blue partitioning plane sweeps in azimuth,

the hemisphere momentum is updated according to Eq. (30).

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-7



to subtract p⃗ja
and add p⃗jaþN−1

(which is the same as−p⃗ja
by

the doubling trick), leading to the update step,

P⃗i;jaþ1
¼ P⃗i;ja

− p⃗ja
; ð30Þ

where one has to remember the factor of 1
2
in Eq. (27). From

the updated momentum, we recompute the associated thrust

value via Eq. (25) inOð1Þ time. The total time from stepping

through the 2N − 3 partition momenta isOðNÞ, so the inner
loop is dominated just by the initialOðN logNÞ sorting step.
The maximum Tij over all i and sorted j determines the final

hemisphere jets.

D. Parallel classical algorithm

The sorting algorithm above requires OðN2 logNÞ oper-
ations. In a model with a single CPU and random-access

memory, this corresponds to time OðN2 logNÞ as well. We

can also consider parallel computing models in which theN
words of memory are accompanied by N parallel process-

ors; see Ref. [65] for more discussion of these models. In

this case, we will see that a runtime of OðN logNÞ can be

achieved. For simplicity, we do not consider the general

case in which the number of parallel CPUs and the amount

of memory can be varied independently, nor will we discuss

the varying models of parallel computing in Ref. [65].

We briefly sketch here how the sorting strategy in

Sec. III C can be sped up with parallel processors. There

are three main computational bottlenecks: iterating over

all particles i (Citer), sorting over particles j for fixed i
(Csort), and determining the hemisphere constituents over

each j for fixed i (Chemi), leading to a runtime of

OðCiterðCsort þ ChemiÞÞ. For sequential classical computing,

we found Citer ¼ OðNÞ, Csort ¼ OðN logNÞ, and Chemi ¼
OðNÞ. A parallel computer cannot improve on Citer, but

there are parallel computing algorithms for sorting [66]

and partial sums [67] that would allow us to achieve

Csort ¼ Chemi ¼ OðlogNÞ, leading to a OðN logNÞ run-

time. We will compare the quantum and classical parallel

architectures in Sec. VI.

IV. THRUST VIA QUANTUM ANNEALING

The first quantum algorithm we describe is based on

quantum annealing [6,7]. In a quantum annealer such as

the D-Wave system [8], the solution to an optimization

problem is encoded in the ground state of a target

Hamiltonian. Such a Hamiltonian takes the form of an

Ising model,

HðfsigÞ ¼
X

N

i¼1

hisi þ
X

N

i<j¼1

Jijsisj; ð31Þ

where each of the N Ising spins si ∈ f−1;þ1g corresponds
to a qubit, and the fhig and fJijg correspond to program-

mable weights and couplings between qubits, respectively.

Equivalently, under the transformation si ¼ 2xi − 1, we

can frame the optimization problem as a QUBO problem,

where the objective function takes the form

OðfxigÞ ¼
X

N

i;j¼1

Qijxixj ð32Þ

for xi ∈ f0; 1g. Note that the fact that i, j are now summed

with repeated indices and the fact that x2i ¼ xi allow us to

absorb the linear terms into the quadratic terms.

For the thrust problem, it is convenient to first define the

three-momentum of a candidate partition as

P⃗ðfxigÞ ¼
X

N

i¼1

p⃗ixi; ð33Þ

where xi ¼ 1 if particle p⃗i is in the partition and xi ¼ 0

otherwise. Following Eq. (25), the thrust of this partition is

given by

TðfxigÞ ¼
2jP⃗j
Tdenom

¼ 2

Tdenom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i;j¼1

p⃗i · p⃗jxixj

v

u

u

t : ð34Þ

Because of the square root factor, this is not a QUBO

problem, but since the optimal partition is the same for

any monotonic rescaling of TðfxigÞ, we can optimize the

squared relation

TðfxigÞ2 ¼
4

T2
denom

X

N

i;j¼1

p⃗i · p⃗jxixj; ð35Þ

which now takes the form of the QUBO problem in

Eq. (32), as desired. Finding the ground state of

−TðfxigÞ2 (note the minus sign) is the same as determining

thrust.

The space usage of a quantum annealing algorithm is

OðNÞ, corresponding to one qubit for each xi. The

annealing time required depends on the spectral gap of

the particular Hamiltonian, and we leave the question of

determining the spectral gap of the thrust objective function

to future work.

V. THRUST VIA QUANTUM SEARCH

We now describe a quantum algorithm for thrust based

on Grover search. We first describe the algorithm in terms

of two abstract operations, LOOKUP and SUM, both of

which perform data loading in superposition. Then, we

describe two computing models for loading the classical

data into quantum memory: the sequential model and the

parallel model. Key to the algorithmic speedups we achieve

is the fact that even if quantum data loading takes time

OðNÞ, other calculations inside the Grover search loop also

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-8



take OðNÞ in both the classical and quantum models, so

we gain from decreasing the effective search space from

OðN2Þ to OðNÞ. The sequential model results in an

algorithm that requires OðN2Þ time and OðlogNÞ qubits.

The parallel model requires OðN logNÞ time and

OðN logNÞ qubits. We also assess how the resource

requirements of these algorithms scale with the precision

of the computation.

A. Algorithm overview

Our quantum thrust algorithm is based on the quantum

maximum finding algorithm of Dürr and Høyer [11], which

returns the maximum element of an unsorted array with K

elements in Oð
ffiffiffiffi

K
p

Þ time, assuming quantum query access

to the array. This algorithm is itself a generalization of

Grover search [9].

In this context, quantum query access means that for an

array A½1�;…; A½K�, we can efficiently perform a unitary

operation U such that

UAjiij0i ¼ jiijA½i�i; ð36Þ

along with its inverse U†. The first register, containing jii,
should have dimension at least K, so that j1i;…; jKi are
each orthogonal states of the register, and the second

register should be large enough to store the values A½i�.
Note that Eq. (36) does not fully specify the unitary UA

since it does not specify its action when the second register

is not initially in the state j0i. One possible way to define

UA fully is to have Ujiijxi ¼ jiijxþ A½i�i with addition

defined over an appropriately sized finite ring such as Zn
2 ,

but this is not necessary for applications such as in

Refs. [9,11]. Quantum query access to an array A is more

demanding than simply having A stored on disk, as we will

discuss below.

Recall that Grover search finds one marked item out of

an array of K items, assuming the ability to reflect about

the marked item. Reference [10] further extends Ref. [9] to

find one marked item when there are t > 1 marked items,

assuming the ability to reflect about the multiple marked

items. Generic Grover search then consists of the follow-

ing steps:

(1) Prepare the initial state jψ0i ¼ 1
ffiffiffi

K
p

P

K
i¼1 jii.

(2) Repeat Oð
ffiffiffiffiffiffiffiffi

K=t
p

Þ times:

(a) Reflect about the marked states.

(b) Reflect about the initial state jψ0i.
When the number t of marked items is unknown,

Ref. [10] employs an exponential searching algorithm that

guesses the number of marked items, increasing the guess

by a constant factor each time. This is a probabilistic

algorithm that performs a measurement for each guess,

finding a solution in overall expected time Oð
ffiffiffiffiffiffiffiffi

K=t
p

Þ.
The maximum finding algorithm of Ref. [11], summa-

rized in Fig. 3, is based on this probabilistic exponential

searching algorithm. It keeps track of the current best

maximum seen so far and considers marked states to be

those that have a larger array entry value than the current

maximum. It employs the Grover-based exponential

searching algorithm of Ref. [10] for an unknown number

of marked states, performing measurements to obtain the

maximum with probability at least 1=2. If desired, we can
improve the success probability to 1 − η with η > 0, at

the cost of an extra Oðlog 1=ηÞ factor, by performing

Oðlog 1=ηÞ rounds of the algorithm.

Our quantum thrust algorithms are then a direct appli-

cation of quantum maximum finding, but now to an array

with K ¼ OðN2Þ entries corresponding to the choice of

separating plane. To deal with the fourfold ambiguity, we

FIG. 3. Quantum search algorithm due to Dürr-Høyer to find the index corresponding to the maximum entry of an array A½i� with K
elements [11]. The number of Grover steps is chosen at random, since this is a search over an unknown number of marked times [10].

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-9



use the doubling trick of Sec. III C, including each original

vector p⃗k and its negative −p⃗k in the list of three-momenta

to obtain a search space of size K ¼ 4N2. Our problem,

now, is to find the maximum value of Tij with i and j each

ranging over 2N possible indices. This requires us to be

able to load the momentum vectors corresponding to each

array index, which means that the quantum algorithm must

have some means of accessing the classical data.

B. Data loading considerations

Wecan describe our quantum thrust algorithms in terms of

two abstract operations, LOOKUP and SUM. Their imple-

mentation will be described in Sec. V C for the sequential

model and Sec. V E for the parallel model. Beyond thrust,

these operations are quite general in their application to

loading classical data into quantum algorithms.

Note that our search space is of size OðN2Þ, while data
loading over N items in a classical database takes time

OðNÞ. Therefore, we can conceptualize our quantum

speedup as resulting from being able to perform data

loading over the superposition of search space items. It

is important here that the set of search space items is not the

same as the set of data points. In general, any application of

Grover search over a search space of sizeOðNαÞwith α ≥ 2

will result in a square root speedup, whereas for α < 2, the

cost of the algorithm will be dominated by the OðNÞ data
loading cost.

The LOOKUP operation is queried with one index

corresponding to a given particle, returning the momentum

corresponding to that index,

ULOOKUPjiij0⃗i ¼ jiijp⃗ii: ð37Þ

Note that the second register, initialized as j0⃗i, has to be

large enough to store the three-momenta to the desired

(qu)bit accuracy. To make ULOOKUP unitary, we define

ULOOKUPjiijq⃗i ¼ jiijq⃗þ p⃗ii for general vectors q⃗, where
the addition is done modulo some value larger than the

maximum momentum encountered in the problem. To deal

with pairs of particles, we can call ULOOKUP twice on

different registers to map jiijjij0⃗ij0⃗i → jiijjijp⃗iijp⃗ji. This
LOOKUP operation will be used to determine all OðN2Þ
reference axes r̂ij, taking OðNÞ time in the sequential

model and OðlogNÞ time in the parallel model.

The SUM operation returns the sum over all momenta,

possibly with a transformation fðp⃗; cÞ applied to each

momentum vector,

USUMjcij0i ¼ jcij Σ
N

k¼1
fðp⃗k; cÞi; ð38Þ

where c represents possible control qubits. From a given

reference axis r̂ij, SUMwill be used to calculate the value of

Tij. It is crucial that calculating Tij for fixed i and j takes the

same runtime as LOOKUP, i.e., OðNÞ for sequential and

OðlogNÞ for parallel. Notably, a wide class of collider

observables can be computed in linear runtime [68], even

those that would naively scale like a high polynomial power.

Using LOOKUP and SUM, our quantum thrust algo-

rithm is described in Fig. 4. As with standard Grover

search, we need to be able to reflect about the initial state

and the marked states, namely, those whose corresponding

values of thrust are larger than the best maximum seen so

far. To identify the marked states, we compute thrust for

each choice of separating plane, using LOOKUP and SUM

to interface the quantum algorithm with the classical data.

We uncompute intermediate steps of our calculations using

standard methods (e.g., Sec. 3.2 of Ref. [4]) to make sure

that, after computing Tij, the system can be reflected about

the initial state.

Let CLOOKUP be the asymptotic cost of LOOKUP and

CSUM be the asymptotic cost of SUM. The runtime of this

algorithm is OðNðCLOOKUP þ CSUMÞÞ since there is an

OðNÞ outer Grover search loop, while the inner loop is

dominated by one application of LOOKUP and one

application of SUM. Note that the computation of the

initial guess for the maximum, Tmn, can be performed

in OðNÞ time classically, while preparation of the initial

state and reflection about the initial state can each be

performed in OðlogNÞ time, the time required to perform a

Hadamard gate.

C. Sequential computing model

The first computing model we consider is one in which

one gate, classical or quantum, can be executed per time

step. We should think of the classical computer as con-

trolling the overall computation. In a single time step, it can

either (a) perform a classical logic gate, (b) choose a

quantum gate or measurement, or (c) read a word from the

input (e.g., a single momentum). Another way to think

about this model is that we measure cost by the circuit size,

i.e., the total number of gates.

While fault-tolerant quantum computers are expected to

require parallel control to perform error correction, there

are still plausible models in which the cost of the compu-

tation will be proportional to the number of logical gates.

One possibility is that the cost is dominated by generating

magic states or by long-range interactions. Another pos-

sibility is that we are using a small quantum computer

without fault tolerance, but in an architecture such as a one-

dimensional ion trap, where the available gates are long

range and cannot be parallelized.

Under this sequential model, the operations LOOKUP

and SUM each take OðNÞ time and require OðlogNÞ
qubits. Specifically, LOOKUP requires a register of size

OðlogNÞ to store the query index i, along with a register to
store the requested three-momentum p⃗i. It operates by

performing a sequential scan through all N items in the

classical database to fetch and return p⃗i. More concretely,

in Oð1Þ time, we can perform ULOOKUP;i, defined by

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-10



ULOOKUP;ijiij 0
!i ¼ jiijpi

!i; ð39aÞ

ULOOKUP;ijjij 0
!i ¼ jiij 0!i; if j ≠ i: ð39bÞ

Then we implement ULOOKUP in Eq. (37) by performing

ULOOKUP;1ULOOKUP;2 � � �ULOOKUP;N in timeOðNÞ. Similarly,

SUM takes time OðNÞ because it also performs one pass

through allN items in the classical databasewhile computing

and returning the sum
P

N
i¼1 fðp⃗i; cÞ.

With this implementation of LOOKUP and SUM, with

CLOOKUP ¼ CSUM ¼ OðNÞ, the Grover-search based thrust

algorithm inFig. 4 requiresOðN2Þ time andOðlogNÞ qubits.

FIG. 4. Our Grover-based quantum thrust algorithm, written in terms of the abstract LOOKUP and SUM operations. The symbols j0⃗i,
j0̂i, and j0i refer to initial states for a three-momentum, normalized axis, and real number, respectively. Note that we have applied the

doubling trick from Sec. III B, such that each p⃗k has its negative −p⃗k in the set of three-momenta. Cases where r̂ij · p⃗k ¼ 0 are treated

implicitly via Eq. (26). A key difference compared to Fig. 3 is that the quantity to maximize, Tij, is calculated quantumly via the COMP_T

subroutine.

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-11



D. Quantum improvements via sort?

One might wonder whether the runtime of the quantum

thrust algorithm could be reduced from OðN2Þ to

OðN3=2 logNÞ, using the same strategy that we used in

Sec. III C to reduce the classical thrust algorithm time from

OðN3Þ to OðN2 logNÞ. The answer is yes, in principle,

but it would require a computing model beyond the

sequential one.

Recall that two points define the partitioning plane, and

after selecting the first point, we could sort the second point

according to a special traversal order. This allowed us to

avoid the OðNÞ cost of resumming the momenta for each

candidate plane. Quantum algorithms require ΩðN logNÞ
time for sort [69], which means that they cannot be used to

speed up this part of the classical algorithm. In principle,

though, we could still obtain a Grover square root speedup

when searching over theOðNÞ candidates for the first point
determining the partitioning plane. Combining the Oð

ffiffiffiffi

N
p

Þ
Grover search over the first point with the OðN logNÞ sort
over the second point would then yield an OðN3=2 logNÞ
overall algorithm.

The challenge here is that to perform quantum sort, all of

the data need to be stored somehow in quantum memory,

which goes beyond the sequential computing model above

where only one data point is ever accessed in a given time

step. We leave to future work the design of a quantum

computing architecture suitable for loading and sorting data

from a classical database.

Assuming that such a sort-friendly architecture exists,

one might ask about the origin of the OðN2 logNÞ to

OðN3=2 logNÞ speed up. Such an improvement is only

possible since the strategy in Sec. III C converts thrust into

a structured search problem [70,71], which evades the

naive bounds on quantum search performance. Of course,

no matter the degree of structure, we can never do better

than the OðNÞ cost to examine each data point once.

E. Parallel computing model

The parallel computing model reduces the time usage

of the sequential model at the expense of additional

space usage.
4
Under this model, the operations LOOKUP

and SUM each take OðlogNÞ time but require OðN logNÞ
qubits.

An abstract version of this model is the standard

quantum circuit model, in which on N qubits we can

perform up to N=2 two-qubit gates on as many disjoint

pairs of qubits as we like. A controlling classical computer

with the same parallelism can also be used to process the

measurement outcomes and feed the results back in to

the quantum computer. To implement this in an actual

quantum computer, we would need to assume long-range

connectivity but not all-to-all connectivity. For example,

Brierley [72] describes how connecting each qubit to four

other qubits is enough to simulate full connectivity with

OðlogNÞ time overhead. In what follows, we neglect any

OðlogNÞ or other factors from converting the abstract

circuit model to a concrete architecture.

Parallel data retrieval requires first preloading all N
database items into the OðNÞ qubits. This can be done in

Oð1Þ time, since it requires only parallel copy (or CNOT)

operations from the classical bits onto the qubits. (Even a

cost of OðNÞ at this stage would not change the asymptotic

runtime, so one could also consider input models in which

the data could only be accessed sequentially, such as tape

storage.) This results in the state

j1ij0⃗ij2ij0⃗i…jNij0⃗i ↦ j1ijp⃗1ij2ijp⃗2i…jNijp⃗Ni: ð40Þ

Note that this is not the same as qRAM [5], since we are

loading the classical data into a product state once, and not

assuming any kind of query access to the data.

Now, given our preloaded data, we can perform

LOOKUP in time OðlogNÞ by performing binary search

on the query index i to locate qubits jiijpii. The binary

search can be made unitary using a series of OðNÞ SWAP

gates. Letting i ¼ i1i2…iM in binary, if i1 ¼ 1 we swap the

first N=2 ði; piÞ pairs with the last N=2 ði; piÞ pairs, if

i2 ¼ 1we swap the first N=4 ði; piÞ pairs with the nextN=4
ði; piÞ pairs, and so on. After OðlogNÞ swaps, we end up

with qubits jiijp⃗ii in the first position. We can then copy

jp⃗ii into a blank register and uncompute the swaps.

Similarly, we can perform SUM in time OðlogNÞ by

combining the entries level by level up a binary search tree

indexed by i, with OðNÞ additional registers to store the

intermediate steps. That is, we first add all pairs of entries

corresponding to indices i, i0 where i1 ¼ i01; i2 ¼ i02;…;

iM−1 ¼ i0M−1 and iM ≠ i0M. Then we have N=2 entries

indexed by j ¼ j1j2…jM−1, and again we add all pairs of

entries corresponding to indices j, j0 where j1 ¼ j01; j2 ¼
j02;…; jM−2 ¼ j0M−2 and jM−1 ≠ j0M−1. Repeating this proc-

essOðlogNÞ times allows us to sumall the entries in parallel.

Thus, the quantum thrust algorithm for the parallel

data loading model, with CLOOKUP ¼ CSUM ¼ OðlogNÞ,
requires OðN logNÞ time and OðN logNÞ qubits.

F. Resource requirements

In the above discussion, we focused on the scaling of our

Grover-based quantum thrust algorithm in terms of the

number of particles N. Here, we want to provide more

information on the practical resource requirements for this

algorithm in terms of the required precision of the thrust

computation.

Thus far, we have been working with data in the form

of three-vectors p⃗i, where we assumed that the register

holding p⃗i is of constant size. Just how large is this

constant, given that using a finite number of qubits would

4
We thank Iordanis Kerenidis for discussions related to this

point.

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-12



result in digitization error? For typical collider physics

applications, such as anticipated for a future eþe− collider,

we would want a dynamic range on momenta from the

MeV scale (i.e., per-mille accuracy on GeV-scale hadrons)

to the TeV scale (i.e., the rough energy scale for CLIC), or

around 6 orders of magnitude. This means b ¼ log2 10
6 ≈

20 bits of accuracy. Since we are keeping track of d ¼ 3

dimensions, the register holding the p⃗i must be of size

db ¼ 3b. Thus, the total number of qubits required

is Oðlog2N þ dbÞ for the sequential algorithm and

OðNðlog2N þ dbÞÞ for the parallel algorithm.

To be more specific, the sequential version of the

algorithm in Fig. 4 requires two registers with log2 N
qubits, four registers with db qubits, and one register with b
qubits, apart from any ancillas used in arithmetic oper-

ations, for a total of 2 log2N þ ð4dþ 1Þb qubits. For N ¼
128 particles (after the doubling trick), which is reasonable

for most eþe− applications, this is around 300 qubits. Such

a device is not far beyond current ≈50-qubit computers, so

it is naively plausible that the first quantum computer able

to run the sequential quantum thrust algorithm (without

error correction) could be ready in time to compute realistic

thrust distributions at a future eþe− collider. Of course, this

depends on the gate connectivity of such a device as well as

the achievable coherence time, and as discussed below,

circuit depth may be more constraining than the number of

qubits. For the parallel architecture, we need Nðlog2N þ
dbÞ additional qubits for initial data loading [see Eq. (40)],

though more qubits would most likely be required to

simulate full connectivity and to store intermediate steps

of the SUM operation. This points to an Oð104Þ qubit

device, which is rather optimistic on the 20 year timescale,

though this could be made more realistic by preclustering

particles to reduce N or by using a smaller value of b.
Next, we consider the number of gates required by the

Grover-based thrust algorithm. We first apply 2 log2ð2NÞ
Hadamard gates to obtain the initial state, a uniform

superposition over the indices i, j. We then apply OðNÞ
iterations of the Grover operatorG, whereG consists of two

reflections: the reflection over all states with a thrust value

greater than the current maximum, an operation requiring

the subroutine COMP_T, and the reflection about the initial

state. Note that the reflection about the initial state can be

effected with an application of H⊗2N , followed by a

reflection about the all-zeros state, followed by an appli-

cation of H⊗2N . The Hadamards require 4 log2 2N gates

total, while the reflection about the all-zeros state can

be obtained using a controlled-Z operator controlled on

having the state j0i in the first log2N registers, which

requires log2N CNOT gates. Similarly, after performing

COMP_T, we can perform the reflection over all states with a

thrust value greater than the current maximum using a

controlled-Z operator controlled on the b bits representing

the thrust value, an operation requiring b CNOT gates.

Thus, the total gate usage of the algorithm scales like

OðNðlog2N þ CCOMP T þ bÞÞ, where CCOMP T is the gate

cost of the COMP_T subroutine.

What is COMP_T? To estimate this, we consider the steps

in COMP_T from Fig. 4, noting that these steps consist of

either data loading operations like LOOKUP and SUM, or

elementary arithmetic operations like addition, multiplica-

tion, and division.

In step 1, we load p⃗i, p⃗j using LOOKUP. Note that the

circuit that implements this looks like the following: first,

we have an ancilla bit controlled on each bit in the index

register jii ¼ jilog2N…i2i1i0i; that is, we have a Clog2 N NOT

gate connecting the ancilla to each index register jiki. This
requires a total of log2N CNOT gates [73]. Then, controlled

on whether or not the ancilla bit is set, we want to transform

the blank register j0⃗i into the register jp⃗ii. We set each bit

of p⃗i controlled on whether or not the ancilla bit is set, so in

total we require db CNOT gates. Finally, we uncompute the

ancilla bit by again applying the Clog2 N NOT gate connect-

ing the ancilla to the jii register, again requiring log2 N
gates. In Fig. 5, we give an example circuit for i ¼ i1i0,
indexing two bits corresponding to items 0, 1, 2, 3 with

example values. We have such a circuit for all indices i,
requiring OðNðlog2N þ dbÞÞ gates in total. For fault-

tolerant quantum computers, this procedure can be further

optimized [74], but this does not significantly change the

resource scaling.

The remaining steps in COMP_T involve performing basic

arithmetic operations like addition, multiplication, and

division. Circuits for elementary operations like addition

and multiplication can be found in Ref. [75], while fault-

tolerant versions can also be found in the literature [76,77].

Note that for an input of n bits, addition requires OðnÞ
gates, while multiplication and division require Oðn2Þ
gates.

5
Steps 2 and 4 in COMP_T involve a series of

multiplications and divisions with n ¼ db bits, thus requir-

ing Oðd2b2Þ gates. In step 3, we apply SUM controlled on

the sign of each r̂ij · p⃗k. Here, we first compute each r̂ij · p⃗k

FIG. 5. An example loading circuit mapping jiij0ij0i ↦
jiij0ijxii. In our example, i ¼ i1i0 is two bits and ðx0; x1;
x2; x3Þ ¼ ð3; 2; 3; 1Þ. The CCNOT gates are drawn with open

(closed) circles if they are controlled on the source bit being

zero (one).

5
Asymptotically faster multiplication circuits exist, but they do

not yet outperform theOðn2Þ algorithm until n ∼ 103−4; we thank
Craig Gidney for pointing this out.

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-13



and then set an ancilla bit depending on the sign of the dot

product, requiringOðNd2b2Þ gates total. Next, for each p⃗k,

we need to both load the value (using a circuit similar to the

one from step 1, requiring OðNðlog2N þ dbÞÞ gates total),
and then add it to a running sum using an adder circuit

if the ancilla bit is set, requiring OðNðlog2N þ dbÞÞ gates
total. Thus, CCOMP T ¼ OðNðlog2N þ d2b2ÞÞ, and the total
gate usage of the entire algorithm will scale like

OðN2ðlog2N þ d2b2ÞÞ.
Finally, we consider circuit depth, which involves con-

sidering which gates can be run in parallel. Note that the

OðNÞ Grover iterations G must come one after the other.

Likewise, within each Grover iteration G, the two reflec-

tions must come after each other. The parallelization

happens within the subroutine COMP_T, where we can

parallelize LOAD and SUM in the parallel computing

model via preloading; that is, we execute the loading

circuits in parallel so that all the p⃗i are in memory, and

then we process the p⃗i in parallel.

First, we perform all N preloads in parallel, resulting in a

gate depth of 2 log2 N þ db gates; this involves performing

all N operations in the sequential LOAD operation at once.

After everything has been preloaded in parallel memory, we

can perform either LOAD or SUM. To perform LOAD, we

want to execute a series of log2N swaps and then a copy,

which requires Oðlog2N þ dbÞ CNOT gates, so that the

whole LOAD operation has a depth of Oðlog2N þ dbÞ.
Meanwhile, to perform the SUM operation after everything

has been preloaded in parallel memory, we note that we

must execute the parallel LOAD operation for each p⃗k, then

calculate and control on the quantity r̂ij · p⃗k for each p⃗k,

and then we must finally sum all the N vectors. The parallel

load requires a gate depth ofOðlog2 N þ dbÞ, while the dot
product calculation requires a gate depth of Oðd2b2Þ.
Finally, we need to perform a series of log2N additions,

which requires db log2 N gates. Thus, the SUM operation

requires a total circuit depth of Oðdb log2N þ d2b2Þ. Then
CCOMPT

¼ Oðdblog2N þ d2b2Þ, and the circuit depth of the

entire parallel algorithm scales like OðNðdb log2Nþ
d2b2ÞÞ. Note that for the sequential model, the circuit

depth is just the same as the gate count of OðN2ðlog2N þ
d2b2ÞÞ since we are not running operations in parallel.

Thus, again taking an example with N ¼ 128 particles

(after the doubling trick), we would expect a circuit depth

of around 107 gates for the sequential model and 105 for the

parallel model. On a noisy device, we currently do not

expect to be able to execute an algorithm requiring more

than 103 gates [78], so again we believe that preclustering

particles to reduceN or using a small value of b could make

these algorithms more realistic on a NISQ device. We note

that because circuit depth and qubit usage come at a

tradeoff, circuit depth is the limiting factor for the sequen-

tial model, while qubit usage is the limiting factor for the

parallel model.

VI. IS THERE A QUANTUM ADVANTAGE?

Starting from the previously best known OðN3Þ classical
algorithm on a sequential computer, we found an improved

OðN2 logNÞ classical algorithm and an OðN2Þ quantum

algorithm. Because these scalings are identical up to a

logN factor, one might wonder if there is any real quantum

advantage for the task of hemisphere jet finding.

Formally, there is a quantum advantage if we make a

rather restricted assumption about the computing model.

The sequential quantum computing model in Sec. V C only

requires read access to the OðNÞ classical dataset, whereas
the sorting strategy in Sec. III C requires write access to

OðN logNÞ classical bits. Thus, if one restricts the com-

puting model to have write access to only OðlogNÞ
classical bits, then the classical sorting strategy cannot

be implemented. In that case, the best classical algorithm

would be the OðN3Þ one from Ref. [2], which would be

bested by our OðN2Þ quantum algorithm.

For any realistic application of thrust, this computing

model is overly limited, since data from a single collider

event can easily be read into random-access classical

memory. On the other hand, it is not possible to read in

the entire LHC dataset into memory, and indeed some

collider datasets are only stored on tape drives. For this

reason, there may be interesting quantum advantages for

clustering algorithms that act on ensembles of events

(instead of on ensembles of particles in a single event).

See Ref. [79] for recent developments along these lines.

For the parallel computing models, there is no formal

limit with a quantum advantage, since we need ÕðNÞ (qu)
bits with read-write access in both the quantum and

classical cases. Note that the speed up in the classical

and quantum cases come from rather different sources.

Classical sorting splits the OðN2Þ search space into an

OðNÞ outer loop and an OðlogNÞ inner loop. By contrast,

the quantum algorithm searches the OðN2Þ search space as

a whole in Oð
ffiffiffiffiffiffi

N2
p

Þ runtime.

This last observation suggests that for even larger search

spaces, there might be a quantum advantage even if there

exist classical sorting strategies. If classical sorting can only

sort s of the search dimensions, then for an OðNαÞ search
space, the classical runtime would scale proportional to

OðNα−s logs NÞ. The quantum runtime would scale propor-

tional to OðNα=2Þ, which would be faster than the classical

case for α > 2s. This might be relevant for the M-jet

finding problem mentioned in Sec. VII D with an OðN2MÞ
search space.

VII. GENERALIZATIONS

In this section, we discuss how to apply the quantum

algorithms from Secs. IV and V to jet identification

methods that generalize thrust. These algorithms are more

closely related to the ones used at the LHC, since they

involve a jet radius parameter R.

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-14



We start with algorithms that divide the event into

a single jet and an unclustered region, as in Fig. 6.

(For the thrust problem, R ¼ π=2 and the unclustered

region is the opposite hemisphere.) We then mention

strategies to identify multiple jets. To simplify the dis-

cussion, we continue to use the ðpx; py; pzÞ coordinate

system for electron-positron collisions, noting that the

methods below can be adapted to the standard proton-

proton coordinate system of transverse momentum (pT),

rapidity (y), and azimuth (ϕ).

A. SingleCone

The generalizations we consider are all based on or

inspired by the analysis of Ref. [62], which showed that the

thrust duality in Sec. II D holds for a one-parameter family

of jet finding algorithms. No matter which dual formulation

is used, we refer to this jet finding strategy as SINGLECONE,

since it finds a single stable cone jet of radius R.
To match the literature, we use four-vector notation in

this section. The four-momentum of a particle is

p
μ
i ¼ ðEi; p⃗iÞ; ð41Þ

where the energy Ei ≡ p0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2
i þm2

i

p

depends on the

mass mi of particle i. The four-momentum of a candidate

partition H is

Pμ ¼
X

i∈H

p
μ
i ≡ ðE; P⃗Þ; ð42Þ

where E≡ P0 is the total energy of the partition. A lightlike

axis is given by

nμ ¼ ð1; n̂Þ; ð43Þ

with n̂2 ¼ 1. We contract indices with the mostly minus

metric,

pμq
μ ¼ p0q0 − p⃗ · q⃗: ð44Þ

The SINGLECONE jet finder is based on maximizing the

following objective function [62]:

OðPμ; nμÞ ¼ E −
nμP

μ

1 − cosR
þ λðnμnμÞ;

¼ n̂ · P⃗ − E cosR

1 − cosR
þ λðn̂2 − 1Þ; ð45Þ

where λ is again a Lagrange multiplier, and we maximize

over both the choice of partition and the choice of axis. The

second line makes it clear that R ¼ π=2 returns the thrust

objective function in Eq. (17).

Performing the same manipulations as in Sec. II D, the

optimum axis (for fixed partition) is

n
μ
opt ¼

�

1;
P⃗

jP⃗j

�

: ð46Þ

Since the optimum axis is aligned with the jet three-

momentum, this is an example of a stable cone algorithm;

see Sec. VII C below. The reduced SINGLECONE objective

function is

OðPμÞ≡OðPμ; n
μ
optÞ ¼

jP⃗j − E cosR

1 − cosR
; ð47Þ

which is an example of a jet function maximization

algorithm [43–45]. The optimum solution partitions the

event into a clustered region H and an unclustered region

(the complement of H). This definition of the problem

naturally lends itself to quantum annealing in Sec. VII B.

Doing the dual manipulation, the optimum partition (for

fixed axis) is

P
μ
opt ¼

X

N

i¼1

p
μ
iΘðEið1 − cosRÞ − nμp

μ
i Þ: ð48Þ

Writing the Heaviside theta function requirement in three-

momentum language,

n̂ · p⃗i

Ei

> cosR; ð49Þ

we see that for massless particles (Ei ¼ jp⃗ij), the jet

constituents are those within an angular distance R of

the jet axis. For R ¼ π=2, this yields the thrust hemisphere

regions. The reduced SINGLECONE objective function

is now

OðnμÞ≡OðPμ
opt; n

μÞ

¼
X

N

i¼1

Ei −
X

N

i¼1

min

�

Ei;
n · pi

1 − cosR

�

; ð50Þ

where we dropped the Lagrange multiplier term for

compactness. The second term in Eq. (50) is an example

of an N-jettiness measure [80–82] with N ¼ 1, whose

FIG. 6. Partitioning an event into a stable cone jet of radius R
and an unclustered region. This is the same as Fig. 1

when R ¼ π=2.

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-15



minimum yields the XCone jet algorithm [32,33]. This

definition of the problem naturally lends itself to quantum

search in Sec. VII C.

B. Jet function maximization

In the jet function maximization approach of Refs. [43–

45], the goal is to optimize Pμ for a global jet function. The

original jet function from Ref. [43] can be written as

OGeorgiðPμÞ ¼ E −
1

2ð1 − cosRÞ
M2

E
; ð51Þ

where the jet mass is

M2
≡ PμP

μ ¼ E2 − P⃗
2
: ð52Þ

In the limit M ≪ E, this matches the reduced SINGLECONE

objective function of Eq. (47), though they yield different

optimal jet regions for finite-mass jets.

Since jet function maximization is a kind of partitioning

problem, it is natural to try to write these objective

functions in QUBO form. However, the original jet

function from Eq. (51) is not quadratic since it involves

a 1=E factor, and the SINGLECONE function in Eq. (47) is

not quadratic since jP⃗j involves a square root. Thus, these
cannot be rewritten as QUBO problems without some kind

of modification.

In the analysis of Sec. IV for thrust, we got around this

issue by squaring the thrust objective function, which

nevertheless yielded the same partitioning solution. This

approach does not work in this more general case because

of nonquadratic cross terms.

What we can do, however, is square the SINGLECONE

objective in Eq. (47) but only keep the lowest nontrivial

term in the M ≪ E limit.
6
(Squaring and expanding

Eq. (51) yields the same result.) This gives the following

QUBO objective function:

OQUBOðPμÞ ¼ E2 −
M2

1 − cosR

¼ P⃗
2
− E2 cosR

1 − cosR

¼
X

N

i;j¼1

�

p⃗i · p⃗j − EiEj cosR

1 − cosR

�

xixj; ð53Þ

where again xi ∈ f0; 1g. Taking R ¼ π=2 in Eq. (53) then

recovers the thrust (squared) problem. It is interesting that

Eq. (53) has the same form as the generalized jet functions

in Ref. [44] (Ref. [45]) with n ¼ 2 (α ¼ 2).

This objective function corresponds to a QUBO problem

and can thus be solved on a quantum annealer. It will,

however, generally yield a different solution compared to

SINGLECONE. Unlike SINGLECONE, which yields perfectly

conical jets for massless particles via Eq. (49), this QUBO jet

finder has an effective jet radius that depends on the mass

of the jet [44,45]. Quadratic objective functions are also

explored in Ref. [47] for jet clustering at the LHC. In future

work, we plan to characterize the general phenomenological

properties of jets identified using QUBO objectives.

C. Stable cone finding

Stable cone algorithms search over candidate jet

regions of radius R and select ones that are stable [34,83],

meaning that the center of the jet region aligns with the jet

momentum. As shown in Eqs. (46) and (49), SINGLECONE

is an example of a stable cone algorithm, which is closely

related to SISCone [3].

It is worth emphasizing two key differences between

SINGLECONE and SISCone. First, SINGLECONE finds a single

jet, whereas SISCone finds all stable cones, and a separate

split/merge step is needed to determine the final jet regions.

That said, it is possible to run SISCone in progressive

removal (PR) mode, where one finds the most energetic

stable cone, removes the found jet constituents, and repeats

the SISCone procedure on the unclustered particles. In this

way, SISCone-PR acts like an iterated application of

SINGLECONE. Second, SINGLECONE finds the jet region

with the largest value of Eq. (47) (¼ E −OðM2=EÞ),
whereas SISCone-PR would typically take the stable cone

with the largest plain energy E. As we will see below,

though, it is still possible to develop quantum algorithms

for stable cones with alternative jet hardness sorting

schemes.

It is straightforward to implement the SINGLECONE

algorithm (a.k.a. SISCone-PR with Eq. (47) ordering) via

quantum search. Just as two points define a partitioning

plane, two points are enough to determine a cone region of

radius R [3]. (This is true up to an eightfold ambiguity,

which is twice that of the thrust case because the two

candidate cones are not complements of each other as they

are for hemispheres.) We can use the LOOKUP operation

to determine allOðN2Þ candidate reference axes (which are
not the same as the jet axes, but yield the same partitions).

We can then use SUM to calculate Eq. (47) for a fixed

reference axis, since finding Pμ for the particles in the

candidate jet region is a linear operation. We finally use

Grover search to find the partition that maximizes Eq. (47),

and we are guaranteed that the found cone jet will be stable

via Eq. (46). This algorithm now has the identical structure

to thrust, with the same asymptotic scaling as in Table I,

taking us from a classical OðN3Þ algorithm (without sort)

to a quantum OðN logNÞ algorithm (with parallel data

loading).

Note that the quantum maximum finding algorithm only

returns one maximum element of an array, so we cannot use

it to speed up an algorithm for identifying all stable cones.6
We thank Eric Metodiev for discussions related to this point.

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-16



We can, however, use it to find one stable cone with a

different objective function from Eq. (47). For example, to

implement SISCone-PR with standard energy ordering, we

can use a subroutine consisting of two SUM operations in

series. The first SUM determines Pμ for the candidate jet

region, while the second SUM finds P̃μ for all particles

within a radius R of Pμ. This subroutine would return P0 if

Pμ ¼ P̃μ, while it would return 0 if Pμ ≠ P̃μ. One would

then use Grover search to find the maximum subroutine

output, with the same asymptotic quantum gains as in the

SINGLECONE case.

D. Multiregion optimization

Typical collider studies involve more than one jet per

event, so it is interesting to ask whether these quantum

methods can be adapted to the multijet case. As already

mentioned, one can use a PR strategy to identify multiple

jet regions, so finding M jets just requires M iterations of

the algorithms above. Except in specialized circumstances,

the number of desired jet regions does not grow with N and

is at most Oð1=R2Þ, so the runtime of SINGLECONE-PR

would scale linearly with M. That said, we are interested

in simultaneously optimizing the jet regions as in XCone

algorithm [32,33], in order to treat the overlapping jet

regions in a more sophisticated way than just PR.

The QUBO objective in Eq. (53) can be easily gener-

alized to the M-jet case using OðNðM þ 1ÞÞ qubits,

suitable for quantum annealing. Instead of a binary assign-

ment of each particle to the clustered or unclustered region,

we can do a one-hot encoding with M þ 1 qubits per

particle to indicate their assignment to one of the M jet

regions or to the unclustered region. Specifically, let xir ∈
f0; 1g for i ∈ f1;…; Ng and r ∈ f0; 1;…;Mg. We assign

xi0 ¼ 1 if particle i is in the unclustered region, xir ¼ 1

if particle i is in jet region r for r ∈ f1;…;Mg, and

xir ¼ 0 otherwise. We then add a penalty term to the

objective function such that, for fixed i, xir ¼ 1 for only

one value of r.
The multijet QUBO objective function is

OQUBOðfxijgÞ ¼
X

M

r¼1

X

N

i;j¼1

�

p⃗i · p⃗j − EiEj cosR

1 − cosR

�

xirxjr

þ Λ
2
X

N

i¼1

�

1 −
X

M

r¼0

xir

�2

: ð54Þ

Here, there is a copy of Eq. (53) for each of the M jet

regions, taking the schematic form of O ¼ −
P

i;jQijxixj.

The coefficient of the penalty term must be taken to be

Λ
2 > NmaxijQij to ensure that it is never favorable for a

particle to be assigned to more than one jet region. Because

Eq. (54) is quadratic in the momentum, it will not have the

same behavior as XCone (which has a linear objective

function), though we expect the results to be similar for

well-separated jets of comparable energies. This objective

function does not penalize empty jet regions, so it might be

interesting to run this algorithm with a large value of M to

let the number of nonempty jet regions be determined

dynamically.

Compared to the single-jet case, the multijet case will

likely be more difficult to implement on currently available

quantum annealing hardware. Previous numerical studies

[55] have shown that clustering problems that use multiple

qubits to implement one-hot encoding are prone to errors.

The reason is that on annealing hardware, qubit couplings

have a maximum dynamic range, which in turn limits the

effectiveness of the Λ penalty term. In practice, this means

that annealers often output a fuzzy assignment rather than a

hard assignment to one cluster. We would also like to argue

that this problem is conceptual in origin. The search space

of the single-jet QUBO problem is 2N , whereas the search

space of the multijet QUBO problem is 2MN . However, the

QUBO quantum search space contains many extra unphys-

ical states, since the actual (non-QUBO) search space is

size MN ¼ 2N logM. While the most natural way to address

this would be to use qudits with d ¼ M instead of qubits,

such hardware is not currently available.

Turning to the quantum search case, finding M conical

jet regions naively requires searching a space of OðN2MÞ,
with the added complication of needing to treat overlapping

jet regions. We are unaware of any classical approach to

this problem apart from brute force, though one expects

an OðN2Mþ1Þ algorithm for the XCone objective should be

feasible, though it likely requires a more sophisticated

treatment of reference axes. (The current implementation

of XCone in FASTJET CONTRIB 1.041 [31,84] only finds a

local minimum starting from suitable seed axes.) Using

quantum search with sequential (parallel) data loading,

one might hope that this could be improved to OðNMþ1Þ
(OðNM logNÞ), though one would have to generalize the

LOOKUP and SUM operations to deal with the multijet

case. At minimum, LOOKUP would have to load the

momenta into 2M registers (to label the candidate parti-

tions), and SUM would have to have M distinct outputs

(for each of the M jet regions). Even with quantum gains,

this is computationally daunting, motivating future studies

of multijet algorithm whose computational complexity

grows only polynomially with M.

VIII. CONCLUSIONS

In this work, we demonstrated how quantum computers

could be applied to a realistic collider physics problem,

which requires interfacing a classical dataset with a

quantum algorithm. We focused on maximizing thrust to

identify hemisphere jets, but the quantum methods devel-

oped here are relevant to a broader range of optimization

and cluster-finding problems. The asymptotic performance

of our quantum annealing and quantum search algorithms

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-17



is summarized in Table I. We found a way to improve the

previously best known OðN3Þ classical thrust algorithm to

anOðN2Þ sequential quantum algorithm. Along the way, we

found an improved OðN2 logNÞ classical algorithm, based

on the sorting strategy of Ref. [3]. Both the quantum

and improved classical algorithms can be implemented

on parallel computing architectures with asymptotic

OðN logNÞ runtime. Formally, we found a quantum advan-

tage, but only when assuming a computing model with read

access to OðNÞ (qu)bits but write access to only OðlogNÞ
(qu)bits.

Going beyond thrust, we briefly generalized our quantum

methods to handle structurally similar jet clustering algo-

rithms. These involvemaximizing an objective functionwith

a radius parameterR, which partitions the event into a conical
jet region and an unclustered region. While we focused on

electron-positron collisions, it is known how to adapt these

methods to proton-proton collisions [45,47,62]. In future

work, we plan to investigate the phenomenological perfor-

manceof these “quantumfriendly” jet algorithms at theLHC,

to assess whether they offer improved physics performance

relative to hierarchical clustering schemes like anti-kt.
The main take home message from this work is that the

overhead of data loading must be carefully accounted for

when evaluating the potential for quantum speedups on

classical datasets. In many ways, optimization-based jet

algorithms are an ideal platform to think about quantum

algorithms for collider physics, since these problems tend

to involve searching over a large space of possibilities,

OðNαÞ with α ≥ 2, and therefore benefit from Grover

search methods. By contrast, even though the number of

events in a collider data sample (Nevents) is usually much

larger than the number of final-state particles in a jet,

typical collider tasks like filling a histogram involve

OðNeventsÞ operations, such that data loading is already

the limiting factor. On the flip side, this motivates further

quantum investigations into classically OðN2
eventsÞ data

manipulation strategies, such as the metric space approach

recently proposed in Ref. [79], since they might be

reducible to OðNeventsÞ quantum algorithms under suitable

circumstances. We also note that Grover search is limited to

a square-root speedup on unstructured search, whereas

collider data have additional structures like symmetries and

heuristics which might lead to further quantum gains.

ACKNOWLEDGMENTS

We would like to thank Howard Georgi, Craig Gidney,

Iordanis Kerenidis, Patrick Komiske, Andrew Larkoski,

Eric Metodiev, Stephen Mrenna, Benjamin Nachman,

Gavin Salam, Matthew Schwartz, Gregory Soyez, and

Jean-Roch Vlimant for helpful conversations and sugges-

tions. This work was supported by the Office of High

Energy Physics of the U.S. Department of Energy (DOE)

under Grants No. DE-SC0012567 and No. DE-SC0019128

(QuantISED). A. Y.W is additionally supported by a

Computational Science Graduate Fellowship from the

DOE. A.W. H is additionally supported by NSF Grants

No. CCF-1452616, No. CCF-1729369, and No. PHY-

1818914; ARO Contract No. W911NF-17-1-0433; and

the MIT-IBM Watson AI Lab. J. T. is additionally sup-

ported by the Simons Foundation through a Simons

Fellowship in Theoretical Physics, and he benefited from

the hospitality of the Harvard Center for the Fundamental

Laws of Nature and the Fermilab Distinguished Scholars

program.

[1] G. P. Salam, Towards jetography, Eur. Phys. J. C 67, 637

(2010).

[2] H. Yamamoto, An efficient algorithm for calculating thrust

in high multiplicity reactions, J. Comput. Phys. 52, 597

(1983).

[3] G. P. Salam and G. Soyez, A practical seedless infrared-safe

cone jet algorithm, J. High Energy Phys. 05 (2007) 086.

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information: 10th Anniversary Edition

(Cambridge University Press, New York, 2011), 10th ed.

[5] V. Giovannetti, S. Lloyd, and L.Maccone, QuantumRandom

Access Memory, Phys. Rev. Lett. 100, 160501 (2008).

[6] T. Kadowaki and H. Nishimori, Quantum annealing in the

transverse Ising model, Phys. Rev. E 58, 5355 (1998).

[7] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,

Quantum computation by adiabatic evolution, arXiv:quant-

ph/0001106.

[8] S. Boixo, T. Ronnow, S. Isakov, Z. Wang, D. Wecker, D.

Lidar, J. Martinis, and M. Troyer, Evidence for quantum

annealing with more than one hundred qubits, Nat. Phys. 10,

218 (2014).

[9] L. K. Grover, A fast quantum mechanical algorithm for

database search, in Proceedings of the Twenty-Eighth

Annual ACM Symposium on Theory of Computing, STOC

’96 (ACM, New York, 1996), pp. 212–219.

[10] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, Tight bounds

on quantum searching, Fortschr. Phys. 46, 493 (1998).

[11] C. Durr and P. Hoyer, A quantum algorithm for finding the

minimum, arXiv:quant-ph/9607014.

[12] S. Brandt, C. Peyrou, R. Sosnowski, and A. Wroblewski,

The principal axis of jets. An attempt to analyze high-energy

collisions as two-body processes, Phys. Lett. 12, 57 (1964).

[13] E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39, 1587

(1977).

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-18



[14] A. De Rujula, J. R. Ellis, E. G. Floratos, and M. K. Gaillard,

QCD predictions for hadronic final states in eþe− annihi-

lation, Nucl. Phys. B138, 387 (1978).

[15] D. P. Barber et al., Tests of quantum chromodynamics and a

direct measurement of the strong coupling constant αS at
ffiffiffi

s
p ¼ 30-GeV, Phys. Lett. 89B, 139 (1979).

[16] W. Bartel et al. (JADE Collaboration), Observation of planar

three jet events in eþe− annihilation and evidence for gluon

bremsstrahlung, Phys. Lett. 91B, 142 (1980).

[17] M. Althoff et al. (TASSO Collaboration), Jet production and

fragmentation in eþe− annihilation at 12-GeV to 43-GeV,

Z. Phys. C 22, 307 (1984).

[18] D. Bender et al., Study of quark fragmentation at 29-GeV:

Global jet parameters and single particle distributions,

Phys. Rev. D 31, 1 (1985).

[19] G. S. Abrams et al. (MARK-II Collaboration), First

Measurements of Hadronic Decays of the Z Boson, Phys.

Rev. Lett. 63, 1558 (1989).

[20] Y. K. Li et al. (AMY Collaboration), Multi-hadron event

properties in eþe− annihilation at
ffiffiffi

s
p ¼ 52 GeV to 57-GeV,

Phys. Rev. D 41, 2675 (1990).

[21] D. Decamp et al. (ALEPH Collaboration), Measurement of

αs from the structure of particle clusters produced in

hadronic Z decays, Phys. Lett. B 257, 479 (1991).

[22] W. Braunschweig et al. (TASSO Collaboration), Global jet

properties at 14-GeV to 44-GeV center-of-mass energy in

eþe− annihilation, Z. Phys. C 47, 187 (1990).

[23] K. Abe et al. (SLD Collaboration), Measurement of αs ðM2
ZÞ

from hadronic event observables at the Z0 resonance,

Phys. Rev. D 51, 962 (1995).

[24] A. Heister et al. (ALEPH Collaboration), Studies of QCD at

Z0 centre-of-mass energies between 91-GeV and 209-GeV,

Eur. Phys. J. C 35, 457 (2004).

[25] J. Abdallah et al. (DELPHI Collaboration), A study of the

energy evolution of event shape distributions and their

means with the DELPHI detector at LEP, Eur. Phys. J. C

29, 285 (2003).

[26] P. Achard et al. (L3 Collaboration), Studies of hadronic

event structure in eþe− annihilation from 30-GeV to 209-

GeV with the L3 detector, Phys. Rep. 399, 71 (2004).

[27] G. Abbiendi et al. (OPAL Collaboration), Measurement of

event shape distributions and moments in eþ e → hadrons

at 91-GeV—209-GeVand a determination of αs, Eur. Phys.

J. C 40, 287 (2005).

[28] M. Cacciari, G. P. Salam, and G. Soyez, The catchment area

of jets, J. High Energy Phys. 04 (2008) 005.

[29] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet

clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[30] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the

kt jet-finder, Phys. Lett. B 641, 57 (2006).

[31] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,

Eur. Phys. J. C 72, 1896 (2012).

[32] I. W. Stewart, F. J. Tackmann, J. Thaler, C. K. Vermilion,

and T. F. Wilkason, XCone: N-jettiness as an exclusive cone

jet algorithm, J. High Energy Phys. 11 (2015) 072.

[33] J. Thaler and T. F. Wilkason, Resolving boosted jets with

XCone, J. High Energy Phys. 12 (2015) 051.

[34] S. D. Ellis, J. Huston, and M. Tonnesmann, On building

better cone jet algorithms, eConf C010630, 513 (2001).

[35] C. F. Berger et al., Snowmass 2001: Jet energy flow project,

eConf C010630, P512 (2001).

[36] L. Angelini, P. De Felice, M. Maggi, G. Nardulli, L. Nitti,

M. Pellicoro, and S. Stramaglia, Jet analysis by determin-

istic annealing, Phys. Lett. B 545, 315 (2002).

[37] L. Angelini, G. Nardulli, L. Nitti, M. Pellicoro, D. Perrino,

and S. Stramaglia, Deterministic annealing as a jet cluster-

ing algorithm in hadronic collisions, Phys. Lett. B 601, 56

(2004).

[38] D. Y. Grigoriev, E. Jankowski, and F. V. Tkachov, Towards a

Standard Jet Definition, Phys. Rev. Lett. 91, 061801 (2003).

[39] D. Y. Grigoriev, E. Jankowski, and F. V. Tkachov, Optimal

jet finder, Comput. Phys. Commun. 155, 42 (2003).

[40] S. Chekanov, A new jet algorithm based on the k-means

clustering for the reconstruction of heavy states from jets,

Eur. Phys. J. C 47, 611 (2006).

[41] Y.-S. Lai and B. A. Cole, Jet reconstruction in hadronic

collisions by Gaussian filtering, arXiv:0806.1499.

[42] I. Volobouev, FFTJet: A package for multiresolution particle

jet reconstruction in the Fourier domain, arXiv:0907.0270.

[43] H. Georgi, A simple alternative to jet-clustering algorithms,

arXiv:1408.1161.

[44] S.-F. Ge, The Georgi algorithms of jet clustering, J. High

Energy Phys. 05 (2015) 066.

[45] Y. Bai, Z. Han, and R. Lu, JET
: A global jet finding

algorithm, J. High Energy Phys. 03 (2015) 102.

[46] L. Mackey, B. Nachman, A. Schwartzman, and C. Stansbury,

Fuzzy jets, J. High Energy Phys. 06 (2016) 010.

[47] Y. Bai, Z. Han, and R. Lu, JIIET
: A two-prong jet finding

algorithm, arXiv:1509.07522.

[48] A. Mott, J. Job, J. R. Vlimant, D. Lidar, and M. Spiropulu,

Solving a Higgs optimization problem with quantum

annealing for machine learning, Nature (London) 550,

375 (2017).

[49] A. Zlokapa, A. Mott, J. Job, J.-R. Vlimant, D. Lidar, and

M. Spiropulu, Quantum adiabatic machine learning with

zooming, arXiv:1908.04480.

[50] D. Provasoli, B. Nachman, W. A. de Jong, and C.W. Bauer,

A quantum algorithm to efficiently sample from interfering

binary trees, arXiv:1901.08148.

[51] C. W. Bauer, B. Nachman, D. Provasoli, and W. A. De Jong,

A quantum algorithm for high energy physics simulations,

arXiv:1904.03196.

[52] I. Shapoval and P. Calafiura, Quantum associative memory

in HEP track pattern recognition, EPJ Web Conf. 214,

01012 (2019).

[53] F. Bapst, W. Bhimji, P. Calafiura, H. Gray, W. Lavrijsen, and

L. Linder, A pattern recognition algorithm for quantum

annealers, arXiv:1902.08324.

[54] A. Zlokapa, A. Anand, J.-R. Vlimant, J.M. Duarte, J. Job, D.

Lidar, and M. Spiropulu, Charged particle tracking with

quantum annealing-inspired optimization, arXiv:1908.04475.

[55] V. Kumar, G. Bass, C. Tomlin, and J. Dulny, Quantum

annealing for combinatorial clustering, Quantum Inf. Proc-

ess. 17, 39 (2018).

[56] F. Neukart, D. Von Dollen, and C. Seidel, Quantum-assisted

cluster analysis, arXiv:1803.02886.

[57] S. Brandt and H. D. Dahmen, Axes and scalar measures of

two-jet and three-jet events, Z. Phys. C 1, 61 (1979).

QUANTUM ALGORITHMS FOR JET CLUSTERING PHYS. REV. D 101, 094015 (2020)

094015-19



[58] V. Bhattiprolu, M. Ghosh, V. Guruswami, E. Lee, and

M. Tulsiani, Inapproximability of matrix pð→Þq norms,

arXiv:1802.07425.

[59] D. Steinberg, Computation of matrix norms with applications

to robust optimization, Master’s thesis, Technion, 2005.

[60] A. Bhaskara and A. Vijayaraghavan, Approximating matrix

p-norms, arXiv:1001.2613.

[61] J. M. Hendrickx and A. Olshevsky, Matrix P-norms are

NP-hard to approximate if p ≠ 1; 2;∞, arXiv:0908.1397.

[62] J. Thaler, Jet maximization, axis minimization, and stable

cone finding, Phys. Rev. D 92, 074001 (2015).

[63] T. Sjstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,

P. Ilten, .S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.

Skands, An introduction to PYTHIA 8.2, Comput. Phys.

Commun. 191, 159 (2015).

[64] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4

physics and manual, J. High Energy Phys. 05 (2006) 026.

[65] U. Vishkin, Thinking in parallel: Some basic data-parallel

algorithms and techniques (2010), online class notes.

[66] D. M.W. Powers, Parallelized quicksort with optimal

speedup, in Proceedings of the International Conference

on Parallel Computing Technologies (World Scientific,

Novosibirsk, 1991).

[67] R. E. Ladner and M. J. Fischer, Parallel prefix computation,

J. ACM 27, 831 (1980).

[68] P. T. Komiske, E. M. Metodiev, and J. Thaler, Cutting

multiparticle correlators down to size, to be published.

[69] P. Hoyer, J. Neerbek, and Y. Shi, Quantum complexities

of ordered searching, sorting, and element distinctness,

Algorithmica 34, 429 (2002).

[70] A. Montanaro, Quantum walk speedup of backtracking

algorithms, arXiv:1509.02374.

[71] A. Montanaro, Quantum speedup of branch-and-bound

algorithms, Phys. Rev. Research 2, 013056 (2020).

[72] S. Brierley, Efficient implementation of quantum circuits

with limited qubit interactions, arXiv:1507.04263.

[73] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,

N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H.

Weinfurter, Elementary gates for quantum computation,

Phys. Rev. A 52, 3457 (1995).

[74] G. H. Low, V. Kliuchnikov, and L. Schaeffer, Trading

T-gates for dirty qubits in state preparation and unitary

synthesis, arXiv:1812.00954.

[75] V. Vedral, A. Barenco, and A. Ekert, Quantum networks for

elementary arithmetic operations, Phys. Rev. A 54, 147

(1996).

[76] C. Gidney, Halving the cost of quantum addition, Quantum

2, 74 (2018).

[77] H. Thapliyal, E. Muoz-Coreas, T. S. S. Varun, and T. S.

Humble, Quantum circuit designs of integer division opti-

mizing T-count and T-depth, arXiv:1809.09732.

[78] J. Preskill, Quantum computing in the NISQ era and

beyond, Quantum 2, 79 (2018).

[79] P. T. Komiske, E. M. Metodiev, and J. Thaler, The Metric

Space of Collider Events, Phys. Rev. Lett. 123, 041801

(2019).

[80] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn,

N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys.

Rev. Lett. 105, 092002 (2010).

[81] J. Thaler and K. Van Tilburg, Identifying boosted objects

with n-subjettiness, J. High Energy Phys. 03 (2011) 015.

[82] J. Thaler and K. Van Tilburg, Maximizing boosted top

identification by minimizing n-subjettiness, J. High Energy

Phys. 02 (2012) 093.

[83] G. C. Blazey et al., Run II jet physics, in Proceedings of the

QCD and Weak Boson Physics in Run II. Batavia, USA,

1999 (Fermilab, Batavia, 2000), pp. 47–77.

[84] FastJet Contrib, http://fastjet.hepforge.org/contrib/.

WEI, NAIK, HARROW, and THALER PHYS. REV. D 101, 094015 (2020)

094015-20


