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Identifying jets formed in high-energy particle collisions requires solving optimization problems over
potentially large numbers of final-state particles. In this work, we consider the possibility of using quantum
computers to speed up jet clustering algorithms. Focusing on the case of electron-positron collisions, we
consider a well-known event shape called thrust whose optimum corresponds to the most jetlike separating
plane among a set of particles, thereby defining two hemisphere jets. We show how to formulate thrust both
as a quantum annealing problem and as a Grover search problem. A key component of our analysis is the
consideration of realistic models for interfacing classical data with a quantum algorithm. With a sequential
computing model, we show how to speed up the well-known O(N?) classical algorithm to an O(N?)
quantum algorithm, including the O(N) overhead of loading classical data from N final-state particles.
Along the way, we also identify a way to speed up the classical algorithm to O(N?log N) using a sorting
strategy inspired by the SiSCone jet algorithm, which has no natural quantum counterpart. With a parallel
computing model, we achieve O(N log N) scaling in both the classical and quantum cases. Finally, we
consider the generalization of these quantum methods to other jet algorithms more closely related to those
used for proton-proton collisions at the Large Hadron Collider.
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I. INTRODUCTION

Jets are collections of collimated, energetic hadrons
formed in high-energy particle collisions. With an appro-
priate choice of jet clustering algorithm [1], jets are a robust
probe of quantum chromodynamics and a useful proxy for
determining the kinematics of the underlying hard scatter-
ing process. The problem of identifying jets from collision
data is a nontrivial task, however, since the jet clustering
algorithm must be matched to the physics question of
interest. Moreover, it is a computationally intensive task, as
it often involves performing optimizations over potentially
large numbers of final-state particles.

In this paper, we consider the possibility of using quantum
computers to speed up jet identification. We focus on the
well-known problem of partitioning an electron-positron
collision event into two hemisphere jets, though our
results are relevant for other optimization problems beyond
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high-energy physics. Our main results are summarized in
Table I, where the computational scaling is given for N
particles in the final state. We show how to improve the well-
known O(N?) classical algorithm [2] to an O(N?) quantum
algorithm, which includes the cost of loading the classical
data into a sequential quantum computing architecture.
On the other hand, we also show how to speed up the
classical algorithm to O(N?logN), using a clever sorting
strategy from Ref. [3], which matches the quantum perfor-
mance up to log N factors. Finally, using parallel computing
architectures, we achieve O(NlogN) scaling in both the
classical and quantum cases, albeit for very different com-
putational reasons.

Quantum algorithms have been shown to achieve speed-
ups over classical algorithms [4], resulting, in theory, in
time savings which are even more pronounced over large
datasets. That said, many proposed quantum algorithms for
machine learning tasks often omit considerations that
would be needed to actually implement them in practice,
such as a strategy to interface classical data with a quantum
computing architecture. One solution is to assume the
availability of qRAM [5], which would let our quantum
computer access a classical dataset in superposition;
however, this additional hardware requirement may not
be easy to implement in practice. Here, we consider
realistic applications of both quantum annealing [6-8]
and Grover search [9-11] to jet finding, including the
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TABLE L

Summary of classical and quantum thrust algorithms, where the asymptotic scaling is for a single

collision event with N particles. All strategies have a classical space overhead of O(N) bits for read access to the
classical data. The classical sorting strategies also require write access to O(N log N) bits. For ease of exposition
throughout, we treat each real number as being specified to a constant O(1) bits of precision.

Implementation Time usage Qubit usage Sections
Classical [2] O(N?) Sec. Il A
Classical with sort (using [3]) O(N?logN) Sec. III C
Classical with parallel sort O(NlogN) Sec. I D
Quantum annealing Gap Dependent O(N) Sec. IV

Quantum search: sequential model O(N?) O(logN) Sec. VC
Quantum search: parallel model O(NlogN) O(NlogN) Sec. VE

O(N) overhead of loading classical collision data into the
quantum computer.

The specific jet finding algorithm we use is based on
thrust [12—14]. Thrust is an event shape widely measured in
electron-positron collisions [15-27]. The optimum value of
thrust defines the most jetlike separating plane among a set
of final-state particles, thereby partitioning the event into
two hemisphere jets. Algorithmically, it poses an interest-
ing problem because it can be viewed in various equivalent
ways—such as a partitioning problem or as an axis-finding
problem—which in turn lead to different algorithmic
strategies.

We note that practical thrust computations typically
involve only 10-1000 particles per event, so the current
O(N?) classical algorithm [2] is certainly adequate to the
task. That said, more efficient jet algorithms are of general
interest, for example, in the context of active area calcu-
lations [28], which can involve up to millions of ghost
particles. We also note that the current default jet algorithm
at the Large Hadron Collider (LHC) is anti-k, [29], which
already runs in O(N log N) time [30,31], and it is unlikely
that any quantum algorithm can yield a sublinear improve-
ment. On the other hand, anti-%, is a hierarchical clustering
algorithm (i.e., a heuristic), whereas thrust is a global
optimization problem, and there are phenomenological
contexts where global jet optimization could potentially
yield superior physics performance [32,33]; see also
Refs. [34-47]. Jet finding via global optimization has
not seen widespread adoption, in part because of the
computational overhead, and we hope the quantum and
improved classical algorithms developed here spur more
research on alternative jet finding strategies.

Beyond the specific applications to jet finding, we
believe that the broader question of identifying realistic
quantum algorithms for optimization problems should be of
interest to both the particle physics and quantum computing
communities. Indeed, we regard thrust as a warm-up
problem for the more general development of quantum
algorithms for collider data analysis. (For other quantum
algorithms for collider physics, see Refs. [48,49] for Higgs
boson identification, Refs. [50,51] for parton shower
generation, and Refs. [52-54] for track reconstruction.)

Because collider data are classical (and will likely remain
so for the foreseeable future), understanding the limitations
imposed by data loading is essential to evaluate the
potential of quantum algorithms to speed up or improve
data analysis pipelines. At the same time, it is important to
assess potential classical improvements to existing collider
algorithms, and the sorting strategy of Ref. [3] is an
important example of how new classical strategies can
sometimes match the gains from quantum computation.

Turning now to an extended outline of this paper, our
quantum algorithms build on existing classical strategies to
compute thrust. In Sec. II, we define thrust in its various
equivalent manifestations, as both a partitioning problem
and an axis-finding problem. Then, in Sec. III, we review
classical algorithms for computing thrust based on a search
over reference axes. As already mentioned, the best known
result in the literature requires O(N?) time [2]. We show
how to improve it to O(N?log N) using a sorting strategy
inspired by SiSCone [3], which appears to have no quantum
analog (see Sec. VD).

The first quantum method we consider in Sec. IV
involves formulating thrust as a quadratic unconstrained
binary optimization (QUBO) problem, which can then be
solved via quantum annealing [6,7]. This comes from
viewing thrust as a partitioning problem and then consid-
ering the brute force enumeration of all candidate parti-
tions. See Refs. [55,56] for other studies of quantum
annealing for clustering with unique assignment.

The core results of this paper are in Sec. V, where we
describe quantum algorithms for computing thrust based on
Grover search [9]. Although naively Grover search offers a
square root speedup over any classical search algorithm, in
practice Grover search cannot yield sublinear algorithms.
The reason is that data loading over a classical database of
size N requires O(N) time, which limits the achievable
gains. That said, if the classical search space scales like
O(N%), we can still use the Grover strategy to reduce the
search loop to O(N%/?), though there will be an additional
additive (multiplicative) factor of O(N) if data loading has
to happen outside (inside) of the loop. Using the formu-
lation of thrust as a search over reference axes, we show
that @« = 2 in the thrust case. Thus, we can attribute our
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speedup to the fact that data loading is performed in
superposition, which means that it still requires only
O(N) time despite working over a search space of
size O(N?).

The precise speedup achievable in our Grover search
strategy depends on the assumed quantum computing
paradigm. We implement two models for retrieving and
processing the classical data, based on the abstract oper-
ations LOOKUP and SUM. The sequential computing
model requires O(1) qubits and results in an O(N?) thrust
algorithm. Here we use O(+) to mean that we neglect factors
that are polylog in N. The parallel computing model
requires O(N) qubits and results in an O(N log N) thrust
algorithm. Both computing models are applicable to any
general problem where the size of the search space scales
like O(N*) with a > 2, which are precisely the problems
that can typically be sped up with a realistic application of
Grover search.

In Sec. VI, we assess whether or not there is any
quantum advantage for hemisphere jet finding. Formally,
if one has read access to O(N) classical bits but only write
access to O(log N) bits, then one cannot implement the
classical sorting strategy in Sec, III C. In that case, there is a
quantum advantage for both sequential and parallel com-
puting models. With write access to O(N log N) classical
bits, though, classical sorting is possible, and the asymp-
totic performance of our classical and quantum algorithms
is identical (up to log N factors) in both the sequential and
parallel cases. This equivalence appears to be special to
algorithms like thrust where the search space scales like
O(N?), and we speculate that larger search spaces might
benefit from Grover speedups even if classical sorting is
possible.

Finally, in Sec. VII, we briefly consider generalizations
of our results to jet algorithms more closely related to those
used at the LHC. We consider jet function maximization
[43-45], showing that, with suitable modifications, it can
be written in QUBO form for quantum annealing. We
consider stable cone finding in the spirit of SISCone [3],
showing how a single-jet variant we dub SINGLECONE is
amenable to quantum search. We also comment on quan-
tum multijet finding motivated by the XCone algorithm

FIG. 1.

[32,33]. We conclude in Sec. VIII with some broader
lessons about quantum algorithms for collider physics.

II. DEFINITION OF THRUST

We start by defining thrust [12—14], noting that it has
multiple equivalent definitions that suggest different algo-
rithmic strategies, as shown in Fig. 1. Thrust can be viewed
as a partitioning problem, which lends itself naturally to
quantum annealing. Thrust can alternatively be viewed as
an axis-finding problem, which we can frame as a quantum
search problem. Both definitions of thrust can be stated in
terms of operator norms, and through this lens, they are in
fact dual to each other.

A. Thrust as a partitioning problem

Consider a set of N three-momenta {p;} in their center-
of-momentum frame, where p; = {p?, p, pi},

> Bi=0. (1)

An intuitive formulation of thrust (though not exactly the
original one [12,13]) is to separate the particles into a
partition H; U Hy such that momenta on each side are as
“pencil-like" as possible. That is, we seek to maximize the
quantity

T(H ) _ 2|Zi€HLﬁi| - 2|ZieHRﬁi| (2)
L) — = - = )
{'V=1 |Dil Z?’:] |Pil

where the second equality follows from momentum con-
servation. The quantity known as “thrust” corresponds to
the maximum obtainable value,

T = n}]axT(HL). (3)

The factor of 2 in Eq. (2) is conventional such that
1/2<T <1, where T =1 corresponds to a perfectly
pencillike back-to-back configuration and 7' = 1/2 is an
isotropic event.

&\g 7 s
— ] \
\ ~ T

Two equivalent definitions of thrust as (left) a partitioning problem and (right) an axis-finding problem. The best known

classical algorithm is based on plane partitioning via a reference axis 7 (which in general differs from the thrust axis).
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There is an equivalent geometric formulation of Eq. (2)
due to Ref. [57]. Consider sequentially summing the three-
momenta {p;} to form a closed polygon. Each sequence
yields a different polygon, and computing thrust is equiv-
alent to maximizing twice the diagonal of the polygon over
all possible polygons, normalized by the circumference of
the polygon. The diagonal splits the polygon into two
halves, which yield the partition H; U Hg. The particles in
H; are said to be in the “left hemisphere jet" and the
particles in Hy are said to be in the “right hemisphere jet.”

This definition immediately suggests a naive, brute-force
classical strategy for computing thrust. We can enumerate
all O(2V) possible partitions (which can be reduced to
O(2N~1) using momentum conservation), and then we sum
the momenta in each to determine the maximum, resulting
in an O(N2") algorithm. This is the version of thrust we
will use for the quantum annealing formulation in Sec. IV,
which corresponds to attacking the problem using quantum
brute force.

B. Thrust as an axis-finding problem

An alternative definition of thrust is as an axis-finding
problem, which is a bit closer to the historical definition
[12,13]. Let 72 be a unit norm vector and define

iy |7 Bil
21 1pil

Thrust can then be determined by the maximum value of
T(#) over 7,

T(h) = (4)

T = maxT (). (5)

[al=1
The optimal 71 is known as the thrust axis,

flop = argmaxT (7). (6)
IA=1

To gain some intuition for why Eqgs. (3) and (5) are
equivalent, note that once we find the thrust axis fzopt, we
can partition the particles into those with i, - p; > 0 and
those with 71, - p; < 0. (It is an interesting bit of computa-
tional geometry to show that 7 - P; can never be exactly
zero for a finite number of particles.) Said another way, the
plane normal to A, partitions the event into left and right
hemispheres. Starting from a nonhemisphere partition, it is
always possible to increase the value of thrust in Eq. (2) by
flipping a particle from one side to the other, so the optimal
partition will be defined by a plane. Because of this
equivalence between axis finding and plane partitioning,
the thrust objective is sometimes written as

_ 23X, 8- p) (- pi)
2 1Bl

T(#) (7)

where the Heaviside theta function picks out particles in
just one hemisphere.

Note that the optimal partitioning plane is not unique,
since there can be multiple planes that yield the same
partition. We can exploit this fact to find a computationally
convenient partitioning plane, defined by a normal refer-
ence axis 7. This reference axis will in general be different
from the thrust axis 7., but nevertheless yield the same
value of thrust via Eq. (2). Specifically, once the optimal
partition is known via a reference axis, the thrust axis can be
determined from the total three-momentum in the left
hemisphere,

Ay = >icH, Pi (8)
o —_.

P |ZieHLpi|

We will use this reference axis approach for the classical
thrust algorithms in Sec. III and for the quantum search
strategies in Sec. V.

C. Duality of thrust definitions

Using the formalism of operator norms, we can show that
these two definitions of thrust are in fact dual to each other.

Let M:V — W be a map from V = R” with norm || - ||,
to W= R" with norm || - ||;. The operator norm of M,
known as the induced a-to-f norm, is defined as

[M]lpm = ”rvlﬁaflllellﬂ- 9)
That is, we search over all vectors v in V with norm 1 and
find the maximum norm for the vector Mv in W. The case
when & and /3 are both the usual L? norm corresponds to the
largest singular value of M, but in general ||M]||,_,; can be
NP hard to estimate [58]. (Here NP is the class of problems
whose solution can be verified in polynomial time, so an
NP hard problem is one that is at least as difficult as the
hardest problem in NP.) By duality, we can rewrite this as

max [[Mv]|; = max [[MTy[|, = [[M"]|5_,. (10)

[[o[l=1 [1ll5.=1

where y is in W, the vector space dual to W, defined as
W+ = R” with dual norm || - || 5,. Thus, the a-to-$ norm of

M is the same as the $*-to-a norm of M7,
In the context of thrust, we are interested in the following
norms for a vector v € R™:

ol =3l (11)
ol =, /32 (12)
9]0 = max|e). (13)

These are known, respectively, as the one-norm, two-norm,
and sup-norm. By Holder’s inequality, the space of vectors
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endowed with the p norm is dual to the space of vectors
endowed with the ¢ norm, where % —1—5 = 1. In particular,

the one-norm is dual to the sup-norm, and the two-norm is
dual to itself.

Now consider the matrix M;; = (p;);, whose rows are
the N three-momenta and whose columns are the p*, p”,
and p? components. This is a map from R? to R". Letting
a =2 and # = 1, the induced 2-to-1 norm of M is

1Mll2-1 = max IIMnlll—mwliZIn il (14)
l‘l*

We recognize the last term as the numerator of 7'(72) in
Eq. (4). Since the denominator of T'(7) is independent of ,
this is equivalent to the definition of thrust via axis finding
in Sec. II B. Thus, thrust takes the form of an induced 2-to-1
norm problem.

By duality, with p* = oo, thrust can alternatively be
viewed as a sup-to-2 norm problem,

T — M _
1M oo = ngxlu Il = el

ZSP,

This corresponds to the definition of thrust via partitioning
in Sec. II' A, since setting s; = —1 denotes flipping the
orientation of vector p; relative to the partitioning plane,
while setting s; = 1 retains the orientation of p;.

Therefore, we see that the problem of computing thrust
in particle physics is in fact a special instance of the more
general problem of computing induced matrix norms.
While there exist choices of @ and f# for which efficient
algorithms for computing ||M||,_, exist for arbitrary M, it
is believed that the general problem of computing the
induced 2-to-1 norm and that of computing the induced
00-t0-2 norm are both NP hard [59-61]. This suggests that
thrust is an excellent test bed to explore possible gains from
quantum computation.

D. Alternative duality derivation

There is alternative language to understand this thrust
duality that will be useful for the generalizations in
Sec. VII. This approach is based on Ref. [62], which
showed that different jet finding strategies can sometimes
be derived from a common metaoptimization problem.

Consider a partition H (not necessarily defined by a
plane) with total three-momentum,

P=>"p. (16)
ieH

Our analysis is based on the following objective function
that depends on both a choice of partition and a choice
of axis:

OP.A)=h-P+AR>—-1), (17)

where A is a Lagrange multiplier to enforce that the axis 7

has unit norm. At this point, P and # are completely
independent entities, and 7 does not play any role in
determining the partition H.

For fixed P, we can optimize O(P, /) over A,

p
ﬁopt == (18)
Pl
Plugging this into Eq. (17) yields
O(P) = O(P, i) = | P, (19)

which is (half) of the thrust numerator in Eq. (2).
For fixed 7, we can optimize O(P,#1) over P (or
equivalently, over the partition H),

Py = Z@

Plugging this into Eq. (17) yields

“m
—
[\
=)
S—

O(R) = O(Poy, ) = Y O(it- B)(A- Br),  (21)

i=1

which is (half) of the thrust numerator in Eq. (7).

Since the order of optimization is irrelevant to the final
optimum, this again shows that the two thrust definitions
are dual. Either way, the maximum value of the objective
function will be

O(Poptv ﬁopt) = |Popt|7 (22)

which, following Ref. [57], is just the maximum achievable
polygon diagonal.

III. CLASSICAL ALGORITHMS

We now describe the best known classical algorithm
for thrust in the literature, which requires O(N?) time, and
then show how it can be improved to O(N?log N) using a
sorting technique from Ref. [3]. We start by assuming a
sequential classical computing model in this section and
end with a brief discussion of parallel classical computing.

A. Plane partitioning via a reference axis

The best known classical thrust algorithm [2] uses the
reference axis approach discussed at the end of Sec. 11 B.!
This is the thrust algorithm implemented in PYTHIA as of

'Strangely, Ref. [2] claims O(N?) usage, which only includes
the number of partitions to check, not the computation of
thrust itself.
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version 8 [63].2 The key realization is that, because of
Eq. (8), one only needs to search over inequivalent plane
partitions. Two particles are sufficient to determine a
separating plane, so there are O(N?) inequivalent plane
partitions to consider. For each partition, determining
T(H,) takes O(N), leading to an O(N?) algorithm.
More specifically, for each pair of particles p; and p;,
one determines a reference axis 7;; normal to the plane

spanned by them,

ij

|Pi % pjl

Then, each particle pj is either assigned to the hemisphere
H;; if #;; - p; > 0 or ignored if #;; - p; < 0. Cases where
7ij- px = 0 are ambiguous, and we provide a general
strategy to deal with this in Sec. III B below. At minimum,
we have to treat the cases where k = i or j, which requires
testing 2 x 2 = 4 possibilities for whether or not p; and/or
p; should be included in H;;, for a total of 4N(N —1)
partitions. (This can be reduced by a factor of 2 using
momentum conservation, since 7;; and 7;; define the same
hemispheres.) The final hemisphere jets are determined by
the partition that maximizes

T;=T(H,). (24)

Note that, in general, none of the O(Nz) reference axes
considered will align with the actual thrust axis.
Nevertheless, the partitions defined by 7o, and 7o, will
be identical. (In the idealized case of infinitesimal radiation
everywhere in the event, all possible separating planes
would be considered, so 7., would then equal 7,,.) Once
the optimal partition is known, the thrust axis itself is
determined by Eq. (8).

In terms of computational complexity, for a fixed hemi-
sphere H,;, it takes O(N) time to compute the hemisphere
three-momentum in Eq. (16). The thrust denominator
Tenom = Yy |Pil also takes O(N) time, but it can be
precomputed since it is independent of the partition. Once

2 ; and T gepor are known, though, it only takes O(1) time

to determine the value of T,
2|P;;
denom

where we used Eq. (8) to derive this expression. For the best

known classical algorithm, there are O(N?) partitions, and
we have to do an O(N) computation of T(H,;) for each

2Version 6 of PYTHIA [64] uses a heuristic to approximate
thrust, via an iterative procedure that updates the partition starting
from seed axes. While this method converges very quickly, it only
finds a local maximum, not the global one [57], though this may
be sufficient for practical applications. See related discussion in
Ref. [32].

partition, leading to the O(N?) scaling. In Sec. III C, we can
improve on this runtime by iteratively updating I3,j in a
special order.

B. Doubling trick

To simplify the thrust algorithm, it is convenient to
artificially double the number of particles. Starting from N
three-momenta, we create a list of length 2N by including
both p, and its negative —p,. Because p, and —p, can
never be in the same hemisphere, and because of the
momentum conservation relation in Eq. (2), this doubling
trick has no effect on the value of thrust. It does, however,
provide us with a convenient way to deal with the fourfold
ambiguity above, since we can now define the hemisphere
H;; to always include particle i and particle j.

To deal with cases where 7;; - pr = 0 (i.e., any time three
or more particles are coplanar), we offset the reference
axis by

- -

N A - - Di pj
Fij— T+ eqy;, qgij ==7+—=7, (26)
Voo Yl 1Bl

and then take the formal ¢ — 0 limit. Specifically, if
7i;- pr =0, then particle p, is included in H;; if g;;- py >0
and ignored otherwise.

Crucially, Eq. (26) ensures that p; and p; are always in the
hemisphere H;, but —p; and — p ; are not. (One has to be
mindful of the pathological situation where p; and p; are
exactly antiparallel, though in this case, thrust is determined
by one of the other hemisphere partitions.) The hemisphere
three-momentum is now

- 1 -
Py = 5 ZPk, (27)
keH,;

where the factor of % compensates for the artificial doubling.

We will use this doubling trick repeatedly in this paper,
though not for quantum annealing in Sec. IV where it is
counterproductive. To simplify the description of the
algorithms, we will leave implicit the treatment of all
7ij- Px = 0 cases via Eq. (26). It is worth mentioning that
an alternative way to deal with coplanar configurations is to
offset the momenta by a small random amount, but we find
the doubling trick to be more convenient in practice since it
avoids the fourfold ambiguity automatically.

C. Improvements via sort

The O(N?) algorithm can be further improved to run in
time O(N2log N).” This can be achieved using a strategy
from SISCone [3] which uses a clever choice of traversal
order. Note that SISCone is intended for proton-proton

*We thank Gregory Soyez for discussions related to this point.
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FIG. 2. Tlustration of the sorting algorithm around the p; axis
(seen from the top down). The dashed vectors correspond to the
doubling trick. As the blue partitioning plane sweeps in azimuth,
the hemisphere momentum is updated according to Eq. (30).

collisions, whereas our interest here is in electron-positron
collisions, but the same basic strategy still applies.

The goal of SiSCone is to find conical jet configurations J
where the enclosed particles are within a distance R from
the cone axis 71;. Moreover, these cone jets must be stable,

meaning that the jet three-momentum P, = > ies Di 18
aligned with the cone axis 71;. Like thrust, SISCone involves
solving a partitioning problem where the naive brute-force
approach requires O(N2V) time. Like for thrust, one can
reduce the naive runtime for SISCone to O(N?) using the fact
that two points lying on the circumference of a circle are
sufficient to determine the cone constituents. There is an
eightfold ambiguity in the cone assignments, which we
discuss further in Sec. VIIC.

The key _insight of Ref. [3] is that one need not
recompute P, for all O(N?) candidate cones. Ignoring
the eightfold ambiguity, let the candidate cones be labeled
by i and j. For fixed i, one can define a special traversal
order for j such that only one particle enters or leaves the
cone at a time. There are N particles labeled by i, and for
fixed i, sorting over j takes O(NlogN) time. After the

initial O(N) determination of P, for the first j values in the

sorted list, updating the value of P ; for each j iteration only
requires O(1) time, since you need to only add the
momentum of a point entering the cone or subtract the
momentum of a point leaving the cone. Thus, the final
algorithm is O(N?log N).

We can apply exactly the same sorting strategy to the
computation of thrust, as shown in Fig. 2. The reason is that
the reference axis 7;; depends only on the cross product
pi X pj. This means that for fixed p;, we can choose an
ordering of the p; such that the partitions induced by

{#i,..., iy} are specified by a single sortable parameter.

To see this, it is convenient to transform to a coordinate
system where p; points in the z direction, i.e., p; =
|p;](0,0,1). For any j # i, we can write p; in spherical
coordinates as p; = |p;|(sin6@; cos ¢;,sin6; sin¢h;, cos b)),
where 6; is the polar angle and ¢; is the azimuthal angle.
Then 7;; = (—sin¢;,cos ¢;,0), so the partition is indeed
determined by the single parameter ¢, independent of ;.
Specifically, particle k is in hemisphere H;; if

Fij - Dx = sin@ysin(¢py — ;) (28)

is positive. This implies that 0 < ¢b; — ¢; < 7, where azi-
muthal angle differences are calculated modulo 2.

Furthermore, because of the doubling trick, there is a
simple way to determine which particles are in the partition.
With the doubling, there are 2N possible choices for 7, and
by Eq. (26) we know that the doubler —p; cannot be in the
same partition as p;. Using the above coordinate system,
we can sort the remaining 2N — 2 vectors according to their
¢ coordinates, so that 0 < ¢p; <¢;, <---<¢; <2
(In cases where two particles happen to have identical
values of ¢, their relative ordering does not matter for the
argument below, as long as the doublers are also put in the
same order.) Crucially, for a particle at position «a in this
sorted list, its doubler (which is # away in azimuth) must be
at position a + N — 1. To see why, note that a hemisphere
either contains a particle or contains its doubler, so there
must be exactly N particles in each hemisphere. Particle i is
already accounted for, meaning that any candidate partition
must contain N — 1 entries from the sorted list. Since the
sorted list is ordered by azimuth, and since the partitioning
is determined by azimuth alone via Eq. (28), the N — 1
elements from position a to position a + N — 2 inclusive
must be in a common partition, and the doubler must be the
next one on the list. Therefore, candidate thrust partitions
always take the form

Hi,ju :{i’ja’ja+19“"ju+N—2}‘ (29)

(Note that, as in Eq. (26), both particle i and particle j, are
always contained in H, ; .)

These observations allow us to construct an O(N?log N)
algorithm for thrust. The outer loop involves iterating over all
2N choices for i. The inner loop involves the following
O(NlogN) algorithm. We perform the sorting procedure
above for fixed i, which takes O(N log N)) time. For the first
element in the sorted list, we determine the partition H i
using Eq. (29) with a = 1. We can readily compute f’,-, j, via
Eq. (27) in time O(N) and then compute the associated thrust
value via Eq. (25) in O(1). For the subsequent 2N — 3
elements of the sorted list, we step through them one by one,
updating the partition from H; ; = {i. ja: jat1: s Jatn—2}

toH;; = {i,jas1:Ja+2s -+ Jasn—1}- In doing so, we need
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tosubtract p; andadd p; .  (whichisthe same as—p; by
the doubling trick), leading to the update step,

- -

i = Pij, = Pjss (30)
where one has to remember the factor of % in Eq. (27). From
the updated momentum, we recompute the associated thrust
value via Eq. (25) in O(1) time. The total time from stepping
through the 2N — 3 partition momenta is O(N), so the inner
loop is dominated just by the initial O(N log N) sorting step.

The maximum 7';; over all i and sorted j determines the final
hemisphere jets.

D. Parallel classical algorithm

The sorting algorithm above requires O(N?log N) oper-
ations. In a model with a single CPU and random-access
memory, this corresponds to time O(N2log N) as well. We
can also consider parallel computing models in which the N
words of memory are accompanied by N parallel process-
ors; see Ref. [65] for more discussion of these models. In
this case, we will see that a runtime of O(Nlog N) can be
achieved. For simplicity, we do not consider the general
case in which the number of parallel CPUs and the amount
of memory can be varied independently, nor will we discuss
the varying models of parallel computing in Ref. [65].

We briefly sketch here how the sorting strategy in
Sec. III C can be sped up with parallel processors. There
are three main computational bottlenecks: iterating over
all particles i (Cy), sorting over particles j for fixed i
(Cyor), and determining the hemisphere constituents over
each j for fixed i (Cpemi), leading to a runtime of
O(Citer(Cyort + Chemi))- For sequential classical computing,
we found Cj, = O(N), Cyoy = O(NlogN), and Cyepi =
O(N). A parallel computer cannot improve on Cj,, but
there are parallel computing algorithms for sorting [66]
and partial sums [67] that would allow us to achieve
Csort = Chemi = O(log N), leading to a O(NlogN) run-
time. We will compare the quantum and classical parallel
architectures in Sec. VL.

IV. THRUST VIA QUANTUM ANNEALING

The first quantum algorithm we describe is based on
quantum annealing [6,7]. In a quantum annealer such as
the D-Wave system [8], the solution to an optimization
problem is encoded in the ground state of a target
Hamiltonian. Such a Hamiltonian takes the form of an
Ising model,

Zhs+ZJU,,, (31)

i<j=1
where each of the N Ising spins s; € {—1, 41} corresponds
to a qubit, and the {/;} and {J;;} correspond to program-
mable weights and couplings between qubits, respectively.

Equivalently, under the transformation s; = 2x; — 1, we
can frame the optimization problem as a QUBO problem,
where the objective function takes the form

} = Z Q;jxix; (32)

for x; € {0, 1}. Note that the fact that i, j are now summed
with repeated indices and the fact that x> = x; allow us to
absorb the linear terms into the quadratic terms.

For the thrust problem, it is convenient to first define the
three-momentum of a candidate partition as

({x } = Zﬁixiv (33)

where x; = 1 if particle p; is in the partition and x; = 0
otherwise. Following Eq. (25), the thrust of this partition is
given by

2\P| 2

Tdenom

T({xi}) =

(34)

Z Pi- Bix;.

ij=

Tdenom

Because of the square root factor, this is not a QUBO
problem, but since the optimal partition is the same for
any monotonic rescaling of 7'({x;}), we can optimize the
squared relation

T({xi})

Zp, Bixix;. (35)

denom ij=

which now takes the form of the QUBO problem in
Eq. (32), as desired. Finding the ground state of
—T({x;})? (note the minus sign) is the same as determining
thrust.

The space usage of a quantum annealing algorithm is
O(N), corresponding to one qubit for each x;. The
annealing time required depends on the spectral gap of
the particular Hamiltonian, and we leave the question of
determining the spectral gap of the thrust objective function
to future work.

V. THRUST VIA QUANTUM SEARCH

We now describe a quantum algorithm for thrust based
on Grover search. We first describe the algorithm in terms
of two abstract operations, LOOKUP and SUM, both of
which perform data loading in superposition. Then, we
describe two computing models for loading the classical
data into quantum memory: the sequential model and the
parallel model. Key to the algorithmic speedups we achieve
is the fact that even if quantum data loading takes time
O(N), other calculations inside the Grover search loop also
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2. Set iter_count = 0 and max_it = 1.
3. While iter_count < O(\/F):

(a) While max_it < O(VK):

K

—-

v. Repeat grov_step times:

1. Randomly pick an index j and set curr_max = j.

i. Prepare the initial state |¢0) = —= ZlK:l 7).
ii. Choose grov_steps uniformly at random from {0,1,...,max_it — 1}.
iii. Set iter_count = iter_count + grov_steps.

A. Reflect about states satisfying A[i] > Alcurr_max];
B. Reflect about the initial state |o).
v. Measure the first register to obtain index j; if A[j] > A[curr_max], set curr_max = j and break.

(b) Let max_it = p X max_it, where pu is a constant between 1 and 4/3.

4. Measure the first register to obtain index j; if A[j] > A[curr_max], set curr_max = j.

FIG. 3.

Quantum search algorithm due to Diirr-Hgyer to find the index corresponding to the maximum entry of an array A[i] with K

elements [11]. The number of Grover steps is chosen at random, since this is a search over an unknown number of marked times [10].

take O(N) in both the classical and quantum models, so
we gain from decreasing the effective search space from
O(N?) to O(N). The sequential model results in an
algorithm that requires O(N?) time and O(log N) qubits.
The parallel model requires O(NlogN) time and
O(NlogN) qubits. We also assess how the resource
requirements of these algorithms scale with the precision
of the computation.

A. Algorithm overview

Our quantum thrust algorithm is based on the quantum
maximum finding algorithm of Diirr and Hgyer [11], which
returns the maximum element of an unsorted array with K

elements in 0(\/E ) time, assuming quantum query access
to the array. This algorithm is itself a generalization of
Grover search [9].

In this context, quantum query access means that for an
array A[l], ..., A[K], we can efficiently perform a unitary
operation U such that

Uali)|0) = [D)]A[i]), (36)

along with its inverse U". The first register, containing |i),
should have dimension at least K, so that |1), ..., |K) are
each orthogonal states of the register, and the second
register should be large enough to store the values Ali].
Note that Eq. (36) does not fully specify the unitary U,
since it does not specify its action when the second register
is not initially in the state |0). One possible way to define
U, fully is to have Uli)|x) = |i)|x + A[i]) with addition
defined over an appropriately sized finite ring such as Z5,
but this is not necessary for applications such as in
Refs. [9,11]. Quantum query access to an array A is more

demanding than simply having A stored on disk, as we will
discuss below.

Recall that Grover search finds one marked item out of
an array of K items, assuming the ability to reflect about
the marked item. Reference [10] further extends Ref. [9] to
find one marked item when there are r > 1 marked items,
assuming the ability to reflect about the multiple marked
items. Generic Grover search then consists of the follow-
ing steps:

(1) Prepare the initial state |yo) = —= YK, |i).

(2) Repeat O(+/K/1) times:

(a) Reflect about the marked states.
(b) Reflect about the initial state |y).

When the number ¢ of marked items is unknown,
Ref. [10] employs an exponential searching algorithm that
guesses the number of marked items, increasing the guess
by a constant factor each time. This is a probabilistic
algorithm that performs a measurement for each guess,

finding a solution in overall expected time O(\/K/t).

The maximum finding algorithm of Ref. [11], summa-
rized in Fig. 3, is based on this probabilistic exponential
searching algorithm. It keeps track of the current best
maximum seen so far and considers marked states to be
those that have a larger array entry value than the current
maximum. It employs the Grover-based exponential
searching algorithm of Ref. [10] for an unknown number
of marked states, performing measurements to obtain the
maximum with probability at least 1/2. If desired, we can
improve the success probability to 1 —# with # > 0, at
the cost of an extra O(log1/n) factor, by performing
O(log 1/n) rounds of the algorithm.

Our quantum thrust algorithms are then a direct appli-
cation of quantum maximum finding, but now to an array
with K = O(N?) entries corresponding to the choice of
separating plane. To deal with the fourfold ambiguity, we
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use the doubling trick of Sec. III C, including each original
vector p; and its negative —p, in the list of three-momenta
to obtain a search space of size K = 4N2. Our problem,
now, is to find the maximum value of T;; with i and j each
ranging over 2N possible indices. This requires us to be
able to load the momentum vectors corresponding to each
array index, which means that the quantum algorithm must
have some means of accessing the classical data.

B. Data loading considerations

We can describe our quantum thrust algorithms in terms of
two abstract operations, LOOKUP and SUM. Their imple-
mentation will be described in Sec. V C for the sequential
model and Sec. V E for the parallel model. Beyond thrust,
these operations are quite general in their application to
loading classical data into quantum algorithms.

Note that our search space is of size O(N?), while data
loading over N items in a classical database takes time
O(N). Therefore, we can conceptualize our quantum
speedup as resulting from being able to perform data
loading over the superposition of search space items. It
is important here that the set of search space items is not the
same as the set of data points. In general, any application of
Grover search over a search space of size O(N%) with a > 2
will result in a square root speedup, whereas for a < 2, the
cost of the algorithm will be dominated by the O(N) data
loading cost.

The LOOKUP operation is queried with one index
corresponding to a given particle, returning the momentum
corresponding to that index,

Urookupli)|0) = [i)|B;)- (37)

Note that the second register, initialized as |6>, has to be
large enough to store the three-momenta to the desired
(qu)bit accuracy. To make Ujgogyp unitary, we define
Urookur|i)|g) = |i)|g + p;) for general vectors g, where
the addition is done modulo some value larger than the
maximum momentum encountered in the problem. To deal
with pairs of particles, we can call Ujgokyp twice on
different registers to map |i)[;)[0)|0) — 1i)|7)1P:)|P;)- This
LOOKUP operation will be used to determine all O(N?)
reference axes 7;;, taking O(N) time in the sequential
model and O(log N) time in the parallel model.

The SUM operation returns the sum over all momenta,
possibly with a transformation f(p;c) applied to each
momentum vector,

Usinle)[0) = [0} £ F(Bec)). (38)

where ¢ represents possible control qubits. From a given
reference axis 7;;, SUM will be used to calculate the value of
T;;. Itis crucial that calculating T';; for fixed i and j takes the
same runtime as LOOKUP, i.e., O(N) for sequential and

O(log N) for parallel. Notably, a wide class of collider
observables can be computed in linear runtime [68], even
those that would naively scale like a high polynomial power.

Using LOOKUP and SUM, our quantum thrust algo-
rithm is described in Fig. 4. As with standard Grover
search, we need to be able to reflect about the initial state
and the marked states, namely, those whose corresponding
values of thrust are larger than the best maximum seen so
far. To identify the marked states, we compute thrust for
each choice of separating plane, using LOOKUP and SUM
to interface the quantum algorithm with the classical data.
We uncompute intermediate steps of our calculations using
standard methods (e.g., Sec. 3.2 of Ref. [4]) to make sure
that, after computing T';;, the system can be reflected about
the initial state.

Let Cipokup be the asymptotic cost of LOOKUP and
Csum be the asymptotic cost of SUM. The runtime of this
algorithm is O(N(Crookup + Csum)) since there is an
O(N) outer Grover search loop, while the inner loop is
dominated by one application of LOOKUP and one
application of SUM. Note that the computation of the
initial guess for the maximum, 7,,,, can be performed
in O(N) time classically, while preparation of the initial
state and reflection about the initial state can each be
performed in O(log N) time, the time required to perform a
Hadamard gate.

j°

C. Sequential computing model

The first computing model we consider is one in which
one gate, classical or quantum, can be executed per time
step. We should think of the classical computer as con-
trolling the overall computation. In a single time step, it can
either (a) perform a classical logic gate, (b) choose a
quantum gate or measurement, or (c) read a word from the
input (e.g., a single momentum). Another way to think
about this model is that we measure cost by the circuit size,
i.e., the total number of gates.

While fault-tolerant quantum computers are expected to
require parallel control to perform error correction, there
are still plausible models in which the cost of the compu-
tation will be proportional to the number of logical gates.
One possibility is that the cost is dominated by generating
magic states or by long-range interactions. Another pos-
sibility is that we are using a small quantum computer
without fault tolerance, but in an architecture such as a one-
dimensional ion trap, where the available gates are long
range and cannot be parallelized.

Under this sequential model, the operations LOOKUP
and SUM each take O(N) time and require O(logN)
qubits. Specifically, LOOKUP requires a register of size
O(log N) to store the query index i, along with a register to
store the requested three-momentum p;. It operates by
performing a sequential scan through all N items in the
classical database to fetch and return p;. More concretely,
in O(1) time, we can perform Uy goxup,;» defined by
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1. Randomly pick indices m,n and set curr_max = (m,n).
2. Compute p_sum = § Zfivl | D3
3. Set iter_count = 0 and max_it = 1.
4. While iter_count < O(N):
(a) While max_it < O(N):
: e e 2N N IR IR AL
i. Prepare the initial state |10) = 5k >ij=11%) 17) 10) ]0) |0} |0) [0).
ii. Choose grov_steps uniformly at random from {0,1,...,max_it — 1}.
iii. Let iter_count = iter_count + grov_steps.
iv. Repeat grov_steps times:
A. Call subroutine COMP_T to compute Tj;:

8} 17)10) (0) |0) [0) [0) > [é) |5) [0) [0 |0) |0) |T5;) -
B. Reflect about states with Tj; > Tturr_nax With a phase factor:
[8) 1) 10 10) [0) [0) |Ti;) = (—1)© s~ Teumm-mad 1) |5) |G (D) [0) [0) |T5) -

C. Uncompute the T}; register to obtain state: (—1)©(Tii~Tesrzmax) |3} |5 |G) |0) |0) |0) |0).
D. Reflect about the initial state using Ro = 2 [0} (tpo]| — I®”.
v. Measure the {4, j,T;;} registers to obtain {k, ¢, Ti¢}; if The > Teurr_max, set curr_max = (k, £) and break.

(b) Let max_it = p X max_it, where p is a constant between 1 and 4/3.

5. Measure the {4, j, T;; } registers to obtain {k, ¢, Tke}; if Tre > Tcurr_max, Set curr_max = (k, £).

Subroutine COMP_T:
1. Load pjs, p; using LOOKUP:

1) 1) 10) |0) [0) 10) [0) > [3) |3} I5) |55 |0) 0) |0) -
2. Calculate the reference axis via 7;; = (pi X p;)/|Pi X pj:
[6) 1) [55) 55) 10) [0) 10) = 18} [5) 15%) |55) |745) 10) [0) -
3. Apply SUM, with f(p;7i;) = {pr/2 if 7#:; - Dk > 0; 0 if 74 - Pk < 0}, to obtain hemisphere momentum ﬁij:
[8) 13) 183} 177 1743 10) 0) = [4) 13} |5:) |55) 7:) | Pis) 10) -
4. Calculate thrust via Tj; = 2|P;;|/p_ sum:

i) 13) [85) 185) |7i3) | Pig) [0) = [8) |3) |85) 155 |745) | Pis) | Tig) -

5. Uncompute registers to obtain state: |i)|j) |0) |0)]0)[0) |T3;).

FIG. 4. Our Grover-based quantum thrust algorithm, written in terms of the abstract LOOKUP and SUM operations. The symbols |6)
|@), and |0) refer to initial states for a three-momentum, normalized axis, and real number, respectively. Note that we have applied the
doubling trick from Sec. ITI B, such that each p} has its negative —p}, in the set of three-momenta. Cases where 7; i Dr = 0 are treated

implicitly via Eq. (26). A key difference compared to Fig. 3 is that the quantity to maximize, 7', is calculated quantumly via the cOMP_T

subroutine.
ULOOKUP,,-\Z'HB)) = |i)|p;), (39a)  SUM takes time O(N) because it also performs one pass
. . through all N items in the classical database while computing
Urookur.il/)| 0) = [i)| 0). if j#i. (39b)  and returning the sum 3, f(p;; ¢).

With this implementation of LOOKUP and SUM, with

Then we implement U;gokxyp in Eq. (37) by performing
Uvookup,1 Urookup.2 " Urookup.y intime O(N). Similarly,

Ciookup = Csum = O(N), the Grover-search based thrust
algorithm in Fig. 4 requires O(N?) time and O (log N) qubits.
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D. Quantum improvements via sort?

One might wonder whether the runtime of the quantum
thrust algorithm could be reduced from O(N?) to
O(N*?1ogN), using the same strategy that we used in
Sec. III C to reduce the classical thrust algorithm time from
O(N?) to O(N?logN). The answer is yes, in principle,
but it would require a computing model beyond the
sequential one.

Recall that two points define the partitioning plane, and
after selecting the first point, we could sort the second point
according to a special traversal order. This allowed us to
avoid the O(N) cost of resumming the momenta for each
candidate plane. Quantum algorithms require Q(N log N)
time for sort [69], which means that they cannot be used to
speed up this part of the classical algorithm. In principle,
though, we could still obtain a Grover square root speedup
when searching over the O(N) candidates for the first point
determining the partitioning plane. Combining the O(v/N)
Grover search over the first point with the O(N log N) sort
over the second point would then yield an O(N3/?log N)
overall algorithm.

The challenge here is that to perform quantum sort, all of
the data need to be stored somehow in quantum memory,
which goes beyond the sequential computing model above
where only one data point is ever accessed in a given time
step. We leave to future work the design of a quantum
computing architecture suitable for loading and sorting data
from a classical database.

Assuming that such a sort-friendly architecture exists,
one might ask about the origin of the O(N?logN) to
O(N*?1ogN) speed up. Such an improvement is only
possible since the strategy in Sec. III C converts thrust into
a structured search problem [70,71], which evades the
naive bounds on quantum search performance. Of course,
no matter the degree of structure, we can never do better
than the O(N) cost to examine each data point once.

E. Parallel computing model

The parallel computing model reduces the time usage
of the sequential model at the expense of additional
space usage.4 Under this model, the operations LOOKUP
and SUM each take O(log N) time but require O(N log N)
qubits.

An abstract version of this model is the standard
quantum circuit model, in which on N qubits we can
perform up to N/2 two-qubit gates on as many disjoint
pairs of qubits as we like. A controlling classical computer
with the same parallelism can also be used to process the
measurement outcomes and feed the results back in to
the quantum computer. To implement this in an actual
quantum computer, we would need to assume long-range

*We thank Tordanis Kerenidis for discussions related to this
point.

connectivity but not all-to-all connectivity. For example,
Brierley [72] describes how connecting each qubit to four
other qubits is enough to simulate full connectivity with
O(log N) time overhead. In what follows, we neglect any
O(log N) or other factors from converting the abstract
circuit model to a concrete architecture.

Parallel data retrieval requires first preloading all N
database items into the O(N) qubits. This can be done in
O(1) time, since it requires only parallel copy (or CNOT)
operations from the classical bits onto the qubits. (Even a
cost of O(N) at this stage would not change the asymptotic
runtime, so one could also consider input models in which
the data could only be accessed sequentially, such as tape
storage.) This results in the state

11)[0)[2)|0)....|N)[O) = [1)51)[2)]B2)--IN) [ B).  (40)

Note that this is not the same as qRAM [5], since we are
loading the classical data into a product state once, and not
assuming any kind of query access to the data.

Now, given our preloaded data, we can perform
LOOKUP in time O(log N) by performing binary search
on the query index i to locate qubits |i)|p;). The binary
search can be made unitary using a series of O(N) SWAP
gates. Letting i = ii,...i), in binary, if iy = 1 we swap the
first N/2 (i, p;) pairs with the last N/2 (i, p;) pairs, if
i = 1 we swap the first N/4 (i, p;) pairs with the next N /4
(i, p;) pairs, and so on. After O(log N) swaps, we end up
with qubits |i)|p;) in the first position. We can then copy
|p;) into a blank register and uncompute the swaps.

Similarly, we can perform SUM in time O(logN) by
combining the entries level by level up a binary search tree
indexed by i, with O(N) additional registers to store the
intermediate steps. That is, we first add all pairs of entries
corresponding to indices i, i where iy = i|,i, =15, ...,
ip_1 = 1y,_, and iy # ij,. Then we have N/2 entries
indexed by j = j;j,...jy—1>» and again we add all pairs of
entries corresponding to indices j, j/ where j; = j|, j, =
Jheeees 2 = Jhy_p and jy_y # ji,_,- Repeating this proc-
ess O(log N) times allows us to sum all the entries in parallel.

Thus, the quantum thrust algorithm for the parallel
data loading model, with C;ooxup = Csum = O(logN),
requires O(Nlog N) time and O(N log N) qubits.

F. Resource requirements

In the above discussion, we focused on the scaling of our
Grover-based quantum thrust algorithm in terms of the
number of particles N. Here, we want to provide more
information on the practical resource requirements for this
algorithm in terms of the required precision of the thrust
computation.

Thus far, we have been working with data in the form
of three-vectors p;, where we assumed that the register
holding p; is of constant size. Just how large is this
constant, given that using a finite number of qubits would
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result in digitization error? For typical collider physics
applications, such as anticipated for a future e*e™ collider,
we would want a dynamic range on momenta from the
MeV scale (i.e., per-mille accuracy on GeV-scale hadrons)
to the TeV scale (i.e., the rough energy scale for CLIC), or
around 6 orders of magnitude. This means b = log, 10 =
20 bits of accuracy. Since we are keeping track of d =3
dimensions, the register holding the p; must be of size
db =3b. Thus, the total number of qubits required
is O(logy N +db) for the sequential algorithm and
O(N(log, N + db)) for the parallel algorithm.

To be more specific, the sequential version of the
algorithm in Fig. 4 requires two registers with log, N
qubits, four registers with db qubits, and one register with b
qubits, apart from any ancillas used in arithmetic oper-
ations, for a total of 21log, N + (4d + 1)b qubits. For N =
128 particles (after the doubling trick), which is reasonable
for most e*e™ applications, this is around 300 qubits. Such
a device is not far beyond current ~50-qubit computers, so
it is naively plausible that the first quantum computer able
to run the sequential quantum thrust algorithm (without
error correction) could be ready in time to compute realistic
thrust distributions at a future e e~ collider. Of course, this
depends on the gate connectivity of such a device as well as
the achievable coherence time, and as discussed below,
circuit depth may be more constraining than the number of
qubits. For the parallel architecture, we need N(log, N +
db) additional qubits for initial data loading [see Eq. (40)],
though more qubits would most likely be required to
simulate full connectivity and to store intermediate steps
of the SUM operation. This points to an O(10*) qubit
device, which is rather optimistic on the 20 year timescale,
though this could be made more realistic by preclustering
particles to reduce N or by using a smaller value of b.

Next, we consider the number of gates required by the
Grover-based thrust algorithm. We first apply 2 log,(2N)
Hadamard gates to obtain the initial state, a uniform
superposition over the indices i, j. We then apply O(N)
iterations of the Grover operator G, where G consists of two
reflections: the reflection over all states with a thrust value
greater than the current maximum, an operation requiring
the subroutine coMP_T, and the reflection about the initial
state. Note that the reflection about the initial state can be
effected with an application of H®, followed by a
reflection about the all-zeros state, followed by an appli-
cation of H®*N. The Hadamards require 4log, 2N gates
total, while the reflection about the all-zeros state can
be obtained using a controlled-Z operator controlled on
having the state |0) in the first log, N registers, which
requires log, N CNOT gates. Similarly, after performing
COMP_T, we can perform the reflection over all states with a
thrust value greater than the current maximum using a
controlled-Z operator controlled on the b bits representing
the thrust value, an operation requiring b CNOT gates.
Thus, the total gate usage of the algorithm scales like
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FIG. 5. An example loading circuit mapping [i}|0)[0) >
[1)|0Y|x;). In our example, i =iy is two bits and (xg,xi,
X5,x3) = (3,2,3,1). The ccNoT gates are drawn with open
(closed) circles if they are controlled on the source bit being
zero (one).

O(N(logoN + Ccomp_t + b)), where Ceopp_t is the gate
cost of the cOMP_T subroutine.

What is comp_1? To estimate this, we consider the steps
in coMp_T from Fig. 4, noting that these steps consist of
either data loading operations like LOOKUP and SUM, or
elementary arithmetic operations like addition, multiplica-
tion, and division.

In step 1, we load p;, p; using LOOKUP. Note that the
circuit that implements this looks like the following: first,
we have an ancilla bit controlled on each bit in the index
register |i) = |ijog,n.-.I2i1ip); that is, we have a C'°%2 " NoT
gate connecting the ancilla to each index register |i;). This
requires a total of log, N cNOT gates [73]. Then, controlled
on whether or not the ancilla bit is set, we want to transform

the blank register |6> into the register |p;). We set each bit
of p; controlled on whether or not the ancilla bit is set, so in
total we require db CNOT gates. Finally, we uncompute the
ancilla bit by again applying the C'°2" NoT gate connect-
ing the ancilla to the |i) register, again requiring log, N
gates. In Fig. 5, we give an example circuit for i = i;i,
indexing two bits corresponding to items 0, 1, 2, 3 with
example values. We have such a circuit for all indices i,
requiring O(N(log, N + db)) gates in total. For fault-
tolerant quantum computers, this procedure can be further
optimized [74], but this does not significantly change the
resource scaling.

The remaining steps in COMP_T involve performing basic
arithmetic operations like addition, multiplication, and
division. Circuits for elementary operations like addition
and multiplication can be found in Ref. [75], while fault-
tolerant versions can also be found in the literature [76,77].
Note that for an input of n bits, addition requires O(n)
gates, while multiplication and division require O(n?)
gates.5 Steps 2 and 4 in COMP_T involve a series of
multiplications and divisions with n = db bits, thus requir-
ing O(d*b?) gates. In step 3, we apply SUM controlled on
the sign of each 7;; - p}.. Here, we first compute each #;; - pj,

5Asymptotically faster multiplication circuits exist, but they do
not yet outperform the O(n?) algorithm until n ~ 103~#; we thank
Craig Gidney for pointing this out.
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and then set an ancilla bit depending on the sign of the dot
product, requiring O(Nd?b?) gates total. Next, for each py,
we need to both load the value (using a circuit similar to the
one from step 1, requiring O(N(log, N + db)) gates total),
and then add it to a running sum using an adder circuit
if the ancilla bit is set, requiring O(N(log, N + db)) gates
total. Thus, Ccomp m = O(N(logyN + d*b?)), and the total
gate usage of the entire algorithm will scale like
O(N?*(log, N + d°b?)).

Finally, we consider circuit depth, which involves con-
sidering which gates can be run in parallel. Note that the
O(N) Grover iterations G must come one after the other.
Likewise, within each Grover iteration G, the two reflec-
tions must come after each other. The parallelization
happens within the subroutine COMP_T, where we can
parallelize LOAD and SUM in the parallel computing
model via preloading; that is, we execute the loading
circuits in parallel so that all the p; are in memory, and
then we process the p; in parallel.

First, we perform all N preloads in parallel, resulting in a
gate depth of 2 log, N + db gates; this involves performing
all N operations in the sequential LOAD operation at once.
After everything has been preloaded in parallel memory, we
can perform either LOAD or SUM. To perform LOAD, we
want to execute a series of log, N swaps and then a copy,
which requires O(log, N 4+ db) cNOT gates, so that the
whole LOAD operation has a depth of O(log, N + db).
Meanwhile, to perform the SUM operation after everything
has been preloaded in parallel memory, we note that we
must execute the parallel LOAD operation for each pj, then
calculate and control on the quantity 7;; - pj for each pj,
and then we must finally sum all the N vectors. The parallel
load requires a gate depth of O(log, N + db), while the dot
product calculation requires a gate depth of O(d*b?).
Finally, we need to perform a series of log, N additions,
which requires dblog, N gates. Thus, the SUM operation
requires a total circuit depth of O(dblog, N + d*b?). Then
Ccomp, = O(dblog,N + d*b*), and the circuit depth of the
entire parallel algorithm scales like O(N(dblog, N+
d*b*)). Note that for the sequential model, the circuit
depth is just the same as the gate count of O(N?(log, N +
d’b?)) since we are not running operations in parallel.

Thus, again taking an example with N = 128 particles
(after the doubling trick), we would expect a circuit depth
of around 107 gates for the sequential model and 10° for the
parallel model. On a noisy device, we currently do not
expect to be able to execute an algorithm requiring more
than 10° gates [78], so again we believe that preclustering
particles to reduce N or using a small value of b could make
these algorithms more realistic on a NISQ device. We note
that because circuit depth and qubit usage come at a
tradeoff, circuit depth is the limiting factor for the sequen-
tial model, while qubit usage is the limiting factor for the
parallel model.

VL. IS THERE A QUANTUM ADVANTAGE?

Starting from the previously best known O(N?) classical
algorithm on a sequential computer, we found an improved
O(N?1log N) classical algorithm and an O(N?) quantum
algorithm. Because these scalings are identical up to a
log N factor, one might wonder if there is any real quantum
advantage for the task of hemisphere jet finding.

Formally, there is a quantum advantage if we make a
rather restricted assumption about the computing model.
The sequential quantum computing model in Sec. V C only
requires read access to the O(N) classical dataset, whereas
the sorting strategy in Sec. III C requires write access to
O(NlogN) classical bits. Thus, if one restricts the com-
puting model to have write access to only O(logN)
classical bits, then the classical sorting strategy cannot
be implemented. In that case, the best classical algorithm
would be the O(N?) one from Ref. [2], which would be
bested by our O(N?) quantum algorithm.

For any realistic application of thrust, this computing
model is overly limited, since data from a single collider
event can easily be read into random-access classical
memory. On the other hand, it is not possible to read in
the entire LHC dataset into memory, and indeed some
collider datasets are only stored on tape drives. For this
reason, there may be interesting quantum advantages for
clustering algorithms that act on ensembles of events
(instead of on ensembles of particles in a single event).
See Ref. [79] for recent developments along these lines.

For the parallel computing models, there is no formal
limit with a quantum advantage, since we need O(N) (qu)
bits with read-write access in both the quantum and
classical cases. Note that the speed up in the classical
and quantum cases come from rather different sources.
Classical sorting splits the O(N?) search space into an
O(N) outer loop and an O(log N) inner loop. By contrast,
the quantum algorithm searches the O(N?) search space as

a whole in O(VN?) runtime.

This last observation suggests that for even larger search
spaces, there might be a quantum advantage even if there
exist classical sorting strategies. If classical sorting can only
sort s of the search dimensions, then for an O(N®) search
space, the classical runtime would scale proportional to
O(N**log* N). The quantum runtime would scale propor-
tional to O(N%?), which would be faster than the classical
case for a > 2s. This might be relevant for the M-jet
finding problem mentioned in Sec. VII D with an O(N?M)
search space.

VII. GENERALIZATIONS

In this section, we discuss how to apply the quantum
algorithms from Secs. IV and V to jet identification
methods that generalize thrust. These algorithms are more
closely related to the ones used at the LHC, since they
involve a jet radius parameter R.
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FIG. 6. Partitioning an event into a stable cone jet of radius R
and an unclustered region. This is the same as Fig. 1
when R = 7/2.

We start with algorithms that divide the event into
a single jet and an unclustered region, as in Fig. 6.
(For the thrust problem, R = z/2 and the unclustered
region is the opposite hemisphere.) We then mention
strategies to identify multiple jets. To simplify the dis-
cussion, we continue to use the (p*, p”, p°) coordinate
system for electron-positron collisions, noting that the
methods below can be adapted to the standard proton-
proton coordinate system of transverse momentum (py),
rapidity (y), and azimuth (¢).

A. SingleCone

The generalizations we consider are all based on or
inspired by the analysis of Ref. [62], which showed that the
thrust duality in Sec. II D holds for a one-parameter family
of jet finding algorithms. No matter which dual formulation
is used, we refer to this jet finding strategy as SINGLECONE,
since it finds a single stable cone jet of radius R.

To match the literature, we use four-vector notation in
this section. The four-momentum of a particle is

Plf = (Ezf’z) (41)

where the energy E; = p? = \/p? + m? depends on the
mass m; of particle i. The four-momentum of a candidate
partition H is

P "pl = (EP), “2)

ieH

where E = P is the total energy of the partition. A lightlike
axis is given by

nt = (1,n), (43)

with 72 = 1. We contract indices with the mostly minus
metric,

puq" =r°¢"-p-q. (44)

The SINGLECONE jet finder is based on maximizing the
following objective function [62]:

o(P*, n) :E_”ﬂipﬂj%(n )
’ 1 —cosR e
ii-P—EcosR
= " L Ahr-1), 45
1—-cosR + (n ) ( )

where 4 is again a Lagrange multiplier, and we maximize
over both the choice of partition and the choice of axis. The
second line makes it clear that R = /2 returns the thrust
objective function in Eq. (17).

Performing the same manipulations as in Sec. II D, the
optimum axis (for fixed partition) is

P
1 —<1,T>. 46
ot 7 (46)

Since the optimum axis is aligned with the jet three-
momentum, this is an example of a stable cone algorithm;
see Sec. VIIC below. The reduced SINGLECONE objective
function is

|13| — EcosR

O(Pr) = 1—cosR ’

O(P*, nigyy) = (47)
which is an example of a jet function maximization
algorithm [43-45]. The optimum solution partitions the
event into a clustered region H and an unclustered region
(the complement of H). This definition of the problem
naturally lends itself to quantum annealing in Sec. VII B.

Doing the dual manipulation, the optimum partition (for
fixed axis) is

Pl = Zp O(E;(1 —cosR) —n,pl).  (48)

Writing the Heaviside theta function requirement in three-
momentum language,

A -

Pi - cosR, (49)

i

we see that for massless particles (E; = |p;|), the jet
constituents are those within an angular distance R of
the jet axis. For R = /2, this yields the thrust hemisphere
regions. The reduced SINGLECONE objective function
is now

O(n*) = O(Pgy. n*)
_iE, imln{ 1”Cé’sR} (50)

i=1
where we dropped the Lagrange multiplier term for
compactness. The second term in Eq. (50) is an example
of an N-jettiness measure [80-82] with N =1, whose
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minimum yields the XcCone jet algorithm [32,33]. This
definition of the problem naturally lends itself to quantum
search in Sec. VIIC.

B. Jet function maximization

In the jet function maximization approach of Refs. [43—
45], the goal is to optimize P* for a global jet function. The
original jet function from Ref. [43] can be written as

1 M?
OGeorei(Py) =E ——F———. 51
Georgl( ;4) 2(1 —COSR) E ( )
where the jet mass is
M?=P,P* = E* - P (52)

In the limit M < E, this matches the reduced SINGLECONE
objective function of Eq. (47), though they yield different
optimal jet regions for finite-mass jets.

Since jet function maximization is a kind of partitioning
problem, it is natural to try to write these objective
functions in QUBO form. However, the original jet
function from Eq. (51) is not quadratic since it involves
a 1/E factor, and the SINGLECONE function in Eq. (47) is

not quadratic since |1?’| involves a square root. Thus, these
cannot be rewritten as QUBO problems without some kind
of modification.

In the analysis of Sec. IV for thrust, we got around this
issue by squaring the thrust objective function, which
nevertheless yielded the same partitioning solution. This
approach does not work in this more general case because
of nonquadratic cross terms.

What we can do, however, is square the SINGLECONE
objective in Eq. (47) but only keep the lowest nontrivial
term in the M < E limit.° (Squaring and expanding
Eq. (51) yields the same result.) This gives the following
QUBO objective function:

2 M?
(0] P)=FE"————
queo(Py) 1 —cosR
_ﬁz—EzcosR
~ l—cosR
N - -
ipi—E/E:cosR
= Z (p p'] J >xixj', (53)
5= I —cosR

where again x; € {0, 1}. Taking R = z/2 in Eq. (53) then
recovers the thrust (squared) problem. It is interesting that
Eq. (53) has the same form as the generalized jet functions
in Ref. [44] (Ref. [45]) with n =2 (a = 2).

This objective function corresponds to a QUBO problem
and can thus be solved on a quantum annealer. It will,

®We thank Eric Metodiev for discussions related to this point.

however, generally yield a different solution compared to
SINGLECONE. Unlike SINGLECONE, which yields perfectly
conical jets for massless particles via Eq. (49), this QUBO jet
finder has an effective jet radius that depends on the mass
of the jet [44,45]. Quadratic objective functions are also
explored in Ref. [47] for jet clustering at the LHC. In future
work, we plan to characterize the general phenomenological
properties of jets identified using QUBO objectives.

C. Stable cone finding

Stable cone algorithms search over candidate jet
regions of radius R and select ones that are stable [34,83],
meaning that the center of the jet region aligns with the jet
momentum. As shown in Egs. (46) and (49), SINGLECONE
is an example of a stable cone algorithm, which is closely
related to S1SCone [3].

It is worth emphasizing two key differences between
SINGLECONE and SISCone. First, SINGLECONE finds a single
jet, whereas S1SCone finds all stable cones, and a separate
split/merge step is needed to determine the final jet regions.
That said, it is possible to run SISCone in progressive
removal (PR) mode, where one finds the most energetic
stable cone, removes the found jet constituents, and repeats
the siSCone procedure on the unclustered particles. In this
way, SISCone-PR acts like an iterated application of
SINGLECONE. Second, SINGLECONE finds the jet region
with the largest value of Eq. (47) (= E— O(M?/E)),
whereas SISCone-PR would typically take the stable cone
with the largest plain energy E. As we will see below,
though, it is still possible to develop quantum algorithms
for stable cones with alternative jet hardness sorting
schemes.

It is straightforward to implement the SINGLECONE
algorithm (a.k.a. SISCone-PR with Eq. (47) ordering) via
quantum search. Just as two points define a partitioning
plane, two points are enough to determine a cone region of
radius R [3]. (This is true up to an eightfold ambiguity,
which is twice that of the thrust case because the two
candidate cones are not complements of each other as they
are for hemispheres.) We can use the LOOKUP operation
to determine all O(N?) candidate reference axes (which are
not the same as the jet axes, but yield the same partitions).
We can then use SUM to calculate Eq. (47) for a fixed
reference axis, since finding P* for the particles in the
candidate jet region is a linear operation. We finally use
Grover search to find the partition that maximizes Eq. (47),
and we are guaranteed that the found cone jet will be stable
via Eq. (46). This algorithm now has the identical structure
to thrust, with the same asymptotic scaling as in Table I,
taking us from a classical O(N?) algorithm (without sort)
to a quantum O(NlogN) algorithm (with parallel data
loading).

Note that the quantum maximum finding algorithm only
returns one maximum element of an array, so we cannot use
it to speed up an algorithm for identifying all stable cones.
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We can, however, use it to find one stable cone with a
different objective function from Eq. (47). For example, to
implement SISCone-PR with standard energy ordering, we
can use a subroutine consisting of two SUM operations in
series. The first SUM determines P* for the candidate jet
region, while the second SUM finds P* for all particles
within a radius R of P#. This subroutine would return P? if
P# = P*_ while it would return O if P# # P*. One would
then use Grover search to find the maximum subroutine
output, with the same asymptotic quantum gains as in the
SINGLECONE case.

D. Multiregion optimization

Typical collider studies involve more than one jet per
event, so it is interesting to ask whether these quantum
methods can be adapted to the multijet case. As already
mentioned, one can use a PR strategy to identify multiple
jet regions, so finding M jets just requires M iterations of
the algorithms above. Except in specialized circumstances,
the number of desired jet regions does not grow with N and
is at most O(1/R?), so the runtime of SINGLECONE-PR
would scale linearly with M. That said, we are interested
in simultaneously optimizing the jet regions as in XCone
algorithm [32,33], in order to treat the overlapping jet
regions in a more sophisticated way than just PR.

The QUBO objective in Eq. (53) can be easily gener-
alized to the M-jet case using O(N(M + 1)) qubits,
suitable for quantum annealing. Instead of a binary assign-
ment of each particle to the clustered or unclustered region,
we can do a one-hot encoding with M + 1 qubits per
particle to indicate their assignment to one of the M jet
regions or to the unclustered region. Specifically, let x;, €
{0,1} fori e {1,...,N} and r € {0, 1, ..., M}. We assign
Xx;0 = 1 if particle i is in the unclustered region, x; = 1
if particle i is in jet region r for r € {1,...,M}, and
x;» = 0 otherwise. We then add a penalty term to the
objective function such that, for fixed i, x;, = 1 for only
one value of r.

The multijet QUBO objective function is

1 —cosR

r=11i

+A2i <1 —ixi,)z. (54)

i=1 r=0

M N - -
pi-pPi—EE;cosR
Oquso({xij}) = Z < e )xirxjr
J=1

Here, there is a copy of Eq. (53) for each of the M jet
regions, taking the schematic form of O = -3}, . Q;;x;x;.
The coefficient of the penalty term must be taken to be
A? > N max; ; Q;j to ensure that it is never favorable for a
particle to be assigned to more than one jet region. Because
Eq. (54) is quadratic in the momentum, it will not have the
same behavior as XCone (which has a linear objective
function), though we expect the results to be similar for

well-separated jets of comparable energies. This objective
function does not penalize empty jet regions, so it might be
interesting to run this algorithm with a large value of M to
let the number of nonempty jet regions be determined
dynamically.

Compared to the single-jet case, the multijet case will
likely be more difficult to implement on currently available
quantum annealing hardware. Previous numerical studies
[55] have shown that clustering problems that use multiple
qubits to implement one-hot encoding are prone to errors.
The reason is that on annealing hardware, qubit couplings
have a maximum dynamic range, which in turn limits the
effectiveness of the A penalty term. In practice, this means
that annealers often output a fuzzy assignment rather than a
hard assignment to one cluster. We would also like to argue
that this problem is conceptual in origin. The search space
of the single-jet QUBO problem is 2V, whereas the search
space of the multijet QUBO problem is 2. However, the
QUBO quantum search space contains many extra unphys-
ical states, since the actual (non-QUBO) search space is
size MV = 2NloeM While the most natural way to address
this would be to use qudits with d = M instead of qubits,
such hardware is not currently available.

Turning to the quantum search case, finding M conical
jet regions naively requires searching a space of O(N*M),
with the added complication of needing to treat overlapping
jet regions. We are unaware of any classical approach to
this problem apart from brute force, though one expects
an O(N*M*1) algorithm for the XCone objective should be
feasible, though it likely requires a more sophisticated
treatment of reference axes. (The current implementation
of XCone in FASTJET CONTRIB 1.041 [31,84] only finds a
local minimum starting from suitable seed axes.) Using
quantum search with sequential (parallel) data loading,
one might hope that this could be improved to O(NM+1)
(O(NM1og N)), though one would have to generalize the
LOOKUP and SUM operations to deal with the multijet
case. At minimum, LOOKUP would have to load the
momenta into 2M registers (to label the candidate parti-
tions), and SUM would have to have M distinct outputs
(for each of the M jet regions). Even with quantum gains,
this is computationally daunting, motivating future studies
of multijet algorithm whose computational complexity
grows only polynomially with M.

VIII. CONCLUSIONS

In this work, we demonstrated how quantum computers
could be applied to a realistic collider physics problem,
which requires interfacing a classical dataset with a
quantum algorithm. We focused on maximizing thrust to
identify hemisphere jets, but the quantum methods devel-
oped here are relevant to a broader range of optimization
and cluster-finding problems. The asymptotic performance
of our quantum annealing and quantum search algorithms
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is summarized in Table I. We found a way to improve the
previously best known O(N?) classical thrust algorithm to
an O(N?) sequential quantum algorithm. Along the way, we
found an improved O(N?log N) classical algorithm, based
on the sorting strategy of Ref. [3]. Both the quantum
and improved classical algorithms can be implemented
on parallel computing architectures with asymptotic
O(N log N) runtime. Formally, we found a quantum advan-
tage, but only when assuming a computing model with read
access to O(N) (qu)bits but write access to only O(log N)
(qu)bits.

Going beyond thrust, we briefly generalized our quantum
methods to handle structurally similar jet clustering algo-
rithms. These involve maximizing an objective function with
aradius parameter R, which partitions the event into a conical
jet region and an unclustered region. While we focused on
electron-positron collisions, it is known how to adapt these
methods to proton-proton collisions [45,47,62]. In future
work, we plan to investigate the phenomenological perfor-
mance of these “quantum friendly” jet algorithms at the LHC,
to assess whether they offer improved physics performance
relative to hierarchical clustering schemes like anti-k,.

The main take home message from this work is that the
overhead of data loading must be carefully accounted for
when evaluating the potential for quantum speedups on
classical datasets. In many ways, optimization-based jet
algorithms are an ideal platform to think about quantum
algorithms for collider physics, since these problems tend
to involve searching over a large space of possibilities,
O(N*) with a@ >2, and therefore benefit from Grover
search methods. By contrast, even though the number of
events in a collider data sample (Nyeni) 1S usually much
larger than the number of final-state particles in a jet,

typical collider tasks like filling a histogram involve
O(Neyens) Operations, such that data loading is already
the limiting factor. On the flip side, this motivates further
quantum investigations into classically O(NZ.,) data
manipulation strategies, such as the metric space approach
recently proposed in Ref. [79], since they might be
reducible to O(Ngyenis) quantum algorithms under suitable
circumstances. We also note that Grover search is limited to
a square-root speedup on unstructured search, whereas
collider data have additional structures like symmetries and
heuristics which might lead to further quantum gains.
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