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and the authors (2018) [7]. The proofs of (i) and (ii) provide
(principally different) new approach to those previous results.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, we always let k, ¢, p be positive integers, where k& > 2q. An
integer flow (D, f) of a graph G is called a circular %—ﬂow if g <|f(e)| < k—q for every
edge e € E(G). As introduced in [2], the flow index of a graph G, denoted by ¢(G), is
the least rational number A such that G admits a circular A-flow.

The relation between flow and orientation was first observed by Tutte for 3-flow
problem. And it was later generalized by Jaeger [5] that a graph admits a circular
(2+ %)—ﬂow if and only if it has a modulo (2p + 1)-orientation, that is, an orientation
such that, at each vertex, the indegree is congruent to outdegree modulo 2p + 1. Now
Jaeger’s result is generalized for all rational number k/q below, providing tools to study
arbitrary circular flows via orientations. The case of odd k is easier to state: a graph G
admits a circular k/q-flow if and only if (k — 2q)G has a modulo k-orientation. Here tG
denotes the graph obtained from G by replacing each edge with ¢ parallel edges. To state
the theorem including the case of even k, we need the following definition concerning
orientations with prescribed outdegrees.

Definition 1.1. For a graph G, an orientation D of the extended graph (k —2¢)G is called
a (k, q)-extended- Tutte-orientation (or (k,q)-ETO for short) with respect to G if

d5(v) = —qdg(v) (mod k), Vv € V(G). (1)
In this paper, we establish a relation between this orientation and arbitrary circular
s-ﬂow as follows: a graph admits a circular s-ﬂow if and only if it has a (k,q)-ETO. To
explain the (k, ¢)-ETO more illustratively, we have the following detailed interpretation.
Theorem 1.2. Let G be a graph. The following statements are equivalent.
(i) G admits a circular & -flow.

(ii) G has a (k,q)-extended- Tutte-orientation D.
(iii) (k —2q)G admits an orientation D such that

dh(v) —dp(v) = kdg(v) (mod 2k), Vv € V(G). (2)

In particular, for odd k, Eq. (2) is equivalent to
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di,(v) —dp(v) =0 (mod k), Yve V(Q), (3)
that is, (k —2q)G admits a modulo k-orientation D.

This relation would help us to find certain circular flows via orientations. In particular,
the special case ¢ = 1 and k = 5 of Theorem 1.2 is exactly a fact, observed by Jaeger
[5], that if 3G admits a modulo 5-orientation, then the summation of flow values on
corresponding parallel edges of 3G provides a nowhere-zero modulo 5-flow of G. Jaeger
[5] further applied this fact to show that Tutte’s 5-flow conjecture follows from a stronger
conjecture that every 9-edge-connected graph admits a circular 5/2-flow. Jaeger [5] also
proposed a more general circular flow conjecture that every 4p-edge-connected graph
admits a circular (2 + %)—ﬂow, where the p = 1 case is exactly Tutte’s 3-flow conjecture.
The weak version of this conjecture was solved by Thomassen [12] who showed edge
connectivity 2(2p 4+ 1)? + 2p + 1 suffices. This was later improved to 6p-edge-connected
graphs by Lovasz, Thomassen, Wu, Zhang [8]. Recently, Jaeger’s conjecture was, however,
disproved for p > 3 in [3], while Tutte’s 3-flow and 5-flow conjectures remain open.

It was pointed out in some literature (cf. [6,8,18]) that the odd-edge-cuts play impor-
tant role for flow problems. A graph is t-odd-edge-connected if each odd-edge-cut is of
size at least ¢. The (2+ %)—ﬂow result of Lovész et al. [8] holds for odd edge connectivity
as well.

Theorem 1.3. (Lovasz et al. [8]) For every (6p+ 1)-odd-edge-connected graph G, the flow
index ¢(G) <2+ %.

How about (6p — 1)- or (6p 4 3)-odd-edge-connected graphs? As applications of The-
orem 1.2, we provide new upper bound of flow index for those graphs with given odd
edge connectivity.

Jaeger’s 4-flow theorem [4] in 1979 states that every 5-odd-edge-connected graph admits
a nowhere-zero 4-flow. This result is generalized as follows.

Theorem 1.4. For every (6p — 1)-odd-edge-connected graph G, the flow index ¢(G) <
2+ 227

Jaeger’s pioneer work on 4-flows applied a very beautiful and elegant argument to find
two even subgraph cover from a pair of edge-disjoint spanning trees and fundamental
cycles (Tutte and Nash-Williams Theorem [15], [9] is applied). Our proof of Theorem 1.4,
which provides a nowhere-zero modulo 4-flow, is in fact a pure orientation technique
avoiding using even subgraphs (spanning trees). To the best of our knowledge, this is
the first alternative method for Jaeger’s 4-flow theorem.

By revisiting a recent result in [7], every 9-odd-edge-connected graph has flow index
strictly less than 3. This result is also generalized as follows.

Theorem 1.5. For every (6p+3)-odd-edge-connected graph G, the flow index ¢(G) < 2—|—%.
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The techniques in [7] refine arguments in [12,8] to find a strongly connected modulo
3-orientation under a similar setting. However, the method does not seem to working for
arbitrary p due to some technical obstructions. Here, with the aid of Theorem 1.2, we are
able to not only provide a much simpler proof, but also extend to all natural numbers p.

In the next section, we will present our proof of Theorem 1.2. Then Theorems 1.4 and
1.5 are proved in Section 3, which consists of two parts: We first apply Theorem 1.2 to
reduce them to certain orientation problems, and then apply the orientation theorem in
[8] to find such a desired orientation if the graph has a sufficient odd edge connectivity.
The proof of Theorem 1.5 also needs some special tricks of assigning pre-oriented edges.
We end this paper with a few remarks on strongly connected orientations, contractible
configurations and a summary of flow indices.

2. Circular flows via orientations

A classical theorem of Tutte [13] (see also [17]) converts modulo k-flows into integer
k-flows, which preserves the flow value of each edge modulo k. The following is an easy
consequence of Tutte’s theorem, as observed in [7].

Lemma 2.1. ([7]) Let G be a graph and k > 2q be two positive integers. The following
are equivalent.

(a) $(G) < %
(b) G admits an integer flow (D, f) with ¢ < |f(e)| < k — q for every edge e € E(G);
(¢) G admits a modulo k-flow (D, f") with g < |f'(e)| < k — q for every edge e € E(Q).

Let G be a graph with orientation D. The deficiency of orientation D at vertex
v € V(G) is defined as the difference between outdegree and indegree. For a mapping f
from E(G) to integers, its deficiency at vertex v € V(G), under orientation D, is denoted
by 9,(f) = ZeeE+ (v) fle) = ZeEEB(U) f(e).

Now we are ready to prove Theorem 1.2, in which we apply the (k, ¢)-ETO in (k—2¢)G
to find a modulo k-flow of G as in Lemma 2.1(c), and vice versa.

Proof of Theorem 1.2. Clearly, Eq. (2) implies Eq. (3). When £ is odd, the numbers

df(v) —dp(v), (k—2q)dg(v) and dg(v) all have the same parity, and so Eq. (3) implies

that dj,(v) — dp,(v) = k (mod 2k) if dg(v) is odd, and d},(v) — dp(v) = 0 (mod 2k)

if dg(v) is even. Hence Eq. (2) and Eq. (3) are equivalent for odd k. This verifies that

Eq. (2) is equivalent to that (k — 2¢)G admits a modulo k-orientation for odd k.
Observe that, for each v € V((k — 2¢)G),

db(v) — dp(v) = kda(v) (mod 2k)
& 2df(v) = kdg(v) +dp(v) (mod 2k)
& 2d5(v) = kdg(v) + (k — 2¢q)dg(v)  (mod 2k)
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& 2df(v) = —2¢dg(v)  (mod 2k)
& df(v) = —qdg(v) (mod k).

Hence a (k, q)-extended-Tutte-orientation as in Eq. (1) is equivalent to the orientation
as in Eq. (2) of Theorem 1.2(iii).

Therefore, (ii) and (iii) in Theorem 1.2 are equivalent. Now it suffices to prove the
equivalence of (i) and (iii). For each edge e € E(G), we always let [e] denote the set of its
corresponding ¢ parallel edges in tG. For technical reasons to handle modules, we shall
divide the proof into two cases based on the parity of k.

Case 1: k = 2s + 1.

In this case, notice that a (k, ¢)-ETO D in (k—2¢)G as in Eq. (1) is exactly equivalent
to a modulo k-orientation of (k — 2¢)G as discussed above. We proceed to prove the
following.

“(iii)=-(i)”: Assume that (k — 2¢)G has a modulo k-orientation D. This modulo k-
orientation can be also viewed as a modulo k-flow with each edge having flow value
one. By taking the summation of flow value of [e] in D((k — 2¢)G) for each edge e €
E(G), we can obtain a modulo k-flow (D', f1) in G, where |fi(e)| is odd and satisfies
|fi(e)] < k — 2q for any edge e € E(G). We may, by possibly reversing the direction
of some edges, choose an orientation D’ of G such that the values of f; are taken in
{(k —2q),(k —2q—2),...,3,1}. Note that (D', f1) is precisely a modulo k-flow of G
since D is a modulo k-orientation of (k — 2¢)G.

Let f’ = sf; modulo k, where s = % Then (D', f') remains a modulo k-flow of G
as (D', f1) does. We claim that the values of f” are taken in {q,...,k — ¢} modulo k. In
fact, for any edge e € E(G) with fi(e) =k — 2i (¢ <i < s), we have

fl(e)=sfile) =s(k—2i)=—2si=i (mod k).

Hence f'(e) € {q,...,8} C {q,...,k — q}. Therefore, (D', f’) is a modulo k-flow of G
with ¢ < f/(e) < k — g for every edge e € E(G). By Lemma 2.1, G admits a circular
g—ﬂow and (i) holds.

“(i)=(iii)”: As in Lemma 2.1, let (D', f’) be a modulo k-flow of G with ¢ < f’(e) <
k—q for every edge e € E(G). Set f1 = (k—2) f' modulo k. Then (D', f1) is also a modulo
k-flow of G as (D', f) does. Moreover, for each edge e € E(G), we have ¢ < f'(e) < k—g¢q
and, therefore,

fi(e) = (k—2)f(e) = ~2f'(e) =k —2f'(¢) (mod k).

This shows fi(e) € {+(k — 2q), £(k — 2¢ — 2),...,4+3,£1}. By reversing the direction
of some edges if necessary, we may further obtain a modulo k-flow (D3, f2) such that
fale) € {k —2q,k —2q —2,...,3,1} for each edge e € F(QG).
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We now construct a modulo k-orientation D of (k —2¢)G as in Eq. (3) from (Da, f2).
For each edge e = (u,v) € D3(G) (where the flow value fa(e) is odd and satisfies
1 < fa(e) < k—2q), we first orient fa(e) edges of [e] in (k —2¢)G from u to v, and then
orient the remaining 1 (k—2¢ — f2(e)) pairs of edges with opposite directions. Hence this
orientation of [e] in (k — 2¢q)G exactly matches the flow value fa(e) of e in G. Therefore,
the constructed orientation D of (k — 2¢)G is indeed a modulo k-orientation, since it is
balanced at each vertex from the corresponding behavior of modulo k-flow (Da, f3) of
G. This finishes the proof for the case k = 2s + 1.

Case 2: k = 2s.
The basic idea of the proof is similar to that in Case 1 with some additional and
necessary modifications/discussions on the orientations and modules.

“(i)=-(iii)”: By Lemma 2.1, let (D', f’) be a modulo 2s-flow of G with f': E(G) —
{q,...,2s—q}. We shall construct an orientation D of (2s—2¢)G from (D', '), in which
D satisfies Eq. (2).

For each directed edge e = (u,v) of D'(G), orient 2s — g — f’(e) edges in [e] from u to
v, and the remaining f’(e) — ¢ edges in [e] from v to u. Note that the orientation D’ is
well-defined by the definition of f'.

Notice that, (D’,2f’) is a modulo 4s-flow. Hence it is balanced modulo 4s at each
vertex, that is, the deficiency

u2f) = > 2f(e)— Y 2f(e)=20,(f)=0 (mod4s),YveV(G). (4)

eEEg, (v) e€E, (v)

For each vertex v € V((2s — 2¢)G), we have

df(v) — dp(v)
Yoo @s—a—fe)—(fo—al+ Y [(f(e)—a)—(2s—a— f(e))

eEEg,( ) eeEg,(v)
=25(|ES (0)| = |Ep () + Y (=2f'(e)+ > 2f(e)
EEEE/(U) e€E, (v)
= 2sdg(v) — 20,(f’) (mod 4s), (5)

where the last line in the equation holds since 2s(|E}, (v)| — |Ep (v)]) = 2sdg(v)
(mod 4s) by parity.
Therefore, Eq. (2) follows from Eq. (4) and (5). This proves that (i) implies (iii).

“(iii)=(i)”: Let D be an orientation of (k—2q)G satisfying Eq. (2). Fix an orientation
D’ of G. For each directed edge e = (u, v) of D'(G), denote by m(e) the number of edges
of [e] directed from w to v in D of (k — 2¢)G, and define f’'(e) = 2s — ¢ — m(e). Then
we have g < f’(e) < 2s — q. Moreover, with a similar calculation, Eq. (2) and Eq. (5)
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yield that 29, (f") =0 (mod 4s). Hence 9, (f') = Z(,GE+ w f'(e) = ZeeE;,(v) f'(e)=0
(mod 2s) for any v € V(G), and so (D', f') is a modulo 2s-flow with g< fl(e)<2s—gq
for every edge e € E(G). Thus G admits a circular %—ﬁow by Lemma 2.1. The proof is
completed. H

3. Circular flows and odd edge connectivity

Before proving Theorem 1.4, we remark that Theorem 1.2 using odd k, together with
Theorem 1.3, already lead to a flow less than 2 + ﬁ in (6p — 1)-odd-edge-connected
graphs. Specifically, let £k = 10p — 1 and ¢ = 5p — 3 in Theorem 1.2. Then k — 2q = 5,
and 5G is a 5(6p — 1)-odd-edge-connected graph provided that G is (6p — 1)-odd-edge-
connected. Notice that, as 5(6p — 1) = 6(5p— 1) +1 = 3k — 2, we have ¢(5G) < 2 -|- ;
and 5G admits a modulo k-orientation by Theorem 1.3. Hence ¢(G) < k =2+ 23 by
Theorem 1.2. However, Theorem 1.4 provides a better flow index 2 + 2p 7 < 2 + 5p 3
by applying Theorem 1.2 with an appropriate orientation of 2G. Actually, our proofs
of Theorems 1.4 and 1.5 are based on similar approaches, while much more technical.
To this end, we shall introduce modulo orientation with boundaries and some needed
results.

Definition 3.1. (a) A function §: V(G) — {0,£1,..., £k} is called a (2k, 8)-boundary if
> vevic)Bv) = 0 (mod 2k) and B(v) = d(v) (mod 2) for every v € V(G). For
a vertex subset A C V(G), define its boundary S(A4) € {0,£1,...,%+k} such that
B(A4) = $yen B(v) (mod 2k).

(b) Given a (2k, §)-boundary, an orientation D of G is called a (2k, 8)-orientation if,
for every vertex v € V(G), df(v) — dp(v) = B(v) (mod 2k).

For example, the (k,q)-ETO D in (k—2q)G defined in Eq. (2) is a (2k, §)-orientation
with 8(v) = df,(v) — dp(v) = kdg(v) (mod 2k) for every vertex v € V((k — 2¢)G).
When £k is odd, a modulo k-orientation D of a graph H is also a (2k, §)-orientation with
B(v) = kdg(v) (mod 2k),Yv € V(H). As a preparation of the proofs of Theorems 1.4

2t+1
t

and 1.5, by considering circular -flows and circular ;—fl—ﬂows in Theorem 1.2, we

provide orientations as follows.

Remark 3.2. (a) (Preparation for Theorem 1.5) A graph G admits a circular -flow
if and only if it has a (2t + 1,¢)-ETO, which is a (4t + 2, 8)-orientation of G with
Bv) = (2t + 1)dg(v) (mod 4t + 2),Vv € V(G).

(b) (Preparation for Theorem 1.4) A graph G admits a circular 5 25-flow if and only
if it has a (4p,2p — 1)-ETO, which is an (8p, §)-orientation of 2G Wlth ﬁ( ) = 4pda(v)
(mod 8p),Vv € V(G).

2t41
t
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The following is the modulo k-orientation theorem of Lovédsz et al. [8]. As remarked
in [8] (or see [16]), it holds for even k as well, the proof follows from the line of the proof
of Theorem 3.1 in that paper.

Theorem 3.3. (Lovdsz et al. [8], Wu [16]) Let G be a graph with a (2k, B)-boundary. Let zg
be a vertex of V(G), and let D, be a pre-orientation of E(zy) which achieves boundary
B(20) at zg. Let Vo = {v € V(G) — 2z : B(v) = 0}. If Vo # 0, we let vo be a vertex of Vo
with smallest degree. Assume that

(1) V(G)| = 3;
(it) d(z0) < 2k — 2+ |8(z20)|;
(1i1) d(A) > 2k —2+|B(A)| for any A C V(G)\ {20} with A # {vo} and |V (G)\ 4] > 1.

Then pre-orientation D, at zy can be extended to a (2k,3)-orientation of the entire
graph G.

There are several minor differences between the present version of Theorem 3.3 in
this paper and the original Theorem 3.1 in [8]. First, Theorem 3.1 from [8] uses a 7-
function 7 : V(G) + {0,%1,..., £k} which is calculated from the boundary function
modulo £ and the parity of degree modulo 2. This 7-function is indeed the same as the
(2k, B)-boundary modulo 2k in Definition 3.1 and Theorem 3.3 of this paper. Second, the
proof of Theorem 3.1 is stated for odd & in [8], but all those arguments are essentially
valid for even k as long as it is properly defined in the current form of (2k, 5)-boundary
and (2k, B)-orientation. In fact, the proof of Theorem 3.1 in [8] applies three types of
reductions: contracting a subgraph, lifting a pair of incident edges, and deleting an edge
with modifying the boundaries of its end vertices. All those reductions, as well as each
claim line by line in [8], work well for (2k, 5)-boundary and (2k, 3)-orientation here, no
matter k is even or odd. We refer the reader to [8] for more details.

An orientation is called balanced orientation modulo 2k if for each vertex the defi-
ciency (outdegree minus indegree) is congruent to 0 or & modulo 2k. For circular s—ﬂow
problems (such as, Theorems 1.4 and 1.5), we only need to consider special balanced
orientation modulo 2k as in Eq. (2) of Theorem 1.2 (iii). Thus, by Remark 3.2 (and
Definition 3.1(b)), the (2k, 8)-boundaries of (k — 2¢)G must have f(v) =0 or B(v) = k
(mod 2k), Vv € V(G). In this case, we also have 5(A4) € {0, k} for any subset A C V(G)
by Definition 3.1(a). The following corollary is a special case of Theorem 3.3 where
B(v) € {0,k}, Vv € V(G). It is easier to use in proving Theorems 1.4 and 1.5.

Theorem 3.4. Let G be a graph with a (2k, §)-boundary, where B(v) € {0,k}, Vv € V(G).
Let zy be a vertex of V(G) with B(z0) = 0 and d(z) < 2k—2. Let D, be a pre-orientation
of E(zo) in which the indegree is congruent to outdegree modulo 2k. Assume that for any
A CV(G)\ {z0} with [V(G)\ A] > 1, we have
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(a) d(A) > 2k — 2, and additionally,
(b) d(A) > 3k —2 if B(A) = k.

Then pre-orientation D, at zy can be extended to a (2k,[3)-orientation of the entire
graph G.

The following lifting lemma of Zhang [18] shows that the odd edge connectivity is
preserved under certain lifting operation.

Lemma 3.5. (Zhang [18]) Let G be a graph with odd edge connectivity t. Assume there
is a vertexr v € V(G) with d(v) # t and d(v) # 2. Then there exists a pair of edges
u1v, ugv in E(v) such that after lifting uiv, usv, the resulting graph remains odd edge
connectivity t.

Note that the flow index of a graph does not decrease after lifting operation.
Now, we are ready to prove Theorem 1.4 restated below.

Theorem 3.6. Every (6p — 1)-odd-edge-connected graph admits a circular (2+ %L_l)—ﬂow.

Proof. Let G be a counterexample of Theorem 3.6 with |E(G)| minimized. We shall
show the following claims to get a contradiction.

Claim I. The graph G is (6p — 1)-regular and |V (G)| > 4.

Proof of Claim I. By Lemma 3.5, we may assume every vertex in G is of odd degree,
and so minimal degree §(G) > 6p — 1. Otherwise, we lift all the edges incident with an
even vertex, yielding a smaller counterexample. If G' contains a vertex of degree at least
6p+1, then Lemma 3.5 applies as well. So G must be (6p—1)-regular. It is straightforward
to verify this statement for a (6p — 1)-regular graph H with two vertices. Specifically,
H admits a modulo (6p — 1)-orientation, and so ¢(H) < 2 + 3p+1 <2+ Til‘ This
shows |V(G)] > 3. As G is (6p — 1)-regular, we also have |V (G)| is even and, therefore,
V(G| >4 O

Claim II. For any A C V(Q) with |A| odd, dz(A) > 6p — 1.

Proof of Claim II. In fact, by Claim I, we have dg(A) is odd for any A C V(G) with | 4]
odd. Hence Claim IT follows since G is (6p — 1)-odd-edge-connected. [J

Claim III. The graph G is 4p-edge-connected.

Proof of Claim ITI. Otherwise, G contains edge-cuts of size at most 4p — 2. By Claim II,
we may let W be a minimal vertex set of even order such that dg(W) < 4p. That is,

da(W') > 4p for any W’ C W. Notice that G/W admits a circular (2 + 2pifl)—ﬂow by
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the minimality of G. By Remark 3.2(b), 2(G/W) = (2G)/W admits a (8p, 3)-orientation
Dy with B(v) = 4pdg(v) (mod 8p) for any v € V(2G) \ W, and B(w) = 4pdgw(w)
(mod 8p) for the contracted vertex w. Now contract W€, the complement of W, in 2G
to view it as new zy. Keep the pre-orientation of zy as in D;. We will apply Theorem 3.4
in the new graph H = (2G)/W*¢. Notice that in the new graph

du(20) = dac(W) = 2d(W) < 8p—4 < 8p —2,

and f(zp) = S(W€) = 0. By the minimality of |W/|, for any A C W we have dg(A) =
2d¢(A) > 8p, thus condition (a) of Theorem 3.4 is satisfied. By Claim I, for any A C W
we have 5(A) = 4p if and only if | 4| is odd. By Claim II, for all A C W with (A) = 4p

we have
di(A) = 2d6(A) > 3-4p—2,

and so condition (b) of Theorem 3.4 also holds. Thus Theorem 3.4 is applied, and the
pre-orientation of zo can be extended to a (8p, §)-orientation Dy of H = (2G)/W¢ with
B(v) = 4pdg(v) (mod 8p) for any v € W. Finally, we combine the orientations D; and
Dy, to result an (8p, B)-orientation of 2G with 5(v) = 4pde(v) (mod 8p), Vv € V(2G). By
Remark 3.2(b), this implies that G admits a circular (2+ %%)—ﬂow, a contradiction. [J

Claim IV. The graph 2G has a (8p, B)-orientation with f(v) = 4pde(v) (mod 8p), Vv €
V(2G).

Proof of Claim IV. We subdivide an edge in 2G to obtain a new vertex 2, and denote
this graph by H. Let the two incident edges with 2y be pre-oriented as one in and one
out at zg. By Claim III, for any A C V(H)\ {20} we have di(A) = 2dg(A) > 8p, and so
condition (a) of Theorem 3.4 is verified. For any A C V(H) \ {z0} with 8(A) = 4p, we
have that |A] is odd by Claim I, and so dy(A) = 2dg(A) > 12p — 2 by Claim II. Thus
condition (b) of Theorem 3.4 is satisfied, and so Theorem 3.4 is applied. This orientation
of H extended from zq provides a (8p, §)-orientation of 2G, and hence Claim IV holds. O

By Claim TV and by Remark 3.2(b), G admits a circular (2 + %%)-ﬂow, again a
contradiction. This completes the proof of Theorem 3.6. W

In [7], the relation of strongly connected modulo (2p + 1)-orientations and the flow
index ¢ < 2+ % was discovered and used as the key lemma in the proof of the main
theorem. It is also proved in [7] that every 8-edge-connected graph admits a strongly
connected modulo 3-orientation, and, therefore, has flow index strictly less than 3. In
this paper, instead of using this strongly connected orientation lemma, we introduce a
very different approach. The main idea of the method is outlined as follows. For some
subset S C V(G) with G[S] dense in certain sense, if the flow index ¢(G/S) <2+ 1_13 —¢
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for some positive number €', then there is another positive number ¢ with 0 < € < €' such
that $(G) <2+ 1 —

In proving ¢(G) <2+ % — ¢ for some positive number ¢, a barrier is that the extended
graph of G may not satisfy the required condition (b) of Theorem 3.4. Fortunately, for
sufficiently small e (related to the order of G), there exists a sufficiently large integer
t = t(e) such that the graph modified from ¢tG by adding certain pre-oriented edges is
suitable for applying Theorem 3.4 to get a desired orientation.

Now we prove Theorem 1.5, restated as Theorem 3.7 below in a slightly different form.

Theorem 3.7. For any (6p+3)-odd- edge connected graph G, there exists a positive integer
t =t(G) such that $(G) <2+ 1 — 51 <2+ 1.

Proof. Suppose, by contradiction, that G is a (6p+ 3)-odd-edge-connected graph satisfy-
ing ¢(G) > 2+ % with |V(G)| + |E(G)| minimized. By a proof similar to that of Claims I
and IT in Theorem 3.6, we apply Lemma 3.5 to obtain the following fact.

Claim I'. (a) G is (6p + 3)-regular and |V (G)| > 4.
(b) For any A C V(G) with |A| odd, dg(A) > 6p + 3.

Next, we continue to apply the similar approach as in the proof of Claim I1I. Among
all vertex subset A C V(G) with d(A) < 4p, choose one with minimum cardinality,
denoted by S. That is, for any S” C S we have d(S’) > 4p + 2. Note that, here it is
possible that S = V(G), and in this case G is (4p + 2)-edge-connected.

Notice that |S| > 2 by Claim I’(a). By the minimality of G, we have ¢(G/S) < 2+ %,
and a further property of G/S is as follows.

Claim II'. There exists a positive integer ty such that for any t > to, we have

2t —1  dpt+2t—1

P(G/S) <2+ oot ot

Thus (2t — 1)(G/S) admits a modulo (4pt + 2t — 1)-orientation Dy by Theorem 1.2.

Proof of Claim IT’. Note that the circular flow is monotonic (see [2]). That is, for rational
numbers A\; > Ay > 2, if a graph admits a circular Ao-flow, then it has a circular \;-flow

as well.
Since ¢(G/S) < 2+ L 'there exists a positive integer to such that ¢(G/S) < 2+—— 2p—to
and so ¢(G/S) <2—|———— 2+——— whenever ¢ > t;. O

2pto — 2pt

For convenience, denote k = k(t) = 4pt + 2t — 1. Then by Claim II', (2t — 1)(G/S)
admits a modulo k-orientation D, for any given ¢t > ty. Ideally, we would like to extend
this orientation Dp of (2t — 1)(G/S) to be a modulo k- orientation of (2t — 1)G. Then it

follows from Theorem 1.2 that ¢(G) < 2pt =2 —|— 2pt <2 + =
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To this end, we contract S¢, the complement of S, in (2¢ — 1)G to obtain a new graph
G1 and view the contracted vertex as zo. (In the case that G is (4p + 2)-edge-connected,
S¢ = () and we add a new isolated vertex zo to (2t — 1)G to form a new graph Gi.) At
the same time, we also keep the pre-orientation of zg as in D;. Note that

da, (20) = (2t — 1)dg(S) < 4p(2t — 1) = 2k + 2 — 4p — 4, (6)
and for each v € S, by Claim I'(a) we have
dg, (v) = (2t — 1)dg(v) = (2t — 1)(6p + 3) = 3k — 6p.

With the above calculations, the condition (b) of Theorem 3.4 (or the condition (iii) in
original Theorem 3.3) is not satisfied for G; yet, and therefore, it cannot be applied here
directly. However, with a new construction in the next claim, this problem is resolved.

Claim ITI'. Construct a new graph Gy from Gy by adding 3p directed edges from v to zg
and 3p directed edges from zy to v for each v € S. Then for t > max{to, 2p|V(G)|}, the
graph Go with its pre-orientation at zg satisfies the conditions of Theorem 3./, and so
we can apply Theorem 3.4 to obtain a modulo k-orientation Dy of Gs.

Proof of Claim III'. As k = 4pt + 2t — 1 is odd and each vertex in G other than zg
is of odd degree, by Remark 3.2(a), seeking a modulo k-orientation is equivalent to find
a (2k, B)-orientation with 5(v) = k for each v € S and S(z9) = 0. We will verify the
conditions of Theorem 3.4 as follows.

For any A C S of odd order, by Claim I'(a) we have 8(A) = > ., B(v) =k (mod 2k),
and it follows from Claim I'(b) that dg,(4) > (6p + 3)(2t — 1) + 6p = 3k by the
construction of G. For any A C S of even order, we have 3(A) =3 _, B(v) = k|A[=0
(mod 2k) by Claim I’(a). Moreover, dg(A) > 4p+2 by the minimality of .S, which implies
da,(A) > (4p+2)(2t — 1) +12p = 2k + 8p > 2k — 2. So conditions (a)(b) of Theorem 3.4
are verified for Gy. By Eq. (6) and since ¢t > max{to, 2p|V(G)|}, we have

da,(20) = da, (20) + 6p|S| < 2k +2 —4p — 4t + 6p|V (G)| < 2k — 2,

and so Theorem 3.4 is applied for Gs.
By Theorem 3.4, the pre-orientation at zy can be extended to a (2k, §)-orientation
D5 of GG5. This D5 is a modulo k-orientation of Gy. [

We delete all the added directed edges of zg in D2, and then the combination of D
and rest of Dy results a modulo k-orientation of (2t — 1)G. Hence by Theorem 1.2

k 1 1 1
HE) < — =24+ - —— <24 —,
(@) 2pt p  2p

which completes the proof. W
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4. Remarks on strongly connected orientations and contractible configurations

It was proved in [7] that the flow index ¢(G) < § if and only if G admits a modulo
k-flow (D, f) with f: E(G) = {q, -+ ,k —q— 1} such that the orientation D is strongly
connected. In particular, it follows that ¢(G) < 2 + % if and only if G admits a strongly
connected modulo (2p+1)-orientation. Those results can be applied to show the following
analogy of Theorem 1.2.

Theorem 4.1. Let G be a connected graph and k, q be two positive integers with k > 2q+1.

Then ¢(G) < % if and only if (k — 2q)G has a strongly connected orientation D such

that, for every vertex v € V((k — 2q)G),
db(v) = —qdg(v) (mod k).

Consequently, for any odd k,
k 1
»(G) < 2 < o((k—2¢)G) <2+ 7

By Theorem 1.5 we obtain the following corollary immediately.

Corollary 4.2. Every (6p+ 3)-odd-edge-connected graph admits a strongly connected mod-
ulo (2p + 1)-orientation.

In [7], the authors obtain a ¢ < 3 result for 8-edge-connected graphs from strongly
connected modulo 3-orientations. In the current paper, we derive an inverse result that
to obtain strongly connected modulo (2p + 1)-orientation from the fact of flow index
¢ <2+ %. It is also shown in [7] that every 8-edge-connected graph is a contractible
configuration for the graph property of ¢ < 3, while the current proof of Theorem 1.5
does not imply this stronger property. Here we can further extend this contractible
configuration property under a slightly higher edge connectivity 6p + 3.

Theorem 4.3. Let H be a (6p + 3)-edge-connected graph. Then for any supergraph G of
H, we have

1 1
gb(G)<2+]—7 &= ¢(G/H)<2+§'

Proof. The following is an outline of the proof. The main frame of the proof is similar to
Theorem 3.7. We aim to extend a (2+ % —¢)-flow of G/H to G using Tutte orientations
from Theorem 1.2. However, the boundary 8 of H may be arbitrary (not just 0 and k).
Thus, H requires to be (6p + 3)-edge-connected, and Theorem 3.3 is applied in the proof
instead of its simplified version, Theorem 3.4.



320 J. Li et al. / Journal of Combinatorial Theory, Series B 145 (2020) 307-322

(Sketch of proof). Clearly, ¢(G) < 2 + % implies ¢(G/H) < 2 + % since the flow is
preserved under contraction. It suffices to justify the reverse. Assume that ¢(G/H) <
24 %. Similar as in Theorem 3.7, there exists a positive integer ty such that for any ¢; > ¢
we have ¢(G/H) < 2+ % - 21}%1 Let t = max{to, 2p|V(G)|}, and let ¢ = 2pt+t—1. Then
(2t—1)(G/H) has a modulo (2¢+ 1)-orientation Dy since ¢(G/H) < 2+ % - %pt. We shall
apply Theorem 3.3 to show that this modulo (2¢ + 1)-orientation Dy of (2t — 1)(G/H)
can be extended to a modulo (2¢g 4 1)-orientation of (2¢t — 1)G below. Then it follows
from Theorem 1.2 that ¢(G) <2+ ;1) - %pt <2+ %.

Notice that the modulo (2¢+ 1)-orientation Dy of (2¢—1)(G/H) results an orientation
of (2t — 1)(G — E(H)), where each vertex x € V(H) receives a boundary ((x) (which
may or may not be zero), and for any y € V(G) \ V(H) we have boundary f1(y) = 0
(mod 2¢+1). In particular, 3, v ((2—1ymr) P1(x) =0 (mod 2¢+1). Thus by Definition 3.1
we can transfer 1 to be a (4q + 2, B2)-boundary of (2t — 1) H, where the function S35 :
V((2t —1)H) — {0, £1,...,£(2¢ + 1)} satisfies 3y ((os—1)m) B2(z) =0 (mod 4g + 2),
Ba2(v) = —B1(v) (mod 2q + 1) and B2(v) = diat—1)m(v) (mod 2) for every v € V((2t —
1)H). It suffices to show that (2¢t—1)H admits a (4¢+2, f3)-orientation Dy. Then D1 UDs
results a modulo (2¢ + 1)-orientation of (2¢ — 1)G.

To this end, construct a new graph Hs from (2t — 1)H by adding a new vertex
zo with 3p directed edges from v to zy and 3p directed edges from zy to v for each
v € V((2t — 1)H). We shall show that the graph Hy with the pre-orientation of zj is
applied for Theorem 3.3. First, since dp,(z0) = 6p|V(H)| < 6p|V(G)| < 2t < q <
4q + |52(z0)], condition (ii) of Theorem 3.3 is satisfied. Then, for any A C V((2t — 1)H)
with |A| < |V(Hz)| — 2, we have

dp, (A) = (6p +3)(2t = 1) + 6p = 6 + 3 > 4g + [B2(A)],

and so condition (iii) of Theorem 3.3 is verified. Hence by Theorem 3.3 the pre-orientation
of zg is extended to a (4q + 2, B2)-orientation of Hs, resulting a desired orientation Dy
of (2t — 1)H. Therefore, it provides a modulo (2¢ + 1)-orientation Dy U Dy of (2t — 1)G,
which completes the proof. W

Similar contractible configuration property holds for circular (2 + %%)—ﬂows as well.
The proof is similar and thus omitted.

Theorem 4.4. Let H be a (6p — 1)-edge-connected graph. Then for any supergraph G of
H, we have

2 2
¢(G)§2+2p——1 = ¢(G/H)§2+2p—_1~
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5. A summary of flow indices

In this paper, we obtain circular flow results for all (6p — 1)- and (6p + 3)-odd-edge-
connected graphs, filling the odd edge connectivity left from Theorem 1.3 of Lovasz et
al. [8]. The current known status of flow indices is summarized in Table 1.

Table 1
Flow index and odd edge connectivity of graphs.
Odd-Edge-Conn.  Conjectured ¢ Known ¢
3 ¢ < 5 (Tutte 1954 [14]) ¢ < 6 (Seymour 1981 [10]))
5 é < 3 (Tutte 1972 [11] [1]) & < 4 (Jaeger 1979 [4])
7 é < 3 (LTWZ 2018 [7]) $ < 3 (LTWZ 2013 [8])
9 ¢ < 2.5 (Jacger 1988 [5]) ¢ < 3 (LTWZ 2018 [7])
11 * ¢ < % (This paper)
13 ¢ < % (Jaeger [5]. False, [3]) ¢ < 3 (LTWZ 2013 [8])
15 * ¢ < 2 (This paper)
17 ¢ < 2 (Jaeger [5]. False, [3]) ¢ < %2 (This paper)
19 % ¢ < I (LTWZ 2013 [8])
6p — 1 * ¢ <2+ 21)%1 (This paper)
6p+1 * ¢ <2+ -+ (LTWZ 2013 [8])
6p + 3 * ¢ <2+ % (This paper)
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