
Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Alina Ene * 1 Huy L. Nguyễn * 2

Abstract

In this work, we give a new parallel algorithm
for the problem of maximizing a non-monotone
diminishing returns submodular function subject
to a cardinality constraint. For any desired ac-
curacy ϵ, our algorithm achieves a 1/e − ϵ ap-
proximation using O(log n log(1/ϵ)/ϵ3) parallel
rounds of function evaluations. The approxima-
tion guarantee nearly matches the best approxima-
tion guarantee known for the problem in the se-
quential setting and the number of parallel rounds
is nearly-optimal for any constant ϵ. Previous al-
gorithms achieve worse approximation guarantees
using Ω(log2 n) parallel rounds. Our experimen-
tal evaluation suggests that our algorithm obtains
solutions whose objective value nearly matches
the value obtained by the state of the art sequential
algorithms, and it outperforms previous parallel
algorithms in number of parallel rounds, itera-
tions, and solution quality.

1. Introduction
In this paper, we study parallel algorithms for the problem
of maximizing a non-monotone DR-submodular function
subject to a single cardinality constraint. The problem is
a generalization of submodular maximization subject to a
cardinality constraint. Many recent works have shown that
DR-submodular maximization has a wide-range of applica-
tions beyond submodular maximization. These applications
include maximum a-posteriori (MAP) inference for deter-
minantal point processes (DPP), mean-field inference in
log-submodular models, quadratic programming, and rev-
enue maximization in social networks (Kulesza et al., 2012;
Gillenwater et al., 2012; Bian et al., 2016; Ito & Fujimaki,
2016; Soma & Yoshida, 2017; Bian et al., 2017; 2018).

*Equal contribution 1Department of Computer Science, Boston
University 2Khoury College of Computer and Information Sci-
ence, Northeastern University. Correspondence to: Alina Ene
<aene@bu.edu>, Huy L. Nguyễn <hu.nguyen@northeastern.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

The problem of maximizing a DR-submodular function
subject to a convex constraint is a notable example of a
non-convex optimization problem that can be solved with
provable approximation guarantees. The continuous Greedy
algorithm (Vondrák, 2008) developed in the context of the
multilinear relaxation framework applies more generally to
maximizing DR-submodular functions that are monotone
increasing (if x⃗ ≤ y⃗ coordinate-wise then f(x⃗) ≤ f(y⃗)).
Feldman et al. (Feldman et al., 2011) developed a variant of
continuous Greedy for non-monotone objectives. Chekuri
et al. (Chekuri et al., 2015) developed algorithms for both
monotone and non-monotone DR-submodular maximiza-
tion subject to packing constraints that are based on the
continuous Greedy and multiplicative weights update frame-
work. The work (Bian et al., 2017) generalized continuous
Greedy for submodular functions to the DR-submodular
case and developed Frank-Wolfe-style algorithms for max-
imimizing non-monotone DR-submodular function subject
to general convex constraints.

A significant drawback of these algorithms is that they
are inherently sequential and adaptive. In fact the highly
adaptive nature of these algorithms goes back to the clas-
sical greedy algorithm for submodular functions: the al-
gorithm sequentially selects the next element based on the
marginal gain on top of previous elements. In certain set-
tings such as feature selection (Khanna et al., 2017) evalu-
ating the objective function is a time-consuming procedure
and the main bottleneck of the optimization algorithm and
therefore, parallelization is a must. Recent lines of work
have focused on addressing these shortcomings and under-
standing the trade-offs between approximation guarantee,
parallelization, and adaptivity. Starting with the work of
Balkanski and Singer (Balkanski & Singer, 2018), there
have been very recent efforts to understand the tradeoff
between approximation guarantee and adaptivity for sub-
modular maximization (Balkanski & Singer, 2018; Ene
& Nguyen, 2019; Balkanski et al., 2019; Fahrbach et al.,
2019; Chekuri & Quanrud, 2019; Balkanski et al., 2018).
The adaptivity of an algorithm is the number of sequential
rounds of queries it makes to the evaluation oracle of the
function, where in every round the algorithm is allowed to
make polynomially-many parallel queries. Recently, the
work (Fahrbach et al., 2018) gave an algorithm for maximiz-
ing a submodular function subject to a cardinality constraint

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

in O(log n/ϵ) rounds and 0.031 − ϵ approximation. For
the general setting of DR-submodular functions with m
packing constraints, the work (Ene et al., 2019) gave an al-
gorithm with O(log(n/ϵ) log(1/ϵ) log(m+ n)/ϵ2) rounds
and 1/e−ϵ approximation. In the special case of m = 1 con-
straint, this algorithm uses O(log2(n) log(1/ϵ)/ϵ2) rounds.

In this work, we develop a new algorithm for DR-
submodular maximization subject to a single cardinality
constraint using O(log n log(1/ϵ)/ϵ3) rounds of adaptivity
and obtaining 1/e−ϵ approximation. For small n compared
to 1/ϵ, this is not an improvement over previous work. How-
ever, for large n, the number of rounds is almost a quadratic
improvement from O(log2 n) in the previous work to the
nearly optimal O(log n) rounds. Our experimental evalua-
tion shows that our algorithm outperforms the state of the
art even in the small n regime that is advantageous for the
existing algorithms.

Theorem 1. Let f : [0, 1]n → R+ be a DR-submodular
function and k ∈ R+. For every ϵ > 0, there is an al-
gorithm for the problem maxx⃗∈[0,1]n : ∥x⃗∥1≤k f(x⃗) with the
following guarantees:

• The algorithm is deterministic if provided oracle access
for evaluating f and its gradient∇f ;

• The algorithm achieves an approximation guarantee
of 1

e − ϵ;

• The number of rounds of adaptivity is
O
(︂

logn log(1/ϵ)
ϵ3

)︂
.

2. Preliminaries
Let f : [0, 1]n → R+ be a non-negative function. The func-
tion is diminishing returns submodular (DR-submodular)
if ∀x⃗ ≤ y⃗ ∈ [0, 1]n (where ≤ is coordinate-wise), ∀i ∈ [n],
∀δ ∈ [0, 1] such that x⃗+ δ1⃗i and y⃗ + δ1⃗i are still in [0, 1]n,
it holds

f(x⃗+ δ1⃗i)− f(x⃗) ≥ f(y⃗ + δ1⃗i)− f(y⃗),

where 1⃗i is the i-th basis vector, i.e., the vector whose i-th
entry is 1 and all other entries are 0.

If f is differentiable, f is DR-submodular if and only if
∇f(x⃗) ≥ ∇f(y⃗) for all x⃗ ≤ y⃗ ∈ [0, 1]n. If f is twice-
differentiable, f is DR-submodular if and only if all the
entries of the Hessian are non-positive, i.e., ∂2f

∂xi∂xj
(x⃗) ≤ 0

for all i, j ∈ [n].

Throughout the paper, we assume that f is differentiable.
We assume that we are given black-box access to an oracle
for evaluating f and its gradient∇f . We extend the function
f to Rn

+ as follows: f(x⃗) = f(x⃗ ∧ 1⃗), where (x⃗ ∧ 1⃗)i =
min{xi, 1}.

An example of a DR-submodular function is the multilin-
ear extension of a submodular function g. The multilinear
extension is defined as

G(x⃗) = E[g(R(x⃗))] =
∑︂
S⊆V

g(S)
∏︂
i∈S

x⃗i

∏︂
i∈V \S

(1− x⃗i),

where R(x⃗) is a random subset of V where each i ∈ V is
included independently at random with probability x⃗i.

Basic notation. We use e.g. x⃗ = (x⃗1, . . . , x⃗n) to denote
a vector in Rn. We use the following vector operations:
x⃗ ∨ y⃗ is the vector whose i-th coordinate is max{x⃗i, y⃗i};
x⃗ ∧ y⃗ is the vector whose i-th coordinate is min{x⃗i, y⃗i};
x⃗ ◦ y⃗ is the vector whose i-th coordinate is x⃗i · y⃗i. We write
x⃗ ≤ y⃗ to denote that x⃗i ≤ y⃗i for all i ∈ [n]. Let 0⃗ (resp. 1⃗)
be the n-dimensional all-zeros (resp. all-ones) vector. Let
1⃗S ∈ {0, 1}V denote the indicator vector of S ⊆ V , i.e., the
vector that has a 1 in entry i if and only if i ∈ S.

We will use the following result that was shown in previous
work (Chekuri et al., 2015).

Lemma 2 ((Chekuri et al., 2015), Lemma 7). Let f :
[0, 1]n → R+ be a DR-submodular function. For all x⃗∗ ∈
[0, 1]n and x⃗ ∈ [0, 1]n, f(x⃗∗ ∨ x⃗) ≥ (1− ∥x⃗∥∞)f(x⃗∗).

3. The Algorithm
In this section, we present an idealized version of our algo-
rithm where we assume that we can compute exactly the
step size on line 16. The idealized algorithm is given in Al-
gorithm 1. In the supplement (Section B), we show how to
implement that step efficiently and incur only O(ϵ) additive
error in the approximation.

The algorithm takes as input a target value M and it achieves
the desired 1/e − O(ϵ) approximation if M is an (1 + ϵ)
approximation of the optimal function value f(x⃗∗), i.e., we
have f(x⃗∗) ≤ M ≤ (1 + ϵ)f(x⃗∗). As noted in previous
work (Ene et al., 2019), it is straightforward to approxi-
mately guess such a value M using a single parallel round.

The algorithm maintains two solutions: the solution x⃗ that
will be returned, and a second solution z⃗ ≥ x⃗. We use z⃗ to
handle the non-monotonicity of the objective. Throughout
the algorithm, we have z⃗ ≥ x⃗ and thus ∇f(z⃗) ≤ ∇f(x⃗)
by DR-submodularity. Instead of using the gradient at x⃗
to decide which coordinates to update, we use the gradient
at z⃗. By doing so, we may under-estimate the potential
gain of some of the coordinates, but it allows us to deal
with the non-monotonicity of the function. This strategy
is reminiscent of the gradient lookahead technique of (Ene
et al., 2019), although we use it in a very different way.

The algorithm iteratively increases the two solutions over
1/ϵ phases (iterations of the outer for loop). During a single
phase, the algorithm uses a descending thresholds approach.

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Algorithm 1 Algorithm for maxx⃗∈[0,1]n : ∥x⃗∥1≤k f(x⃗),
where f is a non-negative DR-submodular function. The
algorithm takes as input a target value M such that f(x⃗∗) ≤
M ≤ (1 + ϵ)f(x⃗∗).

1: x⃗← 0⃗
2: z⃗ ← 0⃗
3: for j = 1 to 1/ϵ do
4: ⟨⟨ Start of phase j ⟩⟩
5: x⃗start ← x⃗
6: z⃗start ← z⃗
7: vstart ← 1

k (((1− ϵ)j − 2ϵ)M − f(x⃗))
8: v ← vstart
9: while v > ϵvstart and ∥z⃗∥1 < ϵjk do

10: g⃗ = (1⃗− z⃗) ◦ ∇f(z⃗)
11: S = {i ∈ [n] : g⃗i ≥ v and z⃗i ≤ 1 − (1 −

ϵ)j and z⃗i − (z⃗start)i < ϵ(1− (z⃗start)i)}
12: if S = ∅ then
13: v ← (1− ϵ)v
14: else
15: For a given η ∈ [0, ϵ2], we define:

z⃗(η) = z⃗ + η(1⃗− z⃗) ◦ 1⃗S
g⃗(η) = (1⃗− z⃗(η)) ◦ ∇f(z⃗(η))
S(η) = {i ∈ S : g⃗(η)i ≥ v}
T (η) = {i ∈ S : g⃗(η)i > 0}

16: Let η1 be the maximum η ∈ [0, ϵ2] such that
|S(η)| ≥ (1− ϵ)|S|

17: ⟨⟨ η2 = min
{︂
ϵ2, ϵjk−∥z⃗∥1

|S|−∥z⃗◦1⃗S∥1

}︂
⟩⟩

18: Let η2 be the maximum η ∈ [0, ϵ2] such that
∥z⃗(η)∥1 ≤ ϵjk

19: η ← min{η1, η2}
20: x⃗← x⃗+ η(1⃗− x⃗) ◦ 1⃗T (η)

21: z⃗ ← z⃗ + η(1⃗− z⃗) ◦ 1⃗S
22: if f(z⃗) > f(x⃗) then
23: x⃗← z⃗
24: end if
25: end if
26: end while
27: end for
28: return x⃗

Starting with an initial threshold vstart, the algorithm only
updates coordinates whose gradient is above the threshold.
The algorithm only updates a carefully chosen subset of
these high-gain coordinates: the set S on line 11. The defi-
nition of S imposes two further restrictions on the fractional
value of each coordinate in S. These restrictions allow us
to control the ℓ∞ norm of the solution and cope with the
non-monotonicity of the objective function (cf. Lemma 2).
If the set S is empty, the algorithm lowers the threshold
by an 1 − ϵ factor on line 13. Otherwise, the algorithm
simultaneously increases a large fraction of the coordinates
in S using an appropriately chosen step size η. The step size
is carefully chosen to ensure several competing desiderata.
On one hand, we want to take large steps for fast conver-
gence/high parallelism. On the other, we want to take small
steps to ensure high function value gain, since the gradient
approximates the function value only locally and we need
to be conservative on how much we increase due to the
non-monotonicity of the objective. We choose our step size
so that, after the update, the size of S decreases by an 1− ϵ
factor or we reach the budget of ϵjk allocated to the phase or
we reach our cap of ϵ2 on the step size. Thus we converge
fast by either shrinking S or filling up the budget, while
simultaneously achieving high gains in function value.

4. Analysis of the Approximation Guarantee
In this section, we show that Algorithm 1 achieves a 1

e−O(ϵ)
approximation. Recall that we assume that η1 is computed
exactly on line 16. In Section B of the supplement, we show
how to extend the algorithm and the analysis so that the
algorithm efficiently computes a suitable approximation to
η1 that suffices for obtaining a 1

e−O(ϵ) approximation. The
omitted proofs can be found in the supplement (Section A).

In the following, we refer to each iteration of the outer
for loop as a phase. We refer to each iteration of the in-
ner while loop as an iteration. Note that the update vec-
tors are non-negative in each iteration of the algorithm,
and thus the vectors x⃗, z⃗ remain non-negative throughout
the algorithm and they can only increase. Additionally,
since S(η) ⊆ T (η) ⊆ S, we have x⃗ ≤ z⃗ throughout
the algorithm. We will also use the following observa-
tions repeatedly, whose straightforward proofs are deferred
to Section A of the supplement. By DR-submodularity,
since the relevant vectors can only increase in each coor-
dinate, the relevant gradients can only decrease in each
coordinate. This implies that, for every η ≤ η′, we have
S(η) ⊇ S(η′). Additionally, for every i ∈ T (η), we have
∇if(x⃗) ≥ ∇if(z⃗) ≥ ∇if(z⃗(η)) > 0.

We will need an upper bound on the ℓ1 and ℓ∞ norms of x⃗
and z⃗. Since x⃗ ≤ z⃗, it suffices to upper bound the norms
of z⃗ (the ℓ1 norm bound will be used to show that the final
solution is feasible, and the ℓ∞ norm bound will be used to

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

derive the approximation guarantee). The omitted proofs
can be found in the supplement.

Lemma 3. Consider phase j of the algorithm (the j-th
iteration of the outer for loop). Throughout the phase, the
algorithm maintains the invariant that ∥z⃗∥∞ ≤ 1 − (1 −
ϵ)j + ϵ2 and ∥z⃗∥1 ≤ ϵjk.

The following theorem is the heart of the analysis and it
shows that each phase makes sufficient gain in function
value. This is reminiscent of the gain made by the measured
continuous greedy algorithm in the sequential setting and
it implies the claimed approximation guarantee via induc-
tion. As discussed in Section 3, in order to achieve high
parallelism, our algorithm proceeds very differently from
the sequential continuous greedy algorithm. As a result, we
need a very careful analysis to show the claimed gain.

Theorem 4. Consider phase j of the algorithm (the j-th
iteration of the outer for loop). Let x⃗start and x⃗end be the
vector x⃗ at the beginning and end of the phase. We have

f(x⃗end)− f(x⃗start)

≥ (1− 5ϵ)ϵ((1− ϵ)jf(x⃗∗)− f(x⃗end)− 3ϵf(x⃗∗))

Proof. Recall that, within a single phase, the algorithm uses
a descending thresholds approach and updates a carefully
selected subset of the coordinates whose gradient/marginal
gain is above the current threshold (line 11). The subset
is chosen so that no coordinate increases too much. This
allows us to control the ℓ∞ norm of the solution throughout
the phase, which in turn allows us to deal with the non-
monotonicity of the function. The main technical challenge
is to show that we gain enough throughout the phase despite
that: (1) we are restricting the set of high-gain coordinates
that are updated to ensure that no coordinate increases too
much, and (2) we terminate phase j when we fill up ϵjk
budget to ensure that we get a feasible solution after 1/ϵ
phases. We divide the analysis into two cases, depending on
whether the threshold is ever updated on line 13.

Case 1: we have vend = vstart. Note that the phase termi-
nates with ∥z⃗end∥1 = ϵjk in this case.

We start with an overview of the analysis. All of the coordi-
nates that were updated throughout the phase had gradient
at least vstart, and vstart is chosen so that the gain is high.
The step size η is chosen so that we update an 1− ϵ fraction
of the coordinates in S. Thus, ignoring 1 − ϵ factors, an
iteration of the phase increases the function value by vstart
times the increase in the ℓ1-norm of the solution. Since the
phase fills up at least ϵk of the budget, the increase in value
over all iterations is at least ϵkvstart. Finally, the choice of
vstart ensures that we reached the desired gain.

We now give the formal argument. We fix an iteration of the
phase that updates x⃗ and z⃗ on lines 20–23, and analyze the

gain in function value in the current iteration. We let x⃗, z⃗
denote the vectors right before the update on lines 20–23.
Let x⃗′ be the vector x⃗ right after the update on line 20, and
let z⃗′ be the vector z⃗ right after the update on line 21.

We have:

f(x⃗′)− f(x⃗)
(a)

≥ ⟨∇f(x⃗′), η(1⃗− x⃗) ◦ 1⃗T (η)⟩
= ⟨(1⃗− x⃗) ◦ ∇f(x⃗′), η1⃗T (η)⟩
(b)

≥ ⟨g⃗(η), η1⃗T (η)⟩
(c)

≥ ηvstart |S(η)|⏞ ⏟⏟ ⏞
≥(1−ϵ)|S|

(d)

≥ (1− ϵ)ηvstart|S|

In (a), we used the fact that x⃗′ − x⃗ ≥ 0 and f is concave in
non-negative directions.

We can show (b) as follows. We have x⃗′ ≤ z⃗′ = z⃗(η)
and thus ∇f(x⃗′) ≥ ∇f(z⃗(η)) by DR-submodularity.
Additionally, for every coordinate i ∈ T (η), we have
∇if(z⃗(η)) > 0. Therefore, for every i ∈ T (η), we have
(1− x⃗i)∇if(x⃗

′) ≥ (1− z⃗(η)i)∇if(z⃗(η)) = g⃗(η)i > 0.

In (c), we have used that S(η) ⊆ T (η), g⃗(η)i > 0 for all
i ∈ T (η), and g⃗(η)i ≥ v = vstart for all i ∈ S(η).

We can show (d) as follows. Since η ≤ η1, we have
|S(η)| ≥ |S(η1)| ≥ (1− ϵ)|S|, where the second inequality
is by the choice of η1.

Let ηt and St denote η and S in iteration t of the phase
(note that we are momentarily overloading η1 and η2 here,
and they temporarily stand for the step size η in iterations
1 and 2, and not for the step sizes on lines 16 and 18). By
summing up the above inequality over all iterations, we
obtain:

f(x⃗end)− f(x⃗start)

≥ (1− ϵ)vstart
∑︂
t

ηt|St|

≥ (1− ϵ)vstart ∥z⃗end − z⃗start∥1⏞ ⏟⏟ ⏞
≥ϵk

(a)

≥ (1− ϵ)vstartϵk

(b)
= ϵ(1− ϵ)(((1− ϵ)j − 2ϵ)M − f(x⃗start))

(c)

≥ ϵ(1− ϵ)((1− ϵ)jf(x⃗∗)− f(x⃗start)− 3ϵM)

We can show (a) as follows. Recall that we have ∥z⃗end∥1 =
ϵjk. Since ∥z⃗start∥1 ≤ ϵ(j − 1)k, we have ∥z⃗end −
z⃗start∥1 ≥ ϵk. In (b), we used the definition of vstart on
line 7. In (c), we used that f(x⃗∗) ≤ (1 + ϵ)M .

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Case 2: we have vend ̸= vstart. Note that this implies that
vend ≤ (1 − ϵ)vstart, since line 13 was executed at least
once during the phase.

The analysis for this case is more involved. The difficulty
stems from the fact that the algorithm updates only a subset
of the high-gain coordinates to ensure that no coordinate
increases too much. This means that, at the end of the phase,
there could still be coordinates whose gain is above the
threshold but we cannot increase them further during the
current phase. We now formally define this problematic set
of coordinates:

A :=

{︃
i ∈ [n] : (1− (z⃗end)i)∇if(z⃗end) ≥

vend
1− ϵ

}︃

The coordinates in A are allowed to increase, and thus we
can account for their gain similarly to the previous case:
their contribution to the overall gain is at least vend times
the increase in ℓ1-norm of the coordinates in A. For the
coordinates in A, we lower bound their contribution to the
gain by the gradient times the increase in those coordinates.
The following lemma precisely states the lower bound that
we obtain. Note that, for the coordinates in A, we use the
gradient value and not vend, to get a tighter bound.

Lemma 5. We have

f(x⃗end)− f(x⃗start)

≥ (1− ϵ)
(︂
vend∥(z⃗end − z⃗start) ◦ 1⃗A∥1

+ ⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩
)︂

Proof. Fix an iteration of the phase that updates x⃗ and z⃗
on lines 20–23. Let x⃗, z⃗ denote the vectors right before the
update on lines 20–23. Let x⃗′ be the vector x⃗ right after the
update on line 20, and let z⃗′ be the vector z⃗ right after the
update on line 21.

We have:

f(x⃗′)− f(x⃗)

(a)

≥ ⟨∇f(x⃗′), η(1⃗− x⃗) ◦ 1⃗T (η)⟩
= ⟨(1⃗− x⃗) ◦ ∇f(x⃗′), η1⃗T (η)⟩
(b)

≥ ⟨g⃗(η), η1⃗T (η)⟩
= ⟨g⃗(η), η1⃗S(η)⟩+ ⟨g⃗(η), η1⃗T (η)\S(η)⟩
= ηvend |S(η)|⏞ ⏟⏟ ⏞

≥(1−ϵ)|S|

+ ⟨g⃗(η)− vend1⃗, η1⃗S(η)⟩⏞ ⏟⏟ ⏞
≥0

+ ⟨g⃗(η), η1⃗T (η)\S(η)⟩⏞ ⏟⏟ ⏞
≥0

(c)

≥ (1− ϵ)η
(︂
vend|S|+ ⟨g⃗(η)− vend1⃗, 1⃗S(η)⟩

+ ⟨g⃗(η), 1⃗T (η)\S(η)⟩
)︂

= (1− ϵ)η
(︂
vend|S| − vend|S(η)|+ ⟨g⃗(η), 1⃗T (η)⟩

)︂
= (1− ϵ)η

(︂
vend|S| − vend|S(η)|+ ⟨g⃗(η), 1⃗T (η)\A⟩

+ ⟨g⃗(η), 1⃗T (η)∩A⟩
)︂

(d)
= (1− ϵ)η

(︂
vend|S| − vend|S(η)|+ ⟨g⃗(η), 1⃗T (η)\A⟩

+ ⟨g⃗(η), 1⃗S∩A⟩
)︂

(e)

≥ (1− ϵ)η
(︂
vend|S| − vend|S(η)|+ ⟨g⃗(η), 1⃗S(η)\A⟩

+ ⟨g⃗(η), 1⃗S∩A⟩
)︂

(f)

≥ (1− ϵ)η
(︂
vend|S| − vend|S(η)|+ vend|S(η) \A|

+ ⟨g⃗(η), 1⃗S∩A⟩
)︂

= (1− ϵ)η
(︂
vend(|S| − |S(η) ∩A|) + ⟨g⃗(η), 1⃗S∩A⟩

)︂
≥ (1− ϵ)η

(︂
vend|S \A|+ ⟨g⃗(η), 1⃗S∩A⟩

)︂
= (1− ϵ)η

(︂
vend|S \A|

+ ⟨∇f(z⃗(η)), (1⃗− z⃗(η)) ◦ 1⃗S∩A⟩
)︂

(g)

≥ (1− ϵ)η
(︂
vend|S \A|

+ ⟨∇f(z⃗end), (1⃗− z⃗(η)) ◦ 1⃗S∩A⟩
)︂

In (a), we used the fact that x⃗′ − x⃗ ≥ 0 and f is concave in
non-negative directions.

We can show (b) as follows. We have x⃗′ ≤ z⃗′ = z⃗(η)
and thus ∇f(x⃗′) ≥ ∇f(z⃗(η)) by DR-submodularity.
Additionally, for every coordinate i ∈ T (η), we have
∇if(z⃗(η)) > 0. Therefore, for every i ∈ T (η), we have
(1− x⃗i)∇if(x⃗

′) ≥ (1− z⃗(η)i)∇if(z⃗(η)) = g⃗(η)i > 0.

We can show (c) as follows. Since η ≤ η1, we have
|S(η)| ≥ |S(η1)| ≥ (1− ϵ)|S|, where the second inequality
is by the choice of η1. By the definition of S(η), we have
g⃗(η)i ≥ v ≥ vend for every i ∈ S(η). By the definition of
T (η), we have g⃗(η)i > 0 for every i ∈ T (η).

Equality (d) follows from the fact that S ∩A = T (η) ∩A,
which we can show as follows. We have T (η) ⊆ S, and
S \ T (η) is the set of all coordinates with negative gradient
g⃗(η). For every i ∈ A, we have∇if(z⃗(η)) ≥ ∇if(z⃗end) >
0, where the first inequality is by DR-submodularity (since
z⃗(η) ≤ z⃗end) and the second inequality is by the definition
of A and the fact that (z⃗end)i < 1 for all i ∈ [n] (Lemma 3).
Moreover, we have z⃗(η)i < 1 for all i ∈ [n] (Lemma 3).
Thus g⃗(η)i > 0 for all i ∈ A, and hence S ∩A = T (η)∩A.

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

In (e), we have used that S(η) ⊆ T (η) and g⃗(η) is non-
negative on the coordinates of T (η). In (f), we have used
that g⃗(η)i ≥ v ≥ vend for all i ∈ S(η) . In (g), we have
used that z⃗(η) ≤ z⃗end and thus ∇f(z⃗(η)) ≥ ∇f(z⃗end) by
DR-submodularity.

Let ηt, St, Tt(η), z⃗t(η), g⃗t(η) denote η, S, T (η), z⃗(η), g⃗(η)
in iteration t of the phase (note that we are overloading η1
and η2 in this proof only, and they temporarily stand for the
step size η in iterations 1 and 2, and not for the step sizes
on lines 16 and 18). By summing up the above inequality
over all iterations, we obtain:

f(x⃗end)− f(x⃗start)

≥ (1− ϵ)
(︂∑︂

t

vendηt|St \A|

+
∑︂
t

⟨∇f(z⃗end), ηt(1⃗− z⃗(η)) ◦ 1⃗St∩A⟩
)︂

≥ (1− ϵ)
(︂
vend∥(z⃗end − z⃗start) ◦ 1⃗A∥1

+ ⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩
)︂

With the lower bound on the gain given by Lemma 5 in
hand, the remaining work is to relate it to the optimal so-
lution. Before doing so, we show that each coordinate in
A increases sufficiently. Recall that the coordinates in A
were prevented from increasing further by the two condi-
tions on z⃗i in the definition of S: z⃗i ≤ 1 − (1 − ϵ)j and
z⃗i − (z⃗start)i < ϵ(1 − (z⃗start)i). In the latter case, the
lemma follows immediately. In the former case, we use that
each iteration increases the coordinates by at most ϵ2.

Lemma 6. For every i ∈ A, we have (z⃗end)i − (z⃗start)i ≥
(1− 3ϵ)ϵ(1− (z⃗end)i).

Proof of Lemma 6. Since S was empty at the previous
threshold vend/(1 − ϵ), we have (z⃗end)i ≥ 1 − (1 − ϵ)j

or (z⃗end)i − (z⃗start)i ≥ ϵ(1 − (z⃗start)i). If it is the lat-
ter, the claim follows, since 1 − (z⃗start)i ≥ 1 − (z⃗end)i.
Therefore we may assume it is the former. By Lemma 3,
(z⃗start)i ≤ 1− (1− ϵ)j−1 + ϵ2. Therefore

(z⃗end)i − (z⃗start)i ≥ ϵ(1− ϵ)j−1 − ϵ2

≥ (1− 3ϵ)ϵ(1− ϵ)j−1

≥ (1− 3ϵ)ϵ(1− (z⃗end)i)

where in the second inequality we used that (1− ϵ)j−1 ≥
1/3 for sufficiently small ϵ (since (1−ϵ)j−1 ≥ (1−ϵ)1/ϵ ≈
1/e).

Recall that the goal of the remainder of the analysis is to
relate the lower bound on the gain given in Lemma 5 to the

optimal solution x⃗∗. To this end, we use the inner product
between the gradient at the end of the phase and the optimal
solution as our potential. To complete the analysis, we
sandwich this potential between the gain guaranteed by
Lemma 5 and our target gain. We show that the potential is
at least our target gain in Lemma 7. In Lemmas 8 and 9, we
relate the gain from Lemma 5 to the potential.

As noted above, the following lemma shows that the poten-
tial is lower bounded by our target gain. The argument is
similar to the analysis of the measured continuous greedy.
In this part of the analysis, we use the fact that we carefully
controlled the ℓ∞ norm of the solution, which is crucial
when working with non-monotone objectives.

Lemma 7. We have ⟨∇f(z⃗end) ∨ 0⃗, (1⃗ − z⃗end) ◦ x⃗∗⟩ ≥
((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end).

Proof. We have

⟨∇f(z⃗end) ∨ 0⃗, (1⃗− z⃗end) ◦ x⃗∗⟩
(a)

≥ ⟨∇f(z⃗end) ∨ 0⃗, x⃗∗ ∨ z⃗end − z⃗end⟩
(b)

≥ f(z⃗end ∨ x⃗∗)− f(z⃗end)

(c)

≥ f(z⃗end ∨ x⃗∗)− f(x⃗end)

(d)

≥ (1− ∥z⃗end∥∞)f(x⃗∗)− f(x⃗end)

(e)

≥ ((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end)

In (a), we used that (1 − a)b ≥ max{a, b} − a for all
a, b ∈ [0, 1].

In (b), we used the fact that f is concave in non-negative
directions.

In (c), we used the fact that the algorithm maintains the
invariant that f(x⃗) ≥ f(z⃗) via the update on line 23.

In (d), we used Lemma 2.

In (e), we used Lemma 3.

The next two lemmas relate the gain guaranteed by Lemma 5
to our potential and use Lemma 7 to complete the analysis.
Recall that the phase terminates with either vend ≤ ϵvstart
or ∥z⃗end∥1 = ϵjk. We consider each of these cases in turn.

Lemma 8. Suppose that vend ≤ ϵvstart. We have:

f(x⃗end)− f(x⃗start)

≥ (1− 5ϵ)ϵ((1− ϵ)jf(x⃗∗)− f(x⃗end)− 2ϵf(x⃗∗))

Proof. By Lemma 5, we have:

f(x⃗end)− f(x⃗start)

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

≥ (1− ϵ)⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩

= (1− ϵ)
(︂
⟨∇f(z⃗end), ϵ(1− 3ϵ)(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩

+ ⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩

− ⟨∇f(z⃗end), ϵ(1− 3ϵ)(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

(a)

≥ (1− ϵ)⟨∇f(z⃗end), ϵ(1− 3ϵ)(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
≥ (1− 4ϵ)ϵ⟨∇f(z⃗end), (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
= (1− 4ϵ)ϵ⟨(1⃗− z⃗end) ◦ ∇f(z⃗end), x⃗∗ ◦ 1⃗A⟩

= (1− 4ϵ)ϵ
(︂
⟨(1⃗− z⃗end) ◦ ∇f(z⃗end) ∨ 0⃗, x⃗∗⟩

− ⟨(1⃗− z⃗end) ◦ ∇f(z⃗end) ∨ 0⃗, x⃗∗ ◦ 1⃗A⟩
)︂

(b)

≥ (1− 4ϵ)ϵ
(︂
⟨(1⃗− z⃗end) ◦ ∇f(z⃗end) ∨ 0⃗, x⃗∗⟩ − ϵvstart

1− ϵ
k
)︂

≥ (1− 5ϵ)ϵ
(︂
⟨(1⃗− z⃗end) ◦ ∇f(z⃗end) ∨ 0⃗, x⃗∗⟩ − ϵvstartk

)︂
(c)

≥ (1− 5ϵ)ϵ(((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end)− ϵvstartk)

(d)

≥ (1− 5ϵ)ϵ(((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end)− ϵf(x⃗∗))

≥ (1− 5ϵ)ϵ((1− ϵ)jf(x⃗∗)− f(x⃗end)− 2ϵf(x⃗∗))

In (a), we used Lemma 6 and the fact that 0⃗ ≤ x⃗∗ ≤ 1⃗ and
the fact that∇if(z⃗end) > 0 for all i ∈ A.

In (b), we used that ∥x⃗∗∥1 ≤ k and the definition of A.

In (c), we used Lemma 7.

Inequality (d) follows from the definition of vstart and the
fact that f(x⃗∗) ≥M .

The analysis of the second case uses a similar but more
involved argument.

Lemma 9. Suppose that ∥z⃗end∥1 = ϵjk. We have:

f(x⃗end)− f(x⃗start)

≥ ϵ(1− 4ϵ)(((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end))

Proof. By Lemma 5, we have:

f(x⃗end)− f(x⃗start)

≥ (1− ϵ)
(︂
vend∥(z⃗end − z⃗start) ◦ 1⃗A∥1

+ ⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩
)︂

= (1− ϵ)
(︂
vend∥(z⃗end − z⃗start) ◦ 1⃗A∥1

+ ⟨∇f(z⃗end), (z⃗end − z⃗start) ◦ 1⃗A⟩
− ⟨∇f(z⃗end), (1− 3ϵ)ϵ(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩

+ ⟨∇f(z⃗end), (1− 3ϵ)ϵ(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

(a)

≥ (1− ϵ)
(︂
vend∥(z⃗end − z⃗start) ◦ 1⃗A∥1

+ vend∥(z⃗end − z⃗start − (1− 3ϵ)ϵ(1⃗− z⃗end) ◦ x⃗∗) ◦ 1⃗A∥1

+ (1− 3ϵ)ϵ⟨∇f(z⃗end), (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

= (1− ϵ)
(︂
vend ∥z⃗end − z⃗start∥⏞ ⏟⏟ ⏞

≥ϵk≥ϵ∥x⃗∗∥1

− vend ∥(1− 3ϵ)ϵ(1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A∥1⏞ ⏟⏟ ⏞
≤ϵ∥x⃗∗◦1⃗A∥1

+ (1− 3ϵ)ϵ⟨∇f(z⃗end), (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

(b)

≥ (1− ϵ)
(︂
vendϵ∥x⃗∗ ◦ 1⃗A∥1

+ (1− 3ϵ)ϵ⟨∇f(z⃗end), (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

(c)

≥ (1− ϵ)
(︂
(1− ϵ)ϵ⟨∇f(z⃗end) ∨ 0⃗, (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩

+ (1− 3ϵ)ϵ⟨∇f(z⃗end), (1⃗− z⃗end) ◦ x⃗∗ ◦ 1⃗A⟩
)︂

≥ (1− 4ϵ)ϵ⟨∇f(z⃗end) ∨ 0⃗, (1⃗− z⃗end) ◦ x⃗∗⟩
(d)

≥ (1− 4ϵ)ϵ(((1− ϵ)j − ϵ2)f(x⃗∗)− f(x⃗end))

In (a), we used Lemma 6 and the fact that 0⃗ ≤ x⃗∗ ≤ 1⃗ and
the fact that∇if(z⃗end) ≥ vend for all i ∈ A.

We can show (b) as follows. Recall that we are in the case
∥z⃗end∥1 = ϵjk. Since ∥z⃗start∥1 ≤ ϵ(j − 1)k, we have
∥z⃗end − z⃗start∥1 ≥ ϵk. Additionally, ∥x⃗∗∥1 ≤ k.

In (c), we used that, for all i /∈ A, we have vend ≥ (1 −
ϵ)(1− (z⃗end)i)∇if(z⃗end).

In (d), we used Lemma 7.

Thus in both cases we achieve the desired gain, and the
proof is complete.

Using induction and Theorem 4, we can show that the fi-
nal solution returned by the algorithm is a 1/e− O(ϵ) ap-
proximation. By construction, the final solution satisfies
∥x⃗∥1 ≤ k, and thus it also satisfies the constraint.

Theorem 10. Let x⃗ be the final solution returned by Algo-
rithm 2. We have ∥x⃗∥1 ≤ k and f(x⃗) ≥

(︁
1
e −O(ϵ)

)︁
f(x⃗∗).

5. Analysis of the Number of Iterations
Recall that we refer to each iteration of the outer for loop as
a phase. We refer to each iteration of the inner while loop
as an iteration.

Theorem 11. The total number of iterations of the algo-
rithm is O(log(n) log(1/ϵ)/ϵ3).

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Proof. There are O(1/ϵ) phases. In each phase, there are
O(log(1/ϵ)/ϵ) different thresholds v: the initial threshold
is vstart, the threshold right before the final one is at least
ϵvstart, and each update on line 13 decreases the threshold
by a (1−ϵ) factor. Thus it only remains to bound the number
of iterations with the same threshold.

In the following, we fix a single threshold and we consider
only the iterations of the phase at that threshold. Over these
iterations, z⃗ is non-decreasing in every coordinate, g⃗ is non-
increasing in every coordinate by DR-submodularity and
1⃗− z⃗ ≥ 0⃗, and the set S can only lose coordinates and thus
|S| is non-increasing. Additionally, for each coordinate i ∈
[n], the increase (z⃗end)i−(z⃗start)i over the entire phase is at
most ϵ+ ϵ2: the increase in each iteration is η if i ∈ S and 0
otherwise; since η ≤ ϵ2 and z⃗i−(z⃗start)i < ϵ(1−(z⃗start)i)
for every i ∈ S, the claim follows.

We say that an iteration is a large-step iteration if η = ϵ2

and it is a smaller-step iteration if η < ϵ2.

We first consider the large-step iterations. Let t be the last
large-step iteration, and let St be the set S in that iteration.
Let i ∈ St. Note that i ∈ St′ for all iterations t′ ≤ t, since
St ⊆ St′ . Thus every large-step iteration increases z⃗i by
ϵ2(1− z⃗i) ≥ ϵ2(1− ϵ)j ≥ ϵ2(1− ϵ)1/ϵ = Θ(ϵ2). Since z⃗i
increases by at most ϵ+ ϵ2 over the entire phase, it follows
that the number of large-step iterations is O(1/ϵ).

Next, we consider the smaller-step iterations. Note that, in
every smaller-step iteration except possibly the last one, we
have |S(η)| ≤ (1− ϵ)|S| (if η = η2 < ϵ2, at the end of the
iteration we have ∥z⃗∥1 = ϵjk and thus the phase ends; if
η = η1, our choice of η1 ensures that |S(η1)| ≤ (1− ϵ)|S|).
Thus every smaller-step iteration decreases |S| by at least
an (1− ϵ) factor. Now note that |S| ≤ n in the first iteration,
|S| ≥ 1 in the last iteration, and |S| can only decrease with
each iteration. Thus the number of smaller-step iterations is
O(log n/ϵ).

In summary, there are O(1/ϵ) phases, O(log(1/ϵ)/ϵ) dif-
ferent thresholds per phase, and O(log(n)/ϵ) iterations per
threshold. Thus the total number of iterations of the algo-
rithm is O(log(n) log(1/ϵ)/ϵ3).

6. Experimental Results
We experimentally evaluate our parallel algorithm on in-
stances of non-concave quadratic programming (NQP)
and softmax extension of determinantal point processes
(DPP) that were randomly generated similarly to previous
work (Bian et al., 2017).

NQP instances are functions of the form f(x⃗) = 1
2 x⃗

⊤Hx⃗+

h⃗
⊤
x⃗, where H ∈ Rn×n is a matrix with non-positive en-

tries, h⃗ ∈ Rn. We randomly generated such instances as

follows: we sampled each entry of H uniformly at random
from [−10, 0], and we set h⃗ = −0.2H⊤1⃗.

DPP instances are functions of the form f(x⃗) =
log det(diag(x⃗)(L − I) + I), where L ∈ Rn×n is a psd
matrix and I is the identity matrix. We randomly generated
such instances as follows. We sampled the eigenvalues of
L as follows: the i-th eigenvalue is ℓi = eri , where ri was
sampled uniformly from [−0.5, 1]. We sampled a random
orthogonal matrix V . We set L = V diag(ℓ1, . . . , ℓn)V

⊤.

Algorithms, implementation details, and parameter choices.
We empirically compared our parallel algorithm with the se-
quential continuous greedy algorithm (Chekuri et al., 2015;
Bian et al., 2017) and the parallel multiplicative weights
update algorithm (Ene et al., 2019) (see Section C in the
supplement for pseudocode descriptions). We implemented
the sequential continuous greedy algorithm using a step
size of ϵ/n, leading to O(n/ϵ) iterations and adaptive eval-
uations. We implemented our algorithm with a more ag-
gressive update of the thresholds on line 13: instead of the
update v ← (1−ϵ)v, we performed the update v ← 0.75 ·v.
We used error ϵ = 0.05 and budget k = 10 in all of the
experiments.

Computing infrastructure. We implemented the algorithms
in C++ and ran the experiments on an iMac with a 3.3 GHz
Intel Core i5 processor and 8 GB of memory. The code used
for generating the instances and evaluating the algorithms
can be found in the supplement.

Results. The experimental results are shown in Figure 1.
Each value is the average value for 5 independently sampled
instances and the error bar is ±1 standard deviation. The
sequential continuous greedy algorithm achieved the highest
solution value in all of the runs, and we report the value
obtained by the parallel algorithm as the fraction of the
continuous greedy solution value.

In all of the runs, our parallel algorithm achieves higher
function value than the parallel multiplicative weights up-
date algorithm, while the number of evaluations is signifi-
cantly lower. The running time of the MWU algorithm is
prohibitive on larger instances, and thus we were only able
to compare the algorithms in the small n regime, which is
advantageous for the MWU algorithm.

Acknowledgements
We thank the reviewers for their comments and suggestions
for improving the presentation. We thank Adrian Vladu
for helpful conversations about this work. The work of
Alina Ene was supported in part by NSF CAREER grant
CCF-1750333, NSF grant CCF-1718342, and NSF grant
III-1908510. The work of Huy L. Nguyễn was supported in
part by NSF CAREER grant CCF-1750716 and NSF grant

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

CCF-1909314.

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

0 1000 2000 3000 4000 5000 6000 7000 8000
groud set size (n)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

va
lu

e
(re

la
tiv

e
to

 C
G)

nqp value
Sequential Continuous Greedy
Multiplicative Weights Update
Our Algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000
groud set size (n)

0

20000

40000

60000

80000

100000

120000

140000

160000

ad

ap
tiv

e
ev

al
ua

tio
ns

nqp adaptivity
Sequential Continuous Greedy
Multiplicative Weights Update
Our Algorithm

200 300 400 500 600 700 800
groud set size (n)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

va
lu

e
(re

la
tiv

e
to

 C
G)

dpp value
Sequential Continuous Greedy
Multiplicative Weights Update
Our Algorithm

200 300 400 500 600 700 800
groud set size (n)

0

2000

4000

6000

8000

10000

12000

14000

16000

ad
ap

tiv
e

ev
al

ua
tio

ns
dpp adaptivity

Sequential Continuous Greedy
Multiplicative Weights Update
Our Algorithm

200 300 400 500 600 700 800
groud set size (n)

0

2000

4000

6000

8000

10000

12000

14000

ad

ap
tiv

e
ev

al
ua

tio
ns

dpp adaptivity (parallel algorithms only)
Multiplicative Weights Update
Our Algorithm

0 1000 2000 3000 4000 5000 6000 7000 8000
groud set size (n)

0

2000

4000

6000

8000

ad

ap
tiv

e
ev

al
ua

tio
ns

nqp adaptivity (parallel algorithms only)
Multiplicative Weights Update
Our Algorithm

Figure 1. Experimental results.

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

References
Balkanski, E. and Singer, Y. The adaptive complexity of

maximizing a submodular function. In ACM Symposium
on Theory of Computing (STOC), 2018.

Balkanski, E., Breuer, A., and Singer, Y. Non-monotone
submodular maximization in exponentially fewer itera-
tions. In Advances in Neural Information Processing
Systems (NIPS), 2018.

Balkanski, E., Rubinstein, A., and Singer, Y. An exponential
speedup in parallel running time for submodular maxi-
mization without loss in approximation. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2019.

Bian, A., Levy, K., Krause, A., and Buhmann, J. M. Con-
tinuous dr-submodular maximization: Structure and algo-
rithms. In Advances in Neural Information Processing
Systems, pp. 486–496, 2017.

Bian, A., Buhmann, J. M., and Krause, A. Optimal dr-
submodular maximization and applications to provable
mean field inference. arXiv preprint arXiv:1805.07482,
2018.

Bian, A. A., Mirzasoleiman, B., Buhmann, J. M., and
Krause, A. Guaranteed non-convex optimization: Sub-
modular maximization over continuous domains. arXiv
preprint arXiv:1606.05615, 2016.

Chekuri, C. and Quanrud, K. Submodular function max-
imization in parallel via the multilinear relaxation. In
ACM-SIAM Symposium on Discrete Algorithms (SODA),
2019.

Chekuri, C., Jayram, T. S., and Vondrák, J. On multi-
plicative weight updates for concave and submodular
function maximization. In Conference on Innovations
in Theoretical Computer Science (ITCS), 2015. doi:
10.1145/2688073.2688086.

Ene, A. and Nguyen, H. L. Submodular maximization with
nearly-optimal approximation and adaptivity in nearly-
linear time. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2019.

Ene, A., Nguyen, H. L., and Vladu, A. Submodular maxi-
mization with matroid and packing constraints in parallel.
In ACM Symposium on Theory of Computing (STOC),
2019.

Fahrbach, M., Mirrokni, V., and Zadimoghaddam, M. Non-
monotone submodular maximization with nearly optimal
adaptivity complexity. arXiv preprint arXiv:1808.06932,
2018.

Fahrbach, M., Mirrokni, V., and Zadimoghaddam, M. Sub-
modular maximization with optimal approximation, adap-
tivity and query complexity. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2019.

Feldman, M., Naor, J., and Schwartz, R. A unified continu-
ous greedy algorithm for submodular maximization. In
IEEE Foundations of Computer Science (FOCS), 2011.
doi: 10.1109/FOCS.2011.46.

Gillenwater, J., Kulesza, A., and Taskar, B. Near-optimal
map inference for determinantal point processes. In Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 2735–2743, 2012.

Ito, S. and Fujimaki, R. Large-scale price optimization
via network flow. In Advances in Neural Information
Processing Systems (NIPS), pp. 3855–3863, 2016.

Khanna, R., Elenberg, E. R., Dimakis, A. G., Negahban,
S. N., and Ghosh, J. Scalable greedy feature selection via
weak submodularity. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL,
USA, pp. 1560–1568, 2017.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012.

Soma, T. and Yoshida, Y. Non-monotone dr-submodular
function maximization. In AAAI, volume 17, pp. 898–904,
2017.

Vondrák, J. Optimal approximation for the submodular
welfare problem in the value oracle model. In ACM
Symposium on Theory of Computing (STOC), 2008.

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

A. Omitted Proofs
Lemma 12. The algorithm maintains the invariant that
0⃗ ≤ x⃗ ≤ z⃗.

Proof. We show the lemma by induction on the number of
updates (lines 20 and 21). Consider an iteration of the inner
while loop. If the algorithm executes line 23, we have x⃗ = z⃗
at the end of the iteration. Therefore we may assume that
the algorithm does not execute line 23. Let x⃗′ and z⃗′ be the
updated vectors after performing the updates on line 20 and
line 21, respectively. Let x⃗ and z⃗ denote the vectors right
before the update. By the induction hypothesis, we have
0⃗ ≤ x⃗ ≤ z⃗.

For each coordinate i ∈ [n], we have:

x⃗′
i =

{︄
x⃗i + η(1− x⃗i) = η + (1− η)x⃗i if i ∈ S(η)

x⃗i otherwise

z⃗′i =

{︄
z⃗i + η(1− z⃗i) = η + (1− η)z⃗i if i ∈ S

z⃗i otherwise

Since 0⃗ ≤ x⃗ ≤ z⃗, 1 − η ≥ 0, and S(η) ⊆ S, we have
0⃗ ≤ x⃗′ ≤ z⃗′, as needed.

Lemma 13. Consider an iteration of the inner while loop.
Let x⃗ and z⃗ be the respective vectors before the updates
on lines 20–23, and let x⃗′ and z⃗′ = z⃗(η) be the respective
vectors after the updates. For each coordinate i ∈ S(η), we
have ∇if(x⃗

′) ≥ ∇if(z⃗
′) ≥ v

1−z⃗′
i
> 0.

Proof. Note that the update rule on line 21 sets z⃗′ = z⃗(η).
Since x⃗′ ≤ z⃗′ (Lemma 12), DR-submodularity implies
that ∇f(x⃗′) ≥ ∇f(z⃗′). Let i ∈ S(η). By the def-
inition of S(η), we have z⃗i(η) ≤ 1 − (1 − ϵ)j < 1
and (1 − z⃗i(η))∇if(z⃗(η)) ≥ v > 0, which implies that
∇if(z⃗(η)) ≥ v

1−z⃗i(η)
> 0.

Lemma 14. Consider the vectors and sets defined on
line 15. For all η and η′ such that 0 ≤ η ≤ η′ ≤ ϵ,
we have:

(1) z⃗(η) ≤ z⃗(η′),

(2) S(η) ⊇ S(η′).

Proof. (1) For every i /∈ S, we have z⃗i(η) = z⃗i(η
′) = z⃗i.

For every i ∈ S, we have:

z⃗i(η)
(a)
= z⃗i + η(1− z⃗i)

(b)

≤ z⃗i + η′(1− z⃗i)
(c)
= z⃗i(η

′)

where (a) and (c) are due to i ∈ S, (b) is due to η ≤ η′

and 1− z⃗i ≥ 0 (since i ∈ S, z⃗i ≤ 1− (1− ϵ)j ≤ 1).

(2) Let i ∈ S(η′). By (1) and DR-submodularity, we
have ∇f(z⃗(η)) ≥ ∇f(z⃗(η′)). Since i ∈ S(η′), we
have 1 − zi(η

′) ≥ 0 (since zi(η
′) ≤ 1 − (1 − ϵ)j ≤

1), and ∇if(z⃗(η
′)) ≥ 0 (since 1 − zi(η

′) ≥ 0 and
(1− zi(η

′))∇if(z⃗(η
′)) ≥ v > 0). Therefore

g⃗i(η)
(a)
= (1− η)(1− z⃗i)∇if(z⃗(η))

(b)

≥ (1− η′)(1− z⃗i)∇if(z⃗(η
′))

(c)
= g⃗i(η

′)

(d)

≥ v

where (a) and (c) are due to i ∈ S; (b) is due to η ≤ η′,
1− z⃗i ≥ 0, and∇if(z⃗(η)) ≥ ∇if(z⃗(η

′)) ≥ 0; (d) is
due to i ∈ S(η′).

A.1. Proof of Lemma 3

Proof of Lemma 3. We show that the invariants are main-
tained using induction on the number of iterations of the
inner while loop in phase j. Let z⃗ be the vector right be-
fore the update on line 21 and let z⃗′ be the vector right
after the update. By the induction hypothesis, we have
z⃗i ≤ 1 − (1 − ϵ)j + ϵ2. If i /∈ S, we have z⃗′i = z⃗i, and
the invariant is maintained. Therefore we may assume that
i ∈ S. By the definition of S, we have z⃗i ≤ 1 − (1 − ϵ)j .
We have z⃗′i = z⃗i + η(1− z⃗′i) ≤ z⃗i + η ≤ z⃗i + ϵ2. Thus the
invariant is maintained.

Next, we show the upper bound on the ℓ1 norm. Note that
z⃗′ = z⃗(η) ≤ z⃗(η2), where η is the step size chosen on
line 19. Thus we have ∥z⃗′∥1 ≤ ∥z⃗(η2)∥1 ≤ ϵjk, where the
last inequality is by the choice of η2.

A.2. Proof of Theorem 10

Proof of Theorem 10. By Lemma 3, the algorithm main-
tains the invariant that, at the end of phase j, we have
∥x⃗∥1 ≤ ∥z⃗∥1 ≤ ϵjk. Thus, at the end of the algorithm,
we have ∥x⃗∥1 ≤ k.

Next, we show the approximation guarantee. Let x⃗(0) = 0⃗

and let x⃗(j) be the solution x⃗ at the end of phase j. We will
show by induction on j that:

f(x⃗(j)) ≥ ϵj(1− ϵ)jf(x⃗∗)− 8jϵ2f(x⃗∗)

The above inequality clearly hods for j = 0. Consider
j ≥ 1. By Theorem 4, we have

f(x⃗(j)) ≥ f(x⃗(j−1))

+ (1− 5ϵ)ϵ((1− ϵ)jf(x⃗∗)− f(x⃗(j))− 3ϵf(x⃗∗))

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Hence

f(x⃗(j))

≥ (1− ϵ)f(x⃗(j−1))

+ (1− 5ϵ)ϵ((1− ϵ)jf(x⃗∗)− 3ϵf(x⃗∗))

≥ (1− ϵ)f(x⃗(j−1)) + ϵ(1− ϵ)jf(x⃗∗)− 8ϵ2f(x⃗∗)

(a)

≥ (1− ϵ)
(︂
ϵ(j − 1)(1− ϵ)j−1f(x⃗∗)− 8(j − 1)ϵ2f(x⃗∗)

)︂
+ ϵ(1− ϵ)jf(x⃗∗)− 8ϵ2f(x⃗∗)

≥ ϵj(1− ϵ)jf(x⃗∗)− 8jϵ2f(x⃗∗)

where (a) is by the inductive hypothesis.

Thus it follows by induction that:

f(x⃗(1/ϵ)) ≥ ((1−ϵ)1/ϵ−8ϵ)f(x⃗∗) ≥
(︃
1

e
−O(ϵ)

)︃
f(x⃗∗),

as needed.

B. Approximate Step Sizes
In this section, we show how to extend the idealized algo-
rithm (Algorithm 1) and its analysis. In order to obtain an
efficient algorithm, we find the step size η1 approximately
using t-ary search, as described below. The modified algo-
rithm is given in Algorithm 2. On line 18 of Algorithm 2,
the Θ notation hides a sufficiently small constant so that
δ ≤ ϵ/N , where N is the total number of iterations of the
algorithm (as we discuss later in this section, the analysis of
the number of iterations given in Theorem 11 still holds and
thus N = O(log(n) log(1/ϵ)/ϵ3).)

Finding η1 on line 20. As in the description of the al-
gorithm, we let η∗1 be the maximum η ∈ [0, ϵ2] such
that |S(η)| ≥ (1 − ϵ)|S| and we let δ be the value on
line 18. As shown in Lemma 14, for every η ≤ η′, we have
S(η) ⊇ S(η′), and thus |S(η)| is non-increasing as a func-
tion of η. Note that S(0) = S and thus |S(0)| ≥ (1− ϵ)|S|.
We first check whether |S(ϵ2)| ≥ (1− ϵ)|S|; if so, we have
η∗1 = ϵ2 and we return η1 = ϵ2. Therefore we may assume
that |S(ϵ2)| < (1 − ϵ)|S| and thus η∗1 ∈ [0, ϵ2). Starting
with the interval [0, ϵ2], we perform t-ary search, and we
stop once we reach an interval [a, b] of length at most δ. We
return η1 = b. Note that we have η∗1 ≤ η1 ≤ η∗1 + δ.

The arity of the t-ary search gives us different trade-offs
between the number of parallel rounds and the total running
time. The t-ary search takes logt(ϵ

2/δ) parallel rounds and
t logt(ϵ

2/δ) evaluations of f and ∇f . If we use binary
search (t = 2), the number of rounds is log2(ϵ

2/δ) =
O(log log n+ log(1/ϵ)) and the number of evaluations of
f and ∇f is also O(log log n + log(1/ϵ)). If we take t =
Θ(log n/ϵ), the number of rounds is O(1) and the number
of evaluations of f and∇f is O(log n/ϵ).

Algorithm 2 Algorithm for maxx⃗∈[0,1]n : ∥x⃗∥1≤k f(x⃗),
where f is a non-negative DR-submodular function.

1: M : f(x⃗∗) ≤M ≤ (1 + ϵ)f(x⃗∗)
2: x⃗← 0⃗
3: z⃗ ← 0⃗
4: for j = 1 to 1/ϵ do
5: ⟨⟨ Start of phase j ⟩⟩
6: x⃗start ← x⃗
7: z⃗start ← z⃗
8: vstart ← 1

k (((1− ϵ)j − 2ϵ)M − f(x⃗))
9: v ← vstart

10: while v > ϵvstart and ∥z⃗∥1 < ϵjk do
11: g⃗ = (1⃗− z⃗) ◦ ∇f(z⃗)
12: S = {i ∈ [n] : g⃗i ≥ v and z⃗i ≤ 1 − (1 −

ϵ)j and z⃗i − (z⃗start)i < ϵ(1− (z⃗start)i)}
13: if S = ∅ then
14: v ← (1− ϵ)v
15: else
16: For a given η ∈ [0, ϵ2], we define:

z⃗(η) = z⃗ + η(1⃗− z⃗) ◦ 1⃗S
g⃗(η) = (1⃗− z⃗(η)) ◦ ∇f(z⃗(η))
S(η) = {i ∈ S : g⃗(η)i ≥ v}
T (η) = {i ∈ S : g⃗(η)i > 0}

17: ⟨⟨ δ ≤ ϵ/N , where N is the total number of
iterations of the algorithm ⟩⟩

18: Let δ = Θ
(︂

ϵ4

log(n) log(1/ϵ)

)︂
19: ⟨⟨ Let η∗1 be the maximum η ∈ [0, ϵ2] such that

|S(η)| ≥ (1− ϵ)|S| ⟩⟩
20: Using t-ary search, find η1 ∈ [0, ϵ2] such that

η∗1 ≤ η1 ≤ η∗1 + δ

21: ⟨⟨ η2 = min
{︂
ϵ2, ϵjk−∥z⃗∥1

|S|−∥z⃗◦1⃗S∥1

}︂
⟩⟩

22: Let η2 be the maximum η ∈ [0, ϵ2] such that
∥z⃗(η)∥1 ≤ ϵjk

23: η ← min{η1, η2}
24: x⃗← x⃗+ η(1⃗− x⃗) ◦ 1⃗T (η−δ)

25: z⃗ ← z⃗ + η(1⃗− z⃗) ◦ 1⃗S
26: if f(z⃗) > f(x⃗) then
27: x⃗← z⃗
28: end if
29: end if
30: end while
31: end for
32: return x⃗

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

Next, we show how to extend the analysis given in Sec-
tions 4 and 5. We first note that the upper bound on the total
number of iterations given in Theorem 11 still holds, since
we have η ≥ η∗ := min{η∗1 , η2} and T (η − δ) ⊇ T (η∗).
Therefore it only remains to show that the approximate
search only introduces an overall O(ϵ) additive error in the
approximation guarantee. Since δ ≤ ϵ/N , where N is the
total number of iterations of the algorithm, it suffices to
show that the error is O(δ)f(x⃗∗) in each iteration.

We start with the following lemma:

Lemma 15. Let α, β ∈ R and u⃗, v⃗ ∈ Rn. Suppose that
0 ≤ β ≤ α ≤ 1, u⃗ ≤ v⃗ ≤ α1⃗, and v⃗ − u⃗ ≤ β1⃗. Then
f(u⃗)− f(v⃗) ≤ β

1−α+β f(u⃗).

Proof. For t ≥ 0, let w⃗(t) := u⃗+ (v⃗− u⃗)t. The conditions
in the lemma statement ensure that w⃗((1− α+ β)/β) ≤ 1⃗.
Using that f is concave in non-negative directions and f is
non-negative, we obtain:

f(v⃗) = f(w⃗(1))

≥
(︃
1− β

1− α+ β

)︃
f(w⃗(0))

+
β

1− α+ β
f

(︃
w⃗

(︃
1− α+ β

β

)︃)︃
≥

(︃
1− β

1− α+ β

)︃
f(w⃗(0))

=

(︃
1− β

1− α+ β

)︃
f(u⃗)

The lemma now follows by rearranging the above inequality.

We now fix an iteration of the algorithm (an iteration of the
inner while loop) that updates x⃗ and z⃗ on lines 24–27. Let
x⃗, z⃗ denote the vectors right before the update on lines 24–
27. We define:

η∗ := min{η∗1 , η2}
x⃗′ := x⃗+ η(1⃗− x⃗) ◦ 1⃗T (η−δ)

a⃗ := x⃗+ (η − δ)(1⃗− x⃗) ◦ 1⃗T (η−δ)

b⃗ := x⃗+ η∗(1⃗− x⃗) ◦ 1⃗T (η∗) + (η − δ)(1⃗− x⃗) ◦ 1⃗T (η−δ)\T (η∗)

Note that we have η − δ ≤ η∗ ≤ η and thus it follows from
Lemma 14 that T (η − δ) ⊇ T (η∗) ⊇ T (η).

We start by applying Lemma 15. Let u⃗ = a⃗ and v⃗ = x⃗′.
We have x⃗′ ≤ (1 − (1 − ϵ)j + ϵ2)1⃗, and thus we can take
α = 1− (1− ϵ)j + ϵ2 ≤ 1− (1− ϵ)1/ϵ + ϵ2 ≈ 1

e + ϵ2. We
have a⃗ ≤ x⃗′ and x⃗′ − a⃗ ≤ δ1⃗, and thus we can take β = δ.
It follows from Lemma 15 that:

f(x⃗′)− f(a⃗) ≥ −O(δ)f(a⃗) ≥ −O(δ)f(x⃗∗),

where in the second inequality we have used that a⃗ is feasi-
ble.

Next, we have:

f(a⃗)− f(x⃗)
(a)

≥ ⟨∇f(a⃗), a⃗− x⃗⟩
= ⟨∇f(a⃗), (η − δ)(1⃗− x⃗) ◦ 1⃗T (η−δ)⟩
(b)

≥ ⟨∇f(a⃗), (η − δ)(1⃗− x⃗) ◦ 1⃗T (η∗)⟩
(c)

≥ ⟨∇f(z⃗(η∗)), (η − δ)(1⃗− x⃗) ◦ 1⃗T (η∗)⟩
(d)

≥ ⟨g⃗(η∗), (η − δ)1⃗T (η∗)⟩

In (a), we used that f is concave in non-negative directions
and a⃗ ≥ x⃗. We can show (b) as follows. As noted earlier,
T (η∗) ⊆ T (η− δ). Since a⃗ ≤ z⃗(η− δ), we have∇f(a⃗) ≥
∇f(z⃗(η−δ)) by DR-submodularity, and thus∇f(a⃗) is non-
negative on the coordinates in T (η−δ). In (c), we have used
that a⃗ ≤ z⃗(η − δ) ≤ z⃗(η∗) and thus ∇f(a⃗) ≥ ∇f(z⃗(η∗))
by DR-submodularity. In (d), we used that ∇f(z⃗(η∗)) is
non-negative on the coordinates in T (η∗) and 1⃗ − x⃗ ≥
1⃗− z⃗(η∗) ≥ 0⃗.

Similarly, we have:

f(b⃗)− f(a⃗)
(a)

≥ ⟨∇f(b⃗), b⃗− a⃗⟩
(b)
= ⟨∇f(b⃗), (η∗ − η + δ)(1⃗− x⃗) ◦ 1⃗T (η∗)⟩
(c)

≥ ⟨g⃗(η∗), (η∗ − η + δ)1⃗T (η∗)⟩

In (a), we used that f is concave in non-negative directions
and b⃗ ≥ a⃗. In (b), we used that T (η − δ) ⊇ T (η∗). We can
show (c) as follows. Since η − δ ≤ η∗ and T (η − δ) ⊆ S,
we have b⃗ ≤ z⃗(η∗). Thus ∇f(b⃗) ≥ ∇f(z⃗(η∗)) by DR-
submodularity and∇f(b⃗) is non-negative on the coordinates
of T (η∗).

By combining the inequalities above, we obtain:

f(x⃗′)− f(x⃗) ≥ ⟨g⃗(η∗), η∗1⃗T (η∗)⟩ −O(δ)f(x⃗∗)

Thus we see that the gain obtained in the iteration is the
one required by the proof of Theorem 4 apart from the
additive loss of O(δ)f(x⃗∗). By propagating the additive
loss through the proof of Theorem 4, we obtain a total loss
of O(δN)f(x⃗∗), where N is the total number of iterations.
As noted above, O(δN) = O(ϵ), as needed.

C. DR-submodular Algorithms
In this section, we give the pseudocode of the sequential
and parallel algorithms evaluated in our experiments. The
sequential algorithm we used is the continuous greedy al-
gorithm shown in Algorithm 3. The algorithm is a variant

Parallel Algorithm for Non-Monotone DR-Submodular Maximization

of the measured continuous greedy algorithm that was stud-
ied in previous works (Feldman et al., 2011; Chekuri et al.,
2015; Bian et al., 2017). This variant obtains higher func-
tion value in practice, since it allows for the possibility of
filling up more of the available budget, and this is what we
observed in our experiments as well. The state of the art
parallel algorithm for non-monotone DR-submodular maxi-
mization subject to a cardinality constraint is the algorithm
of (Ene et al., 2019); Algorithm 4 gives the pseudocode of
this algorithm specialized to a single cardinality constraint.

Algorithm 3 A variant of the measured continuous greedy
algorithm for maxx⃗∈[0,1]n : ∥x⃗∥1≤k f(x⃗), where f is a non-
negative DR-submodular function.

1: x⃗← 0⃗
2: ⟨⟨ In our experiments, we used η = ϵ/n ⟩⟩
3: η ← ϵ/n3

4: T ← 1/η
5: for t = 1 to T do
6: d⃗← argmaxz⃗∈[0,1]n : z⃗≤1⃗−x⃗,∥z⃗∥1≤k⟨∇f(x⃗), z⃗⟩
7: x⃗← x⃗+ ηd⃗
8: end for
9: return x⃗

Algorithm 4 The algorithm of (Ene et al., 2019) specialized
to a single cardinality constraint. The algorithm solves
the problem maxx⃗∈[0,1]n : ∥x⃗∥1≤k f(x⃗), where f is a non-
negative DR-submodular function. The algorithm takes
as input a target value M such that f(x⃗∗) ≤ M ≤ (1 +
ϵ)f(x⃗∗).

1: η ← ϵ
2 log(n+1)

2: x⃗← ϵ
n 1⃗

3: z⃗ ← x⃗
4: ⟨⟨MWU weights for the (n+ 1) constraints z⃗i ≤ 1 for

all i ∈ [n] and 1
k ⟨z⃗, 1⃗⟩ ≤ 1 ⟩⟩

5: w⃗i ← exp(z⃗i/η) for all i ∈ [n]
6: w⃗n+1 ← exp(∥z⃗∥1/(ηk))
7: t← η ln(∥w⃗∥1)
8: while t < 1− ϵ do
9: λ←M · (e−t − 2ϵ)− f(x⃗)

10: c⃗← (1⃗− x⃗) ◦ ∇f((1 + η)x⃗) ∨ 0⃗

11: m⃗i ←
(︂
1− λ · 1

c⃗i
· 1
∥w⃗∥1

(︁
w⃗i +

1
k w⃗n+1

)︁)︂
∨ 0 for

all i ∈ [n] with c⃗i ̸= 0, and m⃗i = 0 if c⃗i = 0

12: d⃗← ηx⃗ ◦ m⃗
13: if d⃗ = 0⃗ then
14: break
15: end if
16: x⃗← x⃗+ d⃗ ◦ (1⃗− x⃗)

17: z⃗ ← z⃗ + d⃗
18: ⟨⟨ Update the weights ⟩⟩
19: w⃗i ← exp(z⃗i/η) for all i ∈ [n]
20: w⃗n+1 ← exp(∥z⃗∥1/(ηk))
21: end while
22: return x⃗

	Introduction
	Preliminaries
	The Algorithm
	Analysis of the Approximation Guarantee
	Analysis of the Number of Iterations
	Experimental Results
	Omitted Proofs
	Proof of Lemma 3
	Proof of Theorem 10

	Approximate Step Sizes
	DR-submodular Algorithms

